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Abstract

Adaptive Time-stepping in the Numerical Solution of the Reaction-Diffusion Master Equation

Master of Science 2015

Jill Marie Anderson Padgett

Applied Mathematics

Ryerson University

Stochastic modeling and simulation are essential tools for studying cellular processes. The dynamics of spa-

tially heterogeneous biochemical systems with species in low amounts is governed by a discrete, stochastic

model, the Reaction-Diffusion Master Equation (RDME). The Inhomogeneous Stochastic Simulation Algo-

rithm (ISSA) is an exact numerical method for the RDME, but is prohibitively slow as it simulates every

chemical reaction and diffusion event. To overcome this difficulty, an approximate strategy, the tau-leaping

scheme, was developed that steps over multiple reactions and diffusion events. Mathematical models of bio-

chemical systems are often prone to stiffness, thus computationally challenging. In this thesis, we propose

an adaptive time-stepping scheme for the tau-leaping method for the RDME. This strategy is compared to

the ISSA, for several models of interest. The numerical results show that the proposed adaptive technique

significantly speeds-up the simulation, while maintaining excellent accuracy of the numerical solution.
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Chapter 1

Introduction

The area of Computational and Systems Biology has seen a rise in popularity in recent years because

advancements in genetic and molecular biology have led to a rapid influx of genomic data [11]. Mathematical

modeling and simulations provide an invaluable tool for analyzing these complex biological systems under a

variety of experimental conditions [11, 52]. Among the approaches used to model biochemical systems are

ordinary differential equations, partial differential equations, and stochastic master equations.

Biochemical computer simulations test hypothesis with in silico experiments. The aim of such simulations

is to test the validity of underlying model assumptions by predicting the biochemical system’s dynamics.

Biochemical modeling and simulation development is an iterative process. Starting with an existing bio-

chemical system, scientists and mathematicians determine which mathematical model is most appropriate,

then develop an associated computer model. The output of such a model is then compared to the existing

experimental observations. If inconsistencies between the simulation and experimental data are observed,

this may indicate incomplete knowledge of the biochemical system under consideration or a potential issue

with the simulation. Thus, more accurate measurements or refinements to either the model or the simu-

lation are required. Once the simulation passes validation, it can be used to test sensitivity to biological

parameters, to provide predictions to be tested by in vitro and in vivo studies, or to infer relationships that

may not be observable experimentally [36].

Cellular processes are typically modeled as systems of chemical reactions. The mathematical model

that accurately represents the system under consideration depends on the molecular population size and

the nature of the biochemical reactions in the system. When all molecular or species populations occur

in large amounts, the deterministic biochemical model of the reaction-rate equations can effectively model

the biochemical kinetics. The reaction-rate equations are based on the Law of Mass Action which gives a

relationship between the reaction rates and the molecular concentration. On the level of a single cell, the

assumption that all molecular species have large amounts is often unjustified. Certain key reactants like

DNA or RNA occur in such low numbers that discrete models are required [52]. These small population

numbers lead to random fluctuation within the cellular system which have been observed experimentally

[13, 5]. Consequently, discrete, stochastic mathematical models are required to reproduce the dynamics of

these cellular systems.
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CHAPTER 1. INTRODUCTION

A biological application that has greatly benefited from stochastic modeling is gene regulatory networks

[29, 31]. Gene expression is defined as the “production of an observable molecular product (RNA or protein)”

[35]. When considering the pathway from DNA to protein in a eukaroytic cell, gene expression can be

regulated at six different stages including: transcriptional control, how often a gene is transcribed into RNA,

RNA processing control, the splicing and processing of RNA transcripts into mRNA, and translational control,

selecting which mRNA are translated into proteins. Transcriptional controls are paramount for most genes

as they prevent the synthesis of unnecessary intermediates. However, transcriptional controls also aid in the

transcription of genes. Transcriptional control is provided by gene regulatory proteins which bind to specific

DNA sequences to influence the transcription of the gene. Gene regulatory proteins are often produced from

separate genes, but can be produced by the gene they regulate. This network of gene regulatory proteins and

the genes they govern form a gene regulatory network [35]. More complex gene regulatory networks describe

the regulatory interactions between DNA, RNA, proteins, and small molecules [11]. Low molecular numbers

are inherent to gene regulatory networks and certain cellular events, like the start and finish of transcription,

may have timing fluctuation. Thus, discrete and stochastic mathematical models will generally provide the

most accurate representation of the system’s behaviour.

Arkin et. al. [2] presented the first successful application of discrete, stochastic biochemical modeling to

an in vivo experiment. The study focused on the phage λ lysis-lysogeny genetic regulatory network. In their

experiment, Escherichia coli cells were infected with λ-phage, a virus that induces either lysis1 or lysogeny
2. They found that the fraction of cells selecting the lysogenic pathway predicted from the stochastic kinetic

model was consistent with experimental observations.

The discrete stochastic model that Arkin et. al. [2] used is known as the Chemical Master Equation

(CME) [41, 22]. The CME is the most refined mathematical model of homogeneous or well-stirred bio-

chemical kinetics and is too complex to solve analytically for most biochemical systems of practical interest.

Daniel Gillespie proposed the first exact numerical simulation algorithm for the CME [20, 21]. Known as the

Stochastic Simulation Algorithm (SSA) or Gillespie’s algorithm, this Monte Carlo method simulates individ-

ual realizations of the biochemical system’s state which agree with the statistics of the CME. Other exact

CME simulation algorithms include the First Reaction Method [20] and Gibson and Bruck’s Next Reaction

Method [19].

All of these exact simulation algorithms require the simulation of every chemical reaction, one at a time.

When biochemical systems include many fast reactions or large population numbers in one or more species,

the average time between reactions decreases to a point where it is no longer computationally feasible to

simulate individual reactions [25]. To improve computation efficiency, Gillespie [23] proposed tau-leaping

methods, approximate discrete stochastic strategies designed to improve simulation times by sacrificing a

certain level of simulation detail. This technique uses a pre-determined step size τ to leap over many reactions

using Poisson random variables. A poor choice of τ can lead to inaccuracy in the final solution or negative

numbers in some molecular species. As such, a series of τ selection procedures have been proposed [26, 8, 9]

as well as replacing the Poisson random variables with binomial random variables [51, 10]. Gillespie [23] also

proposed the Chemical Langevin Equation, a continuous stochastic method, as the bridge model between the

1the breakdown of the cell membrane
2the integration of the virus’s nucleic acid into the host’s DNA
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CHAPTER 1. INTRODUCTION

CME and the deterministic reaction-rate equations. Additionally, hybrid methods, which combine two or

more of discrete stochastic, continuous stochastic, and continuous deterministic models, have been proposed

to improve simulation time for the CME [28, 43, 47, 46, 48, 54].

Moreover, many critical cellular processes such as chemotaxis [50], intracellular signal pathways [3], and

cell division [30] rely on the heterogeneous distribution of the eukaryotic cell. Thus, mathematical models for

these biochemical systems must include a spatial component to accurately replicate the underlying system’s

behaviour. Fange and Elf’s [16] study of the Min system in Escherichia coli illustrates the requirement

to include spatial characteristics. They found that experimental observations of two mutant strains only

correlated with the results of the simulation model that incorporated randomness and discreteness along

with the spatial characteristics of the process. By partitioning the biochemical system’s volume into sub-

volumes or voxels and allowing diffusion to occur between the voxels, we can extend the Chemical Master

Equation to the Reaction-Diffusion Master Equation (RDME) model [18]. This popular mesoscopic model

accurately describes the kinetics of heterogeneous biochemical systems and is generally intractable for real-life

applications.

Similar to the CME, a number of exact numerical simulation algorithms have been developed to solve the

RDME including: Stundzia and Lumsden’s extension of the SSA [49], Elf and Ehrenberg’s extension of the

Next Reaction Method to the Next-Subvolume Method [12], MesoRD [16], and [34]. All of these methods are

prohibitively slow in general [25], because they simulate every reaction and diffusion event. Furthermore, as

spatial discretization becomes more refined, diffusive transport events can dominate the system dynamics

[25]. To overcome these limitations, approximation techniques like tau-leaping have been extended to solve

the RDME [40, 45, 37]. Hybrid methods have also been proposed to improve simulation time for the RDME

[45, 38, 17].

A biochemical system is considered stiff if explicit numerical methods require very small step sizes to

maintain solution stability. Mathematical models of heterogeneous biochemical systems are particularly

prone to stiffness; as they generally contain a combination of fast and slow reactions leading to multiple

time-scales. Additionally, as voxel size decreases, the number of diffusion events increases dramatically; thus

drastically increasing the computational cost. Stiffness is computationally expensive—adaptive time-stepping

and approximate techniques can significantly improve simulation efficiency for heterogeneous biochemical

systems.

The tau-leaping methods are the most accurate of the approximation techniques for both the CME and

the RDME. Adaptivity plays a critical role for approximating the solution of the CME and RDME. Using

the leaping strategies, adaptivity attempts to improve simulation time by picking the largest value of τ that

is compatible with the leap condition3. Gillespie [23] proposed the first adaptive τ -selection procedure which

imposed a uniform bound in the leap condition and only considers the mean of the propensity functions.

Petzold and Gillespie [26] proposed an improvement to Gillespie’s adaptive τ -selection procedure by con-

sidering bounds on both the mean and the variance of the propensity functions. However, these methods

fail to account for the potential order of magnitude differences in the propensity functions. Cao et. al. [9]

provided the next incremental improvement to Petzold and Gillespie’s τ -selection method by bounding the

3The condition stating that the propensity functions remain relatively constant on the time interval τ .
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CHAPTER 1. INTRODUCTION

relative changes in the propensity functions, thus accounting for propensity functions of differing magnitudes.

Cao et. al. [9] then proposed a second, and now more widely used, τ -selection scheme which bounds the

relative changes in the molecular populations and considers the mean and variance of the molecular species.

Nonetheless, Cao et. al.’s τ -selection procedure still has the potential to violate the leap condition in a single

species, over one step.

As biochemical systems and models increase in size and complexity, it becomes computationally very

expensive to complete biochemical simulation runs of even short time durations using exact methods [17].

Therefore, there exists a need for faster, but accurate approximation techniques. In this thesis, we are

proposing a new adaptive τ -stepping strategy for the tau-leaping method for numerically simulating the

Reaction-Diffusion Master Equation [42]. We base our variable time-stepping technique on an integral

controller from control theory [27]. This method has been shown to be very efficient for deterministic

models, and has also been successfully applied to adapt the step size in the numerical solution of Stochastic

Differential Equations [6, 33]. Our variable time-stepping scheme aims to minimize the computational cost

while guaranteeing the desired accuracy. For the models tested we observed a two orders of magnitude

speed-up over exact methods.

To guarantee the solution accuracy, we employ post-leap checking. For each time-step, we verify that

the numerical solution satisfies the leap condition with some pre-defined tolerance [23, 9], before attempting

the next step. We may also reject occasionally, but store leap steps which fail the leap condition. To

avoid biasing the solution statistics, we use the post-leaping checking technique described by Anderson [1] to

condition the solution trajectory based on the rejected, but stored solution steps. This technique guarantees

that the leap condition is always satisfied. As such, we see excellent agreement in the simulation results

from our proposed numerical method when compared to the simulation results from an exact inhomogeneous

stochastic simulation algorithm for the RDME, for models with molecular populations bounded away from

zero. Our new and reliable adaptive tau-leaping strategy can be used as a standalone method to numerically

solve the RDME. Our variable step size scheme can also be effectively integrated into hybrid methods which

use tau-leaping schemes for numerically solving the RDME.

