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DEVELOPING PSEUDO RANDOM NUMBER GENERATOR 

BASED ON NEURAL NETWORKS AND NEUROFUZZY SYSTEMS 

Kayvan Tirdad 

MSc, Computer Science, Ryerson University, 2010 

Abstract 

Pseudo random number generators (PRNGs) are one of the most important components in 

security and cryptography applications. We propose an application of Hopfield Neural Networks 

(HNN) as pseudo random number generator. This research is done based on a unique property of 

HNN, i.e., its unpredictable behavior under certain conditions. Also, we propose an application of 

Fuzzy Hopfield Neural Networks (FHNN) as pseudo random number generator. We compare the 

main features of ideal random number generators with our proposed PRNGs. We use a battery of 

statistical tests developed by National Institute of Standards and Technology (NIST) to measure 

the performance of proposed HNN and FHNN. We also measure the performance of other 

standard PRNGs and compare the results with HNN and FHNN PRNG. We have shown that our 

proposed HNN and FHNN have good performance comparing to other PRNGs accordingly.    
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Chapter 1 

Introduction  

1.1 History of Random Process 

Literal meaning of Random in English language is disorder, unpredictable and without any 

purpose. In statistics, the term randomness is used to emphasis on the well defined statistical 

properties, such as lack of bias or correlation. When a variable is said to be random, it means that 

the variable follows a given probability distribution. The term of “arbitrary” implies that there 

isn’t such determinable probability distribution. In all the arguments that relates to random topics, 

the difference between random and arbitrary must always be considered and differentiated [1]. 

A sequence of numbers that contain no patterns and regularities is known as statistically random 

sequence. When a number is chosen arbitrarily from some specific distribution it can be called as 

a random number. Such numbers are almost expected to be independent with no correlations with 

successive numbers. Random numbers generated by computers are called pseudo random 

numbers [2] [3] [4] [5].  

However, when randomness is used within the context of uniform distributions, then random 

sequences are generated in an almost predictable fashion using some mathematical formula and 

stochastic process, but since the distribution area is large enough and normalized, hence the 

prediction is almost impossible [1]. 

Random process is defined as one whose consequences are unknown [6]. The term “random” is 

usually used when the output of a process is unpredictable. 

"Chance governs all" 
~ Milton 
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The history of random processes backs to ancient times. When, the concept of fate was the 

translation of chance or random event. Throwing a dice to determine fate was common among 

ancient peoples. Most ancient cultures used various methods of divination to attempt to 

circumvent randomness and fate [5].  

1.2 Usages of Random Numbers 

Random numbers are widely used in gaming industry. Gambling is the most prevalent act of all 

times which directly relates to random events. Gambling is based on random events such as 

throwing a dice, flipping a coin or shuffling of playing cards that can be found in all human 

history [7][8]. 

In most modern societies and cultures, legalized gambling plays an important role in economics. 

It presents a very important economic aspect of modern society. So where ever gambling is 

legalized, to ensure the unpredictability of the outcome results, plenty of stringent regulations 

exist. These rules cover different aspect form of physical devices, like dice, cards decks and all 

electronic devices used for gambling, etc. to employ the gambling facilities like Casinos [9]. 

Beside the gambling and gaming industry, random numbers have many other usages in today 

engineering problems. Random numbers are used widely in device testing and simulation like 

white spectrum generate by sequences of (pseudo) random numbers, simulating network traffic 

with certain statistical properties in order to perform an off-line test. Random numbers are used in 

computer simulation (Monte-Carlo simulations) to model all non-idealities (e.g. noise, device 

mismatches, and particle interactions) which exist in real systems [5].  

Random numbers are present as a string of bits (sequence of bits). Depending on the type of the 

problem that computer tries to simulate, the size of this string could vary- even hundreds of 
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gigabytes [1]. Scientists try to simulate complex systems every day. Increasing the numbers of 

experiments and increasing the levels of complexity, demand for bigger amount of random 

numbers grow rapidly.  

 Random number generator plays a fundamental role in computer security issues. By increasing 

the demand for secure communication, secure storing and secure management of sensible data 

over public networks, specifically internet data encryption techniques have expanded rapidly. On 

the other hand by increasing wireless communication new high-security standard of data 

encryption was born [10].  

The process of converting ordinary data (plaintext) into something unintelligible (ciphertext) is 

defined as encryption; decryption is the reverse of encryption process. A cipher is a pair of 

algorithms which perform this encryption and the reversing decryption. A cryptographic key is a 

secret parameter (it is known only by the communicants) for the cipher algorithm that controls the 

output of cipher algorithm. Keys are fundamental in modern cryptography as ciphers without 

keys, though very common in the early history of cryptography, there are bunch of chipper 

without key that are trivially breakable [5]. 

Modern cryptography algorithms have transferred all the unintelligibility from the cipher to the 

key [5]. During the last few years many standard cryptography algorithms were developed; and 

the most common ones are the DES [11] and the AES [12]1.  

These algorithms are public and universally studied for many years, and very few numbers of 

attacks - on a specific condition - are reported about them. The key in these algorithms is 

                                                      

1 DES was withdrawn after the AES was adopted in 2001 by US government. 
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presented as a string of bits. The key size is from hundreds to thousands of bits depending on the 

type of the algorithm.  

There is a well known comment in security that says, “A chain is only as strong as its weakest 

link”, which means same high-security standards should apply for the generation and the 

distribution of the security key. If the generation or distribution of the key was not secure the 

security of the whole system would be under threat [5]. 

 The key is secret and it is very critical that the key would not be guessed by anyone or any 

computer program. For this reason the key is chosen randomly, i.e. the key strings consist of 

random bits. If the key is not truly random, by looking at the sequence of bits composing the key, 

some patterns or some regularity would be found, and this helps to guess the key from part of it, 

then security of the system would be under threat. In summary, the performance of a good 

cryptography algorithm is tied up to performance of good random numbers [13] [14]. 

Random number generator is widely used in security and is very essential in cryptography, in a 

way that most cryptographic procedures require random numbers, e.g. in generating the key 

material. Random number generators (RNG) used in cryptographic application; typically produce 

a sequence of bits consisting of zeros and ones which can be combined into blocks or 

subsequence of random numbers [1].  

1.3 Different Type of Random Number Generators (RNG) 

RNGs are divided in two basic classes called deterministic and nondeterministic. The 

deterministic random number generators produce a sequence of bits from an initial value (seed) 

with a specific algorithm, and nondeterministic generators produce and generate the outputs that 

is unpredictable and depend on some physical source, outside of the human control [1][15]. 
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1.3.1 Pseudo (Deterministic) Random Number Generators 

A pseudo random number generator (PRNG) is a deterministic algorithm that generates a 

sequence of numbers. They are computed starting from an initialized vector, called seed [16] 

[17]. The seed is the only presenter of uncertainty in these pseudo random number generator 

algorithms. The seed is the initialization value of pseudo random number generator algorithms. 

Some of PRNG algorithms acquire the seed from the hardware of the system i.e. from the lower 

bits of the system clock. According to John von Neumann this process is not random at all [16], 

“Anyone who considers arithmetical methods of producing random digits is, of course, in a state 

of sin.” 

The property of periodicity is common among all of PRNGs, but a true random sequence can 

never have this property. The reason for this property relies on the deterministic nature of 

algorithm. A periodic system is a system that repeats itself after some iterations and so is 

completely predictable after the first period. It is possible to build PRNG with periods so long 

that no computer could ever complete a single period. However, some people believe that it does 

not change the fact that a pseudorandom generator is not a random generator [5]. 

1.3.2 True (Nondeterministic) Random Number Generators 

Nondeterministic random number generators are based on the direct observation of a physical 

process that has random-like features i.e. roll of a dice or the flip of a coin. These types of 

systems are called True Random Number Generators (TRNG). Most of today’s TRNGs are based 

on the microscopic phenomenon, Such as the Brownian motion, quantum effects, Johnson 

thermal noise over a resistor and the Shot noise in vacuum tubes. All these phenomena placed in 

the basic physical processes at a very low level. Usually these phenomena referred as a “noise”. 
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The radioactive nuclear decay of instable isotopes is a good example of a quantum noise which is 

widely used [1] [5].TRNG is build by embedding a random like phenomena in system and adding 

an observing part to the system. The system acts as an interface that converts uncertainty in 

observed phenomena to the random numbers [18]. 

1.3.3 Comparison of PRNGs to TRNGs 

Depending on the application, both TRNG and PRNG have their own strengths and weaknesses. 

Generally speaking limitations of one is advantage of the other and vice versa. Table 1 shows the 

most important features that an ideal RNG should have, and shows what features PRNGs and 

TRNGs have. So based on the application needs, TRNG or PRNG would be used.  

Table 1- comparing the features of TRNGs to PRNGs 

Ideal RNGs Features TRNGs PRNGs 

No periodicities Yes No 

No predictability of output  Yes No 

No Dependencies Present Yes No 

High Level of Security High Not as high as TRNG 

Not Based on Algorithm Yes No 

Fast and Efficient No Yes 

Install and Run Hard Easy 

Reproducibility Random Number Sequences No Yes 

Cost High low 

Need Manipulation Yes No 

 

Determining the output of a well designed PRNG from prefect TRNG - just by knowing the 

current state of system and output of system - is an open question. Developing an efficient RNG 
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with all the features mentioned in Table 1, is an ultimate goal, and to this end researchers are 

trying to increase the performance of TRNGs and PRNGs. 

In term of the usage, TRNGs are very useful in most of the security applications and in gaming 

industry. For simulation usages, however PRNGs are applicable. According to the amount of 

random numbers needed and the cost of the generation, TRNG is not suitable for simulation 

problems.  

1.4 Importance of Pseudo Random Number Generators 

One of the major problems in cryptography and other computer science concepts is developing a 

Pseudo Random Number Generator (PRNG) with acceptable quality in term of randomness.  The 

acceptable qualities of PRNGs are very crucial for both cryptosystems and simulation problems. 

Huge demand is for developing a good quality PRNG in most of the computer science concepts 

such as Simulation and Cryptography, which has  placed PRNG in center point of the problems, 

and lots of people try to solve. There are lots of algorithms suggested to work as PRNG in past 

years [1] [2] [15]. 

Linear Congruential, Quadratic Congruential 1 and 2, Micali-Schnorr, Blum Blum Shub, 

Modular-Exponentiation and G using SHA-1 are some examples of the PRNGS that have been 

developed and studied in the past [19]. 

1.5 Measuring the Quality of Pseudo Random Number Generators 

By developing different PRNG there was a need to come up with procedures that could measure 

the quality of PRNGs. To this end, randomness was identified as a feature that would demonstrate 

the quality of PRNGs [6]. Moreover by increasing the speed of computers in recent years 
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anybody could use much more intense procedure to predict consequence. In particular, 

the increase in processing capacity of computers has led to the stronger Random Tests 

and newer PRNG with better quality of randomness has been devised. During the past 

few years both Random number tests and PRNG has progressed rapidly [2] [20] [21].   

To check the quality of the random number generators and evaluate their suitability for a 

particular cryptographic application, a number of tests exist that enable the checking of 

randomness and unpredictability of the results of software or hardware based random number 

generators [21]. Statistical tests are widely used [19][22] and provide good measurements for 

randomness. For example, National Institute of Standards and Technology (NIST) provides 

statistical standards such as NIST Test Suite that measures the randomness degree of binary 

sequences. NIST Test Suite consists of a number of tests that all together search for different 

types of non-randomness that might exist in binary sequences [19].  

1.6 Soft Computing Techniques for Developing PRNGs 

Information security is one of the most important technology concerns today. Cryptosystems are 

mainly focused on addressing this concern. Different kinds of cryptosystems for tackling different 

problems and answering different needs in security field are developed. Cryptosystems provide 

an answer for protecting the integrity, confidentiality, and authenticity of information resources. 

In parallel, through availability of powerful computers and developing tools, many techniques for 

breaking cryptosystems are developed. By developing more powerful breaking techniques the 

demand for stronger cryptosystems has increased rapidly.  

The other issue is related to increase the power of computation according to more laws. The 

increase in the power of computation has led us to more complex algorithm in our cryptosystems. 
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Also during the past years soft computing techniques such as neural networks, fuzzy systems, 

Genetic algorithm, and Rough sets have been developed rapidly. Some of these techniques are 

applied on development of PRNGs. These techniques showed that there is a great potential for 

tackling cryptosystems problems by applying soft computing methods. In the following section, 

usage of neural networks and Fuzzy logic in development of PRNGs are shortly explained. 

1.6.1 Usage of Neural Networks in development of PRNGs 

Neural network is a computational model that has been inspired by biological Neural Network. 

Connections of groups of artificial neurons made the structure of neural network. The structure of 

Neural Network changes by flow of information through the networks in learning phase. Neural 

Networks (NN) specifically have developed hugely in recent years. By developing new Neural 

Networks model and study different variation of them, different characteristics and features have 

been revealed. Some features of NN make them suitable for specific security problem. 

Some features of Neural Networks like complexity, parallel ability, nonlinearity, unpredictability 

make them suitable to work as a random number generator. Different types of neural networks 

and also combination of them have been used as random number generator component in 

cryptosystem. Hopfield is a type of neural networks which is used as pseudo-random number 

generator [22] [23].  

1.6.1.1 Usage of Hopfield Neural Networks in Development of PRNGs 

Hopfield Neural Networks (HNN) are recurrent neural networks that are developed by John 

Hopfield. This type of neural network is widely used as content-addressable memory. The basic 

form of these networks uses linear activation function. The basic form guarantees convergence to 
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a local minimum. To store patterns in HNN the network should be set in a way that desired 

patterns are placed in local minimums. Notice that in HNN convergence to one of the stored 

patterns is not guaranteed [24].  

There are some special features that make Hopfield Neural Networks (HNN) different from other 

types of neural networks. First, function approximation capabilities, which make HNNs a 

powerful tool in many scientific disciplines. Second, their generalization capability, which is a 

kind of nonlinear operation, that makes HNNs suitable for generating random number. 

Hopfield Neural Network approach is based on decreasing energy by finite cycle. By any changes 

in the input of network, the output is calculated with, not previously encountered inputs, hence it 

tries to decrease energy, and after some cycles the network converges. Before the network 

convergence, the output is unpredictable, so if the network does not converge in any state, the 

output remains unpredictable. This feature is one of the mainly used one, in the random number 

generators. The main idea is finding some ways to make network not to converge [23]. 

