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A bstract

D ispersion D eterm ination in VAPEX; Experim ental Design,
M odeling and Simulation

Ronak A . Kapadia 
M aster o f Applied Science, 2004 

Departm ent o f Chem ical Engineering,
Ryerson U niversity

The heavy o il and bitum en reservoirs o f Canada are one o f the largest hydrocarbon sources 

in  the  w orld. Vapor extraction  of heavy o il, or VAPEX, has emerged as a very prom ising 

recovery process since its  inception in  1991. The p rinc ipa l reason is the environm ental friend

liness o f V A P E X  together w ith  its  cost-effective nature vis à vis other recovery processes. 

In  th is  work, a review has been done on various factors affecting VA P E X  process. A lso, a 

lab-scale V A P E X  experim ental setup is designed to  determ ine the dispersion coefficients o f 

solvent gases in  heavy o il and bitum en. Further, a m athem atical m odel is developed based 

on earlier reported rectangular physical model o f homogenous porous m edium  saturated w ith  

heavy o il and bitum en. The developed m athem atical model is sim ulated to  determ ine gas 

dispersion along w ith  so lu b ility  during the vapor extraction  o f live o il from  a labora to ry  scale 

physical m odel. A t a given tem perature and pressure, the block is in itia lly  exposed on its  

side to  a solvent gas, w hich diffuses in to  the medium and gets absorbed. The absorption o f 

gas reduces the viscosity o f heavy o il and bitum en causing i t  to  d ra in  under gravity. The 

low -viscosity “ live  o il”  is produced a t the bottom  o f the porous block. The production o f live  

o il w ith  tim e is accompanied by the shrinkage o f block as w ell as its  increased exposure to  

gas from  top. These phenomena o f VAPEX are described by the m athem atical model, which 

is used to calculate live  o il production w ith  various values o f gas so lu b ility  and dispersion. 

T h e ir op tim a l values are determ ined for the vapor extraction o f Cold Lake bitum en w ith  

butane by m atching the calculated live  o il production w ith  its  experim ental values published 

earlier.
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Nomenclature
bi, 6 2  constants in  E quation  (2.3) '

do, d i constants in  E quation (2.9)

c lim its  o f in tegra tion  in  Equation (2.16)

C  solvent/heavy o il concentration ,

D  d iffu s iv ity , cm ^/s ,

V  dispersion coefficient o f gas in  heavy o il and b itum en, cm ^/s '

î>o "D when w =  1 , cm ^/s

e root mean square erro r given by Equation (4.27)
I

/  weighted volume fra c tio n  in  Equation (2.1)

g gra-'dty, cm /s^

h reservoir height, cm

K  perm eability o f physical model, cm^

K r  re lative perm eab ility  o f physical m odel

L  length o f model or reservoir pay zone, cm

N  number o f experim ental data points

N i num ber o f grid  po in ts along x-d irection

JVj num ber o f g rid  po in ts along ^-d irection

Q  drainage or production rate, m ^/h .m

t  tim e, s

i f  operation tim e, h
;

T  tem perature, °C

V D arcy ve locity given by Equation (4.5), cm /s

Kai predicted volume o f produced live  o il, cm^

1 4 xp experim ental volum e o f produced live  o il, cm^

X  w id th  o f physical m odel, cm
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N o m e n c la tu r e

X d irec tion  along X , cm

Y  height o f physical model, cm

' Yo in it ia l Y , cm

I y d irec tion  along Y ,  cm

I Z  thickness o f physical model, cm

I Subscripts

I av average

I B  heavy o il/b itu m e n  or liq u id

I /  fie ld

m  m odel 

m ax m axim um  

m in  m in im um  

m ix  m ix tu re  

pz  pay zone 

S solvent

i Greek Symbols

a , j3 constants in  Equations (2.6)

6 angle between the  base o f physical m odel and the horizonta l, rad

p  viscosity o f live  o il, g/cm -s

A x  distance between grids along a:-direction

A y i distance between grids along y-d irection  fo r a given x-loca tion , i

Po viscosity coefficient o f heavy o il and bitum en, g/cm -s

p density o f live  o il, g/cm ^

5 volum e espansion coefficient in  Equation (4.15)

u  mass fraction  o f gas in  heavy o il and bitum en

ujsat equ ilib rium  sa tura tion value o f w, or gas so lu b ility

(j) porosity o f physical model
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1 Introduction

V A P E X  is the  process o f recovery o f heavy o il and b itum en in  a ho rizon ta l w e ll con

fig u ra tio n  inside th e ir reservoir using vaporized solvents. These solvents d iffuse and • 

dissolve in to  the  h ig h ly  viscous na tu ra l reserves, and reduce th e ir v iscosity  so th a t the  live  

o il can be easily pum ped ou t. V A P E X  was proposed by B u tle r and M okrys [1991], who 

investigated the  recovery o f Tangleflags N o rth  o il from  its  lab  scale reservoir m odel using 

h o t w ater and propane gas. T h e ir experim ental results showed th a t o il recovery was higher 

than  th a t w ith  ho t w ater alone. In  a subsequent development o f VA P E X , B u tle r and M okrys 

[1993] found th a t o il recovery was even higher w ith  the use o f propane gas alone close to  

its  dew po in t under reservoir conditions. These results revealed the  s u ita b ility  o f V A P E X  

fo r the  effective o il recoveiy from  th ic k  as w ell as frequently occurring th in  reservoirs w ith  

m uch sm aller heat losses than  a conventional therm al process such as Steam Assisted G ra v ity  

D rainage (SAG D ). Since th a t development, V A P E X  has undergone substan tia l advancement 

from  labo ra to ry  scale studies to  p ilo t p lan t investigations, and com m ercial pro jects.

A  num ber o f researchers have investigated V A P E X  through its  lab scale physical m odel a t 

U n ive rs ity  o f C algary [B u tle r and M okrys, 1991, 1993, Das and B u tle r, 1994a, B u tle r and 

M okrys, 1998, Das and B u tle r, 1998, B u tle r and Jiang, 2000, B oustani and M a in i, 2001], 

U n ive rs ity  o f W aterloo [J in , 1999, O duntan et a l., R am akrishnan, 2003, James et a l., 2003] 

and A lb e rta  Research C ouncil [C u th ie ll et a l., 2003].

A t the in d u s tria l level, about 23 Canadian o il companies have active ly pa rtic ipa ted  in  devel

opm ent o f V A P E X , w hich is ra p id ly  advancing tow ard its  com m ercialization. Nexen In c .’s 

P lover Lake V A P E X  fie ld  p ilo t p ro ject (A lbe rta ) is generating positive results. Im p e ria l O il 

Resources a t C old Lake (A lb e rta ), Baytex Energy L td . in  Saskatchewan and Suncor Energy 

Inc. a t F irebag (A lbe rta ) have im plem ented V A P E X  fie ld  p ilo t p lan t. Several V A P E X  fie ld  

p ilo t plants are under construction, which include EnCana C orp.’s fie ld  p ilo t a t Foster Creek 

(A lb e rta ), D O VAP fie ld  p ilo t a t Dover site (P ort M cM urray, A lb e rta ) [Das, 2002], and Soda
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Lake fie ld  p ilo t p la n t in  Saskatchewan [T u rta  and S inghal, 2004].

The ra p id  developm ent o f V A P E X  has been propelled by a va rie ty  o f factors, w hich include 

(a) our increasing ly h igh  demands fo r energy and petroleum  products, (b) the  decline o f 

conventional lig h t o il reservoirs, (c) the advantages o f V A P E X  over o ther recovery processes, 

and m ost im p o rta n t, (d) the abundance o f heavy o il and b itum en resources around the  w orld .

I In  p a rticu la r, the heavy o il and b itum en reservoirs o f Canada are one o f the  largest hydro car-

j ' bon sources in  the  w orld . Canadian reserves are held in  the sand and carbonate sedim entary

I fo rm ations o f Athabasca, C old Lake, Peace R iver and Wabasca regions as w e ll as in  Car-

i  bonate T riang le  [A llen , 1981]. The estim ated o rig ina l o il-in -p lace o f these reserves is more

I than  400 b illio n  m ^, w hich is about tw ice th a t o f the to ta l conventional o il reserves o f a ll

G u lf nations [Janisch, 1981]. According to  N ationa l Energy B oard [Board], Canadian o il 

sands p roduction  w ill be about 160,000 m ^/d  in  2004, and i t  is expected to  increase more 

than  double by 2015. In  2001, the heavy o il and b itum en reserves o f Canada m et the largest 

demand o f o il to  the U n ited  States, supplied one out o f every ten  barrels o f o il consumed 

there, and stood ahead o f Saudi A rab ia  in  term s o f the  supply [Luhning, 2003]. T h is  fact 

indicates th a t heavy o il and b itum en reserves have tremendous po ten tia l to  meet the ever- 

increasing demands o f energy and useful petroleum  products. T h is  is p a rticu la rly  im p o rta n t 

a t present when conventional o il reserves are declin ing a ll over the w orld. New o il discoveries 

have become rare. O il explorations are very expensive, and the development o f offshore and 

fie ld  fa c ilitie s  require huge cap ita l investments. These phenomena have im parted a s ign if

icant th ru s t to  the research and development aimed a t effective recovery o f heavy o il and 

b itum en reserves. A ccording to  A lbe rta  Energy and U tilitie s  Board, about 80% o f the  to ta l 

recoverable b itum en w ill be w ith  in -s itu  techniques. M ostly, in -s itu  p roduction  is used in  

the C old Lake, south Athabasca and Peace R iver deposits. V A P E X  is a s ign ifican t outcome 

o f th a t endeavor in  the last 13 years.
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1.1  R e c o v ery  o f  H ea v y  O il an d  B itu m e n

1.1 R ecovery of Heavy Oil and B itum en

C onventional crude o il flows at reservoir tem perature, and pumped from  the ground, bu t o il 

sands m ust be m ined or recovered in -s itu . The recovery o f n a tu ra l heavy o il and b itum en - 

reserves is a d iffic u lt task. A lthough abundant, more than  90% o f these reserves lie  deep 

inside the earth ’s crust and are no t easily recoverable ow ing to  th e ir very h igh viscosity. The 

viscosity o f b itum en in  th e ir na tu ra l state is ty p ica lly  in  the range, 100 to  1000 Pa-s. For 

instance, the  viscosity o f Athabasca, Peace R iver, C old Lake and L loydm inster reservoirs 

are 265 000, 126 500, 65 000 and 7 000 mPa-s respectively [Das, 1995]. W ith  s ta te -o f-the-a rt 

surface m in ing  technology, such as th a t used by Suncor and Syncrude, the economic excava

tio n  and transpo rta tio n  o f heavy o il and reserves lie  close to  the surface, generally lim ite d  to  

the  depth o f 75 meters or less. The m a jo rity  o f heavy o il and b itum en lie  below the surface 

o f 400 meters or more, and can be extracted through in -s itu  techniques. Consequently, the 

ob jective o f a ll in -s itu  recovery processes is to  reduce the  viscosity, or equivalently, to  in 

crease the m o b ility  o f heavy o il and bitum en reserves. T h is objective is achieved by p rovid ing  

a dd itio n a l energy or m ateria ls to  heavy o il and bitum en reserves [L a til, 1980]. In  general, 

recovery processes can be categorized in to  three types— displacem ent, therm al and chemical. 