Finally, we provide an overview of this thesis. In Chapter 2, we introduce the mathematical models and

simulation methods for biochemical systems. We first consider homogeneous biochemical systems and discuss

the mathematical theory associated with Chemical Master Equation, the Stochastic Simulation Algorithm,

and the Poisson tau-leaping algorithm. We then extend the mathematical theory to heterogeneous biochemi-

cal systems and describe the Reaction-Diffusion Master Equation, the Inhomogeneous Stochastic Simulation

Algorithm, and the spatial Poisson tau-leaping algorithm. In Chapter 3, we present our proposed adaptive

spatial Poisson tau-leaping method. In this chapter, we outline the mechanics of accuracy estimation, time

adaptivity, and step rejection; the three key features used to maintain solution accuracy. Next, in Chapter

4, we test the numerical simulation algorithm on three biochemical models to demonstrate the efficiency and

accuracy of the new method. Lastly, in Chapter 5 we discuss the implications of our work and the future

directions of research.

4



Chapter 2

Background

Continuous deterministic models of biochemical systems have been successfully used to model cellular pro-

cesses [52]; however when these molecular systems include species in low numbers or are prone to noise

amplification, deterministic models fail to accurately reproduce the system’s dynamics [53], because stochas-

ticity may dominate the system’s behaviour. The Chemical Master Equation, a homogeneous discrete,

stochastic model can successfully reproduce these types of system dynamics. Additionally, certain critical

cellular processes like the cell cycle [30] or intra-cellular signaling [3] depend on the heterogeneous layout

of the eukaryotic cell. The Reaction-Diffusion Master Equation, a heterogeneous, discrete stochastic model,

incorporates spatial heterogenity by dividing the system’s volume into voxels. Each voxel is treated as a

homogeneous system and the species can freely diffuse between the voxels.

2.1 Chemical Master Equation and methods

Consider a biochemical system of constant volume Ω at thermodynamic equilibrium with N chemical species

{S1, S2, . . . , SN} and M chemical reactions {R1, R2, . . . , RM}. We assume this system is well-stirred, i.e.

the molecules of each chemical species are spread uniformly throughout the volume Ω. These assumptions

allow us to define the state vector, X(t) = [X1(t), X2(t), . . . , XN (t)]
T

, where each Xi(t) is the number of

molecules of species Si at time t. The state vector tracks the evolution of the species in the biochemical

system through time.

Each reaction Rj has an associated stochastic rate constant, kj , state-change vector, νj , and propensity

function, aj(x), where X(t) = x is the current system state at time t. The state-change vector νj =

(ν1j , . . . , νNj)
T, where each νij is the net change in species Si caused by reaction Rj . If the system is in

state x and one reaction Rj occurs, then the new system state is x + νj . The set of state-change vectors

{ν1,ν2, . . . ,νM} can also be represented as a stoichiometric matrix ν = [ν1,ν2, . . . ,νM ].

The physical meaning of the propensity function, aj(x), is that aj(x)dt gives the probability that one

reaction Rj occurs in the next infinitesimal time interval [t, t + dt) given that the current system state is

X(t) = x. Thus, aj(x) is the rate at which reaction Rj occurs in the system.

5



2.1. CHEMICAL MASTER EQUATION AND METHODS CHAPTER 2. BACKGROUND

The form of the propensity function aj(x) follows mass-action kinetics, it is based on the order of

the reaction Rj and the principles of the kinetic theory. Zeroth-order reactions have the form ∅ kj→ Sn with

aj(x) = kj . First-order reactions have the form Sn
kj→ “products” with aj(x) = kjxn. Second-order reactions

have either the form Sn + Sm
kj→ “products” with aj(x) = kjxnxm or the form 2Sn

kj→ “products” with

aj(x) = kj
xn(xn−1)

2 . Third-orders reactions have 4 possible forms—one example is 2Sn + Sm
kj→ “products”

with aj(x) = kj
xn(xn−1)xm

2 . For most biochemical system simulations, third- and higher-order reactions are

typically modeled as a series of first- and second-order reactions.

2.1.1 Derivation of the Chemical Master Equation

The well-stirred biochemical system described previously may be modeled by a finite state, continuous-time

Markov process. A finite state, continuous-time Markov process [44] is a stochastic process with the property

that the future states are independent of the past states given the present state. This can be represented

formally as

P (X(t+ dt) = x|{X(t) = x(t)|t ∈ [0, t]}) = P (X(t+ dt) = x|X(t) = x(t)), ∀ t ∈ [0,∞), x ∈ S

where S is the state space of the stochastic process X. Below, we shall derive a set of differential equations

whose solution gives the full transitional probability kernel for the biochemical system’s dynamics. This set

of differential equations is known as the Chemical Master Equation (CME).

For any pair of states i and j, the transient probability, pij(t) = P{X(t+ s) = j|X(s) = i}, denotes that

the process is currently in state i and will be in state j at a time t later. Let vi be the rate at which the

process makes a transition while in state i. Let pij be the probability that this transition brings the process

to state j. Then, the instantaneous transition rate, qij = vipij , is the rate at which the process when in state

i moves to state j. Based on the definition of qij , we can derive the following relationships,

vi =
∑
j

vipij =
∑
j

qij (2.1)

and

pij =
qij
vi

=
qij∑
j qij

. (2.2)

Therefore, once the instantaneous transition rates are specified, the parameters of the continuous-time

Markov process can be found using equations (2.1) and (2.2).

Now, we will prove a series of lemmas prior to introducing the Kolmogorov’s forward equations which are

the basis for the CME. These results are attributed to Ross [44].

Lemma 2.1.1. The following property applies

lim
h→0

1− pii(h)

h
= vi. (2.3)

6
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Proof. Since we assume the amount of time until the next transition is exponentially distributed, we know

the probability of 1 event occurring in time h is vih+ o(h) and the probability of 2 or more events occurring

in time h is o(h). We note that pii(h) is the probability that the process starts in state i at time zero and

remains in state i at time h. Thus, 1− pii(h), the probability that the process is in state i at time 0 and will

not be in state i at time h is

1− pii(h) = vih+ o(h).

Dividing through by h, then taking the limit of both sides yields

lim
h→0

1− pii(h)

h
= vi.

Lemma 2.1.2. The following holds

lim
h→0

pij(h)

h
= qij when i 6= j. (2.4)

Proof. We note that pij(h), the probability that the process goes from state i to state j in time h, equals

the probability that a transition occurs multiplied by the probability that the transition brings the process

into state j. Thus,

pij(h) = vihpij + o(h),

pij(h) = hqij + o(h).

Dividing through by h, then taking the limit of both sides yields

lim
h→0

pij(h)

h
= qij .

Lemma 2.1.3. Chapman-Kolmogorov equations

For all s ≥ 0, t ≥ 0, the equation below is valid

pij(t+ s) =

∞∑
k=0

pik(t)pkj(s). (2.5)

Proof. For the process to move from state i to state j in time t+ s, the process must be somewhere at time

7
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t, therefore

pij(t+ s) = P{X(t+ s) = j|X(0) = i}

=

∞∑
k=0

P{X(t+ s) = j ∩X(t) = k|X(0) = i}

=

∞∑
k=0

P{X(t+ s) = j|X(t) = k ∩X(0) = i}P{X(t) = k|X(0) = i}

=

∞∑
k=0

P{X(t+ s) = j|X(t) = k}P{X(t) = k|X(0) = i}

=

∞∑
k=0

pjk(s)pki(t).

Theorem 2.1.4. Kolmogorov’s forward equations

For all states i, j, and times t ≥ 0,

p′ij(t) =
∑
k 6=j

qkjpik(t)− vjpij(t). (2.6)

Proof. Starting from equation (2.5), we have

pij(t+ h)− pij(t) =

∞∑
k=0

pik(t)pkj(h)− pij(t)

=
∑
k 6=j

pik(t)pkj(h) + pij(t)pjj(h)− pij(t)

=
∑
k 6=j

pik(t)pkj(h)− pij(t)(1− pjj(h)).

Dividing through by h, then taking the limit of both sides yields

lim
h→0

pij(t+ h)− pij(t)
h

= lim
h→0

∑
k 6=j

pik(t)
pkj(h)

h
− pij(t)

[
1− pjj(h)

h

] .
Since the process has a finite number of system states, we can exchange the limit and the summation, then

apply Lemmas 2.1.1 and 2.1.2 to arrive at

p′ij(t) =
∑
k 6=j

qkjpik(t)− vjpij(t).

To derive the Chemical Master Equation (CME), we begin with Kolmogorov’s forward equations (2.6)

8
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and consider a biochemical system that goes from state i = x0 at t0 to state j = x at t. Thus,

p′x0 x(t) =
∑
k 6=x

qk xpx0 k(t)− vxpx0 x(t).

Given that the system is in state x, k = x−νj for j = 1, . . . ,M are the only possible transitions that bring

the system to this particular state. It follows that the instantaneous transition rate qk x becomes q(x−νj) x.

Then, we can conclude based on the definition of the propensity function aj(x) that q(x−νj) x = aj(x− νj).

Furthermore, given that the system is in state x, x+νj for j = 1, . . . ,M are the only possible transitions

that bring the system from this particular state. We can conclude based on equation (2.1) and the definition

of aj(x), that vx =

M∑
j=1

qx (x+νj) =

M∑
j=1

aj(x).

Finally, letting P (x, t|x0, t0) be the probability that X(t) is equal to x, given that X(t0) = x0, we have

P (x, t|x0, t0) = px0 x(t). Therefore, by combining these results, we arrive at the following equation,

∂P (x, t|x0, t0)

∂t
=MP (x, t|x0, t0)

=

M∑
j=1

[aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)] ,
(2.7)

which represents the Chemical Master Equation [41, 22]. It governs the dynamics of well-stirred biochemical

kinetics. Model (2.7) is a system of linear ordinary differential equations (ODEs) with one equation for

each possible system state. This model is homogeneous, discrete and stochastic and is intractable for most

biochemical systems.

2.1.2 Relationship between the stochastic and deterministic biochemical kinetic

models

The classical deterministic biochemical kinetic model of the reaction-rate equations (RRE) may be derived

under certain assumptions from the stochastic biochemical kinetic model (see: Wilkinson [55] for more

details). We start by deriving a set of differential equations by considering the expected value of

∂

∂t
E(X(t)) =

∂

∂t

∑
x∈S

xP (x, t|x0, t0),

=
∑
x∈S

x
∂

∂t
P (x, t|x0, t0),

9
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where S is the state space of the process. Applying equation (2.7) yields

∂

∂t
E(X(t)) =

∑
x∈S

x
∂

∂t
P (x, t|x0, t0)

=
∑
x∈S

x

 M∑
j=1

[aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)]


=

M∑
j=1

[∑
x∈S

xaj(x− νj)P (x− νj , t|x0, t0)−
∑
x∈S

xaj(x)P (x, t|x0, t0)

]
.

In the previous equation, we are summing over every possible system state x. Consequently, we can exchange

x + νj for x because x + νj ∈ S. Thus

∂

∂t
E(X(t)) =

M∑
j=1

[∑
x∈S

(x + νj)aj(x)P (x, t|x0, t0)−
∑
x∈S

xaj(x)P (x, t|x0, t0)

]
.

From the definition of the expected value we can rewrite the equation as

∂

∂t
E(X(t)) =

M∑
j=1

[E((X(t) + νj)aj(X(t)))− E(X(t)aj(X(t)))] .

Then, applying linearity of expectation yields

∂

∂t
E(X(t)) =

M∑
j=1

E(νjaj(X(t)))

=

M∑
j=1

νjE(aj(X(t))).

Now, let E(X(t)) = y(t) be the expected value of the system state at time t. Then,

d

dt
y(t) =

M∑
j=1

νjE(aj(X(t))).