1.6.2 Fuzzy Systems and Random Number Generator 

Lotfi Zadeh in 1965 formalized fuzzy set theory [25] and in 1973 he applied fuzzy set theory to 

control systems [26]. He found that multi valued logic system could be much more useful than 

traditional binary logic system for solving some problems. Fuzzy logic added "higher machine 

intelligence quotient" to control systems [27]. 

Main advantage of Fuzzy logic system is providing a platform to acquire human knowledge and 

feeding it to the system. There are a huge number of applications of fuzzy systems, such as 

classification, handwriting recognition, voice recognition, image stabilization and data mining. 

Also there are some applications of fuzzy logic in developing a PRNG [28].   
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1.7 Motivation 

Different types of Neural Networks are applied to different problems in cryptosystems. There is a 

huge interest to apply Neural Network in different aspect of cryptosystems. Before applying 

Neural Networks to any aspect of cryptosystem such as hash function, visual cryptography, 

steganography, steganalysis and PRNGs, we should examine features of problem and compare 

them with features of specific Neural Network that want to be applied. In recent years different 

kind of neural networks applied to different aspect of cryptosystems such as Encryption schemes, 

Secret Key protocol, random number generator, Prime factorization, Hash table, Digital Water 

Marking, Steganalysis and etc. 

Concept like usage of NN for digital water marking, using different NN for Staganalysis or 

public/private key exchange protocol by NN and usage of NN in PRNGs was always interesting 

[4].  

The other motivation for us is the ability to make a NN in chip format. So if we develop PRNG 

based on NN with good performance, it would be easily convertible to hardware format and it 

would have big usage in simulation projects. 

There is a need to check previous PRNGs that we have with new test suit that exists and we have 

to be aware of their reliability with today computational power. By recent advancements that has 

happened in PRNGs tests and also in computation power it is much easier to exploit any non-

randomness in PRNGs than couple of years ago. Hence another motivation for us is to answer 

this need and check the performance of old PRNGs with new available PRNGs test. 

 



 

 

 

12

1.8 Contributions of the Thesis 

The following concepts have been investigated in this thesis: 

 In this thesis we look at the definition and usage of different random number generators. 

It makes our goal clearer and helps us acquire better understanding of the problem.  

 Test suite for randomness is the other side of PRNGs problems. So in this thesis we 

investigate different type of random number test suite, and try to mention the history of 

these test suites. 

 In this thesis by looking in depth to each test of NIST PRNG test suite we acquire more 

detail about the result of each PRNG and find their weakness.  

 We look at different PRNGs that developed in previous years; we mention the history of 

PRNGs and study the algorithm of each PRNG to produce random numbers. 

 The performance of previous PRNGs have been studied in this thesis. We compare the 

performance of each PRNG with each other.  

 We Implement a Hopfield Neural Network PRNG and evaluate its performance in 

different conditions. 

 We try to make some improvement in our Hopfield Neural Network PRNG by 

embedding Fuzzy system in each neuron and reducing the number of neurons. Also, we 

evaluate the performance of final Fuzzy Hopfield Neural Network PRNG. 

1.9 Structure of the Thesis 

In this thesis, in chapter one, we have discussed a brief introduction on random number and 

random number generator. We have looked at the history of random number and usage of it. We 

have looked at the problem on how to measure the randomness and different random test suite as 
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well. We examined different type of RNGs and compared them to lightening problem. Also we 

have prepared a brief introduction in neural networks and fuzzy system in chapter one.  

In chapter two we looked at the algorithm and usage of some previous PRNGs. Also we 

investigated the different techniques for measuring the randomness. Specifically we overviewed 

the NIST PRNGs tests suite and checked all of its tests with more details. Further, different 

approaches which have been used to develop PRNGs by using different type of neural networks 

and also fuzzy logic systems are reviewed. 

In chapter three some of previous different PRNGs, have been presented. Also we have talked 

about how we have implemented our Hopfield Neural Network PRNG (HNN PRNG). Next 

PRNG system presented in this chapter is based on Neuro-Fuzzy application. We have tried by 

combining fuzzy logic and Hopfield neural network, and developed a FHNN PRNG that does not 

have the weakness of our HNN PRNG. In chapter four we have showed the result of our HNN 

PRNG in different conditions. We have discussed the strength and weakness points of our HNN 

PRNG and we tried to conquer those weakness points. After that we check the result of our 

FHNN PRNG. Also, we have compared the result of HNN PRNG and FHNN PRNG with other 

PRNGs.      

Finally, in chapter five we have our conclusion of this thesis. We review the results and conclude 

the final points of our systems. Also we look at the possible future works in this field. 
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Chapter 2 

Background of PRNGs 

 

 

 

2.1 Some well known PRNGs 

PRNGs, with their long history in Computer Science, always have been controversial. In 

particular, the deterministic RNGs (PRNGs) are always shown to suffer from artifact patterns in 

their output. These artifact patterns made them venerable to statistical tests. Most of the 

developed PRNGs in the past years, do not pass the recent statistical tests. Some of their main 

problems would be categorized as: 

I. Very short period for some specific seed (weak seed). 

II.  Not presenting uniform distribution when generating huge amount of data. 

III. Vulnerable correlation between successive and future outputs, that makes the output 
guessable.  

Classical example of such PRNG is RANDU. RANDU is a PRNG that was used during 1960’s in 

the mainframe machines. RNADU suffered from serious flaws (mainly the output was not 

random), but unfortunately they were not recognized for decade.  Figure 1 shows that the output 

of RANDU is always on one of the 11 plains. Donald Knuth about RANDU has quoted ”…its 

very name RANDU is enough to bring dismay into the eyes and stomachs of many computer 

scientists!” [17].  

 

It may be taken for granted that any attempt at defining 
disorder in a formal way will lead to a contradiction. This 
does not mean that the notion of disorder is contradictory. 
It is so, however, as soon as I try to formalize it. 
~ Hans Freudenthal 
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Figure 1- RNADU Outpots [29] 

2.1.1 Linear Congruential 

Linear Congruential is one of the oldest Pseudo Random number generators that is defined as 

[30] : 

  mod      where Xn is the sequence of pseudorandom values, 

 :  the "modulus"         0                          

 :   the "multiplier"       0                  

 :   the "increment"       0  c   

:  the "seed" or "start value"     0             

All of these parameter are integer constants that specify the generator. 

Form   a given “seed”                                                              (2-1) 

   X aX c  mod M 

Example   Xi+1 = 7 Xi  mod 11         1, 7, 5, 2, 3, 10, 4, 6, 9, 8, (1) 

    Xi+1 =  6 Xi  mod 11                1, 6, 3, 7, 9, 10, 5, 8, 4, 2, (1) 

The Linear Congruential PRNG will have a full period for all seed values if and only if  and  
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are relatively prime and 1 is divisible by all prime factors of . Linear Congruential PRNG 

maximum period length, could be m. 

Linear Congruential based PRNGs are extremely sensitive to the choice of the coefficients c, m, 

and a.The main advantage of Linear Congruential PRNG is speed. Linear Congruential based 

RNGs require a little amount of memory and they are incredibility fast. One of its disadvantages 

is its weakness in randomness and security, so in the application that high level of randomness or 

security is needed, this type of PRNG is not suitable. Some researchers reported successful crack 

attempt on Linear Congruential based RNGs [31] [32]. 

2.1.2 Quadratic Congruential 1, 2 

Both Quadratic Congruential 1 and Quadratic Congruential 2 are based on Linear Congruential 

but they are nonlinear [33].  

Quadratic Congruential 1 is defined as: 

                                                          (2-2) 

Quadratic Congruential 2 is defined as: 

                                         (2-3) 

Like Linear Congruential PRNG, maximum period length of Quadratic Congruential 1, 2 are m. 

these types of PRNGs present weaker linear properties [17]. 

 

 

 



 

 

 

18

2.1.3 Cubic Congruential Generator II 

Cubic Congruential II PRNG is slightly different from the Quadratic Congruential PRNG. Cubic 

Congruential PRNG uses cubic of input for calculating the result to gain better distribution in all 

dimensions.  Cubic Congruential II PRNG is defined as [19]: 

                                               (2-4) 

2.1.4 Modular Exponentiation 

Modular Exponentiation is widely used as random number generator [34].it applies an 

exponentiation on a modulus. In fact, "modular exponentiation" means calculating the remainder 

c where there is a positive integer b we called it base raised to the  power - e is referred to as 

an exponent - divided by a positive integer m, and m is called the modulus, 

                                                        (2-5) 

The fact that remains that, by using Modular Exponentiation we could build one way 

function, and there are lots of PRNGs, which are based on such functions [34]. 

2.1.5 G using SHA-1 

G function is a one way function that has been specified in Appendix 3 of FIPS 186 [35] and is 

based on the Secure Hash Algorithm (SHA-1).  FIPS 186 [35] explains a digital signature 

standard algorithm, this algorithm needs secure random number to use as a private key, so by 

developing a one way function they generate desired private key. For developing that one way 

function which we call G function, two methods are presented [35] the first one is based on SHA1 
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algorithm and the other one is based on DES algorithm. Nowadays performance of G function 

based on SHA1 used as comparison for other PRNGs [36].  

2.1.6 Micali-Schnorr 

Micali-Schnorr pseudorandom bit generator has been considered as an existing secure PRNGs. 

Micali-Schnorr PRNG is an efficient version of RSA pseudorandom bit generator. Micali-

Schnorr PRNGs are relatively slow in comparison with the other PRNGs; the reason relies on 

huge use of modular multiplications that have a slow procedure. Moreover, by implementing this 

algorithm on a hardware that has circuit for modular multiplications the speed problem would be 

solved [36]. 

2.1.7 Blum Blum Shub 

Blum Blum Shub (BBS) PRNG is proposed in 1986, and it is based on Prime factorization [37].  

                                                                 (2-6) 

Where M=pq is the product of two large primes p and q. At each step of the algorithm, some 

output is derived from ; the output is either the bit parity of xn+1 or one or more of the least 

significant bits of  . In BBS, xi would be calculate directly from: 

                                             (2-7) 

BBS are extremely slow and hence, it is not suitable for simulation, but it has been 

proved to have good security features. 
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2.1.8 Other random numbers  

There are other types of PRNGs such as Inversive Congruential Generator, Logged Fibonacci 

Generator, Linear Shift Register, Mersenne Twister and Xorshift etc. Since these PRNGs are not 

used for performance comparison, therefore we do not discuss them here. 

Cipher algorithms and cryptographic Hash functions were often used as PRNGs. Block cipher in 

counter mode, cryptographic hash functions in counter mode and stream cipher techniques are 

some example of this type of PRNGs. 

Other type of PRNGs is based on External entropy. This type of PRNGs is widely used in 

different operating systems. CryptGenRandom, Yarrow, LavaRnd and Fortuna belong to this type 

of PRNGs. 

2.2 Randomness Tests 

Random numbers are expected to be independent with no correlation between successive 

numbers. The term “random” is usually used for the output of a process which is unpredictable, 

but without qualification, “random” is being used as random with some uniform distributions. It 

means that they are generated in an almost predictable fashion using some mathematical formula 

and stochastic process, but if the distribution area is big enough and most normalized, the 

prediction would be almost impossible [38].  

It is not sufficient to judge the randomness of a bit sequence only by its appearance. In other word 

human is not good enough to detect or even generate random bit sequence [17]. Knuth shows that 

if you ask a random person to write down a random sequence of bits with the length of 50, there 

is a big chance that he fails. Most people try to avoid repeating previous bits when they want to 

generate random bit sequences. On the other hand, if you show people a random sequence most 
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of them detect it as non-random sequence. Human nature is designed to look for patterns and 

similarities, but not for randomness [17]. 

We need a test to determine the level of randomness, and based on the level of randomness we 

may decide to consider a sequence as random or not. Gaining higher level of randomness does 

not mean getting a flawless RNG, it just means that we have acquired higher level of confidence 

for our PRNG [39]. “Deciding if the result of a RNG is random or not” is meaningful with respect 

to the level of acceptance. It means that a RNG that is considered as random number generator 

could sometimes generate nonrandom sequence, and a RNG that is considered as nonrandom 

number generator could produce random bit sequence occasionally, either software or hardware 

based. 

To check the results of random number generators and determining whether or not they are 

suitable for a particular cryptographic application, some tests are developed that check the 

randomness and unpredictability of the results [21]. There are different measurements of 

randomness that are based on complexity, transforms, and statistical tests or their combination. 

Statistical tests have shown good measurement for random test and nowadays most researcher use 

this kind of package for randomness test [19][30].  

With the advent of more powerful computational devices in recent years, weaknesses in generated 

random sequences would be more easily revealed. Therefore, there is an increasing need for both 

stronger PRNGs and more accurate randomness tests [20][37]. 

According to various type of non randomness that may exist in Random bit sequences it is not 

practical to find non randomness patterns by just using one test. Most of the statistical tests are 

collection of tests. This collection is generally known as ‘suite’ or ‘battery’ of statistical tests 

[40].  
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While it is impossible to mathematically prove that a RNG is the best random number generator, 

using RNG test suites help determining the level of randomness of RNG with some level of 

confidence. There is a chance that RNG would not acquire good result in the entire tests of RNG 

test suite. By increasing the number of tests that RNG pass with good result the level of 

randomness of RNG will increase. 

For testing RNG, RNG test suite feeds with sequences or subsequences of RNG output. By 

increasing the length of the sequences the chance of finding any nonrandom pattern increases and 

RNG could pass with higher level of confidence. Moreover by increasing the number of 

sequences the chance of finding any none uniformly behavior of RNG will increase [19]. 

During the past years, different RNG test suites are developed. The most famous one is the test 

suite that was present by Donald Knuth, known as Random Number Grue. This test is outdated 

now and compared to other existing tests its results are not satisfactory by today’s standards [17]. 

Diehard was another RNG test suite that was developed by Marsaglia in 1995.It was developed to 

Address the problems Knuth RNG test had. Unfortunately after he retired nobody else followed 

his work, and his test is not maintained anymore [41]. 

ENT is another RNG test suite that was developed by john Walker in 1998 and its latest update 

was in 2008. This statistical test is suitable for cryptographic usage [42]. 

The most famous and popular RNG test is NIST RNG test suite. NIST RNG test suite is released 

in 2001, and since then it was updated every year [19]2. 

