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Abstract

Title: Noise Analysis of Translinear Circuits

This project presents noise analysis of translinear circuits, or in general, log-domain
filters. Due to the inherit companding behaviour and nonstationary nature of the
translinear noise sources, a nonlinear noise analysis method is proposed. Based on the
large-signal calculation, the first-order noise and signal-noise intermodulation terms are
considered. Overall, two important noise specifications, power spectral density and
signal-to-noise ratio, of both static and dynamic translinear circuits are computed. For
dynamic translinear circuits, two methods, either combining noise sources and moving
them to output, or process them in situ and individually, are elaborated. A number of
generic examples are illustrated to demonstrate the effectiveness and applications of the

methods.
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Chapter 1

Introduction

1.1 Translinear Circuit

Due to the ongoing trend towards low-voltage and low-power operation, the area of
analog integrated filters is facing serious challenges. As we know, the supply voltage
severely restricts the maximum dynamic range achievable using conventional filters. In
ultra low-power environments, linear resistors become too large for on-chip integration.
The situation is even further complicated by the demand for high operation frequencies
and tunable transfer functions.

In order to meet these demands, translinear (TL) circuits were firstly introduced by Barrie
Gilbert in 1975. The word “translinear” is coined to state the exponential current-voltage
characteristic of bipolar transistors that are central to functioning of these circuits — that
is, bipolar transistors’ transconductance is linear in its collector current [1]. It describes a
class of circuits whose large-signal behavior hinges on the extraordinarily precise
exponential current-voltage characteristic of bipolar transistors and the intimate thermal
contact and close matching of monolithically integrated devices.

Gilbert also meant the word to convey the notion of analysis and design techniques (e.g.,
the TransLinear Principle (TLP)) that bridge the gap between the well-established domain
of linear-circuit design and the largely uncharted domain of nonlinear-circuit design, for
which precious little can be said in general [2]. In effect, we can characterize the TLP as a
translation through the exponential current—voltage relationship of a linear constraint on
the voltages in a circuit (i.e., Kirchhoff's voltage law) into a product-of-power-law
constraint on collector currents flowing in the circuit.

In 1980s, Evert Seevinck made significant contributions to the state of the art of
translinear-circuit design by developing systematic techniques for the analysis and
synthesis of these circuits [3,4]. Since the mid-1990s, there has been an explosion of
interest in translinear circuits, primarily because of the development of the class of
dynamic translinear circuits, which had its origins in 1979 in the work of Robert Adams
[5]. Although he does not appear to have made a connection between his own ideas and
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the growing body of work on translinear circuits, Adams proposed a method of
implementing large-signal-linear, continuous-time filters using linear capacitors, constant
current sources, and translinear devices, which he called log-domain filtering, because all
of the filtering occurred on log-compressed voltage state variables using translinear
devices. The concept of log-domain filtering remained in obscurity for over a decade,
only to be independently rediscovered by Seevinck. In 1990, Seevinck presented a first-
order filter, which he dubbed a companding current-mode integrator [6]. Unfortunately,
it appears that neither Seevinck nor Adams had a clear idea of how to generalize their
ideas to implement filters of higher order. In 1993, encouraged by Adams to pursue the
idea of log-domain filtering, Doug Frey introduced a general method for synthesizing
log-domain filters of arbitrary order using a state-space approach and he presented a
highly modular technique for implementing such filters [7].

Jan Mulder and his colleagues coined the phrase dynamic translinear circuits and have
made the clearest connection between translinear circuits and log-domain filters [8-12].
They have extended Seevinck's translinear analysis and synthesis methodology to
encompass dynamic constraints based on what they have called the dynamic translinear
principle, with which we can express capacitive currents embedded within translinear
loops directly in terms of products of the currents flowing through translinear devices and
their time derivatives. Dynamic translinear circuit techniques have been successfully
applied to the structured design of both linear dynamical systems (e.g., log-domain
filters) and nonlinear dynamical systems (e.g., RMS-DC converters, oscillators, phase
detectors, and phase-locked loops).

1.2 Electrical Noise

Electrical noise, one of the most important topics in circuit analysis and design, will be
discussed in this paper. The noise phenomena considered here are caused by the small
current and voltage fluctuations that are generated within the devices themselves, and we
specifically exclude extraneous pickup of man-made signals that can also be a problem in
high-gain circuits.

The study of noise is important because it represents a lower limit to the size of electrical
signal that can be amplified by a circuit without significant deterioration in signal quality.
Noise also results in an upper limit to the useful gain of an ampifier, because if the gain is
increased without limit, the output stage of the circuit will eventually begin to limit (that



is, cut off or saturate) on the amplified noise from the input stages.

Furthermore, static translinear (STL) circuits do not have a perticularly good reputation in
terms of noise, and it is likely that dynamic translinear (DTL) circuits inherit those noise
characteristics. Therefore, it is very important to analyze this important non-ideal aspect.

Power Spectral Density (PSD) and Signal-to-Noise-Ratio (SNR) are two primary
specifications describing the noise beharivour of analog circuits. Since translinear circuits
are explicitly based on the exponential behaviour of bipolar transistors, they are
inherently non-linear, even when they exhibit an externally-linear transfer characteristic.
As a result, intermodulation between signals and noise is generated. The situation is
further complicated by the fact that the internal noise sources are non-stationary. The
transistor currents in a TL circuit are signal-dependent. For example, the transistor shot
noise sources are modulated by the signals being processed.

A number of noise analysis methods for STL and DTL circuits have been proposed
previously. However, most of these approaches are quasi-linear and quasi-stationary,
these methods cannot adequately account for the non-linear and non-stationary properties
of noise in TL circuits. It is also important to note that most circuit simulators do not
facilitate non-linear noise analysis.

In the area of non-linear signal processing theory, a lot of efforts have been made on
noise analysis. These results can be adopted to the noise analysis in TL circuits.

1.3 Outline of the Project

The basic noise characteristics are stated in Chapter 2. Three major noise sources: shot,
thermal and 1/f noise sources are discussed, as well as their influence in active
components of circuits. Then, the noise behaviour is analyzed in terms of system

representation.

Chapter 3 discusses the basic principle of TL circuits. Two models, a first-order model
and a high-order model are given, from the system perspective. On the other hand, from
the circuit analysis point of view, both static and dynamic TL circuits are discussed. All
the analyses are based on ideal transistor behaviour, i.e., ignoring noise influence.



Chapter 4 is devoted to explore methods in analyzing noise characteristics in TL circuits,
several important definitions are clarified. By comparing the noise sources, we are able to
focus on the ones that have greatest influence on circuit performance. Finally, serveral
typical STL and DTL circuits are analyzed.

Chapter 5 proposes an alternative noise analysis method for DTL filters. Unlike what is
proposed in chapter 4, all noise sources are processed in situ and individually. This is
based on the assumption that all noise sources are independent to each other.

Finally, Chapter 6 concludes the project.



Chapter 2

Noise Characterization in Electronic Circuits

2.1 Shot Noise

Shot noise is always associated with a direct-current flow and is present in diodes and
bipolar transistors [20,21].

The origin of shot noise can be explained by considering a diode. The forward current of
the diode 7 is composed of holes from the p region and electrons from the » region, which
have sufficient energy to overcome the potential barrier at the junction. Once the carriers
have crossed the junction, they diffuse away as minority carriers.

The passage of each carrier across the junction is a purely random event and is dependent
of the carrier having sufficient energy and a velocity directed toward the junction. Thus
an external current 7, which appears to be a steady current, is in fact, composed of a large
number of random independent current pulses, as shown in Figure 2.1, where Ip = 1, is

the average current.
i Diode Current

Current

D 1 1 1 1 1 1 1
Time

Figure 2.1 Diode current / as a function of time.

The fluctuation in 7 is termed shot noise and is generally specified in terms of its mean-
square variation about the average value. This is written as i’ , where



22 2 _ 1 1 T 2
it=(I-1p) -;linijo (I-1,)%at (2.1.1)
Since the current / is composed of a series of random independent pulses with average
value Ip, then the resulting noise has a mean-square value

i = 2qI A (2.1.2)
where g =1.602 x 102 C, the charge of an electron,

Af= Bandwidth in Hertz,
Ip = Direct current.

From equation (2.1.2), we can see the noise current has a mean-square value that is
directly proportional to the bandwidth Af. Thus, the noise-current spectral density 2INf
(A%Hz) is independent of frequency. Noise with such a characteristic is called white
noise. It is valid until the frequency becomes comparable to 1/z, where 7 is the carrier
transit time through the depletion region. For most practical electronic devices, 7 is
extremely small and (2.1.2) is accurate well into gigahertz region [20].

The effect of shot noise can be represented in the low-frequency, small-signal equivalent
circuit of the diode by inclusion of a current generator shunting the diode, as shown in
Figure 2.2.

Vo
_kr CD i—2=214f
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Figure 2.2 Junction diode small-signal equivalent circuit with noise

Note: In Figure 2.2, the arrow in the current source is only to identify the generator as a
current source, not indicating its polarity, because this noise signal has a random phase
and is defined solely in terms of its mean-square value.

Because the amplitude distribution of shot noise is Gaussian. From the definition of
Gaussian PDF (probability density function), we get the variance o and the standard

deviation o as follows:

(2.1.3)



2.2 Thermal Noise

Unlike shot noise, thermal noise is generated by a completely different mechanism. In
conventional resistors, it is due to the thermal motion of electrons and is unaffected by
the presence or absence of a direct current [20,21]. Therefore, we expect that it is related
to absolute temperature 7.

AAAL
TVVY

ok

<
~

[
(a) (%)
Figure 2.3 Resistor model including thermal noise source through
(a). a series voltage generator
(b). a shunt current generator

In a resistor R, thermal noise can be represented by a series voltage generator v ,orbya

shunt current generator i> as in Figure 2.3.

These representations are equivalent:

v? = 4kTRAY,
- 1 2.2.1)
1= 4kTEAf,

where k ~1.38 x 10 J/K (Joules/Kelvin), Boltzmann’s constant and
4KT = 1.66 x 102° V-C at room termperature (300°K).

Equations in (2.2.1) show that the noise spectral density of thermal noise is independent
of frequency. Thermal noise is white in nature.

For example, a 1 KQ resistor exhibits the termal noise spectral density at room
temperature: v2/Af =16x107"8(V?/Hz), or 2/Af =1.6x103 (A%/Hz). 1t is equivalent
to the shot noise of a S0uA direct current: i2 /Af =2gI, =1.6x102(A%/Hz).

The amplitude distribution of thermal noise is Gaussian. Since both shot and thermal



noise have a flat frequency spectrum and a Gaussian amplitude distribution, they are
indistinguishable once they are introduced to a circuit.

2.3 Flicker Noise

This type of noise is found in all active devices, as well as some discrete passive elements
such as carbon resistors. The origins of flicker noise are varied, but in bipolar transistors
it is caused mainly by traps associated with contamination and crystal defects in the
emitter-based depletion layer [20,21]. These traps capture and release carriers in a
random fashion. It is always associated with the flow of a direct current and displays a
spectral density of the form

E

F Ko, 23.1)

where
Af= small bandwidth at frequency f,
I = direct current in amps,
K = a constant for a particular device,
a =1s a constant in the range 0.5 to 2, and
b = a constant of about unity.

In most cases, a=b=1. Thus, equation (2.3.1) becomes
i =K§Af. (2.3.2)

The noise spectral density thus has a 1/f frequency characteristic. Hence, it is also called
1/fnoise.

We notice that the mean-square value of a flicker noise signal as given by (2.3.2) contains
an unknown constant K. This constant not only varies by orders of magnitude from one
device type to the next, but it can also vary widely for different transistors or integrated
circuits from the same process wafer that has undergone identical fabrication steps. This
is due to contamination and crystal imperfections, which are factors that can vary
randomly even on the same silicon slice.