V A P E X  fa lls  in to  the  th ird  category o f recovery processes.

The firs t category, displacem ent recovery processes use the in jection  o f w ater and im m iscible 

.gases in to  heavy o il and bitum en reservoirs to  displace and drive ou t the reserves. However, 

the effectiveness o f displacem ent processes is severely lim ite d  due to  the h igh viscosity o f 

heavy o il and bitum en reserves. Moreover, in jected flu ids often get wasted in  a bo ttom  

w ater sa tu ra tion  zone having the least resistance to  flow . Such an occurrence is frequent 

in  Peace R iver, Cold Lake, and Wabasca form ations, and results in  low  recoveries and poor 

sweep efficiencies [B u tle r and M okrys, 1998].

The second category o f therm al recovery processes includes C yclic Steam In jection , Steam 

D rive , H ot W ater D rive, In  S itu  Com bustion, and Steam Assisted G rav ity  Drainage (SAGD)
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1 .1  R eco v ery  o f  H ea v y  O il and  B itu m e n

[B u tle r, 1982]. These processes raise the tem perature o f a reservoir to  reduce the viscosity 

o f its  reserves. For example, in  SAGD, steam is continuously in jected through an upper 

ho rizon ta l w e ll in  a reservoir to  create a steam chamber at h igh tem peratures. As a result, 

th e  heated heavy o il and bitum en reserves o f reduced viscosity flow  by g ra v ity  along the w alls 

o f the w ell in to  a lower w ell. A lthough accounting fo r more than 80% share in  heavy o il and 

b itum en recovery [M okrys and B u tle r, 1993b], therm al processes are often not econom ical. 

T hey cause large heat losses, require huge am ounts o f water and vast surface fa c ilitie s , and 

are ine fflc ien t fo r the frequently encountered th in  reservoirs [M okrys and B u tle r, 1993a, Das 

and B u tle r, 1994a].

The th ird  category, chem ical recovery processes such as VAPEX  use chemicals such as pure 

o r m ixed solvent gases to  reduce the viscosity o f heavy o il and b itum en upon gas absorption. 

Before the invention o f VAPEX, many chemical recovery processes were proposed in  the 

1970s. These processes were based on the absorption o f solvent gases in  a ve rtica l w ell or a 

group o f ve rtica l wells inside a heavy o il and bitum en reserve [A llen, 1973, 1974, A llen  and 

Bedford, B row n et al., 1977, Nenniger, 1979]. For example, A llen  [1974] proposed H u ff and 

P u ff recovery u tiliz in g  butane or propane as solvent. A llen  and Bedford proposed the in jec-

\ tio n  of liq u id  solvent, and a non-condensible gas a t reservoir tem perature and pressure. Some
i
) researchers [Brown et a l., 1977, A llen , 1973] even proposed chemical recovery in  com bination

' w ith  heating. Nenniger [1979] suggested a chemical recovery process u tiliz in g  pure gases or
r

gas m ixtures a t pressures s lig h tly  less than or equal to  saturated vapor pressure. D unn et al. 

[1989] suggested the process o f heavy o il and bitum en recovery by g rav ity  drainage using 

carbon dioxide and ethane at pressure s lig h tly  less than the ir dew po in t pressures. However, 

these chem ical recovery processes were no t feasible as o il recovery was poor due to  the slow 

d iffusion o f solvents in  ve rtica l wells [Das and B utle r, 1998].

The lim ita tio n s  o f the early chemical recovery processes was addressed by B u tle r and M okrys 

[1991], who proposed the use o f horizonta l wells instead o f vertica l ones for the absorp

tio n  o f solvents, and the subsequent recovery o f heavy o il and bitum en. This process was

I
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1 .2  M ech a n ism  o f  V A P E X

named V A P E X . T he ir lab scale V A P E X  recovery o f Tangleflags N orth  o il w ith  ho t w ater and 

propane gas was found to  be higher than th a t w ith  hot w ater alone. Soon they found th a t 

the  recovery was even higher w ith  the use o f propane gas alone [B u tle r and M okrys, 1993]. 

Since then, V A P E X  has undergone considerable development from  lab scale experim ents to  ■ 

p ilo t p lan t and com m ercial p ro ject im plem entations.

1.2 M echanism  of VAPEX

The mechanism o f V A P E X  is sim ple, and is based on the phenomenon o f viscosity reduction 

o f heavy o il and bitum en in  the presence o f absorbed solvents [B u tle r and M okrys, 1991, Das 

and B u tle r, 1998]. As shown in  F igure 1.1, V A P E X  is typ ica lly  im plem ented in  a horizonta l 

configura tion  o f an in jec tion  w ell on top  o f a production w ell inside a heavy o il and b itum en 

reservoir. F igure  1.2 shows the ve rtica l cross section o f the reservoir, which explains the 

mechanism o f VAPEX.

A  vaporized solvent is in jected to  the in jection  w e ll a t pressures s lig h tly  less than or equal 

to  its  sa tu ra tion  vapor pressure. A  m ixture  o f vaporized solvents can also be used. Solvent 

d iffusion  and absorption inside the w ell reduces the viscosity o f its  heavy o il and bitum en 

reserves, and also causes some deasphalting, i. e. the p recip ita tion  o f asphaltene contents. 

As a result, the heavy o il and bitum en reserves become m obile and flow  under g ravity  to  

the  underlying production w ell from  where they are easily recovered. The presence o f a 

dissolved gas in  heavy o il and bitum en enhances the recovery o f heavy o il and bitum en 

by (i) generating a saturated displacement fro n t by swelling o il in  reservoir pores [W elker 

and D unlop, 1963, Simon and Graue, 1965], and (ii) reducing adhesive forces between o il 

globules, film s and connate water [Beecher and Parkhurst, 1926, Rosman and Zana, 1977]. 

In  V A P E X , a solvent gas mixes w ith  the bitum en phase through combined phenomena 

o f m olecular d iffusion, viscosity reduction, cap illa ry action, g rav ita tiona l flow , and si ' face . 

renewal. The net effect is dispersion, which can not be described by solvent d iffu s iv ity  alone.
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1.2  M e c h a n ism  o f  V A P E X

F ig u re  1 . 1  Schem atic o f the V A P E X  process

Oil
Separation

I Tank I^ É S &SBaBssËBü» Sol.vânt.Gas
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1.2 M e c h a n ism  o f  V A P E X

F ig u re  1.2 M echanism  o f the V A P E X  process, Source: A lb e rta  Research C ouncil
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1 .3  Im p o rta n ce  o f  V A P E X

V A P E X  was proposed w ith, the horizonta l configuration o f reservoir wells [B u tle r and M okrys, 

1991] for increased heavy o il and b itum en recovery, which was no t achievable w ith  the chem

ica l recovery processes u tiliz in g  ve rtica l wells. The horizonta l wells are especially superior 

in  the reservoir where heavy o il and b itum en reserves are present in  a th in  fla t zone. These 

wells enable a greater coverage o f the reserves, thereby offering a cost-effective recovery op

eration. For m any heavy o il and bitum en reservoirs, the use o f horizonta l wells over short 

distances is a popular choice so as to  avoid h igh in jection  pressures and channeling o f solvents 

[T u rta  and Singhal, 2004]. However, instead o f the use o f horizonta l w ell pairs, several other 

configurations are also possible in  VAPE X process [Das and B u tle r, 1998].

1.3 Im portance of VAPEX

Canadian o il industry  is facing challenges associated w ith  environm ental im pact, cap ita l 

costs, energy requirements and water requirements w ith  curren tly  used (SAGD) heavy o il 

and bitum en recovery techniques. VAPEX has a number o f advantages over other heavy o il 

and bitum en recovery processes. The advantages o f VAPE X range from  its  cost-effectiveness 

to  environm ental com patib ility , and have been verified in  a recent investigation carried out 

by Luhning et al. [2003]. T he ir study examines the fu ll p ro ject engineering and economics 

o f a com m ercial scale VAPEX process based on heavy o il and b itum en production from  

Athabasca o il sands. C old Lake o il sands, and Southeast A lbe rta  heavy o il.