                                                      

2 NIST (National Institute of Standards and Technologoy is a non-regulatory federal agency within the U.S. 
Commerce Department's Technology Administration. NIST's mission is to develop and promote measurement, 
standards, and technology to enhance productivity, facilitate trade, and improve the quality of life. 
http://www.nist.gov/ 
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The binary sequences of the output result can be checked by some statistical packages such as 

NIST Test Suite. NIST Test Suite consists of fifteen tests, and is focused on different types of 

non-randomness which might exist in the binary sequences, resulting from such random number 

generators [19].  

2.2.1 Some RNG testing issues 

There are two questions about RNG test suite. First, is it true to use the same RNG tests for both 

PRNG and TRNG? Second, should RNG test suites be application dependent or not? [43] 

By increasing the processing power and performance of RNG test suites the answer of these 

questions do not have significant influences in our result. Also for using which RNG test suite, 

here we suggest NIST. The reason is NIST RNG tests suite is standard in Random numbers 

community nowadays. NIST RNG tests suite is very popular among most of the users and this 

helps users to compare their results with each other for different RNGs.  

We know that RNG tests use bit sequences of output of RNG to measure the randomness of 

RNGs. But the question is how many bit sequences with how much length is enough? There is no 

definite answer for this question however by increasing the power of computer, the number of bit 

sequences and their length may increase to gain better level of confidence about randomness of 

RNG.   

As mentioned, most of the statistical RNG test suites such as NIST RNG test suite is combination 

of different tests. A RNG could gain different score in different tests. By testing a RNG with a 

test suite we reach a set of numbers that each number is associated with one specific test. For 

comparing two RNG with each other we have to compare a specific test result for both. It is 

common that one RNG has better result in one test and another RNG has better result in another 
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test. There are no priorities among tests in RNG test suites. There are few researchers that have 

tried to come up with priorities but generally speaking most of the people consider all the results 

with the same priorities [40].  

Some of the tests in RNG test suite have some dependencies to each other, so it is possible that 

any nonrandom pattern in a bit sequence, affects the result of more than one test. Each RNG test 

suite deals with this type of dependencies differently. Also there are some tests in RNG test suite, 

that doesn’t have any dependencies to each other [19].   

Most of the RNG test suite, work on binary sequences, so for testing a RNG we should set it in a 

way that it produces a sequence of 0’s and 1 ‘s. Also adjusting a parameter of RNG test Suite is a 

job that needs some expertise. By missing the adjustments of the parameters of RNG test suites 

there is a great chance that some test could not be driven or the test generate a none valid result. 

By non valid we mean it shows a none random procedure as a random one.  
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2.2.2 NIST RNG Tests Suite in a Glance 

NIST tests suite consist of fifteen different tests. Each test looks for different none randomness in 
bit sequences.  Table 2 demonstrates an overview of NIST RNG test suite. 

Table 2- NIST Statistical Test Suite in a Glance [40] 

NIST Statistical Test Suite 

Test Defect Detected Property 
Frequency (monobit) Too many zeroes or ones Equally likely (global) 

Frequency (block) Too many zeroes or ones Equally likely (local) 

Runs Test 
Oscillation of zeroes and ones too 

fast or too slow 

Sequential dependence 
(locally) 

Longest Run of Ones 
in a Block 

Oscillation of zeroes and ones too 
fast or too slow 

Sequential dependence 
(globally) 

Binary Matrix Rank 
 

Deviation from expected rank 
Distribution 

Linear dependence 

Discrete Fourier 
Transform (spectral) 

Repetitive patterns Periodic dependence 

Non-overlapping 
template matching 

Irregular occurrences of a prespecified template 
Periodic dependence and 

equally likely 

Overlapping Template 
Matching 

Irregular occurrences of a prespecified template 
Periodic dependence and 

equally likely 

Maurer's universal 
statistical 

Sequence is compressible 
Dependence and equally 

likely 

Linear Complexity 
Linear feedback shift register (LFSR) 

too short 
Dependence 

Serial 
Non-uniformity in the joint distribution 

for m-length sequences 
Equally likely 

Approximate Entropy 
Non-uniformity in the joint distribution 

for m-length sequences 
Equally likely 

Cumulative Sums 
(cusum) 
 

Too many zeroes or ones at either an early or late 
stage in the sequence 

Sequential dependence 

Random Excursions 
 

Deviation from the distribution of the 
number of visits of a random walk to a certain state 

Sequential dependence 

Random Excursions 
Variants 
 

Deviation from the distribution of the 
number of visits (across many 

random walks) to a certain state 
Sequential dependence 
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2.2.3 Deeper Look at NIST PRNG Test Suite 

Statistical RNG test looks at Randomness as a probabilistic property and describes it in terms of 

probability.  NIST RNG test suite aim is testing two different hypothesis; and . 

  : Null hypothesis which assumes the sequence being tested is random.  

  : Alternative hypothesis which assumes the sequence being tested is not random.  

By accepting or rejecting the null hypothesis in each test for a bit sequence a decision will be 

made. By applying mathematical method a critical value is determined. Based on that critical 

value the acceptance or rejection of  is decided. 

Statistical values for a bit sequence in each test are calculated and by comparing statistic values to 

critical value decision about acceptance or rejection of  will be made. Hence, the statistical 

hypothesis testing procedure has two possible results, either accept H0 (the data is random) or 

accept  (the data is non-random).  Table 3 shows four possible situations of statistical 

hypothesis testing procedure [19].  

Table 3- Possible situations for statistical hypothesis testing procedure [19] 

True Situation 
Conclusion 

Accept  Accept   (reject ) 

Data is random (  is true) No error Type I error 

Data is not random (  is true) Type II error No error 

 

Type I error is a conclusion that happens when Data is random (  is true) but the test accepts   

(reject ). On the other hand, Type II error is conclusion that happens when Data is not random 

(  is true) but the test accepts . Two other conclusions are true conclusions that would 

happen by statistical hypothesis testing procedure.    
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The probability of Type I error and Type II error are very low but not zero. “Level of significance” 

is the probability of a Type I error and is denoted by α. That would be set prior to running the test. 

Common values of α in cryptography are about 0.01. Calculation of Type II error denoted by β, is 

not an easy task [19][44]. Values of α, β and n - the size of bit sequence - are tied together. So 

although calculating of β is hard task but by selecting appropriate values for α and n, we could 

guarantee that β has a small value [19].  

The result of each test is a P-value which shows, how random the sequence is. P-value ranges 

between 0 and 1, being equal to 1 means the sequence is totally random for that test, but if P-

value is 0 means the sequence is not random at all. If P-value ≥ α then Null hypothesis (  is 

accepted and bit sequence is random, but if P-value ≤ α then Alternative hypothesis   is 

accepted and the sequence is not random.  

Commonly, α Є [0.001, 0.01]. For example setting α = 0.01, means from 100 sequences if one or 

zero of them is rejected the result is considered as random [1]. The other parameter in NIST 

PRNG test is the length of the each sequence that is denoted by n, and NIST has suggested, that it 

should be at least10  . 

For applying the test, NIST suggest applying the test to “x” number of sequences. “x” is at least 

inverse of “Level of significant” α. for example if α is equal to 0.01 NIST suggests to apply the 

test to at least 100 sequences. It is very critical to prepare sufficient number of sequences for 

testing. If the number of sequences is not large enough then the testing module reports a good 

result that indicate a good random number generator, but in fact according to the lack of feeding 

data the report is not valid, and there is a great chance that we face a nonrandom bit generator 

[1][19] [40]. In the following we explain each test with more details.    
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2.2.3.1 Frequency Test 

The purpose of this test is to focus on the proportion of zeroes and ones in the whole sequence, In 

random sequence the number of zeros and ones are expected to be equal. The outcome of the test 

is a parameter called P-value that represents the ratio of the abstract of the summation of every 

binary numbers of the sequence in a way that the zeros are converted to value -1 to the square 

root of the number of the whole sequence. Thus, P-value indicates how random the sequence is 

[1][19].  

2.2.3.2 Frequency Test within a block 

This test relates to the proportion of ones in M-bit blocks, where M denotes the length of each 

block. This test determines whether the observed proportion of ones, within M-bit block, meets 

the expected proportion and the frequency of ones which would be approximately M/2 [1][19]. 

2.2.3.3 Runs Test 

The test calculates the total number of the identical bits bounded with a bit of the opposite value 

before and after them, in an uninterrupted sequence. This series of identical bits are called Runs, 

and the purpose of this test is to determine whether this number of Runs with a various length are 

as expected for a random sequence, or to check how fast is the oscillation between the ones and 

zeros [1][19]. 

2.2.3.4 Test for the Longest Run of Ones in a Block 

The test determines whether the length of the longest run of ones is as expected in a random 

sequence within M-bit blocks, after dividing the whole binary sequence into some parts with the 

length of M. As a matter of fact, after dividing the sequence into M-bit blocks, the frequencies of 
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the longest runs of ones in each block should be computed. In this test, only the runs of ones is 

necessary to be checked, because the irregularity in the expected length of runs of ones implies 

that, there would be an irregularity in the length of runs of zeros [1][19]. 

2.2.3.5 Binary Matrix Rank Test 

By focusing on the rank of disjoint sub-matrices of the whole sequence, we check for the linear 

dependencies between fixed length substrings of the sequence. In this regard, the sequence is 

divided into R x C –bit disjoint blocks (R denotes the number of rows, and C indicates the number 

of columns in each matrix), in a way that each row is filled with C-bit blocks of the sequence. 

The number of blocks would be the result of the division of the length of the sequence, and the 

multiplication of R and C [1][19]. This test is also mentioned in Diehard battery test [41].  

2.2.3.6 Discrete Fourier Transform (Spectral) Test 

The purpose of the test is to find the periodic features and detecting the patterns which are 

repeated near each other. By focusing on the peak heights in the discrete Fourier transform of the 

sequence, this test defines the deviation of randomness by computing the number of peaks, to 

determine whether it exceeds a threshold. In February 2009, NIST announced that they have 

found a problem in Discrete Fourier Transform Test and they advised to disregard the result of 

this test. 

2.2.3.7 Non-overlapping Template Matching Test 

This is to define and detect generators which produce too many occurrences of a given non-

periodic pattern, or pre-specified target string. An m-bit window is used to detect a specific m-bit 

pattern, after partitioning the sequence into M blocks. If the pattern is found, the window will be 



 

 

 

30

reset to the bit after that pattern, and the search will be resumed, otherwise the window slides 

over by one bit only [1] [19]. 

2.2.3.8 Overlapping Template Matching Test 

This is a variation of the non-overlapping template matching test, and the purpose of the test is 

searching for a specific m-bit pattern. Unlike the overlapping template matching test, in this test if 

there is no match and the pattern is not found, the window slides by one bit [1][19]. 

2.2.3.9 Maurer’s “Universal Statistical” Test 

This test computes the numbers of bits between matching patterns to indicate if the sequence is 

compressible without any loss of information - the compressible sequences are considered as non-

random [1][19]. 

2.2.3.10 Linear Complexity Test 

The test’s focus is on the length of a Linear Feedback Shift Register (LFSR), and its purpose is to 

determine if the sequence is complex enough to be a random sequence. Random sequences are 

often characterized by the length of a Linear Feedback Shift Register (LFSR), if LFSR is too 

short, the sequence will be non-random. Statistically, the test measures how well the observed 

number of occurrences of LFSRs matches the expected number for each, under an assumption of 

randomness [1][19]. 

2.2.3.11 Serial Test 

This test checks the frequency of all possible overlapping m-bit patterns, and to determine if 

every m-bit pattern has the same chance to appear as every other m-bit patterns in the entire 



 

 

 

31

sequence. A random sequence has such a uniformity that, if the number of occurrences of the 2m 

m-bit patterns across the whole sequence are required to be the same as expected from random 

sequence [1][19]. 

2.2.3.12 Approximate Entropy Test 

Calculating the frequency of all possible m-bit patterns, this test determines if two physically 

adjacent overlapping block with the lengths of m, and then m+1, are the same as expected for a 

random sequence [1][19]. 

2.2.3.13 Cumulative Sums Test 

Performing of cumulative sums test on a random sequence of zeros and ones should get close to 

zero. This is done by converting (0, 1) to (-1, 1), and then calculating the cumulative sums of the 

sequence. A large result shows a non-random sequence [1][19]. 

2.2.3.14 Random Excursion Test 

Similar to the Cumulative Sums test, this test determines the number of cycles that have exactly k 

visits in a cumulative sum random walk. The cycle includes a sequence of steps of unit length 

taken periodically at random which begins and ends at the origin. Thus, the main purpose of the 

test is to define whether the number of visits to a particular state in a cycle is same as expected 

from a random sequence [1][19]. 
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2.2.3.15 Random Excursion Variant Test 

The test measures the number of times that a particular state is visited in a random walk, and 

defines the deviations from the same in a random sequence, and detects these deviations from 

expected number of visits to various states in a random walk [1][19]. 

2.3 Modern PRNGs  

In recent years by increasing the computation power some researchers have tried to develop a 

PRNG based on new findings in other fields such as Evolutionary Computing, Chaos Theory, 

Fuzzy Logic, and etc.  

Evolutionary computing is a new topic that is used to develop new PRNGs. Tuning self feedback 

shift register by genetic algorithm with the goal of gaining better PRNGs has been studied 

[45].The main problem of using evolutionary algorithm to develop PRNGs is time. Testing a bit 

sequence is very time consuming by itself, however using a pool of PRNGs that each should be 

tested separately to find which one is better makes the time complexity worst [45]. 

Recently some good RNGs based on chaos theory are developed. Some of these chaos based 

RNGs are also developed in a hardware level and are tested in real situation as well [5] [46] [47] 

[48] [49]. Fuzzy Logic Systems are also studied for developing RNGs [50]. 

2.3.1 Neural Networks for developing PRNGs 

Among most of the techniques in soft computing that is applied in cryptosystem, Neural 

Networks have a wide variety of different usages. Different Neural Networks are applied to 

different problems in cryptosystems in past few years and also there is a huge interest to apply 
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Neural Networks in different aspect of cryptosystems. Hence, there is a high interest in applying 

Neural Networks on PRNGs like the other aspect of cryptosystem [4].  

2.3.1.1 Neural Networks in Cryptosystems 

In recent years different kinds of neural networks are applied to different aspect of cryptosystems 

such as Encryption schemes, Key exchange protocol, random number generator, Prime 

factorization, Hash table, Digital Water Marking, Steganalysis and etc. 