However, experiments have shown that if a typical value of K is determined from
measurements on a number of devices from a given process, then this value can be used



to predict average or typical flicker noise performance for integrated circuits from that
process. From measurements, the amplitude distribution of flicker noise is often non-
Gaussian.

2.4 Noise Equivalent Circuits

In this section, we will consider the small-signal equivalent circuit of typical IC
(integrated circuit) devices.

2.4.1 Junction Diodes

The equivalent circuit of a junction diode is shown in Figure 2.4 [20]. r; is a physical
resistor due to the resistivity of the silicon, it exhibits thermal noise. Shot noise and
flicker noise are combined to be represented as a current generator in shunt with r,.

Equation (2.4.1) gives the noise generator:

v, = 4kTr.Af,
_ I (2.4.1)
i’ =2qI,Af + K7DAf.
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Figure 2.4 Complete diode small-signal equivalent circuit with noise



2.4.2 Bipolar Transistors

In bipolar transistors, from the base region, carriers entering the collector-base depletion
region are accelerated by the field existing there and swept across this region to the
collector. This procedure is purely random, so I¢ and Iz show full shot noise.

— VWY
|
2
=
St
=

Figure 2.5 Complete bipolar transistor small-signal equivalent circuit with noise sources

Transistor base resistors r, and 7. are physical resistors and thus have thermal noise.
Comparing with the high-impedance collector node, r. is usually negligible. The resistors
rx and ry are fictitious resistors that are used for modeling purpose only, they do not

exhibit thermal noise.

Since all the noise sources are separate, independent physical mechanisms, the mean-

square values are:
V2 = 4kTr, A,
i? =2g1 A, (2.4.2)
i2 = 2q1,Af +KI7BAf.

In analog circuit design and analysis, we usually use a simplified equivalent circuit to
illustrate noise influence of bipolar transistors [18], as shown in Figure 2.6.

= O lor
)

Figure 2.6 A simplified equivalent circuit of BJTs with noise sources
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2.4.3 Field-Effect Transistors

In FET, the resistive channel joining source and drain is modulated by the gate-source
voltage so that the drain current is controlled by the gate-source voltage. Since the
channel material is resistive, it exhibits thermal noise. Flicker noise also exists and can be
represented by a drain-source current generator[21]. These two sources can be lumped
into one noise generator ;2.

Ge {| ® D

+ Caa

1l _
an; igZGD C,— v 8».",GD
os

Figure 2.7 Complete FET small-signal equivalent circuit with noise sources
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zg =2ql;Af,

= 2 I
2 =4kT| =g |Af + K2 Af,
i (3gm) \f I \f

(2.4.3)

where I; = gate leakage current,
Ip = drain bias current,
K = a constant for a given device, and
gm = the device transconductance at the operating point.

2.4.4 Resistors

Monolithic and thin-film resistors show thermal noise [21]. Please refer to equation (2.2.1)
for its generator parameters. Figure 2.4 illustrates its circuit representation.

As mentioned in Section 2.3, discrete carbon resistors also exhibit flicker noise, and this
should be considered if such resistors are used as external components of integrated

circuits [20].
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2.5 Stochastical Representation of Noise Signals

Intuitively, noise is often visualised as an undesirable, fuzzy waveform corrupting a
signal, as illustrated in Figure 2.1. Therefore, the noise waveform can not be represented
exactly. Instead, the theory of stochastic processes or random processes is used to find its
average spread.

Let x(f) be a random variable in the time-domain. Like any random variable, x(#) has a
mean 4 () and variance o’(¢). While it is meaningless to ask what the value of x() is
at a given time ¢ (for x(f) represents a collection of waveforms, which are not individually
known), the mean and variance provide useful imformation about the averages of the

ensemble.

In communication systems, we are often interested in frequency-domain representation,
i.e., Fourier transforms of time-domain waveforms [19]. It may be asked what the Fourier
transform of a stochastic process x(f) is. In principle, one may consider the Fourier
transform of each member of the ensemble x(f) (or its square for the power), to obtain a
new ensemble X(f), parameterized by the frequency f. Such definition is not, however,
strictly correct, simply because members of the x(f) ensemble may not have finite energy
and hence cannot be Fourier-transformed. Nevertheless, a technically correct definition
that retains this intuition is possible. The transformed ensemble X(f) is a stochastic

process in frequency, with mean u,(f) and variance o2 (f) providing information

about its averages. Actually, the autocorrelation function of x(f) is a much useful concept
in noise analysis, both from the time-domain and frequency-domain points of view [19].

The autocorrelation function R_(¢,7) is the expected value of x(¢)x(¢ +7). The function

denotes the correlation between values of the stochastic process at different times. If
R_.(t,7) depends only on 7, i.e., only on the time difference between the two timepoints,

x(?) is called a stationary stochastic process; if there is a dependence on ¢ as well, it is
called nonstationary.

2.5.1 Stationary Noise

If x(¢) is stationary, the Fourier transform of its autocorrelation R, (7) is called the power
spectral density of x(¢), and denoted by S_ (f). The power spectral density (PSD) is a

useful characterization of a stochastic process, for it can be measured directly on a

12



sprectrum analyzer. This is because there is a direct connection between PSD and the
Fourier transforms of the squares of the stochastic process ensemble denoted by X(¥)
above.

It can be shown that the mean value of the Fourier transforms of the squared process, at a
given value of frequency f, is equal to S, (f). Further, two random variables X(f;) and

X(f2) can be shown to be uncorrelated if f; # f . Therefore, spectrum analyzers display
Fourier transforms of the squared input, averaged over separated sections of time, thus
approximating an ensemble average and measuring PSD directly. Another property of
PSD is that its integral over frequency equals the variance of x(f). This is the total noise
power, an important figure of merit.

If PSD is independent of frequency, i.e., S,.(f) is a constant, the process is known as
white noise. This corresponds to the autocorrelation function R (7z) being a Dirac

function in 7, implying that neighbouring points of the process are totally uncorrelated.
Many noise sources in circuits can be modeled adequately as white noise, such as thermal
noise of resistors and shot noise of semiconductors [20,21].

The concepts of stationary suffice for noise analysis in systems in a small linear region at
the DC operating point, such as linear amplifiers. However, some components in RF
systems, such as mixers, do not operate in a small region around a quiescent point, but
have large-signal swings that are crucial to their operation. Stationary concepts no longer
suffice for describing noise in such systems. For example, consider a switch that turns on
and off periodically, either passing its input through or blocking it completely. This ideal
switch mixer cannot be time-invariant, since the periodic switch control makes the output
dependent on the time in the cycle that an input is applied. Furthermore, if the input is a
stationary stochastic process, the output is no longer stationary, for its power is zero when
the switch is off, whereas it is the same as that of the input when the switch is on. Since
the output power varies with time, the output noise is not stationary.

2.5.2 Non-stationary Noise

If x(¢) is nonstationary, its autocorrelation function R_ (#,7) is a function of . When the

dependence on ¢ is periodic or quasiperiodic, the process is called cyclostationary [22].
Cyclostationary processes usually arise in systems such as mixers.
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The autocorrelation function of a cyclostationary process can be expanded in a Fourier
seriesin#:

R.(t,7) =) R, (D)™™, (2.5.1)
k

where R, (r) =harmonic autocorrelation function.
Typically, a finite number of harmonics are sufficient to dscribe the process. The Fourier
transform of R, (7), denoted by S,(f), is called the harmonic power spectral density

(HPSD).

If x(¢) is cyclostationary, it can further be shown that the Fourier transformed process X(f")
is no longer uncorrelated at different values of /. In fact, X( /) and X(f + if) can be shown
to be correlated with value S, (f). This phenomenon is known as frequency correlation.

The stationary part of the power spectrum (i.e., the component that is independent of ¢) is
given by S,(f) and denotes the average noise power. This is actually the only output
quantity of interest, see chapter 4 for more details. However, it is very important to keep
track of the other HPSDs during noise analysis of time-varying system, for they can
affect S,(f) at the outputs.

2.6 System Representation for Noise Analysis

Electronic circuits as dynamical systems are modeled with partial and ordinary
differential equations, transfer functions, finite-state machines, etc. For noise analysis, a
system of differential/algebraic equations and transfer functions are most appropriate.
Transfer functions are especially useful, because they represent the system components in
frequency domain, the domain of choice for RF design, and as the basis for input-output
black-box and reduced-order models [19].

Let us define a system as mapping an input x(¢) into an output y(¢), through y = H(x). A
system H is said to be:
a). linear: H(ax, +bx,) =aH(x,)+bH(x,),
b). time-invariant: Y(¢) = H(x(¢)) = Y(t +7) = H(x(¢ +7)).
For a linear system, the impulse response is given by,
h(t,u)=H(S5(t —u)).
For an arbitrary input, the system output is given by,
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H)(¢) = j‘: x(u)h(t,u)du . (2.6.1)
If the system is time-invariant, then A(t,u) = h(¢t —u). If the input to an LTI system is a

complex exponential at frequency £, x(¢) = exp(j27ft), then the output is

H(x)(#) = H(f)exp(j27ft), (2.6.2)
where H( f) is the Fourier transform of the impulse response A(?),
H(f) = [ e ~uyexp(=j21f (¢ ~u))du, (263)

and is called the system transfer function. For an arbitrary input with Fourier transform
X(f) =F{x(t)}, the output is

H(x)(?) = J:H (NX()exp(j2rt)df , (2.6.4)
with the Fourier transform

Y(f)=F{H®@®O)}=H(X(). (2.6.5)
By analogy with (2.6.3), the system transfer function H(¢, ) for a linear time-varying
(LTV) system is defined by

H(@, f)= f" h(t,u) exp(~j2af (t —u))du . (2.6.6)
Note that, in contrast to H( f') in (2.6.3), H(t, f) in (2.6.6) is a function of both fand ¢. If
the input to an LTV system H is x(¢) = exp(j27ft), then the output is

H(x)(¢) = H(t, f)exp(j27ft), (2.6.7)
which is a generalization of (2.6.2) to LTV systems. For an arbitrary input with
X(f)=F{x(t)}, the output is

HE® = [" HE HX S exp(i2af)df . (2.68)

A linear system is (linear) periodically time-varying (LPTV), if the impulse response is
periodic in ¢:

Hit+7,t)=H¢+T+7,t+7), (2.6.9)
with Fourier series respresentations for the impulse response and the transfer function

H(t+7,0)= ) h,(t)exp(j2mf,1), (2.6.10)

H(t, f)= ) H,(f +nf,)exp(j2mf 1), (2.6.11)

where H, (f) = F{h,(z)) , the harmonic transfer functions, and
f- = fundamental frequency.

If the input to an LPTV system H is x(t) = exp(j27ft), then the output is
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HE@O = S H,(f +nf,)exp(j2m(f +nf)0), 2.6.12)

with the Fourier transform

Y()= S H,(NX(S +nf), (2.6.13)

n=—

where X( f) is the Fourier transform of the input. This is the generalization of (2.6.5) to
LPTV systems.

If a single complex exponential at frequency fis input to an LTI system, the output is also
a single complex exponential at frequency f, with an amplitude set up by the transfer
function H( /). Then, for a LPTV system, the output is a summation of complex
exponentials at freqencies f +nf,, where f; is the fundamental frequency. Finally, for a

nonlinear periodically time-varying system, the output signal is a summation of complex
exponentials at frequencys kf + nfc, where k=1,--,00, n=—00,---,00[19].
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Chapter 3

Translinear Circuit Analysis

An important branch of analog circuits is the translinear group. Translinear circuits
exploit the precise proportionality of transconductance to collector current in bipolar
junction transistors so as to result in fundamentally exact, temperature-insensitive
behavior [1]. This relationship, however, need not appear explicitly in the analysis of
translinear circuits.

Translinear circuits operate entirely in the current domain, and the algebraic functions
they generate may have many forms, incorporating products, quotients, power terms with
fixed exponents, which may be integral or non-integral, positive or negative, and sums
and differences. The main distinguishing feature of a translinear circuit is that it uses an
even number of forward-biased PN junctions that are arranged in one or more loops, with
as many junctions connected in one polarity direction as in the other.