If

E(aj(X(t))) = ajE(X(t)), (2.8)

then

d

dt
y(t) =

M∑
j=1

νjE(aj(X(t))) =

M∑
j=1

νjaj(E(X(t))) =

M∑
j=1

νjaj(y(t))

10
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and the evolution of the expected value of the system state, which was modeled by the stochastic biochemical

kinetic model satisfies the deterministic continuous model of the RRE.

Equation (2.8) is valid for the following forms of the propensity function aj(X(t)):

• aj(X(t)) = kj , since

E(aj(X(t))) = E(kj) = kj = aj(X(t)),

• aj(X(t)) = kjxi, as

E(aj(X(t))) = E(kjxi) = kjE(xi) = aj(E(X(t))).

Therefore, if the biochemical system is only comprised of zero- or first-order reactions, the RRE may be

derived by taking the expected value of the stochastic model of the CME.

Equation (2.8) is not necessarily true for the propensity function aj(X(t)) = kjxixl, because

E(aj(X(t))) = E(kjxixl) = kjE(xixl) 6= kjE(xi)E(xl),

as the populations of species Si and Sl are not independent in general.

In the thermodynamic limit, defined by Gillespie [24] as “the limit in which the species populations Xi

and the system volume Ω all approach infinity, but in such a way that the species concentrations Xi/Ω stay

constant”, the stochastic effects become negligible compared to the deterministic term. Thus, in biochemical

stochastic models where the number of molecules of the species is generally greater than 1000, we are often

able to reduce the stochastic model to that of the deterministic reaction-rate equations.

2.1.3 Derivation of the Stochastic Simulation Algorithm

Since the CME (2.7) is intractable for most biochemical systems, numerical simulation algorithms have been

developed to compute its solution. One commonly used simulation approach is the Stochastic Simulation

Algorithm (SSA) or Gillespie’s algorithm [20, 21]. This exact algorithm simulates each reaction in the system

and the time when it occurs. Each simulation generates a possible realization of the stochastic process X,

not the entire probability distribution.

Assuming that the system is in state X(t) = x at time t, we are interested in the probability that (a) the

next reaction will take place in the infinitesimal time interval [t+ τ, t+ τ + dτ) and (b) will move the system

to state x +νj because the jth reaction fired. Let p(x +νj , τ, |x, t)dt denote this probability. It follows that

p(x + νj , τ, |x, t)dt = P (Next reaction in [t+ τ, t+ τ + dτ)|x, t)

× P (x + νj |Next reaction in [t+ τ, t+ τ + dτ),x, t). (2.9)

The following propositions, according to Wilkinson [55], will be used to justify our derivation of the SSA.

11
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Proposition 2.1.5. If Xi ∼ Exp(λi), i = 1, 2, . . . , n, are independent random variables, then

X0 ≡ min
i
{Xi} ∼ Exp(λ0), where λ0 =

n∑
i=1

λi.

Proposition 2.1.6. If Xi ∼ Exp(λi), i = 1, 2, . . . , n, are independent random variables, let j be the index

of the smallest in value of the Xi. Then j is a discrete random variable with probability mass function

(PMF)

πi =
λi
λ0
, i = 1, 2, . . . , n, where λ0 =

n∑
i=1

λi.

First, consider P (Next reaction in [t + τ, t + τ + dτ)|x, t). For j = 1, 2, . . . ,M , the time until reaction

Rj occurs, assuming no other reactions have occurred in the interim, is an Exp(aj(x)) random variable.

Therefore, we can apply the result from Proposition 2.1.5 to find the minimum time to the next reaction, τ ,

as Exp(a0(x)) where a0(x) =

M∑
j=1

aj(x). Since an exponential random variable has the form Exp(λ) = λe−λx,

the probability that the next reaction will take place in [t+ τ, t+ τ + dτ)1 is

P (Next reaction in [t+ τ, t+ τ + dτ)|x, t) = a0(x)e−a0(x)τdτ. (2.10)

Next, consider P (x + νj |Next reaction in [t+ τ, t+ τ + dτ),x, t). This can be rewritten as

P (X(t+ τ + dτ) = x + νj |[X(t+ τ) = x] ∩ [X(t+ τ + dτ) 6= x])

=
P (X(t+ τ + dτ) = x + νj |X(t+ τ) = x)

P (X(t+ τ + dτ) 6= x|X(t+ τ) = x)
=

aj(x)dτ
M∑
j=1

aj(x)dτ

.

Thus,

P (x + νj |Next reaction in [t+ τ, t+ τ + dτ),x, t) =
aj(x)

a0(x)
. (2.11)

From Proposition 2.1.6, we recognize equation (2.11) as the probability mass function for the specific reaction

Rj that has occurred during the time interval [t+ τ, t+ τ + dτ).

Substituting equation (2.10) and equation (2.11) into equation (2.9) yields

p(x + νj , τ, |x, t) =
aj(x)

a0(x)
a0(x)e−a0(x)τ . (2.12)

The function p(x + νj , τ, |x, t) is the joint density function for two independent random variables: the

next reaction index, j, and the time to next reaction, τ . Equation (2.12) provides the mathematical

1P (τ < T < τ + dτ) =

∫ τ+dτ

τ
fT (y)dy ' fT (τ)dτ for small dτ .

12
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basis for the Stochastic Simulation Algorithm (SSA) [20]. Because the next reaction index, j, and the

time to next reaction, τ , are independent random variables, these two values can be simulated separately.

Stochastic Simulation Algorithm

1. Initialize the time t = t0 and system state X(t0) = x0.

2. Generate two independent uniform U(0, 1) random numbers ξ1 and ξ2.

3. Evaluate ai(X(t)) for i = 1, . . . ,M and a0 =
M∑
i=1

ai(X(t)).

4. Calculate the time to the next reaction τ =
1

a0
ln

(
1

ξ1

)
.

5. Calculate the next reaction index, j, as the smallest integer satisfying
j∑
i=1

ai(X(t)) > ξ2a0.

6. Set X(t+ τ) = X(t) + νj and update t to t+ τ

7. Return to step 2.

The SSA provides an exact method for numerically solving the CME (2.7), but can be prohibitively slow

in practice, as often some biochemical reactions occur on a very fast time-scale.

2.1.4 Derivation of the Poisson tau-leaping algorithm

Poisson tau-leaping is one approximate method for numerically solving the CME (2.7), that aims to reduce

the computational cost of the stochastic simulation with an insufficient effect on the accuracy. Like the SSA,

each simulation yields a single state vector, not the entire probability distribution.

The SSA assumes that the time-step τ is so small that only one reaction will occur during each time-step.

If this requirement is relaxed, the exact state of the system at time t+ τ is found by the following equation,

proven by Kurtz [15]:

X(t+ τ) = X(t) +

M∑
j=1

νjPj
(∫ t+τ

t

aj(X(s))ds

)
, (2.13)

where Pj(·) is a Poisson random variable with parameter
∫ t+τ
t

aj(X(s))ds. If we assume that τ is small

enough such that all of the propensity functions aj(X(t)), for j = 1, . . . ,M , remain relatively constant

on the interval t ≤ s ≤ t + τ , i.e. that relatively few chemical reactions fire, then aj(X(s)) ' aj(X(t)).

Therefore, ∫ t+τ

t

aj(X(s))ds '
∫ t+τ

t

aj(X(t))ds

= aj(X(t))

∫ t+τ

t

ds

= aj(X(t))τ.

13
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Thus, we can approximate

Pj
(∫ t+τ

t

aj(X(s))ds

)
' Pj(aj(X(t))τ).

By substituting this equation into equation (2.13), we arrive at

X(t+ τ) = X(t) +

M∑
j=1

νjPj(aj(X(t))τ), (2.14)

known as the tau-leaping method [23]. Equation (2.14) provided the mathematical basis for the Poisson

tau-leaping algorithm.

Tau-leaping Algorithm

1. Initialize the time t = t0 and system state X(t0) = x0.

2. Evaluate aj(X(t)) for j = 1 . . .M .

3. Generate M independent Poisson random numbers pj , from Pj(aj(X(t))τ).

4. Set X(t+ τ) = X(t) +
M∑
j=1

νjpj and update t to t+ τ using either a fixed or variable τ .

5. Return to step 2.

By allowing several chemical reactions to occur at each time-step, the Poisson tau-leaping algorithm can

significantly reduce the time it takes to numerically solve the CME (2.7).

2.1.5 Method for calculating a variable tau

When implementing the Poisson tau-leaping strategy, we want to guarantee that τ is chosen small enough so

that the Leap Condition is satisfied: all propensity functions aj(X(t)) remain relatively constant on the time

interval [t, t+ τ). The Leap Condition is the name generally given to the assumption that reduces equation

(2.13) to equation (2.14). One commonly used approach for selecting τ employs a pre-leap check, meaning

that for every leap step, we first apply a set of criteria designed to select the optimal τ , then generate the

new system state based on that τ . The Poisson tau-leaping algorithm presented in the previous section uses

this approach.

The first method in the literature designed for generating a τ that obeys the leap condition was proposed

by Gillespie [23], which was then improved by Petzold [26]. For some small prescribed error tolerance ε > 0,

we want to find a τ prior to each leap step such that the following relationship is satisfied,

|aj(X(t+ τ))− aj(X(t))| ≤ max {εaj(X(t)), kj} for j = 1, . . . ,M, (2.15)

where kj is the stochastic rate constant and is the smallest amount propensity function aj can change.

Petzold [26] outlines a τ selection procedure which guarantees that equation (2.15) is satisfied. This method

14
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is not always accurate; moreover, the intermediate calculations required prior to each leap tend to be very

time consuming.

As such, Cao et. al. [9] developed a different τ selection procedure which bounds the relative changes

in the molecular populations, Xi(t), instead of the propensity functions, aj(X(t)). Thus, we now want to

satisfy the following relationship

|Xi(t+ τ)−Xi(t)| ≤ max {εiXi(t), 1} , (2.16)

where i ∈ Irs and Irs denotes the set of indices of all reactant species. This condition requires that the

relative change in Xi is bounded by εi, such that Xi will never change by an amount less than 1. Even when

Xi(t) contains a few molecules, the relationship |Xi(t+ τ)−Xi(t)| ≤ 1 permits Xi(t)’s participation in one

reaction.

The relationship between εi and the user prescribed error tolerance ε is

εi =
ε

gi
, (2.17)

where gi = gi(Xi(t)) is defined as follows. Let HOR(i) denote the highest order of reaction in which species

Si appears as a reactant.

(i) If HOR(i) = 1, take gi = 1.

(ii) If HOR(i) = 2, take gi = 2, except if any second-order reaction requires two Si molecules instead take

gi =

(
2 +

1

Xi(t)− 1

)

(iii) If HOR(i) = 3, take gi = 3, except if any third-order reaction requires two Si molecules instead take

gi =
3

2

(
2 +

1

Xi(t)− 1

)
,

except if any third-order reaction requires three Si molecules instead take

gi =

(
3 +

1

Xi(t)− 1
+

2

Xi(t)− 2

)
.

It is important to note that gi will remain constant throughout the simulation, except where several molecules

of species Si participate in a given reaction.

The length of τ is given by [9]

τ = min
i∈Irs

{
max{εXi(t)/gi, 1}
|µ̂i(X(t))|

,
(max{εXi(t)/gi, 1})2

(σ̂i(X(t)))2

}
, (2.18)
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where

µ̂i(X(t)) =

M∑
j=1

νijaj(X(t)),

σ̂i(X(t))2 =

M∑
j=1

(νij)
2aj(X(t)).

The computation of τ using equation (2.18) is relatively expensive. Furthermore, it does not guarantee that

the leap condition is satisfied over the step τ in general.