To begin w ith , environm ental concerns are among the m ajor concern. A  larger th rea t to  

Canadian o il industry is Kyoto Protocol [W illiam s, 2003]. On 21®*̂  November 2002, the 

Government o f Canada announced the Climate Change Plan fo r  Canada, which include o il 

sands producers in  the Large Industria l E m itte rs category (companies em itting  8000 tonnes 

o f CO2 equivalent or more per year) [Board]. O il producers have to  m odify technologies 

to  reduce the greenhouse gas emission. To do so, VAPEX is the best alternative, as the 

im plem entation o f V A P E X  cuts down greenhouse gas emission by 80% compared to  other
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1 .3  Im p o rta n ce  o f  V A P E X

therm al processes [Das, 2002]. Hence, VAP EX is a very environm ental friend ly  process fo r 

heavy o il and bitum en recovery.

V A P E X  has low  cap ita l costs as the in jection  o f vaporized solvents does not require extensive 

surface fac ilities . Since solvent in jection  does no t involve the energy losses th a t are char

acte ristic  o f therm al recovery processes, VAPE X is very economical. For same production 

ra te , V A P E X  uses approxim ately 3% o f the energy consumed by SAGD [S inghal et a l., 1997]. 

Compared to  liq u id  solvents, vaporized solvents provide a higher d riv in g  force fo r the g rav ity  

drainage o f heavy o il and bitum en, and are easily recoverable. Laborato ry results show th a t 

90% o f in jected solvents can be retrieved and recycled in  VAPE X [Singhal et a l., 1997].

I t  is notew orthy th a t V A P E X  has a positive bearing on the qua lity  and cost effectiveness 

o f recovered heavy o il and bitum en. VAPEX carried ou t a t pressures close to  the saturated 

vapor pressure o f solvent results in  deasphalted, and upgraded heavy o il and bitum en. As a 

consequence, subsequent heavy o il and bitum en treatm ent is m inim ized. Table 1.1 indicates 

the supply costs o f cu rren tly  used heavy o il and b itum en production techniques [Board]. 

According to  Das [2002], Athabasca bitum en extracted w ith  VAPEX, w ill have the esti

m ated supply costs o f CDN$9 per barrel. The supply costs include a ll costs associated w ith  

production , includ ing operating costs, capita l costs, taxes, royalties and a ra te o f re tu rn  on 

investm ent. T h is result is a m ajor m otiva tion  to  o il industry which is actively pa rtic ipa ting  

in  the research, development and com m ercialization of VAPEX.

F ina lly , V A P E X  is very suitable fo r the heavy o il and bitum en reservoirs, v.^hich have h igh 

w ater content, th in  pay zones, low therm al conductivities o f rock form ations, and underlying 

aquifers [Singhal et a l., 1997, James et al., 2003]. The occurrence o f such reservoirs is 

frequent, and heavy o il and bitum en recovery from  them  w ith  displacement and therm al 

recovery processes is ne ither economical nor environm ental friendly.

One lim ita tio n  w ith  V A P E X  is the slow m ixing o f solvent w ith  the heavy o il and bitum en 

reserves resu lting  in  long s ta rt-up  times, and low  in itia l rates o f heavy o il and bitum en
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1 .3  Im p o rta n ce  o f  V A P E X

T a b le  1 . 1  Supply costs o f heavy o il and bitum en recovery techniques

H e a v y  o il a n d  b itu m e n  re co ve ry  te c h n iq u e C ru d e  T y p e
S u p p ly  C o s t, 

C D N $  p e r b a rre l

C o ld  P roduction  - Wabasca, Seal B itum en 10 to  14

C old Heavy O il P roduction w ith  Sand (CHOPS) B itum en 1 2  to  16

C yclic Steam S tim u la tion  (CSS) B itum en 13 to  19

Steam Assisted G rav ity  Drainage (SAGD) B itum en 11 to  17

M in in g /E x tra c tio n B itum en 1 2  to  16

Integrated M in ing /U pg ra d iiig Synthetic 2 2  to  28

production . To address th is  lim ita tio n , a VA PEX configuration o f la te ra lly  separated para lle l 

in jec to r and producer wells was successfully tested recently by using A tlee Buffalo reservoir 

sample [B u tle r and Yee, 2002]. T h is configuration augments the mass transfer area fo r solvent 

in jection . W ith  th is  approach, satisfactory time-averaged production rates o f 70 m ^/day were 

obtained w ith  more than 50% heavy o il and bitum en recovery.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 Background

Since the pioneering works done by B u tle r and M okrys [1991, 1993], considerable e ffo rt 

has been devoted to  study the various factors concern w ith  V A P E X  process in  lab- 

scale using the physical models o f heavy o il and b itum en reservoirs. The im p o rta n t factors 

w hich influence VA P E X  are viscosity o f heavy o il and bitum en, deasphalting o f heavy o il 

and bitum en, d iffusion o f solvent in to  heavy o il and bitum en, dispersion o f solvent w ith  

heavy o il and bitum en, solvent selection fo r V A P E X  and geological factors o f reservoir. In  

the  fo llow ing sections, details are presented to  show how each facto r influences the VA P E X  

process.

2.1 Factors that affect VAPEX

2.1.1 V iscosity  o f  heavy oil and b itum en

Evidently, i t  is the high viscosity o f heavy o il and bitum en th a t is the m a jo r obstacle in  th e ir 

recovery. The reduction in  the viscosity o f heavy o il and bitum en, and the increase in  th e ir 

m o b ility  are the objectives o f a ll recovery processes. In  VAPEX, the gaseous solvent in jection  

results in  viscosity reduction. The viscosity o f heavy o il and bitum en is a strong function  o f 

tem perature fo r na tu ra l sample in  comparison w ith  pressure; bu t w hile gases are dissolved 

in to  heavy o il and b itum en, pressure can effectively influence the viscosity [Strausz, 1989]. In  

general, heavy o il viscosity is the function o f tem perature, concentration o f dissolved gases, 

pressure and asphaltene content. For example, the mean viscosity o f Athabasca bitum en, 

based on some tw enty sets o f data, decreases by five orders o f m agnitude from  900 Pa-s at 

20°C to  0.01 Pa-s at 200°C [Seyer and Gyte, 1989]. The effect o f dissolved gases can be 

even stronger. Several gases like carbon dioxide, ethane, methane, carbon monoxide, and 

nitrogen reduce the viscosity o f bitum en rem arkably [Svrcek and M ehrotra, 1982, M ehrotra 

and Svrcek, 1985a,b,c]. For example, the viscosity o f carbon dioxide-saturated b itum en a t

11
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2 .1  F actors th a t  affect V A P E X

25°C decreases from  about 50 Pa-s to  about 0.5 Pa-s when the pressure is increased from  

0.1 MPa to  about 5 M Pa [M ehrotra and Svrcek, 1988]. Based on the num ber o f moles o f 

gas absorbed in  bitum en, the m ost effective gas fo r viscosity reduction among these gases 

is ethane w hich is followed by (in  the decreasing order o f effect) carbon dioxide, methane, 

carbon m onoxide, and nitrogen.

T he crude o il is classified by its  h igh viscosities and low  A P I gravities [S inghal e t al., 1997]. 

I f  the crude o il has the  viscosity lower than 10,000 cP w ith  A P I g ra v ity  o f 20° or less, i t  is 

known as heavy o il, and i f  the viscosity greater than 10,000 cP, w ith  A P I g rav ity  o f 10° or 

less, i t  is known as b itum en [Seyer and G yte, 1989].

Lederer has reported the corre la tion fo r dependence o f viscosity on the solvent concentration 

as:

Mtnix ( 2 .1 )

where,

where 7  is a weighing facto r having a value between zero and un ity , fe is a weighted frac tion  

o f the more viscous component, (Xb and ns are the viscosities o f b itum en and solvents respec

tiv e ly  (Pa-s), and Cb and Cg are the volume fraction  o f bitum en and solvent, respectively.

Shu [1984] has reported a corre lation fo r 7  fo r m ixtures of heavy oils or b itum en w ith  lig h t

petroleum  fractions as shown below:

w ta e A p  =  P B - ^  (2.2)
 ̂Us '

Das and B u tle r [1996] used the two param eter viscosity tem perature correlation as given 

below:

logio log io (/i +  0.7) =  6 1 -1 -6 2  log io T  (2.3)

where y, is the viscosity o f Peace R iver bitum en (Pa-s), T  is the absolute tem perature (°K ), 

and b i and b 2 values are 9.523535 and -  3.57231, respectively.

12
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2 .1  F actors th a t  affect V A P E X

J in  [1999] also developed the  em pirica l corre la tion  between the viscosity o f produced o il w ith  

butane solvent concentration and the corre la tion  was: .

ju(Cs) =  16609 (2.4)

fi{ujs) =  0.0094655 W g ^ "  (2.5)

where f i is the heavy o il o r b itum en viscosity in  poise, Cs is the volum e fra c tio n  o f butane 

in  heavy o il, and wg is the  mass frac tion  o f butane in  heavy o il. For the case o f butane 

mass frac tion  in  live  o il equal to  zero tends to  in fin ite  viscosity, th is  corre la tion  does no t 

va lid . The w ork showed th a t a t room  tem perature o f 23+2°C , w ith  the increm ent o f butane 

concentration from  10% to  17% by weight, the b itum en viscosity decreased sharply from  150 

cP to  40 cP and i t  decreased fa irly  w ith  increased butane concentration.

2.1 .2  D iffusion o f  Solvent G ases in heavy oil and b itu m en

Solvent gas d iffusion in  the heavy o il and bitum en is the p rim ary reason fo r viscosity reduc

tio n  and hence i t  affects the production ra te  [Das and B u tle r, 1996], w hich makes d iffusion 

phenomenon m ost im p o rta n t in  VAPEX  process. D iffu s iv ity  o f gas in  liq u id  can be deter

m ined by e ithe r experim ental methods or by em pirica l correlations [U p re ti and M ehrotra ,

2000]. The experim ental methods are classified under d irect m ethod and in d ire c t m ethod.