Key exchange protocol is one of the most important parts of any crypto-systems. The basic idea is 

that both ends of the communication have their own secret key and both start to send some 

information and after transmitting some data they agree on specific secret key [51]. The benefits 

of using neural networks in key exchange protocols would be enumerated as, first, it is not based 

on the number theory. Second, there is no need to transmit N bit for secret key with the length of 

N bit, by using neural network both ends of communication could agree on the secret key with the 

length N by transmitting lesser bits than N [51]. The main idea is using two neural networks in 

both ends and train them to reach to the same key after some iterations [51] [52].Feed Forward 

neural Networks and Multi Layer Perceptron are two types of neural networks that are widely 

used for Key exchange protocol problem [51] [52] [53] [54]. 

Designing Symmetric cipher based on neural networks was studied [55] [56]also some attack 

method to this concept was investigated [57].  

Prime factorization is another example for usage of the neural networks in cryptosystems. Lots of 

cryptosystems rely on the complexity of factoring a large integer number. The goal is to feed a 

large integer N to the system, calculating P,Q where N= P×Q  and P, Q are prime numbers as 
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target φ(N)=(P-1)(Q-1), φ is Euler's totient function. For tackling this problem feed forward 

neural network (FFNN) was applied [58] [59]. 

Hash function is another aspect of cryptosystems, Confusion and diffusion property and also one 

way property of neural networks (in most of neural network especially when we have multiple 

inputs and one output) make them suitable for working as a hash function. Hash functions receive 

plain text with variable length as input and generate random text with fixed length as output. A 

tree layer feed forward neural network could work as a building block of hash functions [60] [61]. 

Visual Secret sharing was first proposed in 1994, is a picture encryption method that generates 

two or more pictures based on original picture which by aligning them together the original 

picture could appear [62]. Visual Cryptography could be applied by quantum neural networks 

(Q’tron).Q’tron architecture is similar to Hopfield neural networks, but in Q’tron neural network 

each Q’tron can be a noise-injected [63] [64] [65]. The most recent neural network which is used 

for visual cryptography is Pi-sigma neural networks [66]. 

Digital watermarking is one of the concepts that use neural networks vastly among 

cryptosystems. There is a main approach for tackling watermarking problems and all solutions are 

different variations of this method, First, splitting media to some blocks and then calculating 

watermark of each block [67]. Different kinds of neural networks for different purposes are 

applied in watermarking problem. The most used ones are back propagation neural networks 

(BPN). By extracting some coefficients of a block in frequency domain, feed those coefficients to 

BPN, next coefficients appear as output of neural network and then we change these coefficients. 

The point is that each time the block feed coefficients are fed to the BPN, the last coefficient must  

appeared as output and with this we could validate the media [68] [69]. There are some recent 

works on watermarking by combining more advanced neural networks and traditional water 
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marking methodologies. There is a successful experiment on combining spiking neural networks 

and wavelet transform to hide some information in pictures [70].Others, try to use Small World 

Cellular Neural Network (SWCNN) as an engine for watermarking, as a result the topology of 

that network is the secret key of images [71]. There are same experiments through applying 

wavelet transform on each block and also using neural networks [72]. 

Other technique that uses Neural Networks is lossless watermarking. Lossless watermarking 

refers to watermarking techniques that do not apply any change to original picture at last [73] 

[74]. 

For audio watermarking according to the fact that watermarked signal should be the same in 

human ears so the only possible way for watermarking is transforming signals to frequency 

domain then performing watermarking on signals. The usage of neural networks in signal 

watermarking is similar to that of image watermarking [75] [76]. 

Information hiding is a crypto system concept which Neural Networks are used in their 

implementation. Information hiding is a technique that hides message signals in host signal, such 

that the host signal is not distorted. Message signal and host signal could be any media such as 

image, audio or video [77]. There are two major classes of data hiding techniques and neural 

networks are used in both. Steganography refers to the techniques that are used for information 

hiding. In contrast Steganalysis refers to the technique that defines a signal which has hiding data 

or not. The goal in steganalysis is determining if a signal has hiding information or not, but not to 

reveal information which is hidden.   

There are three different categories of information hiding which use neural networks.  

First, Information hiding based on spatial domain [78][79], which is the oldest one.  
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Second, is Information hiding based on transform domains. In transform domain, host signal with 

hidden data transform to other domain and some statistical features of host signal is calculated in 

new domain. Discrete Fourier transform (DFT), Discrete Cosine transform (DCT) and Discrete 

Wavelet transform (DWT) are the most famous transforms which are applied in this field [77] 

[79] [80]. Some other transforms such as Haar transform has been used recently [81]. Feed 

forward back propagation neural networks are widely used for this category of information hiding 

[77] [81]. The other type of neural network that is used for this problem is Radial Base Function 

Neural Network (RBF) [82].  The most important feature that makes neural network suitable for 

this problem is the ability to classify parameters with non-linearity dependency. It is obvious that 

parameters extracted in new domain have nonlinearity dependency. 

Third category is information hiding based on combination of different features. By using neural 

network that accepts this combination as an input and it tries to classify the steganalous media 

from non-steganalous media [80].     

2.3.1.2 Neural Network as PRNG 

Comparing to other aspects of cryptosystems, random numbers play a significant role in most of 

today’s cryptosystems. Hence, random number generators are one of the most important 

components in today cryptosystems. A good random number generator has specific 

characteristics including uniform distribution, independency between the generated, cost effective 

and portability of random number generator, long sequence of data before repeating themselves 

and complexity of random number generator which makes it impossible to predict next number 

by looking at the previous one [83] [84]. 
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Some kinds of Neural Networks have some characteristics that make them good candidates to be 

used as PRNG.  

2.3.1.2.1 Multi-layer Perceptron Neural Networks (MLPNN) as PRNG 

Normally we use Neural Networks as a black box that could solve specific problems. By using 

definite data as an input, it generates desired result as an output. In this sense, Neural Networks 

are predictable systems. 

But if during training time of neural networks over fitting problem occurs, the Neural Network 

would show unpredictable output for input which is not used for training. This feature is widely 

used in most of the Neural Networks based random number generators [83] [85]. Multi-layer 

Perceptron (MLP) is one of the most famous Neural Networks that has this feature. By training 

MLP it learns from all the data that are presented and also it could generalize the data to what is 

not presented in training time. MLP fit the desired surface that represent by input data. If over 

fitting occurs in training time then MLP tries to fit a surface with higher degree than the desired 

one. So we couldn’t predict the output of MLP for new input. The reason is, we don’t know what 

surface MLP fits with is [83]. These random number generators represent powerful capability to 

generate real random numbers. 

Some people try to combine these kinds of neural networks with other technique such as hash 

function to build more powerful random number generator. These kind of combinations represent 

better result with randomness test of random number generators [85]. 
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2.3.1.2.2 Hopfield Neural Network (HNN) as PRNG 

Hopfield neural networks are another kind of neural networks which are used as random number 

generator. A recurrent neural network, the Hopfield model was proposed in 1982 [86]. Learning 

in a Hopfield network is done by means of weight adjustment mechanism that directly relates to 

minimization of an energy function that decreases over time in each iteration and finally stabilizes 

in some point of the state space representing the problem. The basic idea of Hopfield Neural 

Networks (HNN) is to memorize some patterns as stable points by associating them with specific 

inputs to the network. That is, after some iteration the network goes to stable points in the state 

space that relates to the pattern that is memorized. Stability, therefore, is the most important 

features of Hopfield neural networks [24] [87] [88] [89]. In formula 2-8 you could find 

activations function that is used in basic Hopfiled Neural Network also symbols definition of 2-8 

placed in Table 4. The structure of Hopfiled Neural Network presented in Figure 2 in next page. 

  sgn ∑ ,                                    (2-8) 

Table 4- Symbols Definitions 

Symbol Definitions 

 Neuron number i 
 Input number i 
 Output number i 

,  Weight of Connection from neuron i to j 

 

By any change in input of Hopfield networks the network tries to decreases energy and after some 

cycle the network converges. Before network converges the output is unpredictable and if the 

network can’t converges in any state the output remain unpredictable. This feature is the main 

focus for random number generator. The main idea is to find some way to make network not 
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converge in any time [22]. The ability to converge in Hopfield networks is strongly related to 

network architecture, network initial condition, and updating rule mode. The convergence of the 

network occurs when the weight matrix is symmetric. Thus, there might be some alternatives 

which cause the network not to converge, for e.g., (i) applying an initial asymmetric weight 

matrix consisting of large positive numbers in diagonal, (ii) letting two or more neurons activate 

simultaneously, and (iii) using large network and training it with orthogonal and uncorrelated 

patterns [23].  

 

Figure 2- Hopfiled Neural Networks Structure [86] 
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The combination of Hopfield neural network with other techniques to produce better random 

number generator and also making automated Hopfield network parameter adjustment system for 

random number generator must be investigated in future [22]. 

2.3.1.2.3 Spiking Neural Network (SNN) as PRNG 

Spiking neural networks are another kind of neural networks used as random number generators. 

Spiking neural networks are much more sophisticated neural networks that look more similar to 

actual neurons in cortex. Spiking Neural Networks are highly connected recurrent neural network 

models with information flow possible both to and from any given neuron. Brain mechanism that 

alters characteristics of neurons and also represents the dynamic of neural network is known as 

plasticity [84]. 

There are 3 types of plasticity which are used in spiking neural networks. Spike-timing dependent 

plasticity (STDP) refers to mechanism that if some neurons like is active in discrete time 

interval following the activation of neuron , then the connection between  and  is 

strengthened. STDP training makes networks to become stable rapidly. Anti-spike-timing 

dependent plasticity (Anti-STDP) works opposite to STDP. Anti-STDP weakens the connection 

between   and . It also strengthens the connection between the neurons that do not meet the 

previous condition. Anti-STDP training leads networks to some kind of self disorganization. 

Dynamic of networks which are trained with Anti-STDP can enter chaotic regime. These 

networks have extremely long limit cycle. Size and average of the activity rate of these networks 

grow exponentially. These kinds of neural networks are well-suited for random number generator. 

Intrinsic plasticity (IP) works on thresholds of neurons rather than weight of connections. IP 

training tries to match sum of incoming weight with thresholds. In general IP training tries to 
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make all neurons in network to have the same average activity rate. Experiments show that by 

applying these 3 plasticity approaches together best random number generator system would be 

achieved [84]. 

Combination of Spiking Neural Network with different bit sampling techniques would generate 

even better results. Also using spiking neurons in other neural networks such as Hopfield to 

develop random number generator must be investigated in future [84]. 

So in conclusion, despite the usage of neural networks in other aspect of cryptosystems, Neural 

Networks has lots of features such as complexity, parallel ability, nonlinearity, unpredictability 

that make them suitable for random number generator. Different kind of neural networks and also 

different combination of neural networks with other technology have been used as random 

number generator component in cryptosystem. 
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Chapter 3 

(Fuzzy) Hopfield Neural Networks as PRNG 

3.1 An Introduction to Neural Networks 

Neural networks are collections of data processing elements (neurons). These elements are highly 

interconnected to each other and build into the network structure. The structures of Neural 

Networks have been inspired by cerebral of human brain [90]. In the Figure 3, a typical biological 

neuron and its connections are presented. 

 

Figure 3- A typical biological neuron and its connections [91] 

Nothing is random, only uncertain. 
~ Gail Gasram 
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The neurons in human brain are working based on their chemical state. The electronic signals 

travel trough the neural networks by passing the connections between neurons. In 1943 

McCulloch and Pitts proposed the first mathematical model for a neural network. That could be 

easily implemented in hardware.    

Neuron is the most fundamental processing element of neural networks is a neuron, hence a 

simple neuron model is used as building block for all of the networks. In this model the weights 

present the synaptic strength of each neural connection [91]. Figure 4 shows the mathematical 

model of a neuron. 

1W1X

2W

nW

2X

nX



 

Figure 4- Mathematical model of a neuron [91] 

In more recent models the bias parameter is also added. Equation 3-1 shows the mathematical 

presentation of such a model [92]. 

∑                                                        (3-1)  

The state of neurons depends on Activation function (Transfer function). Activation function 

works as a threshold function that allows the signal to pass only if the summation of the activities 

of the neurons reaches a certain level. Different types of activation functions are proposed like 

linear and nonlinear activation function, discrete or continues activation function, etc.[92]. 
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 Figure 5 shows some examples of activation functions that are widely used in Neural Networks. 

These functions are developed in neural network toolbox of Matlab. Command of each function 

is mentioned under its corresponding graph.  

 

Figure 5- Activation Function Examples [93] 

3.2 An introduction to Hopfield Neural Network 

Hopfield neural networks were first presented by john Hopfield for the first time [24]. Hopfield 

Neural Networks are Recurrent Neural Networks i.e. Network with Cycles in their structures. 

Hopfield Neural Networks have a multiple-loop feedback system in their structure [86]. Each 

neuron in Hopfiled Neural Network is connected to all the other neurons but does not have a self 

feedback. All the neurons are input and output neurons [92]. Hopfield neural networks are placed 

in associative memory category. Associative memory or content addressable memory is a type of 

memory with function of retrieving stored pattern when it feed with portion or noisy version of 

pattern [86].  

With respect to the activation function of the neurons in a neural network to be continues or 

discrete, Hopfield neural networks are recognized [94], and is denoted as Discrete Hopfield NN 

and continue Hopfield NN. Figure 6 present the structure of Hopfield Neural Networks.     
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Figure 6- The Associative Network. All neurons are both input and output neurons [92] 

All of the neural networks which are categorized as associative memory like Hopfield Neural 

Networks would be considered as dynamic systems [86]. Hopfield Neural Networks functionality 

are based on Lyapunov energy function. The Lyapunov energy function of Hopfield neural 

network is a monotonically decreasing function over time [86]. It means that by applying an input 

to the network, it tries to reach a stable point by decreasing its energy. Reaching stable points is 

guaranteed by following prerequisites of Lyapunov energy function theorem. Some of these 

prerequisite are like: 

 There shouldn’t be any self feedback in network (diagonal elements of weight matrix 

should be zero - weight matrix W, is matrix of numbers that each number ,  present the 

weight of connection between neurons i and j) 

 Weight matrix of network should be symmetric. 

 Neurons should have nonlinear activation function 

 The inverse of nonlinear activation function of neurons should exist 

Before the network converges to a stable point the output of the network is not predictable [1].   
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3.3 Our Proposed Hopfield Neural Network as PRNG 

We have developed a HNN considering the following conditions to guarantee non-convergence: 

 The structure of the proposed HNN is fully connected, that is, self-feedback does exist. 