2.2 Reaction-Diffusion Master Equation and methods

The Reaction-Diffusion Master Equation (RDME) [18] is a very popular mesoscopic model that extends the

CME and accounts for the spatially inhomogeneous layout of the eukaryotic cell.

The biochemical system’s volume is partitioned into K subvolumes or voxels {Ω1, . . . ,ΩK} of edge length

h, where each voxel Ωk is treated as a well-stirred system. When extending the CME to the RDME, the

following changes occur within the system. First, the M chemical reactions Rj are replaced by KM reactions,

Rjk, whereRjk is reactionRj in voxel Ωk. TheN -dimensional state vector X(t) becomes aN×K-dimensional

state vector X(t) = [X1(t), . . . ,XK(t)], where for each voxel Ωk, Xk(t) = [X1k(t), . . . , XNk(t)]
T

and each

Xik(t) is the number of molecules of species Si in voxel Ωk at time t. The propensity function aj(x) for

reaction Rj now becomes ajk(xk) for reaction Rjk, where Xk(t) = xk is the current state of the system for

voxel Ωk at time t. The state-change vector νj for reaction Rj becomes νjk for reaction Rjk. Thus, if voxel

Ωk is in state xk and one reaction Rjk occurs, the new system state for voxel Ωk is xk + νjk.

For the RDME, chemical species Si is allowed to diffuse from voxel Ωk to voxel Ωl so long as voxel Ωk

and voxel Ωl are in contact (see Figure 2.1). This diffusion is modeled as a uni-molecular diffusive transfer

reaction, Rd
ikl. If B is the total number of shared surfaces of adjacent voxels, then there will be 2BN possible

diffusive transfer reactions in the system. Similar to the CME, each diffusion Rd
ikl has an associated stochastic

diffusion rate constant, di, a diffusion state-change vector, νd
ikl, and a diffusion propensity function, adikl(x).

The diffusive transfer reaction has the form

Xik
di→ Xil,

where the rate constant di = Di
h2 with diffusion coefficient, Di, and length of the voxel, h. The diffusion

state-change vector νd
ikl decreases Xik(t) by 1 and increases Xil(t) by 1. If the system is in state x and

one diffusion Rd
ikl occurs, then the new system state is x + νd

ikl. As in the CME, the physical meaning of

the diffusion propensity function, adikl(x), is that adikl(x)dt gives the probability that one Si molecule diffuses

from voxel Ωk to voxel Ωl in the next infinitesimal time interval [t, t+dt) given that the current system state

X(t) = x. The diffusion propensity function has the form adikl(x) = dixik, where the rate constant di = Di
h2

with diffusion coefficient, Di, and length of the voxel, h.
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Ωk Ωl

� �u-

Ωk Ωl

�u
Figure 2.1: Example of diffusion in the Reaction-Diffusion Master Equation

2.2.1 Derivation of the Reaction-Diffusion Master Equation

Like the CME, the system described above may be modeled by a finite state, continuous-time Markov

process. The system of differential equations whose solution gives the full transitional probability kernel for

the biochemical system’s dynamics with diffusion is known as the Reaction-Diffusion Master Equation [18].

For a biochemical system which only includes reactions, the master equation is

∂P (x, t|x0, t0)

∂t
=MP (x, t|x0, t0)

=

K∑
k=1

M∑
j=1

[ajk(xk − νjk)P (xk − νjk, t|xk0, t0)− ajk(xk)P (xk, t|xk0, t0)] .

Note that for K = 1 this equation reduces to the CME in equation (2.7).

For a biochemical system which only includes diffusions, the master equation is

∂P (x, t|x0, t0)

∂t
= DP (x, t|x0, t0)

=

K∑
k=1

K∑
l=1

N∑
i=1

[
adikl(x− νd

ikl)P (x− νd
ikl, t|x0, t0)− adikl(x)P (x, t|x0, t0)

]
.

In the limit the diffusion of species Si is governed by Einstein’s diffusion equation,

∂p(r, t)

∂t
= Di 52

r p(r, t),

where r is the position, p is the position probability density function of the Si molecule and Di is its diffusion

coefficient [25].

Thus, for a biochemical system which includes both reactions and diffusions, this system can be considered

a much larger dimensional Chemical Master Equation. The full RDME [18] is the sum of all of the reactions
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and diffusions over the set of voxels {Ωk},

∂P (x, t|x0, t0)

∂t
=

K∑
k=1

 M∑
j=1

[ajk(xk − νjk)P (xk − νjk, t|xk0, t0)− ajk(xk)P (xk, t|xk0, t0)]

+

K∑
l=1

N∑
i=1

[
adikl(x− νd

ikl)P (x− νd
ikl, t|x0, t0)− adikl(x)P (x, t|x0, t0)

]]

=

K∑
k=1

M∑
j=1

[ajk(xk − νjk)P (xk − νjk, t|xk0, t0)− ajk(xk)P (xk, t|xk0, t0)]

+

K∑
k=1

K∑
l=1

N∑
i=1

[
adikl(x− νd

ikl)P (x− νd
ikl, t|x0, t0)− adikl(x)P (x, t|x0, t0)

]
=MP (x, t|x0, t0) +DP (x, t|x0, t0). (2.19)

Model (2.19) governs the dynamics of heterogeneous biochemical kinetics. As with the CME, the RDME

model (2.19) is a system of linear ODEs with one equation for each possible system state. It is discrete

and stochastic and is also intractable for most biochemical systems. Moreover, the RDME is much more

challenging to simulate numerically than the CME of a biochemical system without diffusion.

2.2.2 Derivation of the Inhomogeneous Stochastic Simulation Algorithm

Analogous to the CME, numerical simulation algorithms have been developed to solve the RDME. One

common exact algorithm used is an extension of the SSA, and it is called the Inhomogeneous Stochastic

Simulation Algorithm (ISSA). The ISSA simulates every reaction, diffusion, and the time at which it occurs.

As before, each simulation yields a single state vector, not the full probability distribution.

To implement the ISSA, we partition the system’s volume Ω into K voxels using a uniform n-dimensional

Cartesian mesh. For now, we assume that n = 3 when describing the partitioned system and associated

ISSA, but n can easily be reduced to n = 1 or n = 2. To facilitate simulation, we will consider the voxel

index k for Ωk as a vector k ∈ K = {[k1, k2, k3] | k1 = 1, . . .Kx, k2 = 1, . . . ,Ky, k3 = 1, . . . ,Kz}, where k1

corresponds to the x-axis, k2 corresponds to the y-axis, and k3 corresponds to the z-axis.

When modeling diffusion, we treat all diffusions as unimolecular chemical reactions and scale the diffusion

constant Di by di = Di
h2 where h is the length of the voxel. We allow the diffusive species Si to flow freely

throughout the volume Ω but treat the volume Ω’s boundaries as reflective. By dividing the volume Ω

into a uniform Cartesian mesh, we can easily determine all voxels Ωl that are in contact with voxel Ωk.

Let E = {[1, 0, 0] , [−1, 0, 0] , [0, 1, 0] , [0,−1, 0] , [0, 0, 1] , [0, 0,−1]} be the set of possible diffusion directions.

Then, any adjacent voxel Ωl must have l = k + ε, ε ∈ E . By iterating over the set E , we can account for all

directions of diffusion from any voxel Ωk. If voxel Ωk is located in the interior of the volume Ω, any species

Si in voxel Ωk is allowed to diffuse in all 6 directions. If voxel Ωk is located on the boundary of the volume

Ω, any species Si in voxel Ωk is only allowed to diffuse in the directions that keep it within the volume Ω.
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From this set of assumptions, we will now redefine our diffusion propensity function as adike(x), where e is

the index that indicates the direction of diffusion from voxel Ωk. The propensity function adike(x) = 0, if

species Si does not diffuse or if e is a diffusion direction that takes species Si outside the volume Ω.

In the ISSA, the time to next reaction, τ , is calculated similarly to the SSA, taking into account all

the reaction and diffusive events. However, the next reaction index, j, in the SSA now becomes a next

event index in the ISSA. This means that at every time-step in the ISSA, either a reaction has occurred

with next reaction index, jk, where j indicates the reaction Rj and k indicates the voxel Ωk or a diffusion

has occurred with next diffusion index, ike, where i indicates the species Si, k indicates the voxel Ωk, and

e indicates the direction of diffusion.

Inhomogeneous Stochastic Simulation Algorithm [49]

1. Initialize the time t = t0 and system state X(t0) = x0.

2. Generate two independent uniform U(0, 1) random numbers ξ1 and ξ2.

3. Evaluate aj′k′(Xk′(t)) for all j′ = 1, . . . ,M and k′ ∈ K and evaluate adi′k′e′(X(t)) for all i′ = 1, . . . , N ,

k′ ∈ K, and e′ = 1, .., |E|.

4. Evaluate

a0 =

M∑
j′=1

 Kx∑
k′1=1

Ky∑
k′2=1

Kz∑
k′3=1

aj′ k′1 k′2 k′3(Xk′(t))

+

|E|∑
e′=1

N∑
i′=1

 Kx∑
k′1=1

Ky∑
k′2=1

Kz∑
k′3=1

adi′ k′1 k′2 k′3 e′(X(t))

 .

5. Calculate the time to the next reaction τ =
1

a0
ln

(
1

ξ1

)
.

6. Calculate next event index as either (a) or (b) where

(a) the next reaction index, jk, is the smallest quadruple (j, k1, k2, k3) satisfying

j∑
j′=1

 k1∑
k′1=1

k2∑
k′2=1

k3∑
k′3=1

aj′ k′1 k′2 k′3(Xk′(t))

 > ξ2a0.

(b) the next diffusion index, ike, is the smallest quintuple (i, k1, k2, k3, e) satisfying

M∑
j′=1

 Kx∑
k′1=1

Ky∑
k′2=1

Kz∑
k′3=1

aj′ k′1 k′2 k′3(Xk′(t))

+

e∑
e′=1

i∑
i′=1

 k1∑
k′1=1

k2∑
k′2=1

k3∑
k′3=1

adi′ k′1 k′2 k′3 e′(X(t))

 > ξ2a0.

7. If a reaction occurred, set Xk(t+τ) = Xk(t)+νjk or if a diffusion occurred, set X(t+τ) = X(t)+νd
ike

and update t to t+ τ .
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8. Return to step 2.

Given that the number of possible reactions and diffusions in the ISSA is now KM + 2BN , where B is

the total number of shared surfaces of adjacent voxels, compared to the M reactions in the SSA, we can see

that solving the RDME using this algorithm is even more prohibitively slow than solving the CME with the

SSA.

2.2.3 Derivation of the spatial Poisson tau-leaping algorithm

One algorithm used to improve the simulation time for the RDME is to extend the Poisson tau-leaping

algorithm, used to numerically solve the CME, to the spatial Poisson tau-leaping algorithm for the RDME.

Like the well-stirred case, the spatial Poisson tau-leaping method is an approximate algorithm which allows

several chemical reactions and diffusions to occur during a given time-step τ . Again, assuming all of the reac-

tion propensity functions ajk(xk(t)) and diffusion propensity functions adikl(x(t)) remain relatively constant

during the interval t ≤ s ≤ t+ τ , the number of reactions and diffusions that occur is well approximated by

Poisson random variables with parameters ajk(xk(t))τ and adikl(x(t))τ , respectively.

Like for the ISSA, we partition the volume Ω into K voxels using a uniform n-dimensional mesh and follow

the same indexing for voxel Ωk. We treat all diffusions as a type of unimolecular chemical reaction with the

same diffusion behaviour as outlined for the ISSA. We will retain the definition of the diffusion propensity

function described in the ISSA as adike(x), where e is the index indicating the direction of diffusion from voxel

Ωk. Thus, the number of molecules of species Si that diffuse from voxel Ωk in direction e is Pike
(
adike(X(t))τ

)
.