The d irect m ethod involves the com positional analysis o f liq u id  samples extracted a t d ifferent 

tim e . In d ire c t methods are classified under two categories, (i) based on p roperty change such 

as, volume, pressure, solute vo la tiliza tio n  ra te, position  o f gas-liquid interface etc., and ( ii)  

d iffu s iv ity  measurement from  self-diffusion coefficients which are measured by N M R  spec

troscopy [U p re ti and M ehrotra, 2000]. Several authors have made an e ffo rt to  investigate the
I

d iffusion and to  understand the concept o f mass transfer o f various solvents in  heavy o il and

bitum en by using d irect m ethod [Schm idt et a l., 1982, 1986, Nguyen and Farouq-A li, 1998], ;
I

in d ire c t m ethod [Renner, 1988, R iazi, 1996, Fu and P h ilips, 1979, Das and B u tle r, 1996, Yu, ,

1984, Woessner et al., 1969, Grogan et a l., 1988, Denoyelle and Bardon, 1984, Zhang et a l., i

13 ■:

$ "'4:;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1  F actors th a t  a ffect V A P E X

2000, U p re ti, 2000, U p re ti and M ehrotra, 2000, 2002] and em pirica l corre la tions [M okrys and 

B u tle r, 1993b, B oustani and M a in i, 2001, U p re ti and M ehrotra, 2000, 2002].

H ayduk and Cheng [1971] gave a re la tionship  between d iffu s iv ity  and solvent viscosity:

D  — afjT^  (2.6)

where a  and (3 are constants fo r each diffusive substance.

The d iffu s iv ity  o f propane and butane in  the Peace R iver b itum en were estim ated using 

an ind irec t m ethod by Das and B u tle r [1996], based on VAPEX experim ent. A  Hele-Shaw 

ce ll was used to  study the vapor extraction  o f b itum en w ith  propane and butane. They 

em p irica lly  correlate the m otion o f vapor-bitum en interface w ith  the  gas d iffu s iv ity  as w ell 

as the corresponding bitum en viscosity. They obtained the optim ized constant values fo r a

and P in  the  Hayduk and Cheng [1971] corre la tion, fo r propane and butane to  measure the

diffusion coefficients. The em pirica l corre la tion fo r butane was:

D s =  4.13 X  10-^V~“ '‘® (2.7)
. /

However, a d iffe rent value o f a  was obtained fo r propane and the corre la tion  was:

D , =  1.306 X  lG -V " °-‘‘® (2.8)

T h e ir results shows th a t d iffu s iv ity  is /a function  o f m ix tu re  viscosity, which is again the 

function  o f gas concentration and tem perature.

U p re ti and M ehrotra [2000, 2002] estim ated the d iffu s iv ity  o f CO 2 , CH 4 , CaHe, and Ng in  

Athabasca bitum en, in  the range o f 25-90°C a t 4 and 8  MPa. They used ind irec t non- 

in trusive  pressure decay experim ental method to  find  the d iffu s iv ity  o f these gases as a 

function  o f gas concentration in  bitum en. Based on the experim ental results, they developed 

the fo llow ing  corre la tion fo r average gas d iffusivities:

InD  =  do +  d i(T  +  273.15) (2.9)

14
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2 .1  F actors th a t  a ffect V A P E X

They observed th a t d iffu s iv ity  is  a function  o f gas concentration in  b itum en, and a t a given 

gas concentration and pressure, d iffu s iv ity  increases w ith  tem perature. T h e ir results in d i

cate th a t gas d iffu s iv ity  generally increases w ith  pressure a t a given tem perature and gas 

concentration.

B oustani and M a in i [2001] com pared the estim ated propane in trin s ic  d iffus ion  coefficient in  

Penny b itum en as a fu n c tio n  o f solvent concentration based on three d iffe ren t corre la tions. I t  

was found th a t the d iffu s iv ity  estim ated by Das and B u tle r [1996] was an order o f m agnitude 

higher than those estim ated by the  corre lations o f H ayduk et a l. [1973] and H ayduk and 

M inhas [1982] corre lations. They claim ed the optim ized o  and ^  coefficients used by Das and 

B u tle r [1996] as the p rim a ry  reason, w hich provided be tte r h is to ry  m atch to  th e ir experim ents i

in  the Hele-Shaw cell.

The o il recovery ra te fo r experim ent in  Hele-Shaw cell agrees fa ir ly  w ith  the  drainage ra te  

predicted by m olecular diffusion-based m odel [Das, 1995]. However, the recovery ra te  in  

sand-packed porous m edia is qu ite  higher than  the predicted ra te [Dunn e t a l., 1989, Das,

1995, Das and B u tle r, 1998]. As the  heavy o il and b itum en viscosity reduces due to  gas 

d iffusion, the  reduced viscosity o il drains under the action o f g ravity. A t th is  p o in t, other 

factors also prom ote the  p roduction  ra te  o f V A P E X  process in  com bination w ith  d iffusion.

Das [1995] and Das and B u tle r [1998, 1996] suggested those factors w ould be increased 

in te rfac ia l area in  the porous m edia (compared to  d iffusion on a p lanar surface), physical 

dispersion, increased s o lu b ility  (due to  solvent vapor condensation in  fine cap illa ries), surface 

renewal (as a resu lt o f reduced viscosity o il d ra in ing ), enhancement du ring  the  ris in g  o f the 

solvent chamber, and cap illa ry  phenomena a t the so lvent-o il interface.

2.1 .3  D isp ersion  o f  Solvent G ases in  H eavy O il and B itu m en

D iffusion is a special case o f dispersion where the flu id  is s ta tionary (convective flow  rate is 

zero). Hence, basically dispersion is a combined effect o f d iffusion and convective m otion.

!I
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2 .1  F acto rs th a t  a ffect V A P E X

M ix in g  a t a pore scale can be called a m icroscopic dispersion, and can be called a m acro

scopic dispersion a t a reservoir scale. A t a m acroscopic scale, th is  convective tra n sp o rt in  a 

porous m edia is described by D arcy’s law . The va ria tio n  in  the  reservoir properties results 

in  a m acroscopic dispersion. W hen the flu ids  are m oving through a porous m edium , the 

dispersion coefficient increase due to  convective m ix ing  and the  dispersion may be higher 

than  th a t due to  d iffus ion  alone [Perkins and Johnston, 1963]. D ispersion in  porous m edia 

comprises concentration gradient in  both , lo n g itu d in a l and transverse to  the d irec tion  o f 

solute-solvent flow . These tw o component o f dispersion are thus referred to  as lo n g itu d in a l 

and transverse dispersion. To date, no t much w ork has been reported on dispersion between 

h igh and low  viscosity flu ids, w hich results in  sign ificant change in  solute viscosity [O balla  

and B u tle r, 1989].

B u tle r and M okrys [1989] perform ed the experim ents in  a Hele-Shaw cell w ith  Athabasca 

and Suncor b itum en, using toluene as a solvent. T h e ir predicted p roduction  ra te by using 

the  d iffus ion  value fo r the developed ana lytica l m odel was w ell w ith in  the range.

However, D unn et al. [1989], Das [1995], L im  et al. [1996] and Das and B u tle r [1998] realized 

th a t p roduction  rate in  porous m edia is qu ite  higher than Hele-Shaw cell. In  th e ir ana ly tica l 

m odel, they  used d iffus ion  value higher than available in  lite ra tu re  to  m atch the p roduction  

ra te . They suggested th a t d iffe rent values o f dispersion would p lay a m a jo r role in  production  

ra te  o f V A P E X .

B oustani and M a in i [2001] examined V A P E X  in  a Hele-Shaw cell. Using Taylor dispersion 

coefficient instead o f d iffusion coefficient, they showed th a t th is  discrepancy can be reduced 

by accounting fo r the enhanced mass transfer due to  solvent convection during  V APEX. 

However, ta y lo r dispersion can no t apply to  porous media. I t  is lim ite d  to  Hele-Shaw cell 

only.

C u th ie ll e t a l. [2003] used a com puted tom ography scanner to  examine the solvent action 

o f liq u id  toluene in  L loydm inster o il dispersed in  sand and s ilica  packs a t 25°C. They also
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sim ulated im p o rta n t solvent displacem ent characteristics w ith  assumed solvent dispersion 

coefi&cient. To sim ulate the viscous in s ta b ility  o f solvent displacem ent, they used a tw o d i

m ensional spa tia l g rid  w ith  a lte rna ting  porosity. They considered dispersion along ve rtica l 

d irec tion  ten  tim es o f th a t along horizon ta l d irection . Using d iffe rent values o f solvent d is- • 

persion coefficients, they also extrica ted physical dispersion from  its  num erical counterpart.

2 .1 .4  D easp h a ltin g  o f heavy o il and b itu m en

Heavy o il and b itum en are considered to  be made up o f fou r representative classes o f Satu

rates, A rom atics, Resins and Asphaltenes (S A R A  fractions) [Strausz, 1989], w hich affect the 

recovery and transpo rta tio n . Am ong these fractions, industries are m ostly concerned about 

asphaltenes, as they can p rec ip ita te  w ith  change in  pressure, tem perature or com position 

[Akbarzadeh et a l., 2002]. Asphaltenes are defined as the com plex high-m olecular-w eight 

molecules contain ing nickel, iron  and vanadium , th a t are soluble in  CS2 , pyrid ine , CCI4 

and benzene b u t insoluble in  low -m olecular-w eight a-alkanes [Speight], and can be derived 

from  petro leum  o il or shale o il [Long]. Due to  the s ign ificant am ount o f asphaltene content, 

heavy o il and b it amen have higher viscosity, w hich creates a serious and com plex problem  

in  transpo rta tion , and requires d ilu tio n  w ith  lig h t components, o r conversion to  make i t  

transportab le  [M okrys and B u tle r, 1993b]. B ray and Bahlke [1938] studied the effectiveness 

o f various n-alkanes in  deasphalting, and found th a t among a ll these solvents, ethane gives 

m axim um  asphaltene p rec ip ita tion , and the p rec ip ita tion  decreases in  the order o f propane, 

butane, pentane and hexane. Das and B u tle r [1994a] perform ed the  experim ent in  Hele- 