A translinear circuit is one having all inputs and outputs in the form of currents
and whose primary function arises from the exploitation of the logarithmic
behavior of forward-biased PN junctions, which are arranged in pairs so as to
result in fundamentally exact, temperature-independent transformations in the
amplitude domain [2].

Due to the continuing trend towards lower supply voltages and low-power operation, the
interest in the application of companding techniques is increasing. The word companding
is coined from compressing and expanding [6]. And the realisation of companding signal
processors is translinear filters.

In Section 3.1, an abstract approach is pursued to describe the general principle of

distortionless companding. At a less abstract level, Section 3.2 is geared toward the
inherent companding characteristics of translinear circuits.
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3.1 A General Approach to Companding

The companding technique, a combination of compressing and expanding, gets more and
more interest since continuing trend towards lower supply voltages. The traditional set up
is shown in Figure 3.1(a).

The input signal is first compressed, in block C, before it is applied to H, where the actual
signal processing is performed. At the output of H, the signal is restored through an
expansion in block E. The benefit of companding is that a signal with a certain dynamic
range (DR) can be processed in a system block with a smaller DR than the signal,
illustated in Figure 3.1(b).

The DR of the signal processing block H is limited on two sides. The upper level stands
for the maximum amplitude of the input signal without generating distortion, while the
lower level indicates the smallest signal that can be processed. Therefore, the influence of
companding also has two sides. At the upper level, large input signals are attenuated by
the compressor C down to a level where H can handle without causing excessive
distortion. At the lower level, small input signals are amplified by C to a level well above
the noise floor of H, making the signal less susceptible to noise and interference.

Compressor Signal Processor Expander

Input Output
—_— C > H > E
(@
Input signal Dynamic range
dynamic range of H
®)

Figure 3.1 (a) Traditional companding system.
(b) The dynamic range of the signal along the path

In practice, the bandwidth of H is limited, resulting in a frequency-dependent transfer
function. It can be either intentional to filter the input signal, or unwanted caused by
parasitic reactive elements. Anyway, the distortion arises.

3.1.1 Syllabic and Instantaneous Companding
Companding system can be divided into two major classes: syllabic and instantaneous,
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with respect to the difference in transfer functions of compressor and expander.

In a syllabic comanding system, the transfer function of C is a function of some measures
of the average strenght of the signal [32].

In an instantaneous companding system, the output of C is a function of the instantaneous
value of the input signal [24, 28]. In other words, the transfer function is static and non-
linear.

3.1.2 A First-Order Model

To describe a distortionless companding system, a dynamic transfer function is required.
Here, we use a single linear integrator to model the first-order dynamic system. In
principle, other first-order dynamic transfer functions, such as a differentiator, can also be
used here. The choice of an integrator complies with the general application of the
integrator as the basic building block for filters [13].

It is sufficient to model only the expansion function E, since the compression function
can be derived from E [11]. The basic model is shown in Figure 3.2. All signals are
implicitly a function of time .

X L X g

Figure 3.2 The two basic functions of a companding integrator

In an instantanous companding system, the output signal y is a function of the
instantaneous value of the integrator output x.

y(t) = E(x(2)) . (3.1.1)

For example, in a log-domain filter, y(f) = e,

In a syllabic companding system, the expansion function is controlled by one or more
time-variant signals g;(x(¢), £), where i€[1,...,N], which can be represented by a column

vector g(x(t),?).
In general, the transfer function E includes both instantaneous and syllabic companding:

y(t) = E(x(2), 8(x(2), 1)) . (3.1.2)
In addition, E is a strictly monotonous function with respect to x. So, E has an inverse

19



function £, and x can be obtained by:

x(6) = E7 (y(1), 8(x(2),1)) . (3.1.3)
However, the signal X has to be supplied. The question is what this signal should be in
order to obtain a system with a linear transfer function from y to y, the input and output
signal, respectively, of the complete companding integrator.
From equation 3.1.2, we can get an expression of y:

. OE og . = :
=—x+V E-(Z=x+g). 3.14
y== LG E+8) (3.1.4)
where VgE=(a—E,---,a—EJ.
g, ogy
From equation 3.1.4, the signal x can be found:
._V E._'.
PEEARS iy (3.1.5)
'&""VgE o

3.1.3 An nth-Order Model

In general, the dynamic transfer function of a companding system is of order n. So, the
inputs and outputs of these internal integrators are X ; and x;, where j€[1,...,n], through n
different expansion functions Ej, then resulting in n output signals yj, represented by
vectors ¥ , ¥ , E and 7 , respectively [12]. So, the output signal vector can be
described by:

(@) = E(X(9),8(X(0),1)) - (3.1.6)
So, the first-order time derivative is:
y=EX+E (G X+3), (3.1.7)
where E,, E,, and G, are Jacobian matrices given by:
% .. % 9% ... 9% % ... %
afl a{n 6‘?, ogy R ox,
E =|: t |, E, =] 2], G, =] D,
%, ... %, %, ... % %rv ... %
ox, ox, og, ogy Ox o,

So, the input vector % is:
¥=(E,+E,G,)'(3-E,2). (3.1.8)
The system is linear in the n derivatives x;, where “(-y" denotes the inverse matrix

operation.
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3.2 Key Idea — Translinear Principles

Both static translinear (STL) and dynamic translinear (DTL) circuits exploit the
exponential large-signal transfer function of the bipolar transistor or the MOS transistor
in the weak inversion region.

The collector current of a bipolar transistor in the active region is given by [20]:
Vee
Io=A-Jg(T)-e"", (3.2.1)

where I¢is the collector current,

Ve is the base-emitter voltage,

A = area of the junction,

Js(T) = junction reverse saturation current density,

m = ideality factor (typically in the range of from 1 to 2),

Uris the thermal voltage k7/q ~ 26 mV, at room temperature 300 °K,

k is the Boltzmann’s constant, ~ 1.38 x 102 J/K,

T is the temperature in degrees Kelven (°K), and

g is the charge of an electron, ~ 1.602 x 10™° C.

If we take the partial derivative of I¢ over Vjg, it comes with:

Ve Ve
ol 0(A-Jg(T)-e™) A-Jg(T)-e™ I,
OV g OV mU, mU,
As we can easily see, from equation (3.2.2), that the small-signal transconductance g,, of
a bipolar transistor is linear to its collector current /¢, and is dependable over six to eight

decades [2].

(3.2.2)

Em =

3.2.1 Static Translinear Principle

From equation (3.2.1), the base-emitter voltage exhibits a logarithmic relationship to the

junction current:

— IC
Vo =mU; ln(A.Js (T)). (3.2.3)

Here, Ji(T) is assumed to scale precisely with junction area; although this is not entirely
accurate, in general, due to edge effects, it is safe to make this assumption [2].
Throughout this analysis, it will be assumed that all transistors in a given circuit are
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operating at the same temperature.

Equation (3.2.1) (and, thus, Equation (3.2.3)) is an idealization. In practice, many effects
conspire to damage this much-to-be-desired ideal, including various carrier-transport
related effects at high- and low-current-density (which cause the factor m to be current
dependent) and resistance components beyond the intrinsic device. These second order
effects may often represent a major limitation to accuracy. The designer of translinear
circuits soon becomes aware of this and can, for example, utilize symmetrical
configurations that exhibit cancellation of error terms or design special transistor
geometries to fit the requirements.

In practice, the logarithmic relationship holds very well over six decades of collector
current, from about 100-pA to 100-pA for a typical, small-geometry, 25-micron diameter
emitter, and is still useful for collector currents up to around 1-mA [2].

The STL principle applies to loops of semiconductor junctions with an exponential V-1
relation. A TL loop is characterised by a certain number of forward-biased PN junctions,
the sum of the junction voltages in the loop equates to zero.
N
Zlen =0, (3.2.4)
where 7, is the voltage across junction ».
Using equation (3.2.3), this becomes:

N I
Zln( L ] =0, (3.2.5)
n= An - JS

where I, is the current passing through junction #,

A, is the junction area, and

Js=Js(T)n is the reverse saturation current density of junction n.
Since the sum-of-logs to product-of-arguments perperty of logarithms, equation (3.2.5)
can also be rewritten as:

N Ijn 3
H(An " ) =1, (3.2.6)

n=1
Note that any practical circuit will operate with ; >> Is, where I5 the reverse saturation
current of junction n (i.e., Is = 4,Js ). For example, even at ;= 100 pA, the ratio of J; to Is
is typically greater than 10,000 [20]. Thus, for the product of equation (3.2.6) to be unity
and sensible current ratios to be maintained, two conditions must be met:
(1). There must be an even number of junctions in a loop;
(2). Half of the junctions must conduct in a clockwise direction and the other half
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conduct in a counter-clockwise direction.

Thus, for a general loop:
VA N

‘ZV," =3,, 327
n= n=Nj+1

or, in a less formal notation:
Z Z > (3.2.8)
cw CcCw

where CW is clockwise, and CCW is counter-clockwise.
Plugging equation (3.2.3) into (3 2.8), we obtain:

qd cw 9 ccw
After eliminating the common terms from both 51des, we get the static translinear

principle:
HIJ,, =A[ 14> (3.2.10)

ccw
where Js is equal for all transistors, owing to the identical operating temperature, and
A=]TA4, / [14, , usually be intentionally designed to be unity, and this

ccw
assumption is used for noise analysis in next chapter.

An example of four-transistor TL loop is shown in Figure 3.3. It is assumed that the
transistors are somehow biased at the collector current /; through 4. So,

VBE] + VBES = VBEZ + VBE4 (32‘1 1)
Following the manipulation from equations (3.2.4) to (3.2.10), equation (3.2.11) yields:
LI, =A-1,1,, (3.2.12)

where A = 4,4,/ A,4, is the equivalent area ratio of the TL loop.

‘11 *12 ‘h ‘14
Qx{\/il++\jQz I Qs{++<4

Veer  Vpg Vees  Vags

Figure 3.3 A four-transistor translinear loop

Equation (3.2.10) shows that the STL principle can be used to implement the arithmetic
operations of multiplication and division. The operations of addition and subtraction are
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easily implemented in the current-domain. Thus, using translinear circuits, a wide variety
of polynomial functions can be implemented.

In addition, we can find another major advantage of translinear circuit, directly through
equation (3.2.10): All temperature-dependent and process-dependent constants, i.e., Ur
and Is, are eliminated. As a consequence, the transfer function implemented by a STL

circuit is theoretically termperature and process independent.

Furthermore, it is implemented using such a simple circuit, as shown in Figure 3.3. Thus,
TL circuits are characterised by a very high functional density.

3.2.2 Dynamic Translinear Principle

In contrast to STL principle which is limited to frequency-independent transfer functions,
by admitting capacitors into the TL loops, the term Dynamic Translinear (DTL) was
coined by Mulder et al. in [14] to describe the circuit that has frequency-dependent
transfer functions.

To better understand its behaviour, let us take a current mirror circuit as an example,

shown in Figure 3.4.

In this circuit, a capacitor C is connected in parallel with the diode-connected input
transistor. The capacitor can be regarded as the internal integrator and the output
transistor as the expander of a companding system [10], as shown as Figrure 3.2. The
current mirror is biased in class A by a DC bias current I, the AC input current I, is

superimposed on .