Spatial Poisson tau-leaping algorithm

1. Initialize the time t = t0 and system state X(t0) = x0.

2. Evaluate ajk(Xk(t)) for all j = 1, . . . ,M and k ∈ K and evaluate adike(X(t)) for all i = 1, . . . , N ,

k ∈ K, and e ∈ E .

3. Generate KM independent Poisson random numbers pjk, from Pjk(ajk(Xk(t))τ), and K|E|N inde-

pendent Poisson random numbers pike, from Pike
(
adike(X(t))τ

)
.

4. Set

X(t+ τ) = X(t) +
∑
k∈K

M∑
j=1

νjkωkpjk +
∑
k∈K

∑
e∈E

N∑
i=1

νd
ikepike

where ωk is a 1×K vector with 1 in the kth position and 0’s elsewhere.

5. Update t to t+ τ using either a fixed or variable τ .

6. Return to step 2.
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Adaptivity

Most biochemical systems include a combination of slow and fast reactions leading to multiple time-scales.

These multiple time-scales in conjugation with diffusive systems with short voxel lengths lead to very small

step sizes. Small step sizes then generate mathematically stiff problems and long simulation run times.

Adaptive methods are known to drastically improve simulation efficiency. We are proposing a new adaptive

tau-leaping method with post-leap checking to improve the simulation time of the Reaction-Diffusion Master

Equation (see also Padgett & Ilie [42]).

3.1 Accuracy criteria

Our proposed adaptive tau-leaping algorithm aims to satisfy the accuracy criteria while improving the

computational cost of the simulation. As we shall see below the accuracy criteria is based on guaranteeing

that the leap condition is obeyed.

3.1.1 Theoretical foundation

We first present the justification for partitioning the species into two distinct sets, then introduce the formulae

used to ensure our accuracy criteria is satisfied. The following sections consider the homogeneous system.

Partition the molecular populations Xi(t)

The Cao et. al. [9] leap condition (2.16) can be reposed as

|Xi(t+ τ)−Xi(t)|
Xi(t)

≤ max

{
εi,

1

Xi(t)

}
, (3.1)

for any 1 ≤ i ≤ N so long as Xi(t) 6= 0. The relationship between the tolerance ε and the small parameter

εi is given in equation (2.17). Thus, there exists two potential bounds for the change in the molecular
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population Xi: the local relative change

|Xi(t+ τ)−Xi(t)|
Xi(t)

≤ εi (3.2)

and the local absolute change

|Xi(tn + τn)−Xi(tn)| ≤ 1. (3.3)

When the population of Xi(t) is sufficiently large, we find that equation (3.2) provides effective bounding

for the local relative change of Xi(t). We denote the set of species with large population numbers, XL, where

XL = {Xi(t) | εiXi(t) > 1, i = 1, . . . , N}.

However, if the population of Xi(t) is too small,
|Xi(t+ τ)−Xi(t)|

Xi(t)
6≤ εi unless the number of Xi(t) does

not change from time t to time t+ τ , effectively halting any reaction Rj with the net change of species Si,

|νij | ≥ 1. We denote the set of species with small population numbers, XS , where

XS = {Xi(t) | εiXi(t) ≤ 1, i = 1, . . . , N}.

The set XS is bounded using equation (3.3) so Xi(t) may still participate in a reaction during τ . The critical

threshold where Xi(t) switches between XS and XL is determined by considering

|Xi(t+ τ)−Xi(t)|
Xi(t)

= εi.

If we assume the smallest possible net change of Xi(t) on the interval [t, t+τ) is 1 and apply equation (2.17),

we arrive at the formula for the critical threshold, ci,

1

Xi(t)
=

ε

gi
,

ci = Xi(t) =
gi
ε
. (3.4)

Local change computations

The previous analysis demonstrates the need for two distinct local change calculations to guarantee our leap

condition is satisfied. Once each Xi(t) has been classified as having either a large or a small population, we

can apply the following local change formulae.

Large population species, XL For each Xi(t) ∈ XL, ei, the local relative change for Xi(t), is calculated

as

ei =
|Xi(t+ τ)−Xi(t)|

Xi(t)
. (3.5)
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We also define eL, the global relative change for XL, as

eL = max
Xi(t)∈XL

{ei}.

Small population species, XS For each Xi(t) ∈ XS , Ei, the local absolute change for Xi(t), is calculated

as

Ei = |Xi(t+ τ)−Xi(t)|. (3.6)

We also define ES , the global absolute change for XS , as

ES = max
Xi(t)∈XS

{Ei}.

Accuracy criteria and rejections

The Cao et. al. [9] method for τ -selection (also presented in Section 2.1.5) may still calculate τ so big that

it violates the leap condition for one or more species. To overcome this limitation, Anderson [1] outlines the

post-leap checking Poisson tau-leaping strategy for well-stirred biochemical systems which guarantees that

the leap condition is satisfied for all Xi(t). His method selects τ , generates a new potential system state,

and then verifies that the potential system state satisfies the leap condition. If the leap condition is satisfied,

the leap is accepted, otherwise the leap is rejected.

We consider the sets XL and XS separately when validating the leap condition.

Large population species For all Xi(t) ∈ XL, we use equation (3.5) to calculate the local relative change.

To satisfy the leap condition imposed on XL, every local relative change ei must satisfy

ei =
|Xi(t+ τ)−Xi(t)|

Xi(t)
≤ εi. (3.7)

Small population species For all Xi(t) ∈ XS , equation (3.6) is used to determine the local absolute

change. To satisfy the leap condition imposed on XS , every local absolute change Ei must obey

Ei = |Xi(t+ τ)−Xi(t)| ≤ Zi, (3.8)

where Zi = max
j
{|νij |} is the consumption rate of species Si. Typically, Zi = 1, as only one molecule of

species Si is produced or consumed by a given reaction.

Should any of the elements in XL fail the leap condition (3.7) or any of the elements in XS fail the leap

condition (3.8), we reject the entire leap step.

23



3.1. ACCURACY CRITERIA CHAPTER 3. ADAPTIVITY

3.1.2 Application to heterogenous systems

When applying the previous analysis to our proposed spatial Poisson tau-leaping algorithm, we update

the definitions and equations to reflect the discretization of the volume Ω into voxels Ωk. These updated

equations help maintain our solution accuracy and provide input to our stepping strategy.

For every time-step tn, we divide the set {Xik} into two sets XL and XS . The set of species with large

population numbers XL is now

XL = {Xik(tn)|Xik(tn) > ci, i = 1, . . . , N,k ∈ K} (3.9)

and the set of species with small population numbers XS is now

XS = {Xik(tn)|Xik(tn) ≤ ci, i = 1, . . . , N,k ∈ K}, (3.10)

where the critical threshold ci comes from equation (3.4). Afterwards, we calculate the local changes and

validate the leap condition as follows.

Large population species, XL

To calculate the local relative change for all Xik(tn) ∈ XL, we update equation (3.5) to

eik =
|Xik(tn + τn)−Xik(tn)|

Xik(tn)
. (3.11)

We also update eL, the global relative change for XL, as

eL = max
Xik(tn)∈XL

{eik}. (3.12)

Then, we use the local relative changes calculated with equation (3.11) to validate our updated leap

condition. Every local relative change eik is required to satisfy

eik =
|Xik(tn + τn)−Xik(tn)|

Xik(tn)
≤ εi, (3.13)

otherwise, we reject the entire leap step τn.

Small population species, Xs

To calculate the local absolute change for all Xik(tn) ∈ XS , we change equation (3.6) to

Eik = |Xik(tn + τn)−Xik(tn)|. (3.14)
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and ES , the global absolute change for XS , becomes

ES = max
Xik(tn)∈XS

{Eik}. (3.15)

Afterwards, we use the local absolute changes calculated with equation (3.14) to validate our updated

leap condition. Every local absolute change Eik must satisfy

Eik = |Xik(tn + τn)−Xik(tn)| ≤ Zi, (3.16)

where Zi = max
j
{|νijk|} is the consumption rate of species Si. We reject the entire leap step τn, if equation

(3.16) fails for any Xik(tn) ∈ XS .

3.2 Step rejection

Step rejection in the post-leap checking tau-leaping scheme guarantees that the leap condition is always

satisfied; however, näıve step rejection may skew the statistics of the numerical solution [1]. To overcome

this issue, we employ the post-leap check technique proposed by Anderson [1] to reduce bias in the sample

trajectories. Anderson’s tau-leap procedure for well-stirred biochemical systems stores every rejected step.

Our new adaptive tau-leaping strategy relaxes this storage requirement, and we see excellent accuracy in

our numerical results. We first outline the theoretical framework and then describe in mathematical detail

the methods used to generate a sample trajectory for the heterogeneous biochemical system.

3.2.1 Theoretical foundation

Unlike pre-leap check tau-leaping strategies, the methods used to generate the sample trajectory for our

proposed adaptive tau-leaping scheme vary according to the satisfaction of the leap condition and any

restrictions placed on the system. We use a Poisson bridge to handle these restrictions, that is the rejected

and stored leap steps.

Poisson bridge

In [1], Anderson proposed the following theorem. We use its conclusions to generate reaction and diffusion

events in the biochemical system after a step was rejected.

Theorem 3.2.1. Let Y (t) be a Poisson process with intensity λ, and let 0 ≤ s < u < t. Then, conditioned

on Y (s) and Y (t), Y (u)− Y (s) has a binomial (Y (t)− Y (s), r) distribution where r =
(u− s)
(t− s)

.
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Proof. Without loss of generality, we suppose that s = 0 and Y (0) = 0. Let Y (t) = N and 0 < u < t. Then

P (Y (u) = j|Y (t) = N)

=
P (Y (u) = j ∩ Y (t) = N)

P (Y (t) = N)

=
P (Y (t)− Y (u) = N − j)P (Y (u) = j)

P (Y (t) = N)

=
(λ(t− u))N−je−λ(t−u)

(N − j)!
(λu)je−λu

j!

N !

(λt)Ne−λt

=

(
N

j

)(
1− u

t

)N−j (u
t

)j
.

For the simulated biochemical system, the total number of firings of any reaction or diffusion event in

the time interval [t0, t) is modeled as a Poisson process. We can denote this total number of firings as ρt.

Assume the simulation is at time s and we know the total number of firings ρs in the time interval [t0, s).

Also, assume that for some future time t, where s < t, we know the number of firings ρt (i.e. the leap step

was rejected, but stored). To leap to time u where s < u < t, we generate the number of events (reaction or

diffusion) that occurs in the time interval [s, u) as a binomial B

(
ρt − ρs,

(u− s)
(t− s)

)
random variable. Thus,

by conditioning on the rejected future trajectory, Theorem 3.2.1 provides the mechanism to guarantee that

the correct solution path is followed.

Trajectory generation

Now, we present an overview of the process used to generate the sample trajectory in our adaptive tau-leaping

algorithm. We have omitted the details of propensity function calculations, the next potential system state

X∗(·) calculation, the time-step τ adaptation, the leap step validation, and the restriction storage as the

details for each of these topics are presented in other sections of the thesis. Finally, recall that the biochemical

system under consideration is effectively modeled by a Markov process. As long we know the current state

of the process, the future states do not depend on the past ones. This fact is used to justify why not all

rejected leap steps are saved.

Suppose that the simulation is in state X(t) at time t with a pre-determined time-step of length τ , and

that no restrictions have been placed on the sample trajectory. Also, suppose that we know the total number

of firings of all reaction and diffusion events by time t. We attempt a leap using Poisson random variables to

generate the number of reaction and diffusion events that occur in the system in the time interval [t, t+ τ).

After calculating the new system state, X∗(t + τ), we validate the leap condition. If the leap condition is

satisfied, we accept the leap, set X(t+ τ) = X∗(t+ τ), and update the time t to t = t+ τ . Afterwards, we

attempt another leap.