Shaw cell and found th a t deasphalting takes place i f  the in jected solvent pressure is close to  

or higher than the vapor pressure o f solvent a t the reservoir tem perature, w hich results in  

add ition a l viscosity reduction. In  th e ir experim ent they observed th a t a specific m in im um  

solvent concentration (threshold value) was required before the onset o f deasphalting, and 

i t  was inferred th a t th is  value varies from  solvent to  solvent. They used propane above its  

vapor pressure a t 20°C on C old Lake bitum en and Lloydm inster heavy o il, and in  th is  case,
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the  m in im um  concentration required to  precip ita te  the asphaltene was 20% and 30% by- 

w eight, respectively. The w ork concluded th a t the propane deasphalted crude could lower 

the  viscosity o f L loydm inster heavy o il and Cold Lake b itum en by a facto r o f 50 and 300, 

respectively. T h is  p a rtia lly  in -s itu  deasphalted o il is lig h te r and be tte r q u a lity  upgraded o il. •

The asphaltene p rec ip ita tion  from  the deasphalted crude o il occupied less than 20% o f the 

vo id  space whereas in  the  V A P E X  process, on ly p a rtia l deasphalting could be obtained [Das 

and B u tle r, 1998]. Hence, according to  Das and B u tle r [1998], asphaltene p re c ip ita tio n  m igh t 

n o t clog the p roduction wells. Das [2002] confirm ed in  th e ir investigation th a t deasphalting 

does not stop o il flow ing ou t from  reservoir; b u t due to  the add itiona l viscosity reduction, the 

p roduction  ra te  increased w ith  deasphalting by 10-20% compared to  w ith o u t deasphalting. I t  

was observed th a t a t a specific tem perature, i f  the vapor pressure was lowered by on ly  about 5 

psi, the asphaltene p rec ip ita tion  d id  no t exist [Das, 2002]. Oduntan et al. and J in  [1999] also 

observed th a t asphaltene p rec ip ita tion  during VAPEX d id  no t cause sign ificant hindrance to  

o il p roduction  in  porous media and m ostly deposited towards the end o f the production w ell. 

Some asphaltene also deposited a t the oil-solvent interface. The p rec ip ita tion  sta rts  near the 

o il-solvent interface due to  highest solvent concentration at the oil-solvent in terface[B utle r 

and Jiang, 2000]. In  a recent study, Ramakrishnan [2003] also found s im ila r results in  his 

experim ents, and he postulated th a t asphaltenes m ight be carried ou t to  the surface by 

d ilu ted  o il and deposited on the oil-solvent interface.

In  VA PEX process, in  s itu  asphaltene may deposit near or inside the w ell bore, w hich may 

clog production  wells. Hence, to  prevent/contro l deasphalting, i t  is essential to  p red ict 

the asphaltene p rec ip ita tion  and asphaltene precip ita tion  envelop should be developed fo r 

troubleshooting.
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2.1  F actors th a t  affect V A P E X

2.1 .5  Solvent in jection  condition  and solvent se lection

The low-m oleculax-weight vaporized solvent can be in jected a t its  dew p o in t as a recovery 

agent in  the V A P E X  process. The use o f vaporized solvent a t its  dew p o in t has several 

advantages, w hich are:

(i) As the vaporized solvent offers m axim um  so lu b ility  near its  dew po in t, the ingress o f 

vaporized solvent is advantageous near its  vapor pressure a t reservoir tem perature [Das,

1995].

( ii)  The in je c tio n  o f solvent near its  vapor pressure a t the reservoir tem perature results in  

deasphalting, and offers add itiona l viscosity reduction ra ther than on ly by d ilu tio n , which 

promotes the  p roduction  ra te [Das and B u tle r, 1998].

( iii)  In  add ition  to  th is , the use o f vaporized solvents offers higher density difference w ith  

b itum en, and produces higher d riv in g  force fo r g ravity  drainage [Das and B u tle r, 1998].

(iv ) The vaporized solvent is recommended to  reduce the residual am ount o f solvent in  

extracted reservoir ra the r than the use o f liq u id  solvent fo r economical p o in t o f view [Das 

and B u tle r, 1998].

In  general, solvent selection c rite ria  are based on several factors: m ain ly equ ilib rium  pressure, 

m olecular w eight, density difference, so lub ility , d iffus iv ity , and reservoir tem perature and 

pressure [Ram akrishnan, 2003]. Das and B u tle r [1996, 1994a] suggested th a t propane and 

butane are very effective solvents fo r VAPEX process, and proved th a t propane diffuses faster 

than  butane.

Using the liq u id  solvent (pure propane, pure butane, or m ixtures) w ith  a 20-30 mesh O ttaw a 

sand (220 Darcies and 33-35% po ros ity), and the crude o il from  the A tlee B uffa lo fie ld , B u tle r 

and Jiang [2000] investigated the effect o f tem perature, pressure, in jec tion  rates, types o f 

solvent, m ixed solvents, w ell spacing and configuration to  develop the process conditions 

to  give h igh production rates w ith  economic solvent requirements. As the m ix tu re  o f lig h t
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2 .1  F actors th a t  affect V A P E X

hydrocarbons are less expensive than  pure solvents, i t  can help rem arkably to  reduce the cost 

re lated to  V A P E X  operation. Thus, i t  was necessary to  study the effect o f m ixed solvent on 

V A P E X .

For the case o f effect o f m ixed solvents, B u tle r and Jiang [2000] found th a t propane gives 

higher production  ra te than  butane; bu t the m ixtu re  o f propane and butane (50:50 liq u id  vol

ume ra tio ) was more effective than butane alone, and the performance was alm ost equivalent 

to  propane.

For investigation o f m ixed solvent (m ixture  o f propane and butane) in jection  ra te  they in 

jected the m ixed solvent a t constant rate o f 30 m l/h r and o f 20 m l/h r. The results showed 

th a t the increm ent o f in jection  ra te by 50% resulted in  only 11% o f increased production 

ra te , which suggested th a t o il production ra te  w ill not increase s ign ifican tly  w ith  increase 

in  m ixed solvent in jection  rate. In  another set o f experim ent they studied the effect o f high 

in itia l solvent in jection  rate, and concluded th a t high s ta rt up rates followed by reduced 

rates allowed high o il production w ith  less cum ulative solvent; the performance was better 

than  constant in jection  rate.

I The use o f non-condensible gas in  VAPEX process is also feasible as a carrie r gas fo r solvent,

( and th is  non-condensible gas in jection  rate should be low  enough to  replace the volume va-

1 cated by produced o il plus a low  by-pass [Das and B u tle r, 1994b]. D uring the  investigation o f

pure solvent B u tle r and Jiang [2000] studied effect o f butane (w ith  alm ost constant methane 

gas in jection  rate) in jection  rate on o il production a t the in jection  rate o f 1 0  m l/h r and 2 0  

m l/h r. The results showed th a t as the in jection  rate was doubled, the o il production rate 

increased by about 70% due to  increased am ount o f solvent dissolved in  o il, and suggested 

th a t more experim ental data are needed for determ ination o f op tim a l solvent in jection  rate.
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2 .1  F actors th a t  affect V A P E X

2.1 .6  G eological Factors

The economic v ia b ility  o f any process depend on the production rate. Several authors have 

studied the effect o f geological factors (pay zone length, perm eability, heterogeneity, d ip  

angle and residual o il sa tura tion) on the production rate.

i)  Effect o f Pay Zone Length on Production rate: The pay zone lenght is the height o f the 

reservoir where the heavy o il and bitum en are situated. O duntan et al. used rectangular 

channel o f variable length (21-247 cm ); bu t same cavity  dimensions to  study the effect o f 

pay zone leng th  on p roduction  rate. They observed th a t the production ra te was constant 

u n til 80-90% o f cum ulative o il p roduction had taken place, fo r a given length. The overall 

recovery was found to  be about 85-92% o f the in itia l o il in  place. They found th a t the 

vo lum etric production  rate was p roportiona l to  the square roo t o f the pay zone length, and 

the  corre la tion fo r a com position o f 136 darcy perm eability and 38% porosity a t 45° d ip  

angle was:

Q =  0.0014L“ f  (2.10)

where Q (m ^/h .m ) is the vo lum etric production flow  rate per u n it w id th  o f m odel and Lp* 

is thickness o f the pay zone in  meter.

i i )  Effect o f D ip  Angle: Ram akrishnan [2003], and Oduntan et a l. studied the effect o f 

d ip  angle on the production rate. Ramakrishnan [2003] used homogeneous system o f 156 

darcy perm eability to  conduct the experiment w ith  the d ip  angles o f 45°, 75°, 80° and 90°. 

The results showed th a t production rate increased w ith  increased d ip  angle from  45° to  90°, 

and m axim um  production ra te was obtained at 90° d ip angle, due to  the fact th a t steep 

angle possesses more gravity. The conclusion stated th a t d ip  angle has a m a jor effect on the 

p roduction rate.

i i i ) Effect o f Reservoir Permeability and Reservoir Heterogeneity: The perm eability and reser

vo ir heterogeneity plays a significant role on the performance o f the VA P E X  process. Vapor 

is confined to  the pore spaces as well as its  ingress in to  fine pores can be lim ite d  by capil-
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2 .1  F actors th a t a ffect V A P E X

la ry, and vapor does no t wet the solid [Jiang and B utle r, 1995]. Several authors [B u tle r and 

M okrys, 1989, 1998, Jiang and B u tle r, 1995, O duntan et ah] have contributed to  study the 

reservoir heterogeneity due to  the presence o f low  and high perm eability layers and shales 

in  heavy o il and b itum en recovery. B u tle r and M okrys [1989] perform ed the experim ent in  

a ve rtica l Hele-Shaw cell w ith  Athabasca and Suncor Coker Feed bitum ens using toluene as 

a solvent, and concluded th a t a t low  perm eability o f the Hele-Shaw ce ll, the drainage rate 

was a function  o f the square roo t o f the perm eability. The use o f high perm eability was not 

w e ll understood because the relationship to  calculate the perm eability in  Hele-Shaw cell was 

lim ite d  fo r low  perm eabilities only (sm all p late spacing). Follow ing th is  work. Das [1997], 

and B u tle r and M okrys [1998] perform ed the different set o f experiments w ith  various per

m eabilities in  porous media, and found th a t production ra te  in  V A P E X  varies as the square 

roo t o f the perm eability. T he ir results showed linear re lationship between o il production 

ra te and square roo t o f model perm eability. In  most recent study, O duntan et al. used the 

perm eability  o f 25, 85, 136 and 192 darcy in  th e ir experim ent and found the s im ila r result as 

Das [1997], and B u tle r and M okrys [1998]. O duntan et al. also found th a t volum etric flow 

rate is p roportiona l to  the square roo t o f perm eability, and the corre lation was;

Q =  0.0348A“ '̂ ^ (2 .1 1 )

where Q is in  cm ^/m in  and K  is in  darcy.