Idc'*' Iin‘ ‘ Idc"'Iout

Lo+ Iin—lcap‘ j K

C=—/ ‘ Leap

Figure 3.4 A capacitor added to a current mirror

For very small values of I, the transconductance g, of each of the two transistors is
approximately constant. In that case, the transfer function from the capacitance voltage
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swing to the AC output current I, is linear. Consequently, we get the transfer function in
the form of a linear DE [12]:

%I‘M +1,=1,. (3.2.13)

I ot — “in
de
For relatively large input signal swings, g, of the output transistor is no longer a constant.
Therefore, a general non-linear DE is given by:

cu, .
T +I,=I,. (3.2.14)
I, +1

out

Figure 3.5 shows the simulation of the transfer function of the current mirror. In the
simulation, I is 50 #A and C is 300 pF.
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Figure 3.5 Simulation of transfer function of current mirror

We know, the exponential function has two favourable characteristics. First, the
multiplication of two exponential functions e and e’ is equivalent to addition of the two

b

arguments g and b, e* - ¢* = &** b Second, the derivative of an exponential function equals

itself. The first characteristic is exploited in the STL principle, while the second one is the
basis of the DTL principle.

From equation (3.2.1), we calculate the derivative of Ic with respect to time, the result is:

25



: 14
fo=1.28E,
Uy

The relation between capacitance current I, and its voltage V.4, is given by:

I, =CV, =CVy.

Combining equation (3.2.15) and (3.2.16), we get:
CUl =1 -CVy=I;-1,,.

I
Hence, I,=CU.-%,

I¢
ie I, = L I.-1
-€., c CU, c Legps

where the dimension is [A]. This is illustrated in Figure 3.6.

PC
Icapl L Vs

' + -
+ : + | :
V:"” T C Vae

Figure 3.6 Principle of dynamic translinear circuit

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

Hence comes the DTL principle [14]: “A time derivative of a current is equivalent to a
product of currents”. Using this principle, the product of currents on the right-hand-side
of equation (3.2.17) can be realised very elegantly. The structure is shown in Figure 3.6,
which is typical for the class of log-domain filters. In other words, the derivative is

equivalent to the product of a capacitor current and one collector current.

The DTL principle can be used to implement DEs, and hence a wide variety of signal
processing functions. For example, linear DEs can be used for filters, and non-linear DEs
can be used for harmonic and chaotic oscillators, PLLs and RMS-DC converters [14].
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Chapter 4

Noise Analysis Methods for Translinear Circuits

In this chapter, we will analyze noise sources and their effects upon translinear circuits.

Noise is an important non-ideal aspect in most electronic circuits. Translinear circuits are
an externally linear but internally non-linear circuits. Therefore, the noise analysis is of
fundamental importance. Furthermore, static translinear circuits do not have a perticularly
good reputation in terms of noise, and it is likely that dynamic translinear circuits inherit
these noise characteristics.

In Section 4.1, two important measures for describing the noise behaviour of analogue
circuits, the dynamic range (DR) and the maximum signal-to-noise ratio (SNR) are
defined to clarify later analyses.

Several important internal noise sources are discussed in Section 4.2. These noises
primarily come from transistors, and are modulated by signals being processed. Thus, the
situation is very complicated.

Because the noise in TL circuits is non-linear and non-stationary, Section 4.3 discusses
the basic noise analysis methods, and then Sections 4.4 and 4.5 provide non-linear noise
analysis methods based on non-linear signal processing theory.

4.1 Dynamic Range and Signal-to-Nosie Ratio

To clarify the discussion, the two measures, DR and SNR, are defined here:

* The DR equals the ratio of of the maximum signal power to the minimum
acceptable signal power. Here, the minimum acceptable signal power is equal
to the noise power in the absence of signals [11].

* The (maximum) SNR equals the (maximum) ratio of the signal power to the
noise power at the same time [12].
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From the above two definitions, for a number of conventional amplifers and filters based
on linear circuit elements, DR and maximum SNR are equal, since the noise floor is

constant.

However, in translinear circuits, or companding filters in general, due to signal-noise
intermodulation, the maximum SNR can be much smaller than DR [15]. That is to say,
the non-stationary noise and signal-noise intermodulation make the equivalent input noise
spectrum to be time-dependent.

Hence, the easiest way to define SNR of a circuit with a non-stationary noise spectrum is
to give a stationary interpretation to the noise spectrum. A logic and practical way is to
use the average noise spectrum to define SNR.

4.2 Transistor Noise Sources

4.2.1 Noise Sources

The noise behaviour of bipolar transistors is characterized mainly by four statistically
independent noise sources.

First, the collector shot noise can be represented by a current shot noise source ic,
connected between the collector and emitter terminals. The power spectral density
function §;_ is flat since it is a white noise, referred to the description in Chapter 2:

S, (@,0)=2gI.(1). (4.2.1)

Second, the base shot noise is represented by a noise current source iz connected between
the base and emitter terminals. Its power spectral density function S;, is also white, and

equals
S, (@,8) =2q1,(1). (4.2.2)

Third, the flicker noise, or 1/f noise, is the product of a process-dependent noise
mechanism, is also represented by a noise source between the base and emitter terminals.
For DC base currents, the power spectral density of this noise is given by

S, r(@,8) = 2qf, i 2q1, 2Z’ 4.2.3)

where the constant K = 2gf}, is a physical factor due to contamination and crystal
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imperfections. For details, please referred to Section 2.3. Here, f; is a frequency at which
it equals the base shot noise spectral density, shown in equation (4.2.2).

The last noise source is the thermal base resistance noise source vg,, generated by the
base resistance Rp of bipolar transistors, having a white power spectral density
S, (@) = 4kTR,. 4.2.4)

Since we prefer to the current-mode approach, we need to transform the noise voltage vg,
to a noise current source ig, connected in parallel with ic. As we know, v, << Urp, the

small-signal transconductance g,, = Ic / Ur can be used for this transformation.

2 2
S0, @.0) = 3-S5, @) =S 4HTR, = ZE 0 4kTR,

Ur Ur-kT/q (4.2.5)
= (2q]c(t))M - Si (a)J)M.
Ur ¢ U,

In traditional noise analysis, the collector and base currents are usually approximated as
being DC currents. All corresponding noise sources are thus stationary. However, this
approximation is not accurate for TL circuits, where the transistor currents are often
strongly signal-dependent. Therefore, the shot noise sources in a TL circuit are
principally non-stationary. This explains why the time variable ¢ exists in equations (4.2.1)
through (4.2.5).

4.2.2 Comparison Among the Noise Sources

Assume noise sources are uncorrelated to each other, the equivalent noise current power
spectral density of a transistor at the collector node is:
Sic_roa @, =S, (@0,0)+ S, (@,0)+ 8, ((@0,0) + Sy (0,1). (4.2.6)

By comparing the noise sources, it is possible to determine their relative influence in TL
circuits. From equations (4.2.6), all the noise sources are elegantly described in terms of
currents, either Ic or Iz, so we can compare them directly.

In translinear circuits, the transistors are forced to use either diode-like connections or
amplifier implementations, as illustrated in Figure 4.1.

In translinear circuits, the influence of the base shot noise is often negligible in
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comparing with the collector shot noise. This can be evaluated as follows.

In a diode connected transistor, shown in Figure 4.1(a), ic and i are connected in parallel.

And we know the noise power of ig is B? times smaller than that of ic, thus it is

negligible for sufficiently large values of fr. If an amplifier is used to force the collector
current, shown in Figure 4.1(b), the influence of i3 is further decreased. The noise source
ig is divided by the current gain G of the amplifier when transformed to the collector
terminal. This amplifier is often implemented by a common-collector stage, which
possibly is another transistor in the TL loop, thus having a double functionality [11].

e (P le (P
Ly
i VA i is A E
v i t4e i
(a) A diode connection (b) An amplifier connection

Figure 4.1 Biasing of a transistor in translinear circuit

The flicker noise is characterised by the corner frequency f; . In common bipolar Ic
processes, f; is usually quite low, typically a few hertz, and decreases when the base
current decreases [20]. Due to the very small influence of base current shot noise in TL
circuits, the relative influence of 1/fnoise in a TL circuit is characterised by a much lower

comer frequency of about f; /fBr. As a consequence, the flicker noise can be safely
neglected in most applications.

The thermal noise generated by the base resistance cannot be compared directly to the
shot noise sources. The noise voltage v, need to be transformed to an equivalent noise

current source. Note in principle, this transformation of v, yields two components: a

noise current source between the collector and emitter terminals, and a noise voltage
source in series with the collector terminal. However, the influence of the latter on the
collector current is negligible, because of high transistor output impedance [21].

Referring to equations (4.2.1) and (4.2.5), we can conclude that S, is negligible when it
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is much smaller than S;_ at low current levels, i.e., /. <<1U, /R, . The higher the current
level, the heavier influence the thermal noise. At high current levels, i.e., I >> U, /R,

Vg, becomes the dominant source of noise.

Hence, when we analyze the noise influence in TL circuits, we can neglect base shot
noise and flicker noise, thus the total noise formula can be simplified to:

Stotal (w’t) = Sic (0), t) + SIRB (a)’ t)
14 2RsLc (t)} (4.2.7)

T

=S, (co,t)(

4.2.3 Signal-to-Noise Ratio

An indication of the maximal SNR of a TL circuit can be derived from the SNR of a
single bipolar transistor.

SNR of a Bipolar Transisitor

B0 : : : :
70 f--emmmmeeee e demmmoglonnes drmmmmmeneeeees fronnmmsnnees -
e
i) E ; E :
E 1 N ' :
o 50 - e A oo fronenennees e -
= ' ] ' ]
7] : : : :
] dommmmmnneees fromoeneeeees TR fommnnnneee s .
5 : : [-- Saturation of SNR
S 2 A A i | — SNR
0 i i | I
107" 10° 10° 10°* 107 10°

Collector Current Z_ (Amp)
Figure 4.2 The SNR of a bipolar transistor

The signal power processed by a single transistor is proportional to the square of I¢. For
simplicity, here, we regard the DC value of I¢ as being the processed signal, thus all noise
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sources becomes stationary. Dividing this by the noise power in an equivalent noise
bandwidth B (in hertz), the SNR of a single bipolar transistor is given by:
Ig I

SNR = = , (4.2.8)
2q1.(1+2R,I./U;)2B 4B +2R,1./U;)
and we can easily get the saturation level of SNR:
lim SNR = Ur . (4.2.9)
Icow 8qBR B

A TL circuits consists of one or more TL loops. Each of these loops can more or less be
regarded as being a cascade of transistors. The SNR of such a loop is thus limited by the
transistor that has the lowest SNR and the equivalent noise bandwidth.

For example, given Rp = 600 Q, and B = 1 MHz, the SNR increases linearly proportional
to I¢c (due to ic), and saturates to 75.3 dB, due to i, , as illustrated in Figure 4.2.

4.3 Noise Analysis Method

Due to the exponential relation between Vpg and Ic of transistors, translinear circuits
behave non-linearly. Basically, there are four major non-linear behaviours, all from
exponential device characteristics.

First, the multiplication of collector currents, see equation (3.2.9), introduces signal-noise
intermodulation. Second, the signal-dependent transformation of the base resistance
thermal noise voltage source into noise current source also introduces multiplicative non-
linearity, see equation (4.2.5). Third, due to the time-various collector currents, the noise
current sources are, in general, non-stationary. Finally, in dynamic translinear circuits, the
inclusion of capacitors results in nonlinear dynamic transfer functions.

Therefore, the objective of nonlinear noise analysis methods is to acquire an equivalent
output noise characteristic, due to internal noise production.

4.3.1 TL Equations with Noise

This is the first step, to include the noise sources in TL equations. For this purpose, the
main noise sources are added to each transistor. For example, Figure 4.3 depicts the
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inclusion of collector shot noise current sources and base resistance thermal noise voltage
sources, in the second-order TL loop of Figure 3.3. Transistors are biased at currents I
through /4. Each transistor is accompanied with a shot noise source, from i; through i,
and a thermal noise voltage source, vs through vs. Because we prefer current sources,
these voltage sources need to be converted to the equivalent current sources through
equation (4.2.5).

Since the junctions in a TL loop are serially connected, vs to vg can be combined into a
single noise source vg, and therefore ix, in current mode. As a result, it can move freely
through the TL loop [11].