The structure of our Hopfield networks is presented in Figure 7. By connecting each 

neuron to itself we break one of the stability condition of Lyapunov energy function for 

Hopfield neural networks. 

 We use a nonlinear function,  as the activation function for our neurons where x 

is the summation of all inputs of the neuron. Nonlinear activation function increases the 

complexity of neural network output (compare to linear activation function). 

 

Figure 7 - Our Hopfield Neural Network Structure 
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 Weight matrix of our HNN is asymmetric where the upper triangle of weight matrix 

contains positive numbers and lower triangle of matrix contains negative numbers. By 

selecting asymmetric weight matrix we break one of the stability conditions of Lyapunov 

energy function for Hopfield neural network 

 Our weight matrix is strongly diagonal dominated - Strongly diagonal weight matrix is 

shown in the following (3-2) 

 ∑                                                       (3-2) 

Where  is positive constant number, Hayken used same definition but instead of  he 

used , [86]. 

So the diagonal elements of the weight matrix contain large positive numbers compare to 

other elements of our weight matrix. 

An example of used weight matrix is represented in Table 5. 

 We use large number (100) of neurons.  

If, for neuron , 1 then, in the next iteration that neuron amplifies itself by the weight of the 

corresponding branch regardless of other inputs of the neuron. This is also valid for output 1 

with diminishing impact on the neuron. In other words, this makes the neuron to be always fired 

with its output ≥ 1 or ≤ 1 in all iterations and accordingly amplifying or diminishing itself. To 

avoid this, Anderson put upper bound and lower bund for output of each neuron [95], but we set a 

condition (3-3) for each neuron j : 

1  ∑   1                                                        (3-3) 
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The output of each neuron in each iteration is calculated by (3-4) 

           tanh ∑                                             (3-4) 

where I, X, W, θ, and n denote input, output, weight, threshold and the total number of neurons. In 

our HNN, θ is zero and in the first iteration I is 1.  

 

Table 5- Example of Weight Matrix 

Neuron 

Number 
1 2 3 4 .  .  .  .  . 100 

1 0.076686 0.000422 0.001538 0.007308 .  .  .  .  . 0.004925 

2 -0.008889 0.069388 0.002479 0.009263 .  .  .  .  . 0.004435 

3 -0.001074 -0.007553 0.063972 0.007767 .  .  .  .  . 0.007692 

4 -0.009621 -0.001368 -0.004166 0.063631 .  .  .  .  . 0.004925 

5 -0.005496 -0.007301 -0.002342 -0.002859 .  .  .  .  . 0.002267 

6 -0.002744 -0.003131 -0.002483 -0.002923 .  .  .  .  . 0.008264 

7 -0.004450 -0.003277 -0.005654 -0.007336 .  .  .  .  . 0.009012 

8 -0.006538 -0.000811 -0.000223 -0.004170 .  .  .  .  . 0.006523 

. .  .  .  . .  .  .  . .  .  .  . .  .  .  . .  .  .  . .  .  .  . 

100 -0.004566 -0.006484 -0.007189 -0.003859 -0.008364 0.054545 
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3.3.1 Convergence Problem in Hopfield Neural Network 

Convergence in a HNN is achieved when the output of each neuron reaches a stable state or 

oscillates between a limited number of states [89].  

 

Figure 8 - Different Equilibrium Stats in a Second Order Dynamic System [86] 

With respect to the definition of the state space of a dynamic systems, the dynamic system could 

be in varies states. For example Figure 8 shows different Equilibrium states (situations) that could 

happen in second order dynamic system[86].  

(a) Stable node. 

(b) Stable focus. 

(c) Unstable node. 

(d) Unstable focus. 

(e) Saddle point. 

(f) Center. 

But generally speaking, Figure 9 shows some of the possible events in any dynamic system in 

motion. Although the Hopfield Neural Networks are dynamic systems, Figure 9 is valid for them.  
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Figure 9 - General example of some events in any dynamic system [96] 

In Figure 9 we have: 

(a) Attractor states: These states have lower energy compare to their adjacent states and 

when the dynamic system is placed in these states the system becomes stable. 

(b) Repellor states: These states have higher energy compare to their adjacent states. 

when the dynamic system is placed in these states it becomes unstable. 

(c) Limit cycle state: By placing the dynamic systems in one of these types of states, it 

starts to travel among limited number of states which form a cycle. All the states 

which are member of a cycle have same energy level. 

(d) Saddle states:  These states have lower energy level compared to some of their 

adjacent states and have higher energy level compared to other adjacent states. When 

the dynamic system is placed in these states, it becomes unstable. 
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The definition of the state stability, is directly related to the degree of accuracy of our calculation. 

For example, if a state is stable with an accuracy of n digits after the decimal point, the very same 

state might not be stable with an accuracy of   digits after decimal point.  While digits with 

higher order of significance have converged, it is possible that other digits with lower order of 

significance exist t which have not converged yet and may converge in the following iterations. 

Therefore, any stable neuron in a HNN depending on the accuracy of the calculation might be 

unstable. This holds true for both cases of stability where there is, (i) one stable point, or (ii) a 

limited number of stable points [1]. 

Table 6 shows two possible events that could happen in a Hopfield Neural Network. The first 

scenario shows that by calculating 4 digits after decimal point, after 3 iterations the network 

converges to 0.5105, but if we increase the accuracy of our calculations to 8 digits after decimal 

point (first column + second column) it can be clearly seen that the network does not converge in 

iterations 3, 4 and 5 (it shows different values in all of these iterations). 

Table 6-Example of two possible events in Hopfield Neural Networks 

Scenario 1 Scenario 2 

 First 4 digits after 

decimal point 

Second 4 digits 

after decimal point 
 First 4 digits after 

decimal point 
Second 4 digits 

after decimal point 

Iteration 1 0.5432 9865 Iteration 1 0.3279 5468 

Iteration 2 0.5374 2101 Iteration 2 0.3204 2513 

Iteration 3 0.5105 7635 Iteration 3 0.3203 6824 

Iteration 4 0.5105 6463 Iteration 4 0.3204 2411 

Iteration 5 0.5105 6432 Iteration 5 0.3203 6812 

 

The second scenario in Table 6 shows the condition that network converges by repeating some 

specific states. Considering 4 digits after decimal point, the network repeats 0.3204 and 0.3203 
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(iteration 2, 4 and iteration 3, 5 are equal).  But if we consider 8 digit after decimal then iterations 

2, 4 (and iterations 3, 5) are not equal which means the network has not converged yet.  

So for increasing the chance of avoiding convergence in our networks we increase the accuracy 

of our calculation to 15 digits after decimal point. 15 digits after the decimal point is the 

maximum accuracy that is possible by Matlab 2009a. By using symbolic toolbox accuracy, could 

be increased, but the speed of calculation is dramatically decreased. As fact that HNN PRNGs 

rely heavily on mathematical computation it is not feasible time vise to use symbolic processing 

toolbox.   

3.3.2 Our Bit Samplings Mechanism 

We have devised a sampling mechanism for the output of the HNN whereby random numbers can 

be acquired from. To this end we remove the 15th digit after decimal point in the output of each 

neuron, and extracting remaining digits from the end. If the extracted digit is between 0 to 7 we 

convert it to a 3-bit binary format and if it is 8 or 9 we discard it. We claim that the collection of 

such 3-bit binary numbers is used as a Random Sequence of bits [1]. 

3.4 An Introduction to Our Proposed Fuzzy Hopfield Neural Networks as PRNG 

HNN PRNG that is presented in [1][22][23] relies on HNN weight matrix that works as a seed for 

PRNG. Users by selecting different seeds (weight matrix) produce different random bit 

sequences. Due to the fact that weight matrix is the combination of 100*100 numbers, it is not 

easy for users to select 10000 different numbers to generate a random sequence of bits. On the 

other hand, the size of the weight matrix is tightened with number of neurons in HNN. So for 

decreasing the size of the weight matrix, we should decrease the number of neurons. However, by 
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decreasing the number of neurons, the HNN easily converges and it is no more suitable to work 

as PRNG [22] [23]. 

We present a specific type of Fuzzy HNN that would be used as PRNG. In effect, we have 

combined fuzzy logic approach and HNN to get a Fuzzy Hopfield Neural Networks (FHNN) 

which work as a PRNG. This system has a small weight matrix so that a user could easily use it 

as PRNG. 

3.5 An Introduction to Fuzzy systems and Fuzzy Hopfiled Neural Networks 

Fuzzy set A defined on the universe of discourse U is fully characterized by its membership 

function , μ 0, 1 , that assigns a number from unit interval [0,1] to each element 

of the universe of discourse.  μ  represents the degree of membership of x in the fuzzy set A. 

The 1 extreme represents full membership while the 0 extreme represent full exclusion [25].  

Most of the researches in fuzzy logic deal with the problem of mapping from fuzzy set to a fuzzy 

set. On the other hand whenever we want to apply Fuzzy Logic to engineering problems, we have 

to deal with the problem of mapping number to number. Most of the desired systems for 

engineering problems need to accept real numbers as an input and produce real numbers as an 

output, such as different controlling systems. Therefore fuzzifier used in beginning of fuzzy logic 

and defuzzifier is placed at end of fuzzy logic, the result denoted as Fuzzy Logic System. In 

general, Fuzzy Logic Systems prepare nonlinear mapping from vector of input data to vector of 

output data. Moreover, handling simultaneously numerical data and linguistic variable is the 

biggest characteristic of fuzzy logic systems [97].   

The fuzzy logic theory provides a framework that enables efficient approach to the analysis and 

synthesis problems with complex nonlinear nature. By combining fuzzy logic systems and neural 
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networks different types of fuzzy Neural Networks are developed.  Recently, convergence 

problem is studied in different types of fuzzy neural networks [98] [99] [100] [101].  

3.6  Our Proposed Fuzzy Hopfield Neural Network (FHNN) as PRNG 

We have developed a FHNN to be used as PRNG. The aim of the design is to reduce the number 

of neurons, therefore the number of weights to the system that would be used as seeds decrease 

[2].  

In the following we have mentioned the specification of our design:  

 We have used few numbers of neurons (5) in our system.  Increasing the number of 

neuron means increasing the number of input of each neuron and its fuzzy Logic systems 

(fuzzy Logic systems will be explained in the next section). Increasing the number of 

input increases the complexity of Fuzzy Logic systems dramatically and makes the 

process time consuming, and this is not feasible.  

 The structure of the proposed FHNN is fully connected, it should be noted that, self-

feedback exists in our structure. Figure 10 depicts the structure of our proposed FHNN 

presented. 

 All of the neurons in our system are exactly the same and there is no priority between 

them. All of them have the same activation function with the same number of input and 

output. For activation function, we have used the nonlinear function, tanh(x) where x is 

output of fuzzy system that is embedded in each neuron. 
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Figure 10 - Fuzzy Hopfield Neural Networks Structure (FHNN) 

  Each neuron has a fuzzy system in it, which perform some specific process on its inputs. 

The final output of neuron would be calculated by applying tanh function on the output 

of the fuzzy system.  

 Weight matrix of our FHNN is asymmetric. It contains only positive numbers. Moreover, 

the diagonal elements of the matrix are all set to +1. In our FHNN θ is zero and in the 

first iteration all inputs are 1.  



 

 

 

57

3.6.1 Fuzzy Logic System embedded each neurons of our FHNN 

Each neuron of our FHNN system works as a standalone Fuzzy system. All inputs of each neuron 

are outputs of other neurons that are multiplied by their corresponding weight. Each input of a 

neuron is fuzzified using membership functions depicted in the Figure 11 which are also used as 

the (de)fuzzification membership functions. We have 7 different membership functions in our 

system. In fuzzifying process with the input x, we consider membership function i in 

which 0 . For example if we have real input of 0.1 in our system, our input will be 

fuzzified to mf1 with . 0.25 and mf2 with . 0.65. 

Defuzzifying process uses the same membership functions. So the output of each neurons is set to 

be [0, 1]. The output of each neuron will be feedback to itself. Hence, each neuron would be 

aware of what its previous output has been, so in the next iteration it will try to avoid generating 

the previous output. 

   

 

Figure 11- (De)Fuzzification Membership Function 
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In Fuzzy inference system the rules should be designed in a way that they cover all the 

possibilities. To do so, we have 5 inputs and one output, and each could acquire up to 3 of the 7 

different membership functions. To cover all of the possibilities we need 7^5= 16807 rules, which 

is very large which makes our system very slow. To compensate for it, we have divided our input 

into two categories, the inputs from other neurons (4 inputs) and the self feedback of neuron (1 

input), we have designed our rule in a way that each rule contains two antecedent and one 

consequence. First antecedent is the neuron self feedback and the second is from the other 

neurons output. Hence our Fuzzy inference system in each neuron contains 1*4*7*7=196 rules. 