Jiang and B u tle r [1995] performed series o f experiments to  investigate the effects o f con

tinuous and discontinuous low -perm eability layers using a two dim ensional physical model 

(14 inches wide, 9 inches high and 1.25 inches th ick) w ith  horizontal layers o f two different 

sized sands to  get different perm eability (20-30 mesh fo r 217 darcy and 30-50 mesh for 43.5 

darcy), by using butane as solvent to  recover Tangleflags, N orth fie ld  and Lloydm inster o il. 

They found th a t low -perm eability layers results in  lower o il production rate than at w ith  

a homogeneous m odel o f h igh-perm eability packing. C ap illa rity  due to  in terfacia l tension 

between the o il and solvent vapor phases, plays a significant role on VAPEX process.
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F ig u re  2.1 M odel Configuration, fo r Layered System, O duntan et al.

(cm /̂mln) Angle
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2.1 F actors th a t  affect V A P E X

O duntan et a l. analyzed the effect o f reservoir heterogeneity more deeply by using the  84 

cm long physical m odel w ith  layers o f h igh (192 darcy) and low  (85 darcy) perm eability 

zone. They used seven different types o f models w ith  various h igh and low  perm eability 

configuration. The m odel configuration fo r layered systems are shown in  figure 2.1. As 

shown in  the figure 2.1, models I  to  IV  were packed in  such a way as to  achieve the average 

perm eability o f 118 Darcy. M odel V II  on the other hand had an average perm eability o f 125 

darcy. T he ir results showed th a t the overall production rate obtained fo r models I - V I  d id  

no t d iffe r s ign ificantly. M odel V II w ith  s lig h tly  higher average perm eab ility gave a higher 

production ra te  compared to  other layered systems, which can be a ttrib u te d  to  the fact th a t 

sm aller size o f the low  perm eability zone was present. They observed a s ligh t reduction 

in  production  rate w ith  the increm ent in  the number o f layers. In  add ition  to  th is , the 

production ra te  was found to  be lower for heterogeneous system than th a t o f a same size 

homogeneous reservoir o f the same average perm eability and high residual o il saturation was 

observed in  low  perm eability layers situated above high perm eability layers.

2.1 .7  R esidual Oil Saturation

O duntan et a l. perform ed the experim ent by using butane as a solvent in  a rectangular 

channel a t a d ip  angle o f 45° to  study the residual o il saturation along the length o f the 

physical m odel a fte r vapor extraction. They selected two models to  perform  the experim ent, 

firs t was homogeneous system, and second was heterogeneous layered system. In  the homo

geneous system, the residual o il saturation o f the model varied between 3 to  5% pore volume, 

and was essentially constant throughout the swept region. As th is  result was obtained after 

blowdown, the residual o il saturation at in -s itu  conditions was postulated s ligh tly  higher 

and expected to  vary between 5 to  8 % pore volume because o f the presence o f dissolved gas. 

Ram akrishnan [2003] performed s im ila r experiment a t a dip angle o f 45° w ith  propane as 

a solvent and found the residual o il saturation between 10 to  13% pore volume for homo

geneous system, and concluded th a t the higher percentage o f residual o il saturation w ith
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2 .1  F actors th a t  affect V A P E X

F ig u re  2 .2  Residual O il Saturation P ro file  in  a Layered System a fter E xtraction , O duntan 
et a l.
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propane gas than  butane gas was due to  higher asphaltene p rec ip ita tion  w ith  propane.

Ram akrishnan [2003] developed the m ateria l balance equation to  com pute the residual o il 

saturation:

Sko =
M ao (2.12)yB<f>po

where M ro  is the mass o f residual o il (g), V'b is the bu lk volume o f the packing (cm^), ^  is 

the  porosity o f packing and po is the density o f dead o il (g/cm ^).

For the layered system, Jiang and B u tle r [1995] and O duntan et al. found high residual o il 

sa tura tion  in  low  perm eability layers situated above high perm eability layers. As shown in  

F igure 2.2, O duntan et al. showed the residual o il saturation p ro file  obtained fo r seven layers 

o f h igh and low  perm eability 80 cm long physical model. They suggested the reduced pore 

size was the m ain reason behind the higher cap illa ry  pressure in  low  perm eability  layer.

O duntan et al. conducted the experiments by varying the pay zone height. They observed
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2 .1  F actors th a t  affect V A P E X

th a t regardless o f pay zone height o il recovery was not found from  the bo ttom  po rtion  (6 -7  

cm ) o f the m odel, due to  insuffic ien t g ravity  force to  overcome cap illa ry  pressure.

2.1 .8  P ore  Scale E vents

V A P E X  is a process invo lv ing  m icroscopic, pore scale phenomena th a t occur over a large, 

macroscopic area. Ram akrishnan [2003], J in  [1999], and O duntan et al. studied the pore 

scale events occured during  vapor extraction  to  explain flu id  phase interactions in  porous 

media by using a tw o dim ensional physical m icro model. As solvent gas diffuses in to  the 

heavy o il and b itum en, i t  gets less viscous and drains out under the action o f gravity. T he ir 

objective was to  study mechanism o f V A P E X  at pore scale. J in  [1999], O duntan et al., and 

Ram akrishnan [2003] used a m icrom odel th a t was etched on glass. The pore scale aspects 

o f V A P E X  observed in  O duntan e t a l.’s w ork [O duntan et al.] is shown in  the figure 2.3.

As shown in  the F igure 2.3, the butane vapor gets absorbed in to  heavy o il and bitum en a t 

surface pores, which tra p  the butane vapor, and viscous heavy o il and bitum en gets d ilu ted  

so on. T h is  low  viscosity d ilu ted  o il drains consequently under the action o f gravity. The 

new pores are exposed once the form er d ra in  as shown in  figure fig.2.3a. As a result, there 

is a chain o f drainage and replacement in  the pores. A t the top end o f model where the 

packing begins, i t  replaces by solvent vapor since th a t end closes to  o il flow  when heavy 

o il in  the pores gets d ilu ted  and drained. R ather than at the other sections o f model, 

d ilu ted  o il empties faster from  the pores at the top end o f model. Such process results in 

the movement o f the solvent va p o r/o il interface down in to  the packing a t the top end o f 

model faster (see F ig. 2.4). A fte r observing the butane vapor/heavy o il interface in  Fig. 2.3b 

fo r another m inute, trapp ing  o f butane vapor d irec tly  below the interface was noticed (see 

F ig. 2.3c). The entrapped butane vapor has been fragmented in to  tw o portions by snap o ff 

mechanism beneath the cap illa ry interface fo r another 7 m inutes (see F ig. 2.3d). Such a 

phenomenon enhances m ixing o f heavy o il w ith  butane by exposing more surface o f o il to 

butane and fu rthe r enhancing the rate o f d ilu ted  o il drainage. By th is  snap o ff mechanism,
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F ig u re  2 .3  Butane Vapor/H eavy o il interface a t Pore Scale, O duntan et al.
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2 .2  S ca le -« p  o f  V A P E X  P ro d u ctio n  R a tes

*a'

F ig u re  2 .4  D iffe ren t Stages o f Solvent Cham ber G row th in  a S intered Glass Bead M icro 
m odel (L= 31  cm , W = 2 .4  cm, hc=5 cm ), O duntan et al.
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they explained enhanced m ix ing  o f butane vapor w ith  heavy o il and b itum en due to  surface 

renewal resu lting  in  higher d iffusion, and enhancement o f p roduction  rate.

2.2 Scale-up of VAPEX Production R ates

Scale-up o f p roduction  rates is o f greatest interest fo r o il industries to  p red ict the production  

rates from  lab-scale to  field-scale. E xtrapo la tion  o f experim ental data to  p red ict the fie ld  

perform ance is usua lly accomplished by using factors, which can be derived through the 

dimensionless analysis o f the fundam ental equations governing the recovery process [Jiang,

1996].

B u tle r and coworkers [1991, 1993, 1998, 2000] reported the scaling o f physical m odel to  fie ld 

conditions. They derived the scaling factors by assuming fo llow ing factors [Jiang, 1996]:

(a) A  physical m odel and reservoir have s im ila r geometry and w ell configuration,
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2 .3  M a th e m a tic a l m o d e l d ev e lo p m en t:

(b) The m odel and the  fie ld  have the  same poros ity  and o il sa tu ra tion ,

(c) The o il used in  the m odel has the  same properties as those in  the  fie ld ,

(d) The flow  o f o il w ith o u t dissolved solvents is neglig ib le , and the  d ilu te d  o il dra ins by 

g ravity .

B y assuming the s im ila r shape o f the  vapor cham ber in  m odel and fie ld , the  cum ulative o il 

p roduction  in  the  m odel and fie ld  can be re la ted as p ropo rtion a l to  the  reservoir volum e (fo r 

same perm eab ility );
n  e

(2.13)Qm

where, £ is leng th  o f w e ll.