From the translinear circuit principle in equation (3.2.10), with 4 = 1 (for simplicity), we
get the TL loop equation including noise sources i} through is:

U +i)UI5 +i) =, +i,)(J, +i,)=0. 4.3.1)
Since the equation contains both signals and noises, it becomes the basis of non-linear
noise analysis.
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Figure 4.3 Translinear loop in the presence of noise

4.3.2 Input-Output Equation with First-Order Noise

This step is to figure out the input-output relation, including the influence of noise.

Elaborating equation (4.3.1), we get
LI +1iy + Iiy + iy — LI, = i, =10, =i, =0. 4.3.2)

In general, an nth-order polynomial is obtained for an nth-order TL loop. In this equation,
each term comprises the products of signal and/or noise currents. As long as the noise is
generally much smaller than the signals, products of two noise currents are small enough

33



to be ignored [29]. Therefore, only products that have at most one noise current remain,
i.e., first-order noise or signal-noise intermodulation, are relevant. This yields:

LI + 1, + 1,6, - 1,1, - 1,i, - 1,i, =0. (4.3.3)
It is interesting that from equation (4.3.3), noise sources show no mutual influence.
Therefore, they are uncorrelated and can be calculated individually.
The input-output relation can be solved by rearranging the expression of the above
equation (4.3.3). The output current I, Which is one of the currents /,, n=1,2,3,4, can be
expressed by the input current J;, and the noise current i,. Thus, the result is a polynomial,
a rational function or a function containing nth-order roots.

Because noise is usually much smaller than signals, first-order noise components thus can
provide sufficient accuracy. So, the output I, can be approximately expressed through
the first-order Taylor series, as a function of [;, and all first-order noise and signal-noise

components.

4.3.3 Autocorrelation and Power Spectral Density

Autocorrelation and power spectral density (PSD) are two important indicators to
determine the noise influence.

It is natural to divide the output current I, into three mutually uncorrelated components.
Denote 5(¢) as the input signal vector, 7 (¢) as the noise sources vector of all noise

currents i,. So, 7(¢) is statistically dependent on §(¢#) when it contains shot noise. So,

the first component is the noise-free part, a deterministic component C(#):

C@) = E,,());z> (4.3.42)
the second one is the signal component S(¢):

S(t)=E[1,, (t)|§ ®1, -C@), (4.3.4b)
the last part is the total noise component 7(?):

r®=1,,0-CH-S0), (4.3.4c)

where E[-] represents the statistical expectation, i.e., the ensemble average at a certain

time ¢, with respect to §(¢) and/or 7 (¢) , as denoted by the indices. The signals C(¢), S(¢)

and T(¢) are completely uncorrelated. Hence, the autocorrelation functions Rz, £), R«( 7, £)
and Ry(7, £), and the power spectral density S @, t), Ss( @, f) and SH(w, ) can be computed

separately and directly. At last, by combining these components, we can obtain the

autocorrelation of I, Rioul(7, 1), and its Fourier transform to 7, PSD Sp,,( @, ?).
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The noise component 7(#) can be further separated into a signal-independent noise and a
signal-dependent noise. So, based on first-order Taylor approximation, each noise source
T(?) can be expressed by a noise current source ii(f) and a noise-free signal current Gi(¥)
[29], where subscription i stands for one of the »# noise sources:

I, =i, -G@®, 4.3.5)

For non-stationary collector shot noise, it is convenient to represent it as a modulated
stationary noise source, i.e.:

ic(t)=a(t) -n(), (4.3.6)
where n(?) is a stationary noise source and a(f) is the modulation function. By definition,
the power spectral density of n(?) is:

S, (®)=24I,, “4.3.7)

where 1, is a dc current, then the modulation function a(¢) can be drived from:

V291:(2) = a(t)y241, ,
ie., a(t) = JIC ®/1, (4.3.8)

Often, the noise iy(¢) is a shot noise, the autocorrelation of Rz(7, £) can be calculated as:

T.(t) =i;(8)- G; (&) = m;(D)a; ()G, (1),

R, (5,t) = R (2)-[a, ()G, (®)]’ (4.3.9)
Similarly, the power spectral density function Sn(w, ) of Rn(z, £) is:

Sy, (@,0) = 87, () -[a,()G, O
=241, (0G;(1)°

In the above discussion, thermal noise sources are omitted. As mentioned before, the
thermal noise source v, can be converted to the quivalent current source i,, thus dpendent

on collector current I(?), and it can be shifted freely through the TL loop [12]. Obviously,
it is the simplest choice to select a transistor that is biased at a constant current. This is a

(4.3.10)

prevalent situation.

4.3.4 Output SNR

Finally, the circuit output SNR for a given input signal is ready for determination.
Intuitively, both the signal power and the noise power should be independent of time.
However, when the input signals are nonstationary, the noise power obtained by

integration of equation (4.3.10) over @ is time-dependent:
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B(0)= j‘: S, (o, 0d. 43.11)
A convenient way to reach the time-independent SNR is to average the power, or
equivalently the power spectral density, over time,

P, = E[P.(t)]. (4.3.12)
Therefore, we can obtain the final time-independent SNR:

F,
SNR =& (4.3.13)

T

4.4 Noise in Static Translinear Circuits

In this section, we will apply the proposed noise analysis method to some generic static

translinear circuits.

We will firstly analyze a very simple circuit, the current mirror, which has been
mentioned in section 3.2.2. Consequently, some circuits containing second-order TL loop,
a square circuit and a square-root circuit, are discussed.

4.4.1 Current Mirror

Current mirror is the simplest translinear circuit. In this circuit, Q) and O, are identical.
Therefore, the parameter A in the equation (3.2.9) becomes 1. In general, TL circuits are
described by products of currents. However, in this case, the circuit is too simple to have
current multiplications. It shows to be a first-order polynomial. The only mechanism of
signal-noise intermodulation occurs at the transformation of the noise voltage v, into an

equivalent noise current ig,.

Idc+1in ¢ ‘ Idc+10ut
i\ 1\IQI _ Qz .
i[ l’: ‘% l: ; iz

\ |~
\.1,1 I\~’I I\

- e = = -

L4

[P R .

Figure 4.4 A current mirror with noise sources
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Figure 4.4 shows a two-transistor current mirror. The dc current I . is greater than the
peak value of I, resulting in I;.+ I;; > 0 all the time. This is so-called class A biasing. [;
is a zero-mean current.

Three noise sources iy, i, and v; are depicted, where v; represents the sum of the two
thermal noise sources of Qjand Q, [12].

First, the voltage source vs need to be transformed to an equvialent noise current source i3,
which is in parallel with i;. We know the transconductance 8m of O1is Ic, /Ur, where Ic=

I+ I,. Therefore, i3 is found to be:
. v
Iy =g,Vs =(Idc+I‘.n)—(}3-. “4.4.1)
T

From equation (4.4.1), we can clearly see the signal-noise intermodulation. The noise
source i3 contains two uncorrelated parts. The first part is ;. v3/Ur, only depended on the
statistics of v;. However, the second part, I;, v3/Ur, is the intermodulation of signal [;, and
noise vs.

Neglecting all non-idealities of the circuit, based on the TL principle shown in equation
(3.2.9), the collector currents of Q) and O, are equal, i.e.,

I, =1,. 4.4.2)
Then, we add non-idealities into the equation (4.4.2). As mentioned before, thermal noise
source v; can move freely in the circuit, we thus associate it with Q. Therefore, we
obtain:

I, +1,+i+i;=1,+1

out+12
Iout =Iin +ll +l3 —12

4.4.3
=Iin -I-il_i2+(ldc+1in)v_3 ( )
Ur
Applying the noise analysis method in the previous section to this equation, using

principle equations (4.3.4a) — (4.3.4c), it is easy to match them to:

Cc=0, (4.4.42)
S@)=1,, (4.4.4b)
T() =i —iy + (I, +1,”);—3 . (4.4.4¢)

T

In this circuit, all noise sources are assumed to be uncorrelated. So, the autocorrelation of
the total output noise 7(?) is:
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) 2
R (z,) =R, (r,D+R, (r,)) + R, (z, t)[ﬂ'?;i)] , (4.4.5)

T
R;, and R, are shot noises, equal to 2g/(f)&¢). Applying Fouier transform to (4.4.5), the

corresponding time-dependent power spectral density is:

Lo + 1,0
U

T

Sy (@,0) =S, (@,0)+S, (@,0)+85, (@, t)[
(4.4.6)

T

2
=291, +1,()+29(, + I . (1) +4kTR |:(I"°—-;]I‘"(£)—)]
Because we are expecting the time-independent PSD, we need to find the expectation
over a stationary input ;,(¢). To this end, let it be a sine wave at frequency ax;

I, =ml, sin(w,t +9¢), 4.4.7)
where m is the modulation index, and ¢ is a uniformly distributed stochastic variable,
representing the arbitrary choice of the origin of the time axis. Then the ensemble average
of S1(w) is:

S, (@) = E[S; (@,1)]
4qR,
=2ql, +2qI,, + % U, +1,)

T

=2gl,, +2q1,, + 4gRB [12 +12 +2I, 1, ] 4.4.8)

dc*in
T

4g9R 1
=4qgl, +—2L|12 +—m?I2
q1 4 U, [ ey de

=4ql, [l + Relae (1 +lm2ﬂ,
U, | 2

5 2”/0) . . . . .
where I, =ml, -* J:) *sin(w,t + #)dt = 0, since it is a zero mean signal,

in

2nlwy
I =m2 -2 \ "sin® (@t +@)dt =m*I% - 1.

Applying the equations described in Section 4.3.4, we can get the SNR of the circuit:

SNR = Rvignal = %mzljc
P .
wise 9. aqr, |14+ Rele (1+1m2)
U, \ 2

(4.4.9)

m2

16¢B L+R—B(l+lm2)
1, U; 2
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The saturation level follows from the asymptote:

2
lim SNR = — 2T
Lo 8qR,B(2+m’)

(4.4.10)

Figure 4.5 shows a simulation of the SNR vs. dc current in a current mirror, where Rp =

U
600 Q, and B = 1 MHz. When I, is small, ie., I, <<7—T—), the resistance
© Ry\l+m?/2

thermal noise is negligible, the SNR is linearly increasing subject to I.. However, when
I is relatively high, the SNR is almost the same as saturation level.

In addition, the saturation level of SNR is a function of the modulation index m, thus,
various m can lead to different noise influence.

Note, because this circuit works in class A, m is always less than 1. In other words, the
input current is always positive.

SNR vs. DC Current
BD T 1 T L]
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Figure 4.5 Signal-to-noise ratio for current mirror
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4.4.2 Square Circuit

Now, consider a frequency doubler, using a square circuit shown in Figure 4.6. Similar to
the previous simple current mirror, all four transistors contribute their shot noise sources
i1 through i4, and four base resistance thermal noise sources are combined into one source
vs [12]. The input signal I;,is biased by a dc current Iz, so that the collector currents of
transistors Q) and O consist of both above currents.