As it can be seen in Table 7, rules are defined in a way that the output of each rule is different 

from its input and the feedback. In Table 7, each value in each cell presents the membership 

function that is activated, first column is the rule number and the following 5 columns are 5 

inputs of each neurons, the first of these 5 inputs belong to the feedback input. The 7th column 

shows the output value. In our fuzzy system we have implemented conjunction in the antecedent 

of rules with min t-norm. Implication is implemented and we used product and algebraic sum 

function [25] is used for aggregating outputs of the rules. 
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Table 7- FHNN Fuzzy Inference Rules 
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3
rd input 

4
th input 

5
th input 
O
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1 1 1 0 0 0 5 52 1 0 3 0 0 5 103 1 0 0 5 0 7 154 1 0 0 0 7 3

2 1 2 0 0 0 7 53 1 0 4 0 0 6 104 1 0 0 6 0 6 155 2 0 0 0 1 4

3 1 3 0 0 0 5 54 1 0 5 0 0 7 105 1 0 0 7 0 3 156 2 0 0 0 2 7

4 1 4 0 0 0 6 55 1 0 6 0 0 6 106 2 0 0 1 0 4 157 2 0 0 0 3 5

5 1 5 0 0 0 7 56 1 0 7 0 0 3 107 2 0 0 2 0 7 158 2 0 0 0 4 6

6 1 6 0 0 0 6 57 2 0 1 0 0 4 108 2 0 0 3 0 5 159 2 0 0 0 5 7

7 1 7 0 0 0 3 58 2 0 2 0 0 7 109 2 0 0 4 0 6 160 2 0 0 0 6 4

8 2 1 0 0 0 4 59 2 0 3 0 0 5 110 2 0 0 5 0 7 161 2 0 0 0 7 5

9 2 2 0 0 0 7 60 2 0 4 0 0 6 111 2 0 0 6 0 4 162 3 0 0 0 1 6

10 2 3 0 0 0 5 61 2 0 5 0 0 7 112 2 0 0 7 0 5 163 3 0 0 0 2 7

11 2 4 0 0 0 6 62 2 0 6 0 0 4 113 3 0 0 1 0 6 164 3 0 0 0 3 5

12 2 5 0 0 0 7 63 2 0 7 0 0 5 114 3 0 0 2 0 7 165 3 0 0 0 4 6

13 2 6 0 0 0 4 64 3 0 1 0 0 6 115 3 0 0 3 0 5 166 3 0 0 0 5 7

14 2 7 0 0 0 5 65 3 0 2 0 0 7 116 3 0 0 4 0 6 167 3 0 0 0 6 1

15 3 1 0 0 0 6 66 3 0 3 0 0 5 117 3 0 0 5 0 7 168 3 0 0 0 7 5

16 3 2 0 0 0 7 67 3 0 4 0 0 6 118 3 0 0 6 0 1 169 4 0 0 0 1 7

17 3 3 0 0 0 5 68 3 0 5 0 0 7 119 3 0 0 7 0 5 170 4 0 0 0 2 6

18 3 4 0 0 0 6 69 3 0 6 0 0 1 120 4 0 0 1 0 7 171 4 0 0 0 3 6

19 3 5 0 0 0 7 70 3 0 7 0 0 5 121 4 0 0 2 0 6 172 4 0 0 0 4 2

20 3 6 0 0 0 1 71 4 0 1 0 0 7 122 4 0 0 3 0 6 173 4 0 0 0 5 1

21 3 7 0 0 0 5 72 4 0 2 0 0 6 123 4 0 0 4 0 2 174 4 0 0 0 6 2

22 4 1 0 0 0 7 73 4 0 3 0 0 6 124 4 0 0 5 0 1 175 4 0 0 0 7 1

23 4 2 0 0 0 6 74 4 0 4 0 0 2 125 4 0 0 6 0 2 176 5 0 0 0 1 3

24 4 3 0 0 0 6 75 4 0 5 0 0 1 126 4 0 0 7 0 1 177 5 0 0 0 2 7

25 4 4 0 0 0 2 76 4 0 6 0 0 2 127 5 0 0 1 0 3 178 5 0 0 0 3 1

26 4 5 0 0 0 1 77 4 0 7 0 0 1 128 5 0 0 2 0 7 179 5 0 0 0 4 2

27 4 6 0 0 0 2 78 5 0 1 0 0 3 129 5 0 0 3 0 1 180 5 0 0 0 5 7

28 4 7 0 0 0 1 79 5 0 2 0 0 7 130 5 0 0 4 0 2 181 5 0 0 0 6 3

29 5 1 0 0 0 3 80 5 0 3 0 0 1 131 5 0 0 5 0 7 182 5 0 0 0 7 1

30 5 2 0 0 0 7 81 5 0 4 0 0 2 132 5 0 0 6 0 3 183 6 0 0 0 1 3

31 5 3 0 0 0 1 82 5 0 5 0 0 7 133 5 0 0 7 0 1 184 6 0 0 0 2 4

32 5 4 0 0 0 2 83 5 0 6 0 0 3 134 6 0 0 1 0 3 185 6 0 0 0 3 1

33 5 5 0 0 0 7 84 5 0 7 0 0 1 135 6 0 0 2 0 4 186 6 0 0 0 4 1
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34 5 6 0 0 0 3 85 6 0 1 0 0 3 136 6 0 0 3 0 1 187 6 0 0 0 5 2

35 5 7 0 0 0 1 86 6 0 2 0 0 4 137 6 0 0 4 0 1 188 6 0 0 0 6 2

36 6 1 0 0 0 3 87 6 0 3 0 0 1 138 6 0 0 5 0 2 189 6 0 0 0 7 3

37 6 2 0 0 0 4 88 6 0 4 0 0 1 139 6 0 0 6 0 2 190 7 0 0 0 1 4

38 6 3 0 0 0 1 89 6 0 5 0 0 2 140 6 0 0 7 0 3 191 7 0 0 0 2 5

39 6 4 0 0 0 1 90 6 0 6 0 0 2 141 7 0 0 1 0 4 192 7 0 0 0 3 5

40 6 5 0 0 0 2 91 6 0 7 0 0 3 142 7 0 0 2 0 5 193 7 0 0 0 4 1

41 6 6 0 0 0 2 92 7 0 1 0 0 4 143 7 0 0 3 0 5 194 7 0 0 0 5 1

42 6 7 0 0 0 3 93 7 0 2 0 0 5 144 7 0 0 4 0 1 195 7 0 0 0 6 3

43 7 1 0 0 0 4 94 7 0 3 0 0 5 145 7 0 0 5 0 1 196 7 0 0 0 7 4

44 7 2 0 0 0 5 95 7 0 4 0 0 1 146 7 0 0 6 0 3

 

45 7 3 0 0 0 5 96 7 0 5 0 0 1 147 7 0 0 7 0 4

46 7 4 0 0 0 1 97 7 0 6 0 0 3 148 1 0 0 0 1 5

47 7 5 0 0 0 1 98 7 0 7 0 0 4 149 1 0 0 0 2 7

48 7 6 0 0 0 3 99 1 0 0 1 0 5 150 1 0 0 0 3 5

49 7 7 0 0 0 4 100 1 0 0 2 0 7 151 1 0 0 0 4 6

50 1 0 1 0 0 5 101 1 0 0 3 0 5 152 1 0 0 0 5 7

51 1 0 2 0 0 7 102 1 0 0 4 0 6 153 1 0 0 0 6 6

 

 

Figure 12 - Example of Aggregation Phase Result 
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As we mentioned previously, each rule in our fuzzy inference system contains 2 inputs which one 

of them is previous output of the system. The output of each rule is set in a way that it avoids 

previous output. So after aggregation phase (summation of the output of all rules) we have values 

that spread in all of our domain, except the part that presents previous output. Figure 12 and 

Figure 13 are two examples of our values after aggregation phase. 

For defuzzification process, we used Centroid (3-5),  

  µ

  µ
                                                           (3-5) 

which is calculated only for bigger region in aggregation result. For example in Figure 12 two 

regions, one [0.2-0.6] and the other one [0.85-1] would be recognized, and the defuzzification 

process considers the first which is [0.2 -0.6]. Whilst in Figure 13 shows only one region exists 

and the defuzzification process will be applied on [0.35-1]. 

 

Figure 13- Example of Aggregation Phase Result 
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3.6.2 Reseeding mechanism for FHNN 

By applying tanh(x) on output of the fuzzy inference system we acquire the output of each 

neuron. By considering 15 digit precision in our calculation we improve the accuracy of our 

system.  

After each 5 iterations we change the weight matrix of our FHNN. We reverse the system outputs 

in 5 previous iterations and use them as a new weight matrix for our system. But the diagonal 

values of weight matrix will remain unchanged which is 1. 

The main feature of this system is that by changing the weight matrix in each 5 iteration the 

chance of convergence decreases, because after each five iteration we move the state of our 

FHNN to a new point in the state space, so our FHNN should try to move toward a (new) stable 

point. In other words, our FHNN has only 5 iterations to converge and it is very hard.  More over 

the fuzzy logic approach that is used in our FHNN makes our system, not to converge even with 

few numbers of iterations, this is due to the fact that our fuzzy logic approach does not allow a 

neuron to repeat its output [2]. 
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Chapter 4 

Experiments 

4.1 Testing HNN PRNG by NIST Test Suite 

We implemented a PRNG based HNN with 100 neurons with HNN weights playing the role of 

PRNG seed. To reduce the possibility of convergence, the 100 100 weights matrix of HNN was 

filled as is explained in chapter 3, section 3-3. Furthermore as discussed in chapter 3, by 

considering 15 digit precision we both increased the accuracy of our calculation and as well 

decreased the chance of convergence of the network. We also devised a sampling mechanism 

whereby random numbers would be acquired from the outputs of network. This was done by 

removing the 15th digit of the output of each neuron, and extracting the rest of the digits from the 

end. If the extracted digit is between 0 to 7 then we convert it to a 3-bit binary format and if it is 8 

or 9 we discard it. A collection of such 3-bit binary numbers is used as a Random Sequence of 

bits.  

In our test module we set the α parameter to 0.01 (i.e. the level of confidence of test is set to 99%) 

and the sequence length to 1,000,000. Based on NIST PRNG Test Module the minimum 

proportion pass rate for each statistical test is 0.96015. We conduct 1-digit selection test for 3 

times and the results are tabulated in Table 8.  

Investigating the columns of Table 8, reveals that for most of the tests e.g. Frequency and 

Approximate Entropy tests, P-Values do not show good results. Moreover with respect to 

proportion results, the HNN PRNG could not pass most of the tests e.g. Cumulative Sums-

A foolish builder builds a 
house on sand. Test and 
verify the randomness of your 
random number generator. 
~ Casimir Klimasauskas 
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Forward/Reverse, Runs, Rank and Longest Run tests according to the proportion results of those 

tests. 

Table 8- Results of 1-digit selection HNN 

PRNG Test 1-digit selection 1-digit selection 1-digit selection 

 Experiment 1 Experiment 2 Experiment 3 

 P-Value Prop P-Value Prop P-Value Prop 

Frequency 0.0589 0.91* 0.0066 0.88* 0.0126 0.90* 

Block Frequency 0.2896 0.97 0.0109 0.95* 0.7597 0.98 

Cumulative Sums-Forward 0.1453 0.91* 0.0004 0.88* 0.0428 0.89* 

Cumulative Sums-Reverse 0.3504 0.93* 0.0029 0.89* 0.0155 0.88* 

Runs 0.0269 0.91* 0.0909 0.92* 0.0308 0.88* 

Longest Run 0.4559 0.89* 0.3345 0.91* 0.0909 0.89* 

Rank 0.4372 0.95* 0.4559 0.97 0.0000 0.93* 

Non Overlapping Template 0.3102 0.92* 0.2485 0.92* 0.1902 0.90* 

Overlapping Template 0.0487 0.89* 0.0251 0.92* 0.0308 0.88* 

Universal 0.0456 0.89* 0.0757 0.91* 0.1025 0.90* 

Approximate Entropy 0.1223 0.90* 0.0004 0.85* 0.0022 0.87* 

Random Excursions 0.3295 0.99 0.2643 0.99 0.6490 0.98 

Random Excursions Variant 0.3413 0.99 0.4265 0.99 0.5165 0.98 

Serial(m=5) 0.0647 0.06* 0.1504 0.91* 0.0057 0.87* 

Linear Complexity 0.7399 0.94* 0.2368 0.94* 0.2896 0.92* 

(*) indicates that our HNN PRNG has not passed its corresponding test 
(P-Value) is the result of the test  
(Prop) is proportion of the results for 100 sequences 

The obtained results imply that there might be some kind of patterns among the digits in the 

output of neurons in some iterations, i.e. by selecting one digit from the output of each neuron in 

the  HNN PRNG, the final bit Sequence does not show good statistical characteristic to pass the 

PRNG Test. The question that we will investigate is, “What is the influence of increasing the 

number of digits to be selected from output of each neuron on the PRNG test results?” 
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4.2 Effect of Digit Sampling Mechanism on the HNN as PRNG 

In 1-digit selection test, we noticed that in most of the tests, our HNN PRNG did not provide 

good P-Values and Proportions.  

In subsequent experiments, we increased the number of extracted digits from the output of each 

neuron. and we tested HNN PRNG with 3,5,7 and 9 digits extracted from the output of our HNN 

neurons. In each case, we have conducted the experiment 3 times. We could then examine the 

influence of the number of extracted digits from the output of each neuron in PRNG test results.  

 The results of experiments with 3,5,7 and 9 digit selection are respectively shown in  

Table 9-12. 

Table 9- Results of 3 digit selection HNN 

PRNG Test 3-digit selection 3-digit selection 3-digit selection 

 Experiment 1 Experiment 2 Experiment 3 
 P-Value Prop P-Value Prop P-Value Prop 

Frequency 0.6371 0.96 0.5749 0.95* 0.4190 0.94* 
Block Frequency 0.3838 0.96 0.2368 0.99 0.9114 0.96 
Cumulative Sums-Forward 0.9114 0.95* 0.5749 0.95* 0.3838 0.94* 
Cumulative Sums-Reverse 0.0006 0.95* 0.6993 0.94* 0.0219 0.94* 
Runs 0.1372 0.97 0.4749 0.97 0.6786 0.94* 
Longest Run 0.2022 0.94* 0.5749 0.96 0.9942 0.96 
Rank 0.6786 0.99 0.2896 1 0.4943 0.98 
Non Overlapping Template 0.4225 0.96 0.4199 0.95* 0.3669 0.94* 
Overlapping Template 0.4190 0.97 0.0456 0.95* 0.8343 0.94* 
Universal 0.8343 0.97 0.6163 0.97 0.1223 0.95* 
Approximate Entropy 0.4559 0.93* 0.0519 0.95* 0.0057 0.92* 
Random Excursions 0.2899 0.98 0.2669 0.99 0.5122 0.99 
Random Excursions Variant 0.3648 0.99 0.3195 0.99 0.4968 0.99 
Serial(m=5) 0.3504 0.97 0.4144 0.93* 0.2985 0.94* 
Linear Complexity 0.4943 0.97 0.8977 1 0.4559 0.99 

(*) indicates that our HNN PRNG has not passed its corresponding test 
(P-Value) is the result of the test  
(Prop) is proportion of the results for 100 sequences 
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Table 10- Results of 5 digit selection HNN 

PRNG Test 5-digit selection  5-digit selection  5-digit selection 
 Experiment 1 Experiment 2 Experiment 3 