The determ ina tion  o f to ta l p roduction  tim e  can be calculated from :

2^2

i f  — (2-14)
■'m

O duntan et a l. reported the  re la tionsh ip  fo r the fie ld  o il p roduction  ra te  as (fo r d iffe ren t 

pe rm eab ility ): ______& “ VS
2.3 M athem atical m odel development:

B u tle r and M okrys [1989] developed a m athem atical m odel as a d irec t analog to  SAGD 

process, fo r the b itum en extraction  by using the  liq u id  solvent in  a ve rtica l Hele-Shaw cell 

to  p red ict the  b itum en drainage ra te  from  the d iffu s iv ity , viscosity and density data  over a 

w ide range o f perm eability. They assumed th a t mass transfer o f solvent in to  the b itum en 

occurs a t a steady state condition , and interface to  be m oving a t constant ve loc ity  U. The 

developed ana ly tica l m odel to  p red ict the p roduction  ra te was as follow s:

Q  =  ^j2Kgcj>àSoNsh (2.16)
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where,

Ns

Here, Ng is a dim ensionless num ber, which is the  function  o f concentration, density difference, 

d iffu s iv ity  and viscosity. In  ana ly tica l m odel, the values o f (j> and A S q is un ity . B u tle r and 

M okrys [1989] perform ed series o f experim ents in  a ve rtica l Hele-Shaw ce ll fo r Athabasca and 

Suncor Coker Feed bitum ens, using the toluene as a solvent, and the experim ental results 

were in  good agreement w ith  the model.

D unn et a l. [1989] developed a m athem atical model s im ila r to  th a t o f B u tle r and M okrys 

[1989] to  p red ic t the  p roduction  ra te in  porous media using ethane and CO 2 as a gaseous 

solvents to  extract A thabasca bitum en. In  order to  m atch experim ental rates, w ith  th e ir 

m odel they had to  em ploy d iffusion coefficients much higher than  the known value from  the 

lite ra l,u re , and to  do so, they attem pted to  explain the enhanced recovery rate by  incorpo

ra tin g  convective dispersion in  th e ir ana lytica l model [Boustani and M a in i, 2001]. However, 

the  order o f discrepancy was considerably larger between the recovery ra te  obtained from  

experim enta l results and ana lytica l model.

Das [1995] m odified the  m athem atical m odel developed by B u tle r and M okrys [1989] in  order 

to  make i t  applicable to  porous media. He added a cem entation facto r f l .  For the case o f 

unconsolidated rocks he used 1.3 as a cem entation facto r D, w hich was o rig in a lly  reported 

by P irson [1958]. The m odified m odel was as follows:

Q  =  s/2Kg<j>^ASoNsh (2.18)

In  order to  ve rify  the  m odified model. Das and B utle r [1998] carried ou t series o f experiments 

in  a sand pack w ith  Peace R iver bitum en and Athabasca bitum en, using butane as a solvent, 

and they found th a t experim ental production rate was sign ifican tly  higher than the predicted 

value fro m  the m odified ana lytica l model. They suggested the  possible reason behind th is 

enhance recovery ra te  in  porous media due to  extended in te rfac ia l area, cap illa ry action and
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surface renewal. They realized th a t effective d iffus ion  coefficient, 3 to  10 tim es higher than 

m olecular d iffus ion  coefficient, is required to  m atch th e ir experim ental results w ith  ana ly tica l 

m odel.

In  order to  incorporate the  effect o f average perm eability, Jiang [1996] fu rth e r m odified the 

m odel:

Q  =  ^/2K^yg<i>^ASoNsh (2.19)

where,
H

= ̂ jKdy (2.20)

Here, isTav is height-averaged perm eability.

0
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3 Experimental Setup

I
f

T his chapter is d iv ided  in to  tw o section. Section 3.1 gives d e ta il o f experim ental setup 

designed to  perform  V A P E X  experim ent to  determ ine gas dispersion in  heavy o il and • 

b itum en. In  add ition  to  th is , the fu n c tio n a lity  and specifications o f selected data acqu isition  

system is discussed. However, due to  tim e constrain, th is  experim ental setup was no t b u ild  

up. Section 3.2 describes O duntan [2 0 0 1 ] 's experim ental setup used a t U n ive rs ity  o f W aterloo 

to  study the  V A P E X  production ra te  by using a rectangular channel or block. Based on his 

experim ental setup, m athem atica l m odel was developed fo r VA P E X  process.

3.1 D esign of Experim ental Setup

F igure 3.1 shows a schematic view  o f an experim ental setup, w hich w ill be used to  perform  

the  V A P E X  experim ent to  determ ine dispersion o f gas in  heavy o il and b itum en. In  th is  

experim ent, a cy lin d rica l w ire mesh (80 cm x  4 cm) packed w ith  o il saturated porous m edia 

w ould be used as a physical m odel. A  pressure vessel w ill behave as a vapor chamber. The 

heavy o il and b itum en to  be used in  th is  experim ent w ill have varying com positions o f sand 

and glass beads o f 38% porosity and other known characteristics (e.g. perm eab ility  and 

heterogeneity).

The apparatus consists o f dear P V C  pressure vessel o f 15 cm inside d iam eter and 162 cm 

height, w hich holds the cy lind rica l channel hanging on the load cell. The concept behind the 

use o f the load cell is th a t w ith  the progress o f d iffusion the heavy o il v iscosity reduces and 

a load cell w ill regu larly record the decrease in  the mass o f the cylinder due to  o il drainage. 

As shown in  figure 3.2, the pressure vessel would be divided in to  tw o sections. The upper 

section w ould have 114 cm height and lower section would have 44 cm height. B o th  section 

w ould be connected by means o f 1.25 cm th ick  and 7.53 cm wide gray P V C  flange, and te flon  

gasket w ould be used to  prevent gas or w ater leakage. A  pressure vessel would rest on the
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3.1  D e s ig n  o f  E x p e r im e n ta l S e tu p

F ig u re  3 .1  Schem atic d iagram  o f experim enta l Setup
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F ig u re  3 .2  D e ta ils  o f the  Pressure Vessel
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3 .1  D e s ig n  o f  E x p er im en ta l S etu p

shock absorber to  avoid the system v ib ra tion .

The tem perature o f the  system w ill be m aintained by using the tem perature contro lle r sub

merged in  the cy lin d rica l w ater bath. The water bath would be made o f clear PVC, w ith  

100 cm outside diam eter, 188 cm height and 0.94 cm thickness. The water w ill be recycled 

continuously in  the w ater ba th  to  ensure proper tem perature d is trib u tio n , and the  pressure 

o f the  vapor chamber w ill be m aintained by means o f an Isco syringe pum p throughout the 

experim ent. A  syringe pum p supplies the gas a t the predeterm ined pressure in to  the vessel 

v ia  preheating co il (4 m length, 6  mm outside diam eter and 1.5 m m  thickness) immersed 

inside a contro lled tem perature water bath, so th a t the in le t gas along w ith  the system 

pressure and tem perature rem ains constant. A  vacuum pump w ill be used fo r the purging 

purpose.

A  sm all funnel w ill be placed below the cy lind rica l channel a t the bottom  o f the pressure 

vessel equipped w ith  a valve, which perm its the produced live  o il from  the cy lind rica l channel 

to  ca librated co llection tube (30 cm^). A fte r the collection tube is fille d  w ith  produced live  

o il, the live  o il w ill be allowed to  flow  through a viscosity measuring u n it v ia  stainless steel 

tube  o f 12 m m  outside diam eter, and a thickness o f 2 mm. To flow  the live  o il from  the 

ca librated co llection tube, the valve situated between the funnel and calibrated collection 

tube  is necessary to  keep open, in  order to  m ainta in the constant pressure. A  viscosity 

m easuring u n it comprises o f stainless steel cap illa ry tube o f in te rna l diam eter 0.55 mm and 

length  50 cm. A  d iffe ren tia l pressure transducer w ill be used to  measure the pressure drop 

across the cap illa ry  tube fo r a given flow rate. The flow  rate would be determ ined by 

m easuring am ount o f tim e  required to  pass a known volume o f d ilu ted  o il from  the collection 

tube. Now the viscosity o f live  o il can be determ ined by using the Hagen-Poiseulle equation 

w ith  known flow  ra te  {Q), pressure drop (A P ), cap illa ry tube diam eter (D ) and length [L )  

as:

Furtherm ore, the collected live  o il w ill be period ica lly flashed by using a stainless steel flash
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3.1  D e s ig n  o f  E x p er im en ta l S e tu p

separation tank (250 cm® capacity) wrapped w ith  a flexib le e lectrica l heating tape; w ith  

contro lled tem perature a t around 60° C or higher, to  determ ine the am ount o f (i) absorbed 

gas by transferring  the libera ted gas to  gas measuring column, and ( ii)  residual gas free o il 

(dead o il). The flashed liberated butane gas w ould be allowed to  collect in to  transparent 

gas-measuring colum n (3000 cm®) fo r volume measurement o f dissolved gas.

Butane w ill be used as a solvent gas fo r the tem perature range o f 20-40°C and pressure 

range o f 0.21M Pa-0.38M Pa. However, a fte r perform ing these experim ents; Carbon dioxide, 

methane, ethane, propane and butane w ill be used separately as solvent gases for the tem 

perature range o f 25-90°C and pressure range o f 0.21MPa - 7MPa, by using the stainless 

steel pressure vessel and waterbath.

The experim ental conditions w ill be recorded autom atically by using the E thernet Data 

A cqu is ition  System -EDAS (16 b it resolution), supplied from  A-Tech Instrum ents L td ., which 

w ill be connected w ith  the com puter. Labview - 7 software would be used fo r graphical user 

interface and online m on itoring  o f fo llow ing inputs: (i) the tem peratures o f the pressure 

vessel, suspended cylinder, and flash separation tank, ( ii)  the pressure o f a gas, ( iii)  in le t 

flow  o f a gas, and (iv ) the mass o f a cylinder a t a regular tim e intervals.