Qs is biased at o, a constant dc current, thus vs can be transformed to an equivalent noise
current source in parallel with i3, without introducing signal-noise intermodulation. To
simplify the equations, and without lossing generality, vs will be assumed to be negligible.
Thus, the TL loop equation is:

(g + 1 +1) g + 1y +15) =L +i3)L, +1y), (4.4.11)

By rearranging the equation (4.4.11), eliminating second-order noise terms, we obtain:
_(Idc+Iin +il)(1dc+1in+i2) |

1, = i. 44.12
out (Io + 13) 4 ( )
Lyt Iin
) :'?\; 9} 70 ‘6[ ,’*‘ is Lout
e . I\ \4’ ou
L] Vs : '
iy .:?\; 1 ‘—I Qs .:?‘; iy
r 20 ’:
Figure 4.6 TL square circuit with noise sources
Since (I, +i,)(I, —i,) =12 —ii =12, i.e
12
(I, +i)=—"— (4.4.13)

(, -1 )
plugging equation (4.4.13) into (4.4.12), and ignoring second-order noises,
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(Idc+1m) (il +i2)(1dc+1in)__

Iout —( o 3) I 4
° ° (4.4.149)
=(Idc+1in) (Idc+]in)( ) (Idc+1m) —i
]o 0 l 2 Io 4
Applying noise analysis equations (4.3.4a) — (4.3.4c),
I, +1,)*
Cl)+S(t) = Ed_IL , (4.4.15)
and
) I, +1, I, +1.)°
T =0+ 2)( wtlu) (‘“ n) —i,. (4.4.16)

12

Assume the input signal I, =ml, sin(w,t+¢@), same as (4.4.7) in preivous section,

0

equation (4.4.15) can be split into:
[, +ml, sin(oyt +@)]

C)+S@) =
IO
t+) +m?sin’ (@, + ¢)|
2
——49—[1 +2msin(w,t + @) + m* ! cos(2;oot * 2¢)]
ch 1 2 ijc :
=21+ —m? |+ —%[4sin(@,t + $) — mcosw,t + 24)]
I, 2 21,
ch 1 2
Therefore, C= 7 1+ -2—m , (4.4.17)
ml?
S(@t) = 2;0 [4sin(@,t + §) — mcos(2m,t +24)]. (4.4.18)

(4]

Equation (4.4.16) reveals that i; and i, are modulated by the fundamental frequency,
whereas i3 modulated by the second harmonic frequency component. In this circuit, the
dc level of the output trnasistor, C, is a function of the modulation index m.

Calculating the autocorrelation functions and then applying Fourier transformations, the
power spectral density functions of C, S and T are:

Sc(@) =2ﬂ[%[l+%m2ﬂ 5(@), (4.4.19a)

o
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- 2

mlI?

Ss(w) =| —% | 87|6(@+@,)+5(@-o,

(@) [210] Brid@ o)+ o@-0,)] (4.4.19b)
+%m27r[§((o+2wo)+5(a)—20)0)]},

29, +1,)" I, +1,)
S, (@,1) = 4ae +1u)” | 200se ) 29U +1u) (4.4.19¢)
IO IO IO
The time-independent noise PSD, can be derived from its ensemble average:
_ 2 2
S, =E%Zd_c[(l+%m2)+%(2+3m2)+$;—(8+24m2 +3m4):|. (4.4.20)

Set the bandwidth of interest to [-B, B], B =2 2@ /7, i.e., bandwidth 2B around 2w , the
SNR can be obtained by dividing the integration of equation (4.4.19b) over integration of
(4.4.20):

I I2m*(m* +16
SNR=—2— m 2) . (4421)
4gB I2.(3m* +24m? +8)+ 81, I, (3m* +2)+41*(m* +2)
The saturation level of SNR is calculated as:
2 2
lim SNR=Jo M (m +16) (4.4.22)
I 49B (3m" +24m” +8)

SNR vs. DC Current Idc
70 N

SNR (dB)

10

10 10 10° 10° 10
DC Current 1 3 (Amp)

Figure 4.7 Signal-to-Noise ratio for Square Circuit

42



Why the SNR will be saturated at a certain level? As I, increases, the power contents of
the collector currents through all transistors in the loop, except 03, increase. So, the SNR
increases as well. However, the collector current of Q3 remains at the fixed level /,, and
because a TL loop is basically a cascade of transistors, Q3 will finally limit the SNR of

the entire loop.

Figure 4.7 shows the simulation result of the equations (4.4.21) and (4.4.22). The fixed
current source I, = 1 pA, the other parameters are the same as those in current mirror

circuit.

To get the optimal value of SNR, we can manipulate the relation between I, and .
Denote I, = A I, the equation 4.4.21 can be rewritten as:

2 2
Lo m G ?6)1 R— (4.4.23)
4gB (3m* +24m* +8)+8(3m> + 24 + 4(m* + 2)1
Denote the SNR to 7(4), to get the optimal value of SNR, the derivative of 7(4) with

SNR =

respect to A should be zero, i.e.,
on _ Lo _m*(m* +16J(3m* +24m’ +8)-a(m* +2)22] _ 4424)

OA  4qB [(3m* +24m® +8)+80m? +2A +4(m* + 22
Optimal SNR saturation vs. 1

Saturated SNR (dB)

400 0.5 1 1.5 2 25 3 35 4 45 ]
=LA, where ] e = 10 pA

Figure 4.8 Saturated SNR against A for Square Circuit
Hence,
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(3m* +24m? +8)—4(m* +2)* =0,

/1=\/(3m4 +24m* +8)

4(m* +2)

(4.4.25)

For example, when m = 0.5, we getA = \/227/12 ~1.2555, i.e., when I, = 1.2555 I;., we

get the maximum SNR.

Figure 4.8 shows the trend of maximum value of A when m varies from 0.1 to 1.

Through this optimal algorithm, we can design an appropriate value of 4, to get the best
SNR, i.e., to reduce the influence of internal noise as much as possible.

4.4.3 Square-Root Circuit

This is another example of a second-order TL loop, it can be used to realise polynomials,
rational functions and functions containing nth-order roots. The circuit is depicted in

Figure 4.9.
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Figure 4.9 TL square-root circuit with noise sources

From the TL principle, considering the noise sources, we obtain:

(Idc +Iin +il)(Io +i2) =(Ioul +i3)(1mu +i4)3

after rearranging this equation,

1 I I, +1.
L, = +I,)I, +|i © i, |[“E——i -, |, (44.27)
2 1, +1, 1,

In this case, we found the first term of the right-hand-side is actually the summation of
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C(¢) and S(¢). The second term is obviously the T(#).

Using the previously elaborated noise analysis method, it is easy to get the time-
dependent power spectral density function:

1
S, (@,1) =5[2q10 +2q(I +1,) + 2\ + I, +2aT o + 1)1, ]

=g, + 1, +1, +20T, + 1,0, ] (4.4.28)
= q[Io +]dc +Iin +210ut]

Because the average expectation of I, is approximated equal to /1,1, (1—m*/16) [12],
the time-independent PSD is thus obtained:

S;(@) =q(l, +1,, +2T,I, (1-m*/16)), (4.4.29)

where m is the modulation index of ;.

4.5 Noise in Dynamic Translinear Circuits

In this section, the nonlinear noise characteristics of dynamic translinear ciruits, or in
general, log-domain filters, will be discussed.

To large extent, the noise analysis method for DTL circuits is quite similar to those
described in previous sections for STL circuits. However, because the existence of
capacitance currents, which is frequency dependent, some more complicated analyses are
necessary.

Some examples will be shown, such as class A and class AB translinear filters.

4.5.1 Noise Analysis Method

The TL loop principle, for example the equation (4.3.1), is suitable for both STL and
DTL circuits. The only difference is the presence of the capacitance currents.

In order to find the DE representing the transfer function of a DTL circuit, the
expressions for the capacitance currents have to be derived and substituted in the TL loop
equation. Since the capacitance currents are related to collector currents incorporating
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noise, the resulting capacitance noise expressions will include such noise sources and
their derivatives. These derivatives of noise sources are additional elements, and are
correlated to the noise sources from which they originate.

Thus the DE contains complicated noise terms, after manipulating the capacitance current
expressions. Here, a first-order Taylor approximation of all noise sources and their
derivatives can be used to simplify the expressions.

Since noise sources are correlated, they generate a colored frequency spectrum. Each
autocorrelation function Ry, thus has to be computed collectively for an entire group of
correlated noise sources.

Frequently, we can rewrite a group of correlated noise sources into one single expression
of the form i;G;, where i;represents a white noise source and G; contains no noise sources.
If this situation is accomplished, equations (4.3.9) and (4.3.10) can be used to calculate
the noise frequency spectrum.

In addition, not all noise sources will be reflected at the output of the filter. So, we can
only consider the noise terms that are situated in the expression of the output of the filter.
To transform the noise terms to the output, those terms need to be multiplied by a certain
frequency dependent transfer function. For example, if the filter transfer function is H(w),

the noise terms at input need to multiply |H( a))lz.

4.5.2 Class-A Translinear Filter

This is a well-known DTL circuit, working as a first-order low-pass filter operating in
class A. Its cut-off frequency can be tuned by the current ,. It consists of a second-order
TL loop, comprising Q; — Qs, and a capacitor C, shown in Figure 4.10.

In the circuit, the noise voltages vs and vg, are representing the base thermal noise of Q) —
(O, and O3 — Qq, respectively. They need to be transformed to the equivalent current noise
sources. However, because the existence of the capacitor C in the TL loop, vs and vs
cannot be combined to a single equivalent noise source. Instead, they are transformed to
separate noise currents is and is, which are in parallel with 7, and is, respectively.

Therefore the equation of this TL loop comes into
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(Idc +Iin +i1 +i5)(lo +i3) = (Io +Icap +i2)(1dc +1

out

+i, +ig), 4.5.1)
where I, can be substituted by equation (3.2.16).

Lo+ 1y Lac+ Loy ‘
f [
! PRak - Pial
i’ A ) l/ g a\) iy i3
N ,’l Nee I\ \.,;, N
1 Vs ' 03
Lo 0 |

C J‘ 21,
TY

Figure 4.10 Class-A TL filter with noise sources

. . +1 . . . .
Using i, =i, L"I———"c— , which represents the equivalent noise source of i3 at the output.

o
The above equation can be rewritten to

Uy +1, +i +i), =, +Imp +i,)1, +1,,
o, +1

out

(4 +1,

+iy,, +iy +ig), (4.5.2)
+iy,, +iy +ig) /0t

where I =CU
cap T tiy,, iy +ig)

ut

Through equation (4.5.2), we can get the input-output relation including first-order noise,

ignoring the products of noise sources:

Cu
Io

It is clear to find that i1, i and is are associated with the input of the filter, while i3 ,, i4

. d I, +1
T . . . . . . . . . ut d
|:(Iout +E(’3,eq +l4 +l6) +Iaut +l3,eq +l4 +l6 _Iin +ll +l$ —l2 = I -

o

, (4.5.3)

and i are located at the output.

In equation (4.5.3), we find two noise-signal intermodulation terms, i>/,, assoicated with
iz, and i3, associated with 73 ;. Since i2<< I, and i3<< I, i> and i3 are considered to be
uncorrelated with I, thus the autocorrelation function R(i2l,u) = R(i2)R(lou), and
similarly, R(i3Iou) = R(i3)R(lous). Therefore, the corresponding power spectral density can

be obtained:
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SGala)@,) =55, @0)*S, @)
T
| (4.5.4)
=— 5,008, (@-y,Ddy
27 =,

where * stands for convolution.

Since i, is a white noise source, the above integral is easy to solve, and the PSD is given
by:
S(i2]oul )(w9 t) = Si2 (a)s t)})low ’ (4.5.5)

Similarly for i3,
S(1,, ) @,t) =S, (@,0)P, . (4.5.6)

where Py, denotes the output power.

Thus the two noise spectra St,,(®, £) and St (@, £) can be obtained separately [29],

(]o +]oap)(ldc +Iaut)2 + 2RB(Idc +Iin)2

Sy (w,t)=2q| (I, +1,)+ 5 , (4.5.7a)
in hl’_J Io \ UT
‘ "
I +1 ) 2R. (I, +1 )>
S, (w,t)=2q Ui +1o)” +(, +1,)+ 8o * Lou) , (4.5.7b)
out Io W"—J UT
—_— Iy \ ~ -

ij (3

where the horizontal brackets indicate the origin of the terms.

Then, we need to find out the time independent PSD. We use the enemble average of
time dependent PSD. And we need to transform St,(@, #) to its output equivalent PSD,

through g(a})lH (co)]2 . Thus the whole average PSD S, () is:

5@ =4[ s, @olH@] +5,_ @0

ch +1)lw, N 2R313c (4.5.8)

I U,

o

T

= 2q(1dc + ](1+|H<w>|2)+ Lelp,, +p, @S )

where P, =12, P =I

in> < 1I,, out

and T =27 /w,, the period of the input signal.