If the leap condition is not satisfied, we reject the leap. Failure of the leap condition indicates that the

pre-determined time-step τ was too large. Thus, a new τ1 is selected, such that τ1 < τ . A restriction is
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t′ + τ ′t′ t+ τ

^

Figure 3.1: Leap before the restriction in place at t+ τ .

t′ + τ ′t′ t+ τ

j

Figure 3.2: Leap past the restriction in place at t+ τ .

created on the sample trajectory at time t + τ ; and we store the total number of firings for all reaction

and diffusion events that have occurred by time t + τ . Next, we attempt another leap using the time-step

τ1. Since a restriction exists, we use binomial random variables, conditioned on the stored numbers for the

reaction and diffusion events at time t and at time t+ τ , to generated the number of firings of reaction and

diffusion events during the time interval [t, t+ τ1). We calculate the next potential system state X∗(t+ τ1),

before validating the leap condition. If the leap condition fails again, we select a new τ2 < τ1 < τ , but do not

store the reaction and diffusion events that have taken place by time t + τ1. This simplification is justified

by the Markov property of the biochemical system. We leap using binomial random variables with τ2 and

the stored events at time t and at time t + τ . We may repeat the process of selecting τi < τi−1 < . . . < τ

and generating new leaps using binomial random variables until we find a potential system state X∗(t+ τi)

that satisfies leap condition.

Once the leap condition has been satisfied and a restriction exists at time t+τ , we must compare the final

time of the current leap step, t′ + τ ′ to time of the restriction to determine the appropriate leap generation

method. If the final time of the current leap step falls before the restriction, i.e. t′+τ ′ < t+τ (see Figure 3.1),

we use binomial random variables as described in the previous paragraph to generate the leap for the time

interval [t′, t′+τ ′). When t+τ < t′+τ ′, we have leapt past the restriction (see Figure 3.2). We have already

established the number of reaction and diffusion events that occurred in the time interval [t′, t + τ), so we

attempt a leap for the remaining time interval [t + τ, t′ + τ ′) using Poisson random variables. We add the

number of events that happened in [t′, t + τ) and [t + τ, t′ + τ ′) and use the total in the calculation of the

next potential system state X∗(t′ + τ ′). Afterwards, we verify the leap condition. For t + τ < t′ + τ ′, the

outcome of the leap check governs the restriction(s) on the sample trajectory. If the leap condition is met,

we can eliminate the restriction in place at time t+ τ . If the leap condition was not met, we create another

restriction on the sample trajectory at the future time t′ + τ ′.

Our proposed adaptive spatial tau-leaping strategy combines the mathematics presented in the next

section with conceptual framework described above. Using this scheme, we see very good agreement of the

results of the approximate algorithm when compared to the exact algorithm.
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3.2.2 Application to heterogeneous systems

Our adaptive tau-leaping algorithm requires the following information: a series of times, t, and the total

number of reactions Rjk and diffusions Rdike that have occurred by each time t in the series. The stored

times vector, T, contains one or more times t sorted in ascending order. For each t ∈ T, we have fixed the

total number of firings for all reactions and diffusions in the time interval [0, t) in the sample trajectory.

For a given time t, ρtjk is the total number of firings of reaction Rjk and ρtike is the total number of firings

of diffusion Rdike that have occurred in the time interval [0, t). We define Rt as the collection of reactions

{ρtjk}
j=1...M
k∈K and diffusions {ρtike}i=1...N

k∈K,e∈E that occurred during the time interval [0, t). Then, for all t ∈ T,

the stored reaction-diffusion matrix, R = {Rt} tracks the total number of all reaction and diffusion events

that occurred by those specific times in the sample trajectory.

The size of R depends on the partitioning of the volume Ω. For a 1-d mesh, R has size Kx|T|(M + i|E|).
For a 2-d mesh, R has size KxKy|T|(M + i|E|). For a 3-d mesh, R has size KxKyKz|T|(M + i|E|).

Generation of the next potential system state

For a system in state X(tn) at time tn, the creation of the next potential system state X∗(tn + τn) depends

on the current time, tn, the future time, tn + τn, and the stored times vector, T. One of three methods may

be used to generate the number of reaction and diffusion events in the time interval [tn, tn + τn). We decide

among these methods based on the criteria below:

• If T = tn, then apply Unrestricted path.

• If T(I − 1) < tn + τn < T(I) with I an index into the vector T, then apply Poisson bridge path.

• If tn < T(end) < tn + τn, then apply Partial Poisson path.

Afterwards, we calculate the next potential system state X∗(tn + τn) as

X∗(tn + τn) = X(tn) +
∑
k∈K

M∑
j=1

νjkωkαjk +
∑
k∈K

∑
e∈E

N∑
i=1

νd
ikeαike, (3.17)

where αjk is the number of firings of reaction Rjk, αike is the number of firings of diffusion Rdike in [tn, tn+τn),

and ωk is a 1×K vector with 1 in the kth position and 0’s elsewhere.

Unrestricted path When T = tn, no restrictions exist on the sample trajectory. For all j = 1, . . . ,M

and k ∈ K, we generate the number of reactions that fired in the time interval [tn, tn + τn) as

αjk = Pjk(ajk(Xk(t))τ). (3.18)

For all i = 1, . . . , N , k ∈ K, and e ∈ E , we generate the number of diffusions that fired in the time interval

[tn, tn + τn) as

αike = Pike(adike(X(t))τ). (3.19)
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Poisson bridge path When tn + τn < T(end), we have stored one or more rejected leap steps. Theorem

3.2.1 justifies the use of binomial random variables to generate the number of reaction and diffusion events

that occur when restrictions exist on the sample trajectory.

We find index I, such that T(I − 1) < tn + τn < T(I). To calculate r, we set u = tn + τn, s = T(I − 1),

and t = T(I). Thus, r =
(tn + τn)−T(I − 1)

T(I)−T(I − 1)
. For all j = 1, . . . ,M and k ∈ K, the number of reactions

that fired in the time interval [tn, tn + τn) is found as

αjk = Bjk

(
ρ
T(I)
jk − ρT(I−1)

jk , r
)

+
(
ρ
T(I−1)
jk − ρtnjk

)
. (3.20)

For all i = 1, . . . , N , k ∈ K, and e ∈ E , the number of diffusions that fired in the time interval [tn, tn + τn)

is found as

αike = Bike

(
ρ
T(I)
ike − ρ

T(I−1)
ike , r

)
+
(
ρ
T(I−1)
ike − ρtnike

)
. (3.21)

Note that B{·} (·, r) is the binomial distribution and
(
ρ
T(I−1)
{·} − ρtn{·}

)
accounts for the reaction and diffusion

events that may have occurred in the time interval [tn,T(I − 1)).

Partial Poisson path When tn < T(end) < tn+τn, we require that the sample trajectory passes through

the state X(T(end)) before reaching the future state X(tn+τn). Therefore, we only need to generate reaction

and diffusion events in the time interval [T(end), tn + τn).

We calculate the change in time 4τ = (tn + τn) − T(end). Then, for all j = 1, . . . ,M and k ∈ K, we

create the number of reactions that fired in the time interval [tn, tn + τn) using

αjk = Pjk(ajk(Xk(t))4τ) +
(
ρ
T(end)
jk − ρtnjk

)
. (3.22)

For all i = 1, . . . , N , k ∈ K, and e ∈ E , we create the number of diffusions that fired in the time interval

[tn, tn + τn) using

αike = Pike(aike(X(t))4τ) +
(
ρ
T(end)
ike − ρtnike

)
. (3.23)

Note that
(
ρ
T(end)
{·} − ρtn{·}

)
corresponds the reaction and diffusion events that occurred in the time interval

[tn,T(end)).

Acceptence of the leap step

When the leap condition is satisfied, we update the time and the system state. We change the time tn to

time tn + τn and set the next system state X(tn + τn) = X∗(tn + τn). We must also update the stored times

vector, T, and stored reaction-diffusion matrix, R.

We start by saving the information for the sample trajectory at tn + τn. We create a new collection
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Rtn+τn for time tn + τn. For each reaction total ρtn+τnjk ∈ Rtn+τn , we set

ρtn+τnjk = ρtnjk + αjk, (3.24)

where αjk is calculated using equation (3.18), (3.20), or (3.22), and for each diffusion total ρtn+τnike ∈ Rtn+τn ,

we have

ρtn+τnike = ρtnike + αike, (3.25)

where αike is calculated using equation (3.19), (3.21), or (3.23).

When T(end) < tn + τn, the Markov property of the biochemical system allows us to forget all sample

trajectory information prior to tn + τn. Thus, we assign T = tn + τn and assign R = Rtn+τn . If T(I − 1) <

tn+τn < T(I), we remove all times t ∈ T where t ≤ T(I−1). We also eliminate all corresponding collections

Rt ∈ R. Afterwards, we insert the time tn + τn at the beginning of T and the new collection Rtn+τn at the

beginning of R.

Rejection of the leap step

If the leap condition is not satisfied, we reject the updated system. We may also need to update the stored

time vector, T, and the stored reaction-diffusion matrix, R. If tn + τn ≤ T(end), no new information is

required to condition the sample trajectory. However, if T(end) < tn+τn, an additional restriction has been

set on the sample trajectory. We create a new collection Rtn+τn . For every reaction total ρtn+τnjk ∈ Rtn+τn ,

we have

ρtn+τnjk = ρtnjk + αjk,

where αjk is found using equation (3.18) or (3.22), and for every diffusion total ρtn+τnike ∈ Rtn+τn , we have

ρtn+τnike = ρtnike + αike,

where αike is determined using equation (3.19) or (3.23). Afterwards, we add the time tn + τn to the end of

T and its corresponding Rtn+τn to the end of R.

3.3 New stepping strategy

The goal of our new stepping strategy is to minimize the number of rejected leap steps while selecting τ

large enough to see improvements in simulation time compared to the ISSA. When developing our new

adaptive stepping strategy, we consider the sets XL and XS separately. We derive the method for selecting

an appropriate time-step h1n+1 for the large population set XL and an appropriate time-step h2n+1 for the

small population set XS , then select the new time-step hn+1 as the minimum of h1n+1 and h2n+1.
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3.3.1 Theoretical foundation

The method we use for adapting the length of the current time-step, hn, is based on an integral controller

from control theory. This method is valid for deterministic models [27]; however, has shown excellent results

when applied to our stochastic models. By attempting to maintain the local change below a threshold, ε,

the method aims to minimize the computational cost, while satisfying the accuracy criteria.

Step selection for XL

We use the following method to select a time-step for the large population set XL. Let Y(tn) be the current

solution of a system at time tn. At every time tn, we define the following system of equationse
∗
n =

∥∥∥Y(tn+hn)−Y(tn)
Y(tn)

∥∥∥
∞

tn+1 = tn + hn

where e∗n is the maximum relative local change corresponding to the next solution Y(tn+hn) at time tn+hn.

For every tn, we want to ensure that the relative local change e∗n is strictly less than a prescribed variation

tolerance level ε, i.e., ∥∥∥∥Y(tn + hn)−Y(tn)

Y(tn)

∥∥∥∥
∞
< ε.

Assume that in the asymptotic regime, the following relationship exists between the relative local change

e∗n and the current time-step hn

e∗n = φnh
γ
n, (3.26)

where γ is a parameter and φn is the principal error function. The function φn may be derived from the

Itô-Taylor series expansion of the solution. As it is generally difficult to get an exact formulation of the

principle error function φn, we focus on adjusting the length of the time-step hn to control the relative local

change e∗n.