 P-Value Prop P-Value P-Value Prop P-Value 
Frequency 0.2757 0.95* 0.0308 0.2757 0.95* 0.0308 
Block Frequency 0.5544 0.93* 0.6993 0.5544 0.93* 0.6993 
Cumulative Sums-Forward 0.3669 0.96 0.0308 0.3669 0.96 0.0308 
Cumulative Sums-Reverse 0.0167 0.94* 0.1372 0.0167 0.94* 0.1372 
Runs 0.1025 0.91* 0.8513 0.1025 0.91* 0.8513 
Longest Run 0.1916 0.96 0.7791 0.1916 0.96 0.7791 
Rank 0.9463 0.97 0.9357 0.9463 0.97 0.9357 
Non Overlapping Template 0.1913 0.92* 0.4029 0.1913 0.92* 0.4029 
Overlapping Template 0.3669 0.92* 0.1916 0.3669 0.92* 0.1916 
Universal 0.3669 0.97 0.5341 0.3669 0.97 0.5341 
Approximate Entropy 0.0219 0.87* 0.9114 0.0219 0.87* 0.9114 
Random Excursions 0.6230 0.98 0.2211 0.6230 0.98 0.2211 
Random Excursions Variant 0.4189 0.99 0.2045 0.4189 0.99 0.2045 
Serial(m=5) 0.0024 0.88* 0.4206 0.0024 0.88* 0.4206 
Linear Complexity 0.2133 0.99 0.0219 0.2133 0.99 0.0219 

 

Table 11- Results of 7 digit selection HNN 

PRNG Test 7-digit selection  7-digit selection 7-digit selection  
 Experiment 1 Experiment 2 Experiment 3 
 P-Value Prop P-Value P-Value Prop P-Value 
Frequency 0.5955 0.97 0.0117 0.5955 0.97 0.0117 
Block Frequency 0.4190 0.99 0.7399 0.4190 0.99 0.7399 
Cumulative Sums-Forward 0.2622 0.97 0.0401 0.2622 0.97 0.0401 
Cumulative Sums-Reverse 0.3041 0.97 0.0109 0.3041 0.97 0.0109 
Runs 0.2492 0.98 0.0179 0.2492 0.98 0.0179 
Longest Run 0.8343 0.99 0.5955 0.8343 0.99 0.5955 
Rank 0.0487 0.99 0.7981 0.0487 0.99 0.7981 
Non Overlapping Template 0.5044 0.98 0.5108 0.5044 0.98 0.5108 
Overlapping Template 0.5141 0.99 0.4190 0.5141 0.99 0.4190 
Universal 0.6371 1 0.2896 0.6371 1 0.2896 
Approximate Entropy 0.2896 0.96 0.0965 0.2896 0.96 0.0965 
Random Excursions 0.4499 0.99 0.4710 0.4499 0.99 0.4710 
Random Excursions Variant 0.4638 0.99 0.5086 0.4638 0.99 0.5086 
Serial(m=5) 0.1662 0.95* 0.0537 0.1662 0.95* 0.0537 
Linear Complexity 0.3838 1 0.8343 0.3838 1 0.8343 

 



 

 

 

67

Table 12- Results of 9 digit selection HNN 

PRNG Test 9-digit selection  9-digit selection  9-digit selection  
 Experiment 1 Experiment 2 Experiment 3 
 P-Value Prop P-Value Prop P-Value Prop 
Frequency 0.6163 0.97 0.5141 0.95* 0.7399 0.99 
Block Frequency 0.3190 0.98 0.2622 1 0.2622 1 
Cumulative Sums-Forward 0.0329 0.96 0.9463 0.95* 0.9114 0.99 
Cumulative Sums-Reverse 0.6786 0.95* 0.0269 0.96 0.4372 0.99 
Runs 0.4943 0.98 0.3838 0.94* 0.2022 0.97 
Longest Run 0.5544 1 0.2896 0.98 0.4011 1 
Rank 0.5749 1 0.1537 1 0.1153 1 
Non Overlapping Template 0.4142 0.96 0.4476 0.96 0.5004 0.98 
Overlapping Template 0.5544 0.99 0.2757 0.97 0.9114 0.99 
Universal 0.6579 0.98 0.1153 1 0.7197 0.97 
Approximate Entropy 0.1372 0.92* 0.3190 0.92* 0.7791 0.97 
Random Excursions 0.4682 0.98 0.3344 0.97 0.3656 0.98 
Random Excursions Variant 0.2955 0.98 0.3274 0.99 0.3912 0.97 
Serial(m=5) 0.4127 0.92* 0.4404 0.955* 0.7357 0.975 
Linear Complexity 0.5341 0.99 0.8343 1 0.1453 0.99 

(*) indicates that our HNN PRNG has not passed its corresponding test 
(P-Value) is the result of the test  
(Prop) is proportion of the results for 100 sequences 

In most of the tests, like Frequency Test, Runs Test and Longest Run test, P-values in 3-digit 

selection in comparison with their corresponding in 1-digit selection are larger -  

Table 9. Some tests such as Linear Complexity with 1-digit selection were failed, but passed in 3-

digit selection tests. However, 3-digit selection test of HNN PRNG could not pass some tests like 

Cumulative Sums-Forward and Cumulative Sums-Reverse, and 1-digit selection was unable to 

pass too.  

Experiment 2 of 5-digit selection in Table 10, has passed all the tests except Approximate 

Entropy and Serial test. It seems we are moving toward a better PRNG, by increasing the number 

of extracted digits. Be noticed that in experiments 1 and 3 in 5-digit selection test- Table 10 - 

PRNG could not pass some tests.  However, not the same tests failed in the both experiments.  
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Noticeably, in Table 11, Experiment 2 of 7-digit selection tests shows HNN PRNG has passed all 

tests with higher P-values and Proportions than previous tests. However in experiments 1 and 3, 

HNN PRNG failed Serial Test with a close number to the pass/fail threshold of proportion result.  

Experiment 3 of 9-digit selection test shown in Table 12, has also passed all the tests but in 

experiments 1 and 2 some tests have failed. P-Values in 9-digit selection experiments in 

comparison with 7-digit Selection columns of Table 11 and Table 12, shows increase. Due to the 

great chance of convergence, we did not conduct 10- or 11-digit selection tests.  

In each experiment of 1-digit selection, 12 tests were failed - Table 8 - while in 9-digit selection 

tests, in worst case – experiment 2 – 5 tests were failed, and in the best case – experiment 3 - all 

test were passed. This means that HNN PRNG by 9-digit selection mechanism produces much 

more randomly numbers. Moreover, p-values in all of the tests in 9-digit selection experiments 

Table 12 - show better results comparing with the corresponding tests in 1- digit selection 

experiment - Table 8 – noting that the larger p-value indicates better PRNG, the experiments 

show that the PRNG by increasing the numbers of digits that are acquired from output of each 

neuron, PRNG not only passes more tests but also passes them with better results.  

4.3 FHNN as PRNG 

As we described in chapter 3 section 3.6, we have also implemented a PRNG based on FHNN 

with 5 neurons in which HNN weight matrix plays the role of PRNG seed. By considering 15 

digit precision we have both increased the accuracy of our calculation and decreased the chance 

of convergence of the network. We also used the sampling mechanism explained previously. 

The results are summarized in Table 13,  
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Table 13- Results of Fuzzy Hopfield NN PRNG 

PRNG Test  FHNN Experiment 
 P-Value Prop 

Frequency 0.2248  0.99 

Block Frequency 0.4749  0.99 

Cumulative Sums-Forward 0.4559  0.98 

Cumulative Sums-Reverse 0.8343  0.99 

Runs 0*  0* 

Longest Run 0.7597  0.98 

Rank 0.6993  1 

Non Overlapping Template 0.0721  0.77* 

Overlapping Template 0.1153  0.99 

Universal 0*  0.71* 

Approximate Entropy 0*  0* 

Random Excursions 0.2943  0.97 

Random Excursions Variant 0.4025  0.99 

Serial(m=5) 0*  0* 

Linear Complexity 0.2492  1 

(*) indicates that our HNN PRNG has not passed its 
corresponding test 
(P-Value) is the result of the test  
(Prop) is proportion of the results for 100 sequences 

By analyzing Table 13, we observed that in some of the tests for e.g. Runs and Approximate 

Entropy tests, P-Values do not indicate good results. Moreover our FHNN PRNG could not pass 

some of the tests like Non Overlapping Template according to the proportion results of those 

tests. Runs, Non Overlapping Template, Universal, Approximate Entropy and serial test have low 

P-Value and also proportion result of these tests are below the acceptance rate of the test. 

By comparing our results with the results of 9-digit selection experiment 1 in Table 12- medium 

case among 3 experiments - we found that in Block Frequency, Cumulative Sums-

Forward/Reverse we have slightly better results, but the problem is in  Runs, Non Overlapping 

Template, Universal, Approximate Entropy and serial tests, where the P-value has fallen to zero. 
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HNN PRNG is a good PRNG system but according to number of weight that user should select as 

a seed for this system, makes it difficult to work with it. We try to reduce the size of the matrix 

and came up with FHNN with only 5 neurons. By comparing the run test result between HNN 

and FHNN it shows that the oscillation rate between zero and one in our FHNN PRNG is much 

lower than HNN PRNG. This could be a direct consequence of using fewer numbers of neurons 

in our FHNN system - the less the number of neurons, the less the number of parameters (inputs) 

for each neuron, that participates in generating the output.  

In [1] [22] [23], a large numbers of neurons are used to avoid the convergence problem, however, 

by applying FHNN we tried to reduce the number of neurons to have a smaller weight matrix and 

avoiding the convergence problem. We showed that the numbers of neurons do not only related to 

convergence problem also it has a big influence in number of patterns that appear in the bit 

sequences. 

4.4 Comparing our HNN PRNG and FHNN PRNG with other PRNGs 

In this section we will compare our proposed HNN and FHNN PRNGs with other existing 

PRNGs. To do the test we set the α parameter to 0.01 and the sequence length to 1000000. Linear 

Congruential, Quadratic Congruential 1 and 2, Cubic Congruential, Micali-Schnorr, Blum Blum 

Shub, Modular Exponentiation and G using SHA-1 are PRNG algorithms that we have tested 

them with NIST PRNG Test Package.  All of these algorithms except our proposed HNN PRNG 

and FHNN PRNG are implimented by NIST. These PRNGs are publicly available in the NIST 

PRNG Test package that anybody can execute them and compare their results with his/her 

PRNG. 
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 The detailed results of the tests performed on different PRNGs are tabulated in the Appendix, 

however Table 14 summarize the tests outcome. This clearly shows how good our Proposed 

PRNG is. Among these PRNGs some of them could not pass some tests of the NIST random test 

suite. Table 14 presents the tests that each PRNG could not passed. Whenever, there is a star in 

any cell of Table 14, it indicates that the corresponding algorithm could not passed the related 

test. We could say as a point of view of that specific test, that PRNG is not random. 

Table 14 - Pass/Fail Results of PRNGs tested with NIST test module 

 
         NIST Tests 
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In Figure 14- Figure 28 we have compared the results of all the PRNGs that we named in previous 

page.  To simplify the following figures, we have associated a specific color to each PRNG and 

the results of their tests are shown using the corresponding color, 
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 Violet  HNN PRNG with 9 digit selection (experiment 3Table 12) 

 Dark Blue  FHNN PRNG 

 Blue  Linear Congruential PRNG 

 light Blue   Quadratic Congruential 1 PRNG 

 Aquamarine  Quadratic Congruential 2 PRNG 

 Green  Cubic Congruential PRNG 

 Yellow  Micali-Schnorr PRNG 

 Orange  Blum Blum Shub PRNG 

 Red  Modular-Exponentiation PRNG  

 Dark Red  G using SHA-1 PRNG 

In all of these figures the vertical axes present P-Value. 

4.4.1 Frequency and Block Frequency test result 

In Figure 14 the result for Frequency test is presented and surprisingly HNN PRNG has a very 

good result compared to Blum Blum shub algorithm. It is noticeable that its result is higher than 

all the other PRNGs. Also the result of the test on FHNN PRNG is comparable with Quadratic 

Congruential 1 & 2, Cubic Congruential, Micali-Schnorr and Modular-Exponentiation PRNG. It 

is important to note that the frequency test is a very important test that most of the PRNGs could 

not pass or pass it with poor results - Micali-Schnorr, is an example for the later. 

Figure 15 shown the results of Block Frequency Test. HNN PRNG and FHNN PRNG show 

acceptable results compare to other PRNGs. FHNN outperform HNN in this test, which is due to 
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the fact that the output of FHNN in each iteration is less than the block that was to be tested (in 

test module, the length of each block is 128). 

 
Figure 14 - Frequency test result for different PRNGs 

Micali-Schnorr and G using SHA1 show high P-Values, in comparison Modular-Exponentiation 

and Quadratic Congruential 1 show low P-Values. Cubic Congruential is the only PRNG that 

could not pass Block Frequency test.  

 
Figure 15 - Block Frequency test result for different PRNGs 
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4.4.2 Cumulative Sum-Forward/Reverse test result 

Figure 16 represents the results of Cumulative Sums-Forward Test that HNN PRNG has the best 

result comparing to others. It is followed by G using SHA1 PRNG and FHNN PRNG, Micali-

Schnorr, Blum Blum Shub has also good results but with considerable difference with HNN 

PRNG. 

In Figure 17 the results of Cumulative Sums-Reverse Test are reported and FHNN has the 

best result. Moreover, FHNN has a very good result comparable to others. The difference 

in the results of Micali-Schnorr, Blum Blum Shub and G using SHA-1 between Figure 16 

and Figure 17 are considerable.  

 
Figure 16 - Cumulative Sum-Forward test result for different PRNGs 

Figure 16 and Figure 17 show that Quadratic Congruential 1 and Quadratic Congruential 2, 

Cubic  Congruential and Modular-Exponentiation have poor results in this test. 
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Figure 17 - Cumulative Sum-Reverse test result for different PRNGs 

4.4.3 Run and Longest Run test result 

Figure 18 represents the results of Run Test. HNN has an acceptable result but FHNN like Cubic 

Congruential has not passed the test. Most of the PRNGs have satisfactory result in this test. 

Linear Congruential, Modular Exponentiation and Quadratic Congruential 1 PRNGs are the 

leaders in this test. Micali-Schnorr presents the lowest P-Value among other PRNGs which 

passed this test. 