The transfer function of this filter can be obtained from the idealized TL loop equation
followed by Fourier transform.
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First, we have the idealized transfer function, derived from equation (4.5.1):
S + 1), =, +1,)1, +1,,), 4.5.9)

Then, we can get the input-output relation. However, I, is an unknown, and need to be
calculated specifically.

To better understand the calculation of I.,,, we refer to the Figure 4.11, which is the right

part circuit of this filter. From the equation (3.2.14) to (3.2.16), we have,
. . i, i i +i. I
Icap = CVcap =C(Vses —Vie3) = CUT[I_:' - i) =CUy (ch"‘—lo.: - I_]

[+]

Because /, and I, are all constants, their derivatives are zero, thus the Icqp tumns to be:
I
I,=CU—>—. (4.5.10)
I de + I out

Plugging (4.5.10) to (4.5.9), we get the input-output relation:
11,=11, +CU.I

o” out out *

(4.5.11)

Applying Fourier transform, the transfer function of this filter is:

I
H(jw)=—° . 4.5.12
(o)=7 + jaCU, (4.5.12)

o

1, Lact Low ‘

03 oo

C
- VBE4
-1 9>

Figure 4.11 Part of Class-A TL filter

Suppose we have the input signal same as before, then we get the input power:
P =1, =im’I},. (4.5.13)
Because this circuit is a low-pass filter, to simplify the calculation, suppose the power

gain of this filter is unity, i.e., P, = Py .
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The total output noise power is the integral of equation (4.5.8) over o, at the bandwidth
range [-B, B], where B = I, / (2CUr). Because only transfer function H(j®) is function of
@, we can easily calculate the integral of |H(j co)l2 first, and then multiply the other terms.

24, 24,
2cU; , 2CU; I2
H(jo)| dw = - dw
[, (o) L I +(CU, ) @
T2cu; T2cu,
24,
(cU.y? _}ﬁo_[ L\, .
00, | o
24,
12 . (cu, v
= 5 arctan [0}
(CUT) Io \ Io __zid_o_
2CU,

I
= —°_.(arctan —arctan(~r))
T

’ SNR vs. Modulation Index m
B0 . ——————r . ———r—r—r—rr

50

40

a0

SNR (dB)

20

---- Linear approximation
—— Non-linear calculation

11l

10° 10?2 107 10
Modulation Index m

Figure 4.12 SNR ratio for a TL low-pass filter operated in Class-A

Thus, we can get the SNR of the class-A filter:
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mzli_
Io Idc+13c(l+%m2)+2RBljc +R8m2[3c
CU, I U, U,

o

SNR = (4.5.14)

4q

Consider a sinusoidal input current within the passband of the filter, Figure 4.12 shows
the SNR vs. modulation index m, where C = 10 pF, Rp = 600 Q, I;. =5 A, I, = 1 pA,
and B =1.92 MHz. Because this filter works in class-A, m < 1.

From this figure, we can find the signal-noise intermodulation influence is very small,
since the linear approximation and non-linear calcualtion are so closed to each other. The
difference is only equal to: 52.11 - 50.59 = 1.52 dB for m = 1.

Hence, for class-A TL filters, the noise floor in the absence of any signals can be used as
a very good estimate of the noise.

4.5.3 Class-AB Translinear Filter

Since the current flowing through a transistor is always restricted to positive values, to
process the signals of both negative and positive polarity, one popular option is to use
push-pull stage, operated in class-AB.

Iinl Ioutl

Current Lo
Splitter o

Iim F Toun

Figure 4.13 Principle of class-AB operation

That is to say that class-AB operation improves the DR of the companding system. To
realise a class-AB first-order low-pass filter, firstly, we use a geometric mean current
splitter, which will be explained later, to split the input current i, to ;s and J;,p. Then,
apply them to the inputs of two class-A TL filters, described in the previous section. The
dc bias current I;. becomes useless and is omitted. The output currents of the two class-A
filters are denoted by I, and L,,. Again, the input signal is assumed to be sinusoidal,
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see equation (4.4.7).

In class-AB operation, the input signal [, firstly split into two strictly positive signals J;;
and I;,. The difference equals the original signal [;,. Therefore, although I;,; and /;; are
strictly positive, the difference I;, - Ii2 can be negative values, thus is able to process
bipolar signals. The two signals are processed separately, shown in Figure 4.13.

There are several current splitting strategies. A simple one is to set [;;;= I;,, when I;; > 0;
otherwise, I;;; = 0. Similarly, when [;;, < 0, Ly = -I;n, otherwise, [, = 0. This one is
known to work in class-B, it is simple but has an important disadvantage: the cross-over
distortion.

-, O
NEOLRE

\_:,
1

‘ Iin2

Figure 4.14 Geometric mean circuit splitter with noise sources

To avoid it, the transistors should never be completely turned off. In other words, it
works in class-AB. A popular split strategy is as follows, using geometric mean function:

Tins =%(\/4130 +1; iI,."). (4.5.15)

It can be implemented through the circuit shown in Figure 4.14. The output current of the
splitter equals the difference of I, and Z;,;, see Figure 4.15. Looking at the node at which
the input current source is connected, it is clear that the output current is I;,, irrespective
of the noise sources. This means that the splitter itself does not add any noise [12]. The
noise sources present in the TL loop of this splitter only result in common-mode noise in
I and I;p, which is irrelevant.

Using the equation (4.5.15) of geometric mean current splitter, the power P, can be
obtained:
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B =1} =I§c(l+%m2), (4.5.16)

where I, =ml, sin(wyt +@).

In this system, the average of output current is same as the average of input current, i.e.,

I, =1,, . However, the exact expression can not be calculated, as the input is a sine

wave, see equation (4.4.7).

E ‘\‘ T T T T T P o
. ’
. —- Class A R
sLO\, — Class B YA
= ---- Class AB, Geom. T
“ 0 / Py
— \\ ' ’ "
T4t ; ;s -
N . : Lo
© *, : /s
E ¢ : L
= "‘ : .
§ 3 = \\ ‘/ " -1
~— 9 N L4
~ . ’
_.E . : ’/ L’
- Y / ’
~ . 4
_E2 \‘\ . s, ’
~. Y S
n‘ : ”‘
. :”
1F P -
[ S
---------------------- , ‘-"'---~_____--------
A ] 1 Z 1 ] o
-b -4 -2 0 2 4 b

l, (Normalized)

Figure 4.15 The currents resulting from different splitters

But, for noise purpose, we can still get the approximated value by:

I,,, m<<l1

I, =1 = 4.5.17
inl outl % Idc, m>> 1 ( )

Figure 4.16 illustrates the relation between the exact value and approximation of the dc
output current level.

In class AB, the bias dc current I;. is obsolete and therefore omitted. Thus, the
expressions of two two noise spectra St,,(@, £) and S7,, (@, t), shown in equation (4.5.7a)
and (4.5.7b), is modified to:

d,+I1, )1, 2RI’
2 Sl 1 (4.5.18a)

S; (w,6) =2q| I, +
T:..( ) q[ IZ UT

(o]
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, I? 2R, I
S (@,t)= 2‘][1&”"” +—l‘;—i} (4.5.18b)

o T

5 I ) T ) ] 1 L] 1 v

—— Exact
5F |---- Approximation

Figure 4.16 The dc output level of a geometric mean splitter

Similarly, the total time-independent output noise PSD is obtained.

Assuming the influence of Rj is negligible, the computation of the average sepctrum of
PSD becomes:

Sn@)=+[ [s,. @.0)H @) + Sy (@.0) it

P 2R.P (4.5.19)
= zq(loull + ;w“ + el )(1 +|H(w)|2)

o UT

where Py, is the power of L, i.e., P = I f,,,, , and H(w) is the transfer function.

Using integration of the equation (4.5.19) over @, then times 2 for two class-A filters, and
finally multiply the noise bandwidth 2B = I, / (CUy), we thus obtain the time-independent
noise power. So, the SNR is given by:
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CU,m*I%

841, ﬁ10+1dc(1+lm2J+M 1+lm2J
2 4 U, 4

SNR =

4.5.20
cu,1, ( )

21 2
2q|: ° 4 1,,{1 + M&](l + _42—)]
m U, m

The SNR is a function of the modulation index m of the input signal. Figure 4.17 is the

simulation result, where the parameters are: I, = al,, where a = [0.1, 1, 10], C =10 pF,
Rp =600 Q, I, =1 pA, and Ur= 26 mV. The x-axis variable, m*a, represents the
amplitude of J;,, normalised to /,. When m*a is at low values, the SNR increases linearly
at 20 dB per decade, and lower value of I, leads to higher SNR level. Eventually the
SNR saturates at 58.9 dB.
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Figure 4.17 SNR of a class-AB translinear circuit

10° 10°

The maximal SNR is

lim SNR = CZ; D%
2q(1+ L °)
U

T

(4.5.21)

In lower current level, the expression of limitation of SNR approximately equals:
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lim SNR = CzU’ , (4.5.22)

m-—>o q

since the influence of thermal noise is negligible. For example, in the above setting,

2}:;]° =0.0462 , which is much smaller than 1.

T

2R, 1
Z 570 551, then

While at high current level, the thermal noise becomes dominant, i.e.,
T

the saturation level of SNR is given by:

2
lim SNR = 4CIE]TI . (4.5.23)
m=—» q B

o
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Chapter 5

An Alternative Noise Analysis Method

In this chapter, an alternative noise analysis method is discussed. In previous section, all
the noise sources are combined and/or moved to output port, before computing the noise
power spectral density and signal-to-noise ratio. On the other hand, this method is to
analyze the influence of all noise sources directly and individually, without any need to
combining or moving them. Because, in principle, the noise sources are supposed to be
uncorrelated to each other, this way will not affect the analysis result.

From the previous chapter, we know that the total equivalent noise current at the collector
terminal of a transistor is the summation of collector current shot noise and base
resistance thermal noise, ignoring the other two noise sources, base shot noise and flicker
noise, which are relatively small and negligible. Actually, in most cases, the circuit is
working on a low level dc current, which means that the base resistance thermal noise has
much smaller influence than collector shot noise, thus also can be ignored.

In the following analysis, for simplicity, we will just consider the collector shot noise

source.

We will still use (—) to represent the average value over time.

5.1 Noninverting Integrator

This is a very popular dynamic translinear circuit, which used in a variety of filters, such
as Seevink’s class AB TL filter [6], low-pass log-domain biquad filter [17], etc.

As a part of a filter, I, is typically connected with another TL loop to form a higher-order
filter. When it is a dc current, it provides damping and implements local negative

feedback [17].
The TL loop equation can be derived from the basic TL principle,

U, +i){, +i) =, +i3)U,, +i,). (5.1.1)
The corresponding lossless TL equation is then obtained:

I1,=1,1,,. (5.1.2)
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Figure 5.1 Noninverting integrator with noise sources

T ~ out

where I, =CU I /l . » Plugging this condition to the above equation (5.1.2), we get

the DE and then transfer-function in frequency domain by applying Fouier transform.

I .
I inI o = CUT - out — CUT] out
out
1
P H(s) =t ® _ Lo (5.1.3)
I,(s) sCU;

Next, to transform the noise sources i1, iz, and i3 to the output, we also need to know the
transfer function at I,,; over I, and I, respectively.