For the next step tn+1, the largest relative local change e∗n+1 we are willing to introduce to the system is

ε. Thus, from equation (3.26) we get

e∗n+1 = φn+1h
γ
n+1 = ε. (3.27)

We can combine equations (3.26) and (3.27) as

e∗n
ε

=
φnh

γ
n

φn+1h
γ
n+1

. (3.28)

For deterministic problems, often φn ' φn+1. Thus, solving equation (3.28) for hn+1, we have the
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following stepping strategy [27],

hn+1 = hn

(
ε

e∗n

) 1
γ

. (3.29)

If the current relative local change e∗n > ε, equation (3.29) decreases the length of hn+1 to reduce the

variation accruing in the system. If the current relative local change e∗n < ε, equation (3.29) increases the

length of hn+1 to help shorten the overall simulation duration.

In practice equation (3.29) may cause numerical solution instability when rapid oscillations occur in

consecutive time-steps. Thus, we can introduce both a minimal step decrease factor, fmin, and maximal

step increase factor, fmax, to dampen these oscillations. To decrease the number of rejected steps, the

prescribed variation tolerance level ε is often replaced by the safety factor θ1ε where θ1 ≤ 1.

Combining these assumptions yields the stepping strategy for the set XL,

h1n+1 = hn min

(
fmax,max

(
fmin,

(
θ1ε

e∗n

) 1
γ

))
, (3.30)

where 1 < fmax ≤ 2 and 0 < fmin < 1. This stepping strategy has been successfully applied to stochastic

continuous models [6]. We apply this technique for the first time to stochastic discrete models; and we found

it to be very efficient.

Step selection for XS

We use an analogous derivation method to select a time-step for the small population set XS . At each time

tn, we define the following system of equationsE∗n = ‖Y(tn + hn)−Y(tn)‖∞
tn+1 = tn + hn

where E∗n is the absolute local change corresponding to the next solution Y(tn + hn) at time tn + hn.

Now for time tn, we want the absolute local change E∗n to be less than or equal to the minimum con-

sumption of a species Si, which we take as 1. Thus

‖Y(tn + hn)−Y(tn)‖∞ ≤ 1.

Like equation (3.26), a similar relationship exists between the absolute local error E∗n and the current

time-step hn,

E∗n = ϕnh
γ
n, (3.31)

where ϕn is the principle error function. Using equation (3.31) and following the same procedure used to
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derive equation (3.28), we have the stepping strategy [27],

hn+1 = hn

(
1

E∗n

) 1
γ

. (3.32)

This time, to reduce the number of rejected steps, we replace 1 with the safety factor θ2, where θ2 ≤ 1.

Thus, the stepping strategy for the set XS is

h2n+1 = hn min

(
fmax,max

(
fmin,

(
θ2
E∗n

) 1
γ

))
, (3.33)

where 1 < fmax ≤ 2 and 0 < fmin < 1.

3.3.2 Application to heterogeneous systems

Calculation of the initial τ

In our adaptive tau-leaping algorithm, we determine the initial time-step τ using the method presented in

[45] which extends the Cao et. al. [9] τ -selection process outlined in Section 2.1.5 to spatially heterogeneous

systems.

We calculate the time-step τ according to

τ = min
k∈K
{τk} . (3.34)

For each voxel k, we have

τk = min
i∈Irs

{
max{εXik(t)/gi, 1}
|µ̂ik(X(t))|

,
(max{εXik(t)/gi, 1})2

(σ̂ik(X(t)))2

}
,

where

µ̂ik(X(t)) =

M∑
j=1

νijkajk(Xk(t)) +

|E|∑
e=1

(−1)aike(X(t)),

σ̂ik(X(t))2 =

M∑
j=1

(νijk)2ajk(Xk(t)) +

|E|∑
e=1

aike(X(t)).

Calculation of the subsequent τn

We use the following parameters in equations (3.30) and (3.33) to adapt all subsequent time-steps τn. We

take γ = 1. We let θ1 = 0.8, θ2 = 1, fmin = 0.5, fmax = 1.5, and ε = max
i
{εi}. These specific values were

found from extensive simulation testing.

Equation (3.30), used to adapt the time-step τ1n+1 for the large population set XL, requires an estimate

of relative local change. We get this value e∗n = en from equation (3.12). Thus, the equation used to adapt
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the time-step τ1n+1 is

τ1n+1 = τn min

(
1.5,max

(
0.5,

0.8εi
en

))
. (3.35)

Likewise, equation (3.33), used to adapt the time-step τ2n+1 for the small population set XS , needs an

estimate of absolute local change. The value E∗n = En comes from equation (3.15). Thus, the equation used

to adapt the time-step τ2n+1 is

τ2n+1 = τn min

(
1.5,max

(
0.5,

1

En

))
. (3.36)

Once τ1n+1 and τ2n+1 have been calculated according to equations (3.35) and (3.36), we choose the next

step size τn+1 as

τn+1 = min
(
τ1n+1, τ

2
n+1

)
. (3.37)

3.4 New adaptive tau-leaping algorithm

Below we propose a new variable time-stepping algorithm for the spatial Poisson tau-leaping scheme for the

Reaction-Diffusion Master Equation [32].

Algorithm

0. (Parameters) Set tolerance ε, control factors θ1, θ2, and increase and decrease factors fmin, fmax.

Calculate critical thresholds ci using equation (3.4).

1. (Initialize) Set X← x0 at t← 0 and the initial step τ using equation (3.34).

2. WHILE (t < T ) do 3–6.

3. (State Generation)

3.1. IF no future restriction exists:

a. Generate Poisson distributions:

Compute αik using equation (3.18).

Compute αike using equation (3.19).

b. Compute X∗ using equation (3.17).

3.2. ELSE IF future restriction(s) exist AND step after restriction, T(end) < t+ τ :

a. Generate partial Poisson distributions:

Compute αik using equation (3.22).

Compute αike using equation (3.23).

b. Compute X∗ using equation (3.17).
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3.3. ELSE (future restriction(s) exist AND step in between restrictions, T(I − 1) < t+ τ < T(I)):

a. Generate binomial distributions:

Compute αik using equation (3.20).

Compute αike using equation (3.21).

b. Compute X∗ using equation (3.17).

4. (Leap Validation)

a. Partition {Xik(t)} into XL and XS using equations (3.9) and (3.10).

b. For XL, validate leap condition using equation (3.13).

c. For XS , validate leap condition using equation (3.16).

5. (Leap Acceptance) IF accuracy criteria is met, accept step.

a. Update t← t+ τ and set X← X∗.

b. Create Rt+τ using equations (3.24) and (3.25).

c1. IF T(end) < t+ τ , clear future restriction(s).

Set T← t+ τ and R ← Rt+τ .

c2. ELSE, (T(I − 1) < t+ τ < T(I)).

Remove all t′ ≤ T(I − 1) and R′t ∈ R. Add t+ τ to T and Rt+τ to R.

d. Update τ using equation (3.37).

6. (Leap Rejection) IF accuracy criteria is not met, reject step.

a. IF T(end) < t+ τ , create new future restriction.

Create Rt+τ using equations (3.24) and (3.25). Add t+ τ to T and Rt+τ to R.

b. Update τ using equation (3.37).

This τ -selection procedure is shown to produce results in excellent agreement with those generated with

the exact ISSA. The numerical experiments demonstrate the efficiency and the accuracy of the new method.
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Chapter 4

Numerical results

We exhibit the advantages of the new variable time-stepping strategy for the spatial tau-leaping method on

three models of heterogeneous biochemical systems of practical interest. Poisson tau-leaping approaches work

best when the number of molecules in the model remains bounded away from zero throughout the simulation.

Consequently, these models have been integrated over a time interval where the molecular populations obey

this criteria.

The model systems used to demonstrate the effectiveness of our proposed tau-leaping algorithm contain a

few species each. Thus, the species names, e.g. U and V , have replaced the general Sn notation in chemical

reaction and diffusion descriptions. The species names have also replaced the general xn notation in the

propensity functions. Furthermore, this naming lets us drop the subscript indicating species type; Uk is the

number of species U in voxel Ωk. We have also removed the voxel k subscripts from the reaction propensity

functions and both the voxel k and diffusion direction e subscripts from the diffusion propensity functions.

For each model, we demonstrate the accuracy of the proposed method by comparing the numerical results

of the exact ISSA to the numerical results of the approximate adaptive scheme, for a sequence of tolerances.

We have also provided the mean number of attempted, accepted, and rejected steps, the ratio of the mean

relative change to the tolerance, and the speed up over the ISSA using data collected from 10,000 simulations

for each tolerance ε. The relative change values considered are the maximum relative change values on the

individual trajectories. We have calculated the speed-up of the new variable tau-leaping scheme by taking

the ratio of the time taken by the ISSA compared to the computational time required by the new method

speed-up =
time for ISSA

time for adaptive tau-leaping
.

4.1 Turing patterns model

The first model under consideration, the Turing patterns model, was studied in [7]. A unique feature of this

model is the stable Turing patterns that appear in the steady-state of this reaction-diffusion system. This

one-dimensional model contains two species U and V , where the volume Ω is divided into K = 40 voxels of

edge length h = 1
40 .
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For the ith voxel, the reactions in this model are

∅
k1
�
k2

Ui, ∅ k3→ Vi, 2Ui + Vi
k4→ 3Ui,

and the diffusions are

U1

du
�
du

U2

du
�
du

. . .
du
�
du

UK , V1
dv
�
dv

V2
dv
�
dv

. . .
dv
�
dv

VK .

The propensity functions for this model are then

a1(t) = k1h, a4(t) =
k4
h2
Ui(t)(Ui(t)− 1)Vi(t),

a2(t) = k2Ui(t), a5(t) = a6(t) = duUi(t),

a3(t) = k3h, a7(t) = a8(t) = dvVi(t),

with rate constants k = [4× 103, 2, 1.2× 104, 6.25× 10−8] and D = [10−3, 10−1]. The standard form of the

propensity function for the third-order reaction 2Ui + Vi
k4→ 3Ui includes the fraction 1

2 . This fraction has

been absorbed into the rate constant k4. The initial conditions used are Ui0 = 25 and Vi0 = 75 per voxel.

Finally, the stoichiometric matrix per voxel for this model is

ν =

[
1 −1 0 1

0 0 1 −1

]
.

For the time interval t = [0, 3.5], we simulated the dynamics of this model on 10, 000 trajectories using

the ISSA and on 10, 000 trajectories each using the proposed adaptive tau-leaping scheme with the following

accuracy criteria, ε = [0.2, 0.4, 0.8].

Figure 4.1 shows two different sample trajectories of the Turing patterns model for species U in the

time interval t = [0, 3.5]. Figure 4.1a was generated using the exact ISSA and Figure 4.1b was generated

using the proposed adaptive spatial Poisson tau-leaping method with tolerance ε = 0.4. Figure 4.2 provides

the corresponding sample trajectories for species V . Figure 4.2a was created using the exact ISSA and

Figure 4.2b was created using the adaptive spatial Poisson tau-leaping method with tolerance ε = 0.4. The

bar height in these figures indicates the number of molecules of a species in a particular voxel at a specific

time with the final voxel distribution displayed at the front. The stable Turing patterns are visible in both

the ISSA and adaptive tau figures for species U . We also observe similar system behaviour with the location

of the peaks and the species distribution at the final time t = 3.5.