Figure 19 shows the results for Longest Run test. All the PRNGs have passed this test, and in 

particular HNN and FHNN have acceptable P-Values. Surprisingly, FHNN shows considerable 

Improvement between Run test and Longest Run test than HNN. Longest Run focuses on Longest 

Run of the same bit in random number sequence. Figure 18 and Figure 19 clearly showed that 

result of Run test and Longest Run test on the same sequence of numbers could have totally 

different result. 
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Figure 18- Runs test result for different PRNGs 

 

Figure 19 - Longest Run test result for different PRNGs 
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4.4.4 Rank test result 

Rank Test result is shown in Figure 20. Modular Exponentiation has the best result among all of 

the PRNGs and in particular FHNN and Quadratic Congruential 1 have also got good results. All 

PRNGs have passed this test, but the results of Micali-Schnorr, G using SHA-1 and HNN PRNGs 

are not that good.  

 
Figure 20- Rank test for different PRNGs 

 

4.4.5 (Non) Overlapping Template test result 

(Non) Overlapping Template Test Results are shown in Figure 21 and Figure 22. All of the 

PRNGs have passed Overlapping Template test. FHNN and Quadriatic Congruential 1 did not 

pass Non Overlapping Template test (Table 14),whilst others have passed this test. 
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Figure 21 - Non Overlapping Template test result for different PRNGs 

The window block that is used in (Non)Overlapping Template test consisted of 9 bits, which 

means the NIST PRNG test suite looks for the number of occurrences of specific patterns with the 

length of 9 bits. Non Overlapping Template test result shows that all PRNGs except FHNN got 

good result. In Overlapping Template test (Figure 22) HNN PRNG has the best result, and 

noticeably, the difference between HNN and Blum Blum Shub is considerable. FHNN in this test 

has a better result than Modular Exponentiation and G using SHA-1 PRNGs. 

 
Figure 22 - Overlapping template test result for different PRNGs 
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4.4.6 Universal test result 

Figure 23 depict Universal Test results. FHNN is the only PRNG that has not passed this test. 

Cubic Congruential, HNN and Blum Blum Shub PRNGs have very good result. Modular 

Exponentiation, G using SHA-1 and Micali-Schnorr showed low P-Values. Universal test is a 

very important test and acquiring high value in this test is a positive point. HNN has been 

acquired in this test. 

 

Figure 23 - Universal test result for different PRNGs 

4.4.7 Approximate Entropy test result 

In Figure 24 results of Approximate Entropy Test show that our HNN PRNG is the best in this 

test. FHNN and Cubic Congruential PRNGs on the other hand have the worst results and have not 

passed this test. This test checks the frequency of oscillation between two consecutive 

overlapping blocks with the length of (M, M+1), here M was set to 10 in NIST PRNG Test suite. 

It seems that in FHNN the number of oscillations between outputs of FHNN is not suitable, this 

could direct result of using few numbers of neurons compared to HNN that has best result in this 

test.   
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Figure 24 - Approximate Entropy test result for different PRNGs 

4.4.8 Random Excursion (Variant) test result 

In Figure 25 and Figure 26, Random Excursions and Random Excursion Variant Test Results are 

presented. All the PRNGs have passed these tests however HNN and FHNN have good P-Values 

comparing to the other PRNGs. Quadratic Congruential 1 & 2 PRNGs, although have acquired  

good P-values but have not passed this test (Table 14). 

 
Figure 25 - Random Excursions test result for different PRNGs 
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Figure 26 - Random Excursions Variant test result for different PRNGs 

4.4.9 Serial test result 

Figure 27 presents Serial Test Result. FHNN, Quadratic Congruential 1,2 and  Cubic 

Congruential are the PRNGs, which have not passed this test. On the other hand HNN, Micali-

Schnorr, Blum Blum Shub and G using SHA1 PRNGs show high P-values that indicates the 

strength of these PRNGs. All the PRNGs who passed this test, show acceptable result in 

serial test. 

 
Figure 27 - Serial test result for different PRNGs 
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4.4.10 Linear Complexity test result 

Linear Complexity is the last test of NIST PRNG test suite, that is discussed here. Figure 28 

presents the linear complexity test results for the PRNGs, and all the PRNGs have passed. 

However, Blum Blum Shub PRNG has the best result among all other PRNGs in this test. It is 

followed by Micali-Schnorr and Linear Congruential PRNGs. The results obtained for FHNN and 

HNN are acceptable, but FHNN has better result than HNN. 

 
Figure 28 - Linear Complexity test result for different PRNGs 
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Chapter 5 

Conclusion 

In this research, we have integrated AI techniques, in particular neural network and fuzzy neural 

network with security issues. More precisely we have elaborated on generating random numbers, 

using neural networks. The contribution of the thesis would be enumerated as follows: 

 We have examined the concept of Random number and its usage. We have investigated 

why random number generators with good quality of randomness are essential to all 

cryptographic applications. We have studied different types of RNGs, PRNG and TRNG, 

and have elaborated on their applicability and features in today's world.  

 We have examined the usages of neural networks in different cryptosystems. We have 

tried to match the characteristic of PRNGs with the characteristics of the neural network 

(Hopfield NN) which is exploited for that problem. We have studied neural networks in 

cryptosystems. This showed us that there is a great possibility for using Neural Networks 

in cryptosystems and more over there are much more to be investigated both in neural 

network behavior and cryptosystems features. Specifically we considered the applications 

of neural networks as pseudo random number generator in the past years. 

 We have investigated some of the standard PRNGs, their algorithms and their pros and 

cons.    

 RNG test applications also have been studied and different RNG test suites are examined. 

We have carefully reviewed NIST PRNG test suite in particular. 

An ideal random number generator 
is a fiction 
Schindler and Killman 
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 Inspired by the convergence problem of Hopfield Neural Networks, we examined using 

HNN as PRNG. We designed and developed a non-converging HNN based on which we 

produced and then evaluated the generated random sequence numbers using NIST PRNG 

Random test package. We showed that the number of digits that we extract from output 

of each neuron has a big influence in the performance of our HNN PRNG toward passing 

the PRNG tests. We showed that by increasing the number of digits extracted from the 

output of each neuron in HNN PRNG, a better PRNG would be achieved. 

 We developed a Fuzzy Hopfield Neural Networks with few numbers of neurons. By 

reducing the number of neurons, we decreased the size of the weight matrix of FHNN. 

Consequently it would be much easier for the users setting the weight matrix which be 

used as a seed to the PRNG. The FHNN based PRNG were then put to test using NIST 

PRNG Random test package. We showed that the number of neurons has a big influence 

in the performance of our HNN PRNG for passing the PRNG tests.  

 We tested other standard PRNGs and compared their results with our proposed HNN. We 

showed that our proposed PRNGs have good quality compared to other PRNGs. 

The limitation of our work would be enumerated as: 

 Our proposed HNN PRNG and FHNN PRNG are complex system compared to other 

PRNGs  

 HNN PRNG is not good enough if inappropriate seed (weak seed) is selected by user. 

  In FHNN PRNGs, the number of rules was tightening up with the number of neurons. By 

increasing the number of neurons the number of rules in fuzzy system increases that 

makes FHNN PRNG more complex and slow.  
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 In bit sampling mechanism, the upper bound of our accuracy in calculation is the size of 

processor registers (16 digits after decimal point). Using symbolic calculation toolbox of 

matlab to gain bigger level of accuracy made the system slow, and slow PRNG is not that 

useful.      

This work would be continued in the following directions as future works: 

 Investigating the relation of the number of neurons to the quality of generated random 

numbers in HNN PRNG. 

 Implementing HNN with spiking neurons. The main problem with spiking neurons is 

complexity, HNN with spiking neurons as PRNGs shouldn’t be that complex. 

 Studying other activation functions or procedures instead of   for HNN and 

FHNN PRNG 

 Studying other method of integrating fuzzy logic systems and neural networks for 

developing FHNN could be studied.  

  Other mechanism of bit sampling could be studied and applied on HNN and FHNN 

PRNG   
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Appendix  

This project was developed in Matlab 2009a platform. The NIST PRNGs test suite and all 

PRNGs except HNN and FHNN were ran on Linux machine. All the results that were shown in 

this thesis are based on the report of results obtained from NIST PRNG test suit for the PRNGs. 

All the tests in this thesis executed with 99% level of confidence. All the PRNGs used to generate 

100 sequences of 1000000 bits as random numbers. And these bit sequences tested by PRNGs 

with α parameter equal to 0.01.  

In the following the results of NIST test suite for different PRNGs (except HNN and FHNN) 

presented in more details.  
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Table 15 - NIST Results for Cubic Congruential 

 

PRNG Test 
Cubic Congruential 

 P-Value Prop 

Frequency 0* 0.67* 

Block Frequency 0* 1 

Cumulative Sums-Forward 0* 0.66* 

Cumulative Sums-Reverse 0* 0.71* 

Runs 0* 0* 

Longest Run 0.3504 0.99 

Rank 0.2492 0.99 

Non Overlapping Template 0.3555 0.973 

Overlapping Template 0.0589 0.99 

Universal 0.9642 0.99 

Approximate Entropy 0* 0.77* 

Random Excursions 0.6340 0.987 

Random Excursions Variant 0.4063 0.992 

Serial(m=5) 0* 0.18* 

Linear Complexity 0.3504 0.97 

 

Table 16 - NIST Results of Linear Congruential 

 

PRNG Test 
Linear Congruential 

 P-Value Prop 

Frequency 0.6786 0.99 

Block Frequency 0.4372 0.99 

Cumulative Sums-Forward 0.0805 0.99 

Cumulative Sums-Reverse 0.7791 0.99 

Runs 0.9357 0.97 

Longest Run 0.2896 1 

Rank 0.4559 0.99 

Non Overlapping Template 0.5254 0.989 

Overlapping Template 0.5341 0.99 

Universal 0.5544 0.99 

Approximate Entropy 0.4559 0.99 

Random Excursions 0.3040 0.993 

Random Excursions Variant 0.4067 0.993 

Serial(m=5) 0.3282 0.98 

Linear Complexity 0.6371 0.99 
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Table 17 - NIST Results for Quadratic Congruential 1 

 

PRNG Test 

Quadratic 

Congruential 1 

 P-Value Prop 

Frequency 0 0.55* 

Block Frequency 0.0308 0.99 

Cumulative Sums-Forward 0 0.61* 

Cumulative Sums-Reverse 0 0.62* 

Runs 0.6993 0.91* 

Longest Run 0.9878 0.98 

Rank 0.6786 0.99 

Non Overlapping Template 0.4982 0.988* 

Overlapping Template 0.3669 0.99 

Universal 0.5955 0.99 

Approximate Entropy 0.4749 0.99 

Random Excursions 0.2180 0.985* 

Random Excursions Variant 0.4743 0.9936 

Serial(m=5) 0.4415 0.945* 

Linear Complexity 0.5544 0.99 

 

Table 18 - NIST Results of Quadratic Congruential 2 

 

PRNG Test 

Quadratic 

Congruential 2 

 P-Value Prop 

Frequency 0 0.74* 

Block Frequency 0.7197 0.99 

Cumulative Sums-Forward 0 0.76* 

Cumulative Sums-Reverse 0 0.72* 

Runs 0.3345 0.96 

Longest Run 0.9463 0.99 

Rank 0.4559 1 

Non Overlapping Template 0.5156 0.9893 

Overlapping Template 0.7981 1 

Universal 0.2492 0.98 

Approximate Entropy 0.5749 0.99 

Random Excursions 0.5221 0.987* 

Random Excursions Variant 0.3645 0.977* 

Serial(m=5) 0.4678 0.965* 

Linear Complexity 0.3669 0.98 
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Table 19- NIST Results of Blum Blum Shub 

 

PRNG Test 
Blum Blum Shub  

 P-Value Prop 

Frequency 0.9558 1 

Block Frequency 0.6993 0.99 

Cumulative Sums-Forward 0.2757 1 

Cumulative Sums-Reverse 0.5341 1 

Runs 0.5544 0.99 

Longest Run 0.4943 0.98 

Rank 0.5544 0.98 

Non Overlapping Template 0.4906 0.9899 

Overlapping Template 0.3838 0.98 

Universal 0.6579 0.99 

Approximate Entropy 0.4011 1 

Random Excursions 0.2414 0.9920 

Random Excursions Variant 0.4589 0.9964 

Serial(m=5) 0.7442 0.995 

Linear Complexity 0.8977 1 

 

Table 20- NIST Results for Micali-Schnorr 

 

PRNG Test 
Micali-Schnorr 

 P-Value Prop 

Frequency 0.0167 0.96 

Block Frequency 0.9834 0.99 

Cumulative Sums-Forward 0.3504 0.98 

Cumulative Sums-Reverse 0.3669 0.97 

Runs 0.1296 1 

Longest Run 0.8513 1 

Rank 0.0965 0.98 

Non Overlapping Template 0.4752 0.9897 

Overlapping Template 0.5749 0.99 

Universal 0.1372 0.98 

Approximate Entropy 0.2757 0.98 

Random Excursions 0.5263 0.9923 

Random Excursions Variant 0.4858 0.9897 

Serial(m=5) 0.6566 0.98 

Linear Complexity 0.7981 0.97 

 



 

 

 

91

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 22- NIST Results of Modular-Exponentiation 

 

PRNG Test 

Modular 

Exponentiation 

 P-Value Prop 

Frequency 0 0.67* 

Block Frequency 0.0329 0.98 

Cumulative Sums-Forward 0 0.72* 

Cumulative Sums-Reverse 0 0.69* 

Runs 0.8513 0.96 

Longest Run 0.5749 0.99 

Rank 0.8165 0.97 

Non Overlapping Template 0.5435 0.9899 

Overlapping Template 0.0805 1 

Universal 0.1223 1 

Approximate Entropy 0.2622 1 

Random Excursions 0.3481 0.9965 

Random Excursions Variant 0.2995 0.9938 

Serial(m=5) 0.0859 0.95* 

Linear Complexity 0.2133 0.99 

 

Table 21- NIST Results for G using SHA-1 

 

PRNG Test 
G using SHA-1 

 P-Value Prop 

Frequency 0.5544 0.98 

Block Frequency 0.9357 0.98 

Cumulative Sums-Forward 0.8831 0.98 

Cumulative Sums-Reverse 0.1815 0.99 

Runs 0.2896 1 

Longest Run 0.8977 0.99 

Rank 0.2022 1 

Non Overlapping Template 0.5179 0.9902 

Overlapping Template 0.0855 0.98 

Universal 0.1087 0.99 

Approximate Entropy 0.6786 1 

Random Excursions 0.2226 0.9892 

Random Excursions Variant 0.2669 0.9885 

Serial(m=5) 0.6957 0.99 

Linear Complexity 0.3504 0.99 
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