H, (5= Lo _Tou() 1u() _[Lu] Lo (5.1.4)
I(s) [I,(s) I,(s) \1,)sCU;
L) L,L, (L.) I
H — Ol — o oul = Ol 0 5.1'5
=T "L 1, (10 JSCU, (5-1.3)

Now ,we introduce two definitions: noise scaling factor &, for noise » and intrinsic noise
transfer function N(s). This is done by removing /i, and I, in (5.1.2), and replacing them
with a noise source n and the noise scaling factor k,. We get:

k n=sCU,IL,. (5.1.6)
Then, Tow _ K _ k,N(s). (5.1.7)
n sCU,

By comparing equation (5.1.4), (5.1.5) and (5.1.7), we find the scaling factor and intrinsic
noise transfer function to be:
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k,=1,,

N(s)= 1 . (5.1.8)
sCU,
The power spectral density of each noise sources at the output can be obtained:
2
3 — I
S (@) =i}|H ()| =2q1_|—2>—| , 5.1.9
l‘l( ) ll ( )I qmja)CUT ( )
(72 2
= I 1
S, () =i2|H,, (@) =2qI,| 22 |—=—| , 5.1.10
lz( ) 2! Io( )l qi, I: ijUT ( )
(72 2
3 —| 7 1
S (@) =i|H,, (o) =2q1,| =2~ |—=—1 , 5.1.11
.,( ) 3| 13 )I q 3\13JijUT ( )
S, (@) =i =241, . (5.1.12)

Because all the noise sources are independent to each other, the total output noise PSD is:
Stotal (w) = Si, () + Siz (@) + Si, (w) + S,-‘ (w). (5.1.13)

In the above PSD equations, all the PSDs are in the form of time-independent ensembles.
However, the currents are originally time-dependent, e.g., I;, is actually [i,(@,f). Thus,
before we calculate each PSD term, we need to compute the time-independent current
expressions. The method is to acquire the time average ensemble according to one signal
period T.

In time-domain, the transfer function becomes:

1
I =——\1Idt. 5.1.14
o =g (5.1.14)
Suppose we have the input signal:
I, =1, +ml, sin(@y+9), (5.1.15)

where m is the modulation index, ay is the signal frequency, and ¢ is a uniformly
distributed stochastic variable, representing the arbitrary choice of the origin of the time

axis.
So, the corresponding average current and square value are:
I, =1I,, (5.1.16)
—_— 1 T l
2 _ 1 2 g0 _ 12 12
1, = TIO Tpdt =1, (1+—m"), (5.1.17)

Plugging equation (5.1.15) into (5.1.14), we get:
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10
CU,

_Lle t— ﬁcos(a)ot +9)
CcU, @,

Iout (t) = J.[Idc + mIdc Sin(wot + ¢)}1t

(5.1.18)

Thus, we can obtain the average of output current by:

IoIdc _1_
CU, T

T 1 T T m IoIdc
Ty = [y Tou (Dt = [ - ocos(@ot + @)t = (S.L19)

cU,

The square of the output current is given by:

12 = %J'OTIZ (¢)dt

out

2
I\ 17, m 2
=| e—d | __ t——cos(w.t+ dt , 5.1.20
(CU,) T-[O( o, (@4 +9) 120

(1,1, Y 4x®  m’
CU, ) 30! 27w

It is a little bit tricky to get the average value of current 3. We know that

I,=CU, fou (5.1.21)
3 T

out

hence,
Ioul

— 17 1,71
I3=Fj0 cu, dz=CU,Fjo—d1

I out
out out

=CU, %In(]m )|y = €U, h{l ou () J (5.1.22)

T 1,,(0
_ CU,m, ln(m - 272’)

2z m
Now, we can get the noise power spectral density expression by plugging equations
(5.1.16) — (5.1.22) into (5.1.13).

Note that the above circuit is not complete, because capacitor C can not be discharged.

And this can be solved by add discharging elements, which will be discussed in next
section.
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5.2 Inverting Integrator

In this circuit, we add two transistors to discharge the capacitor, shown in Figure 4.11.
The current flowing through Q,, is to discharge the capacitor C.

Using the same TL principle, the lossless TL equation of the inverting integrator is
obtained. Actually, we just add redundant terms on both sides of equation (5.1.2) [17].

(Iin +Iout)Io =(Io _Icap)lout‘ (5'21)
Thus, the transfer function becomes:
I
H(s) =L@ ___ L (5.2.2)
L) sCU,
Then, the transfer function from I, to the output are:
1 .
H, (s)=—"= ©)_ L, 1 (5.2.3)

1,(s) 1, sCU,
L ‘13
0 I . ‘1

‘K (i

\_.!, Iq -

\I | O | C l/ ,1\ i
= '\: .
_‘gl OIS P 1:,: 4

1l Os |
T
Qxl QxZ

Figure 5.2 Inverting integrator with noise sources
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The current flowing through Q. is the actual inverted collector current I3, so the transfer
function is:

Iom(s) _ _Iau( —Io _ Iout Io
I,(s) I, sCU, I, sCU,
The current 15 flows through both Q3 and Q.1, and is actually the same as L., since the
bases of 0,1 and Q, are connected together. Hence the transfer function is:
Lou(s) I, —1,

L(s) 1, sCU,

Hp,(5)= (5.2.4)

H,(s)= (5.2.5)
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Then, we can calculate the expressions for these noise PSDs to the output separately,

since they are uncorrelated to each other.
2

-1,
S, (@) =i ]H(co)] =2q1, 7aCU. (5.2.6)
2 2
I, -1
Siz (a))—l2 IHIo(a))l =2 I [I ) a)c_;] (5.2.7)
5, (@)=5,, @) =E|H, @) =241, * =" l2 (52.8)
iy Py R Io =241, o“’ I coCU L.
2 2
o —(I I
S, (@) =i%|H,, @) =2q13( I‘J Ilf wcoU,' (5.2.9)

So, the total noise power spectral density is:
Swa (@) =8, (@) + 8, (@) +§, , () +2S, (@) + S, (®). (5.2.10)

The factor 2 accounts for the fact that I3 flows through both O3 and Q.

Similar to the noninverting integrator discussed in previous section, all the PSD terms in
equation (5.2.10) are time-independent ensembles, therefore need to be computed from
original time-dependent forms. Please refer to equations (5.1.14) — (5.1.22) for details.

5.3 Second-Order Low-Pass Translinear Biquad

The schematic of a second-order low-pass translinear biquad is depicted in Figure 5.3. It
comprises two integrators.

In this circuit, for calculation purpose, we add an fictious transistor /,, as an intermediate
output transistor. This circuit was thoroughly analyzed in [17]. Denote Hj(s) as the
transfer function from input to the fictious transistor 7,;, while H>(s) as from input to
output. Therefore we obtained the following transfer functions:

1,(sCU; +1,)

I, CU,)?
Hl(s)=1—‘= 1( r) T (5.3.1)
in S2+ d s+ 02 032
Cu, (CU,)
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Figure 5.3 Second-order low-pass TL biquad with noise sources
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Figure 5.4 Signal transfer function

63



Similarly, removing the currents [, and I, and injecting noise currents into each
integrating node one by one, we can derive the intrinsic noise transfer functions:
1 02
CU,)?
Ni(s)= I( r) 7.1
2 d 02~ 03
s+ 3
CU; " (CU,)
1
CU
N,(s) = L , (5.3.4)
2 I d 1 021 o3
s°+ s+ 3
Ccu, (CU,)

where N)(s) represents the transfer function from 7, to output, while N»(s) represents the
transfer function from I, to output.

, (5.3.3)
S

S

x 10% Noise Transfer Functions
15 T ) L ] L I Ll T )
10
]
2
5
(T
=
5
D 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 K| 5 4 45 5
frequency (Hz) 4

Figure 5.5 Intrinsic noise transfer function

Figure 5.4 and 5.5 show the simulations of signal transfer functions and intrinsic noise
transfer function, respectively.

The elements of the circuit used in the simulation are:

Io1=7.048 pA, Io=13.40 pA, I3 = 7.465uA, I;=11.58 pA, and C=4.970 nF .
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For a sinusoidal input signal I,, = I, + 4sin(2xf,t), the signals at intemediate and output

ports are simply scaled and phase-shifted, since the system has a linear-time-invariant
transfer function. For writing convenience, denote L2(£)= Lu(f), then:

1,(t) = I.JH,(0)|+ 4 H,(f,)|sin7f,t + 4,(f,)) » (5.3.5)
_ Im(H, (1))
where ¢,(f) = arctan(-————Re(Hi (f))J . (5.3.6)

Applying the translinear principle to the sub-loops of the biquad, we can get the other
lossless collect currents:

_L@®
I, = 7.0 I, (5.3.7)
1,
cz(t)—o"m—((t)) 02 (5.3.8)
L (),
I,@)= 0 I, (5.3.9)
x 10°
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Figure 5.6 Log-domain biquad filter current waveforms

Figure 5.6 shows the waveforms of these currents in one period. Assume the signal
frequency is 10 KHz, I;r =2 pA,and A =1 pA.
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Now we can calculate the power spectral density of each noise source, at the output. Start
from the TL sub-loop including the input,

S, (@) =291, |H, ()], (5.3.10)
2
I
S, (@) =2ql, (TJ (LM, (@), (5.3.11)
ol
T Ivl i 2
S0 (@) =2q1,| 24| 1,V @) (5.3.12)
ol
Then the sub-loop including the output,
2
I
Sy, (@) = 24102(1—"'J (Z,,]V, (@), (5.3.13)
02
T ]out i 2
51, (@) =291, = (I, @)Y, (5.3.14)
02
Sou(@)=2gI,, . (5.3.15)
Finally, the sub-loop located at the bottom part of the circuit,
2
I
S, (@) =2q1 os( I""‘) (7N, (@))", (5.3.16)
o3
2
—( I
Slc: (0)) = 2q1c3 (I_“J (103 lNl (&)),)2 s (5.3. 1 7)
03
— 1 out i 2
Sldn (a)) = 2qIVl I (103|N1 (a))l) > (5.3.18)
vl

T
where the time-average stands for ()= %J‘O (-)dt . As for the terms containing square of

. T
Zins Lour, and I;, because they are functions of time #, we need to use () =1 L ()*dt to

acquire the time-independent expressions before calculating the PSDs over .

Therefore, we get the total output noise PSD by combining equations (5.3.10) — (5.3.18):
S (@) =S, (@) + ZS,‘“ (w) + ZS L, (@)+2S, (0)+S,,(0), (5.3.19)

where again, the factor 2 comes from the fact that I3, flows through both Oie3, and Oyy.

Figure (5.7) shows the simulation of root noise spectral density at the output, with various
input dc current levels.
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The root total power spectral density /S, (@) was simulated in SpectreRF in [17], and

they are very well matched with the method described in this section.
-11
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Figure 5.7 Output noise with various input dc current
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Chapter 6

Conclusions

In this paper, we discussed noise analysis methods on translinear circuits. Because of
more and more interests are focused on translinear circuit applications in recent years,
actually widely being used in signal processings, the need for noise analysis arose. With
the strict low-voltage, low-power demand, we need to control the noise level at output
very well.

Translinear circuit shows a strongly non-linear noise behaviour, as the exponential
characteristic of the transistor. Adding capacitors into the translinear circuits, the output
noise becames a colored noise, see Figure 5.7. Internally, due to the existence of signal-
noise intermodulation and nonstationary noise, the standard small-signal techniques are
no longer applicable. Therefore, in this paper, the noise analysis methods are based on
large signal equations.

Firstly, the first-order nonlinear output noise and signal-noise intermodulation of static
and dynamic TL circuits are calculated on the basis of existing current-mode analysis
methods. Two important noise measurements, power spectral density and signal-to-noise
ratio , are specified in several generic static and dynamic TL circuit examples. This noise
analysis method combines all kinds of noise sources and computes their equivalent
influence at output, therefore providing PSD and SNR for the circuit designer.

Then, an alternative analysis method for DTL circuits was presented. It is a simple and
direct method, because it calculates all noise sources at their original position, and does
not do any moving or combining processes. In this case, it just considers the shot noise at
collector terminal. Because it is the major noise source, it still provides enough accuracy
for the circuit design.

Thanks to the translinear principle, we can split a big complicated circuits to many TL
loops. That is to say, the above generic circuit can be applied in analyzing much more
complicated circuits. In other words, we can start noise analysis at early design stage, to
ensure good performance.
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