In Table 4.1, we record the mean number of attempted steps for the new adaptive tau-leaping method

and the relative local changes produced, along with the mean number of accepted and rejected steps, for

the sequence of tolerances 0.2, 0.4, and 0.8. This table also shows the speed-up of the proposed variable

time-stepping algorithm over the ISSA. Note that for these tolerances the new strategy is one to two orders

of magnitude faster than the ISSA. Additionally, the ratio between the number of rejected steps and the
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(a) ISSA

(b) Adaptive tau-leaping algorithm, tolerance ε = 0.4

Figure 4.1: Turing patterns model: sample trajectories for species U
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(a) ISSA

(b) Adaptive tau-leaping algorithm, tolerance ε = 0.4

Figure 4.2: Turing patterns model: sample trajectories for species V
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ε Attempted Accepted Rejected Relative Speed-up
steps steps steps change over ISSA

8× 10−1 7203 5835 1368 1.00 97.79

4× 10−1 25803 20705 5098 1.00 41.65

2× 10−1 126785 96171 30614 1.00 10.63

Table 4.1: The Turing patterns model: the number of steps taken by the adaptive tau-leaping scheme and
speed-up over the ISSA.

total number of attempted steps is between 19% and 24% for the tolerance tried.

Figure 4.3 compares the histograms over 10,000 trajectories obtained using the variable tau-leaping

algorithm with tolerances 0.2, 0.4, and 0.8 and the exact ISSA at time t = 3.5. The data for these figures

was collected by calculating the total number of molecules of each species across all voxels Ωk at the end of

the simulation. The agreement is excellent, illustrating the accuracy of the proposed adaptive method.

4.2 Production-annihilation model

The second model analyzed, the production-annihilation model, is the extension of a one-dimensional system

in [14] to a two-dimensional system. This two-dimensional system includes species A and B and the volume

Ω is divided into K = 10× 10 voxels of edge length h = 1
10 . One aspect to note about the model is that the

production of both species is restricted to a subset of the system’s volume.

The reactions in the i, jth voxel are

Ai,j +Ai,j
k1→ ∅, ∅ k3→ Ai,j for i = 1, 2, ..., 9, j = 1, 2, ..., 9,

Ai,j +Bi,j
k2→ ∅, ∅ k4→ Bi,j for i = 4, 5, ..., 10, j = 4, 5, ..., 10

and the diffusions include

Ai,j
d→ Ai±1,j , Bi,j

d→ Bi±1,j ,

Ai,j
d→ Ai,j±1, Bi,j

d→ Bi,j±1.
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(a) Species U

(b) Species V

Figure 4.3: Turing patterns model: histograms for ISSA and adaptive tau algorithm at t = 3.5, tolerances
ε = 0.2, 0.4, 0.8.
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ε Attempted Accepted Rejected Relative Speed-up
steps steps steps change over ISSA

4× 10−1 5104 4437 667 0.99998 138.67

2× 10−1 22234 18803 3431 1.00 38.45

10−1 149354 130503 18851 1.00 6.09

Table 4.2: The production-annihilation model: the number of steps taken by the adaptive tau-leaping scheme
and speed-up over the ISSA.

Therefore, the propensity functions are

a1(t) = k1Ai,j(t)(Ai,j(t)− 1), a4(t) = k4,

a2(t) = k2Ai,j(t)Bi,j(t), a5(t) = a6(t) = a7(t) = a8(t) = dAi,j(t),

a3(t) = k3, a9(t) = a10(t) = a11(t) = a12(t) = dBi,j(t),

with rate constants k = [0.2, 9×10−3, 2000, 100] and D = 0.9. The standard form of the propensity function

for the second-order reaction Ai,j + Ai,j
k1→ ∅ includes the fraction 1

2 . This fraction has been absorbed into

the rate constant k1. The initial conditions per voxel are Ai,j0 = 500 and Bi,j0 = 100.

The stoichiometric matrix per voxel is

ν =

[
−2 −1 1 0

0 −1 0 1

]
.

We have integrated the system in the time interval t = [0, 1] with the variable step tau-leaping algorithm

for ε = [0.1, 0.2, 0.4] and the ISSA, each over 10, 000 trajectories.

Table 4.2 presents the mean number of attempted steps along with the mean accepted and the mean

rejected steps for the variable step size tau-leaping strategy. Additionally, it records the ratio of the relative

local change to the given tolerance and the speed-up of the proposed algorithm over the ISSA for the following

sequence of imposed tolerances ε = [0.1, 0.2, 0.4]. For this particular model, we see speed-ups of between 98

to 138 times. We also find that the ratio of the number of rejected steps to the total number of steps taken

in the adaptive algorithm is quite low, ranging from 12% to 15%.

Figure 4.4 plots the histograms for each of the species at time t = 1, for the adaptive tau-leaping algorithm

with tolerances 0.1, 0.2, and 0.4 and for the exact ISSA. Again, the data for these figures was collected by

adding the total number of molecules of each species across all voxels Ωk at the end of the simulation. Again,

these figures show that our adaptive strategy has exceptional accuracy.
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(a) Species A

(b) Species B

Figure 4.4: Production-annihilation model: histograms for ISSA and adaptive tau algorithm at t = 1,
tolerances ε = 0.1, 0.2, 0.4.
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4.3 Brusselator model

The final model tested, the Brusselator model, is found in [39]. This system is quite stiff, thus simulation

efficiency depends on a variable time-step. The model has species U and V and divides the two-dimensional

volume Ω into K = 8× 8 voxels of edge length h = 1.

Species U and V participate in the following reactions in the i, jth voxel

∅ k1→ Ui,j , 2Ui,j + Vi,j
k3→ 3Ui,j ,

Ui,j
k2→ Vi,j , Ui,j

k4→ ∅,

and the following diffusions

Ui,j
du→ Ui±1,j , Vi,j

dv→ Vi±1,j ,

Ui,j
du→ Ui,j±1, Vi,j

dv→ Vi,j±1.

The propensity functions are

a1(t) = k1h
2, a4(t) = k4Ui,j(t),

a2(t) = k2Ui,j(t), a5(t) = a6(t) = a7(t) = a8(t) = dUi,j(t),

a3(t) =
k3
h4
Ui,j(t)(Ui,j(t)− 1)Vi,j(t), a9(t) = a10(t) = a11(t) = a12(t) = dVi,j(t),

with rate constants k = [7000, 40, 5.0 × 10−5, 10] and D = [1, 1]. The standard form of the propensity

function for the third-order reaction 2Ui,j + Vi,j
k3→ 3Ui,j includes the fraction 1

2 . This fraction has been

absorbed into the rate constant k3. The initial conditions per voxel are Ui,j0 = 100 and Vi,j0 = 50.

Lastly, the stoichiometric matrix per voxel is

ν =

[
1 −1 1 −1

0 1 −1 0

]
.

We follow the same simulation process as the first two models, integrating over the time duration t = [0, 1]

and with tolerances ε = [0.1, 0.2, 0.4].

Table 4.3 characterizes the results of our simulation of the Brusselator model. For the sequence of

tolerances: ε = [0.1, 0.2, 0.4], we give the accuracy achieved by the variable step size tau-leaping scheme, the

mean number of attempted, accepted, and rejected steps, and the speed-up over the ISSA. The ratio of steps

rejected to total steps attempted is less than 16%, for the tolerances used. Moreover, the speed-up of our

method over the ISSA is significant, from 78 to 387 times.

We observe in Figure 4.5 the match of the results of our adaptive tau-leaping scheme for tolerance ε = 0.1

and ε = 0.2 with results of the ISSA. As before, the molecular number totals were found by adding the total

number of molecules of each species across all voxels Ωk, at the end of the simulation. This further confirms

that our proposed method gives very accurate results for a much lower computational cost.
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ε Attempted Accepted Rejected Relative Speed-up
steps steps steps change over ISSA

4× 10−1 626 555 70 0.99687 387.61

2× 10−1 2099 1830 269 0.99948 211.74

10−1 8724 7291 1433 1.00 78.10

Table 4.3: The Brusselator model: the number of steps taken by the adaptive tau-leaping scheme and
speed-up over the ISSA.
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(a) Species U

(b) Species V

Figure 4.5: Brusselator model: histograms for ISSA and adaptive tau algorithm at t = 1, tolerances ε =
0.1, 0.2.
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Conclusion

Mathematical modeling and simulation of biochemical systems provide unique insight into the system dy-

namics. As cellular biology experimental techniques become more refined at the level of the single cell,

these mathematical models and simulation will play an ever increasing role in understanding and predicting

system dynamics under a variety of conditions. Additionally, these models and systems will help clarify the

complex dependencies that exist in the various pathways in the cell [4]. Thus, the need for more efficient,

but still accurate mathematical simulation algorithms will continue to grow.

This thesis analyzed an inhomogeneous, discrete stochastic model of biochemical kinetics, that of the

Reaction-Diffusion Master Equation (RDME). This model accurately describes the dynamics of biochemical

systems with some species in low numbers and whose system behaviour is dependent on spatial layout of

the system. The study of biochemical systems with low numbers and spatial dependence is crucial for

understanding cellular behaviour.

We have proposed a new adaptive time-stepping scheme targeting the spatial Poisson tau-leaping strategy

for the RDME. The adaptive time-stepping scheme is based on an integral controller and helps address

stiffness that is inherit to biochemical systems which include diffusion. We have also incorporated post-

leap checking to address solution accuracy. Post-leap checking guarantees that the leap-condition is always

satisfied. Combining time adaptivity with post-leap checking has allowed us to create an accurate and

efficient simulation algorithm targeting the RDME. Our proposed algorithm achieves excellent accuracy

while being orders of magnitude faster than the ISSA for the three tested models.

Our future work will consider a number of improvements to the presented algorithm including developing

an effective technique for negative numbers. We also plan to apply our variable time-stepping strategy to

semi-implicit tau-leaping schemes to improve the simulation time for very stiff biochemical problems.
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Appendix A

Probability distributions

Definition A.0.1. The random variable X has a uniform distribution over range [a, b], written X ∼ U(a, b),

if it has probability density function (PDF)

fX(x) =

 1
b−a if a ≤ x ≤ b

0 otherwise.

Definition A.0.2. The random variable X has an exponential distribution with parameter λ, written X ∼
Exp(λ), if it has PDF

fX(x) =

λe−λx if x ≥ 0,

0 otherwise.

Definition A.0.3. The random variable X has a Poisson distribution with parameter λ, written X ∼ P(λ),

if it has probability mass function (PMF)

P (X = k) =
λk

k!
e−λ if k = 0, 1, 2, . . .

Definition A.0.4. The random variable X has a binomial distribution with parameters n and p, written

X ∼ B(n, p), if it has PMF

P (X = k) =

(
n

k

)
pk(1− p)n−k if k = 0, 1, 2, . . . , n
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Appendix B

Poisson Process

Definition B.0.5. A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents the

total number of “events” that occur by time t.

Definition B.0.6. The counting process {N(t), t ≥ 0} is said to be a Poisson process having rate λ, λ > 0,

if

1. N(0) = 0.

2. The process has independent increments.

3. The number of events in any interval of length t is Poisson distributed with mean λt. That is, for all

s, t ≥ 0

P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
, n = 0, 1, . . .
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[50] R. Thar and M. Kühl. Bacteria are not too small for spatial sensing of chemical gradients: an experi-

mental evidence. Proceedings of the National Academy of Sciences, 100(10):5748–5753, 2003.

[51] T. Tian and K. Burrage. Binomial leap methods for simulating stochastic chemical kinetics. Journal of

Chemical Physics, 121(21):10356–10364, 2004.

[52] T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modeling in vivo reactions. Com-

putational Biology and Chemistry, 28:165–178, 2004.

[53] J. Vilar, H. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-resistance in genetic oscillators.

Proceedings of the National Academy of Sciences, 99(9):5988–5991, 2002.

[54] E. Weinan, D. Liu, and E. Vanden-Eijnden. Nested stochastic simulation algorithm for chemical kinetic

systems with disparate rates. Journal of Chemical Physics, 123(19):194107, 2005.

[55] D.J. Wilkinson. Stochastic Modeling for Systems Biology, Second Edition. CRC Press, 2012.

58