The details o f selected instrum ents fo r experim ental setup are as follows;

1. Ethernet D ata Acquisition System (E D A S)=>  Resolution: 16 b it, Analog inputs 

(Channels): 16 single-ended /  8  d iffe ren tia l

2. High Accuracy S-Type Load cell (LC) = * -  Range: ±25 lbs, Accuracy: 0.1 % 

FSO, O utpu t: 0 -3  m V /V , E xcita tion : 10 VD C , 15 VDC max

3. Pressure Transducer (FT) =>• Range: 0-200 psig, 0.1% FSO sta tic  accuracy. 

O u tpu t: 4-20 m A

4. Differential Pressure Transducer (D PT) = * -  Range: 0-30 psid. Accuracy: 0.5% 

FSO, O utput: 4-20 m A
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3.1  D e s ig n  o f  E x p e r im e n ta l S etu p

5. T e m p e ra tu re  sensor = >  (T l)  H igh Accuracy R TD  p lug sensor: Pressure ra ting :

2500 psi, M ax. tem perature ra ting : 230°C, 1 /4 "N P T , 3 "Nose;

(T2) T  Type autoclave probe: M ax. tem perature range 0-200°C, 15 m m  needle and

(T3) H igh  Accuracy RTD plug sensor: H igh Pressure RTD p lug sensor: Pressure 

ra ting : 2500 psi, M ax. tem perature ra ting : 230°C, 1 /4 "N P T , 1  "Nose

6 . T e m p e ra tu re  C o n tro lle r  (T C ) = * -  Omega C N i 32-5-4, Accuracy: ±0.5°C ,

O utpu t 1: 4-20m A  o r voltage ou tpu t (would be used re transm it a value to  ED  AS),

O u tpu t 2: 10 V D C  a t 0 - 2 0 m A pulse ou tpu t fo r use w ith  external SSR (would be used 

to  drive  an external DC SSR in  order to  contro l a heater)

7. S o ld i S ta te  R e la y  (S S R ) = >  DC C ontro l S ignal (24-280 VAC line ), 50 A  Nom inal 

ra ting

T e m p e ra tu re  C o n tro lle r  L o o p : The tem perature contro lle r would be used to  m ainta in 

the w aterbath tem perature a t desired tem perature. The tem perature o f w aterbath would 

be sensed by therm ocouple. The ou tpu t o f therm ocouple would be in p u t fo r tem perature 

con tro lle r (Omega - CNi3254). The waterbath tem perature can be controlled in  ±0.5°C  

w ith  th is  contro lle r. The ou tpu t o f tem perature contro lle r would be in p u t to  solid  state 

relay (SSR - Omega, SSRL240DC50), and SSR would be connected w ith  water im m ersion 

heater.

D a ta  A c q u is itio n  S ystem  L o o p  The selected data acquisition system is for m onitoring  

purpose only. I t  m onitors load, pressure and tem peratures. As shown in  figure 3.3, load 

ce ll (LC ), pressure transducer (P T ) and d iffe ren tia l pressure transducer (D P T) w ould be |

connected to  corresponding module through jun c tio n  box (J Box). Tem perature probes j

(T l,  T2, T 3) w ould be connected d irectly  to  the corresponding module. These instrum ents |

consists th e ir own characteristic ou tpu t, which w ill be converted in to  0 - 5V common ou tpu t 

by ind iv id u a l module. Term ination panel consists 16 channels, where in  th is  work, 6  channels
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F ig u re  3.3 D ata  A cqu is ition  System Loop
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3.2 Details of Experimental Setup used to develop the Mathematical Model__________

w ould be used fo r 6  modules, and rest o f 1 0  channels are purchased fo r fu tu re  expansion. 

Follow ing th is , converted 0 - 5V ou tpu t would be in p u t to  data acquisition system (ED AS), 

w hich w ill be interfaced w ith  com puter, insta lled w ith  Labview 7.0 software.

Due to  lim ita tio n  o f tim e, th is  experim ental setup was no t b u ild  up. However, m athem atica l 

m odel was developed based on experim ental setup used by O duntan [2001]. T h is experim en

ta l deta ils has been described in  the fo llow ing section.

3.2 D etails o f Experim ental Setup used to  develop the  
M athem atical M odel

The developed m odel in  Chapter 4 is based on the fo llow ing experim ent perform ed by Odun

tan  [2001]. O duntan [2001] used a rectangular channel as a physical model. F igure 3.4 shows 

the schematic diagram  o f the experim ental setup, and Figure 3.5 shows the deta ils o f the 

rectangular channel.

The used rectangular channel was o f fixed cavity o f 1.9 cm w id th  and 1.6 cm depth. Several 

homogeneous physical models were used by varying the lengths o f 21 cm, 47 cm, 84 cm, 160 

cm and 247 cm. A ll models were packed w ith  glass beads (average partic le  diam eter o f 400 

fim ) to  create a system w ith  porosity o f about 38% and perm eability o f 136 darcy. Once the 

rectangular channel is packed w ith  glass beads and bitum en, the m odel was placed inside 

a p ipe o f larger diam eter, which behave as a vapor chamber. A  w ire mesh screen was used 

to  cover the open face o f the rectangular channel. The orig ina l heavy o il had a viscosity 

o f 40,550 mPa-s and a density o f 970.3 kg/m ^ at room tem perature. The experim ents were 

carried out between 19°C and 22°C by using the butane as a solvent. Before s ta rtin g  the 

experim ent, the vapor chamber was fixed at the desired d ip  angle. A fte r th a t, butane vapor 

was in jected a t pressure equal to  its  vapor pressure a t room  tem perature. The butane starts 

d iffusing in to  the o il, and consequently reduced viscosity d ilu ted  o il starts dra in ing. The 

produced o il was collected in  a graduated collection tube. Once the collection tube is fille d
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3.2  D e ta ils  o f  E x p er im en ta l S etu p  u sed  to  d ev e lo p  th e  M a th em a tica l M o d e l

F ig u re  3 .4  Schematic diagram  o f experim ental Setup, O duntan et al.
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3 .2  D e ta ils  o f  E x p e r im e n ta l S e tu p  u sed  to  d ev e lo p  th e  M a th e m a tic a l M o d e l

F ig u re  3 .5  The deta ils o f rectangular channel, O duntan et al.
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3 .2  D e ta ils  ô f  E x p e r im e n ta l S e tu p  u sed  to  d ev e lo p  th e  M a th e m a tic a l M o d e l__________

w ith  d ilu te d  o il, the o il was allowed to  flow  through a cap illa ry  tube (C T ), where the  pressure 

drop  was measured by the  means o f d iffe ren tia l pressure transducer in  order to  measure the 

live  o il viscosity by using the Hagen-Poiseuille equation. Follow ing to  th a t, the  live  o il was 

collected in to  a cy lin d rica l stainless steel separator. The separation ta n k  was m ainta ined at 

60°C or h igher fo r flashing o f dissolved butane gas from  the live  o il. In  order to  measure 

the  am ount o f absorbed butane in to  the o il, the liberated butane was allowed to  co llect in  a 

graduated gas m easuring colum n. A t the end, the dead o il was collected in  a ja r  placed on 

a w eighing balance.
>

Based on th is  experim ental setup, the  m athem atical model has been developed by considering 

rectangular b lock, w hich is described in  C hapter 4.
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4 Mathematical Model

4.1 Introduction

Cru c ia l to  the  economic v ia b ility  o f V A P E X  is the  m ix ing  o f solvent w ith  crude o il, 

w hich is governed by the phenomenon o f dispersion. The poros ity  o f reservoir m edia 

augments th is  phenomenon, w hich otherw ise w ould include m olecular d iffus ion  only. In  

a reservoir, a solvent gas m ixes w ith  heavy o il and b itum en phase th rough  the  com bined 

phenomena o f m olecular d iffusion , viscosity reduction, g ra v ita tio n a l flow , ca p illa ry  action, 

and surface renewal [Das and B u tle r, 1998]. The net effect is dispersion, w hich can no t be 

accurately described by m olecular d iffusion alone. As a m a tte r o f fac t, the  recovery rates o f 

heavy o il and b itum en w ith  V A P E X  correspond to  effective d iffus iv itie s , w hich are tw o to

five  orders o f m agnitudes higher than the m olecular d iffus iv ities .

A  considerable am ount o f experim ental and theore tica l research exists on the  de term ination 

o f dispersion in  d iffe ren t solvent-m edium  systems [Perkins and Johnston, 1963]. However, 

the  phenomenon o f dispersion is poo rly  understood in  systems like  so lvent-crude o il in  porous 

m edia, w hich undergo s ign ifican t viscosity changes [O balla  and B u tle r, 1989]. Labora to ry ex

perim ents show th a t the o il p roduction  rates in  physical m odel tests using reservoir sand and 

fa llin g  film  geom etry can be several folds higher than the  rates predicted th rough  m olecular 

d iffusion. Possible reasons fo r th is  enhancement could be the increase in  m olecular d iffu s iv ity  

w ith  solvent concentration leading to  decreased o il viscosity, an increase in  gas/o il in te rfa c ia l 

area, and in te rfa c ia l in s ta b ilitie s . To m atch V A P E X  o il p roduction  rates, researchers [D unn 

e t a l., 1989, Das and B u tle r, 1998, L im  et a l., 1996, O duntan et a l.] had to  use d iffe ren t values 

o f dispersion, a ll o f w hich are qu ite  higher than m olecular d iffusion. These values ind ica te  

a strong concentration dependence o f dispersion [Boustani and M a in i, 2001] as observed in  

the  case o f m olecular d iffus ion  [U p re ti and M ehrotra, 2002].

For the accurate p red ic tion  o f heavy o il and b itum en recovery w ith  V A P E X  leading to
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effective designs and o p tim a l operations o f com m ercial V A P E X  app lica tions, i t  is essential 

to  experim enta lly  determ ine the dispersion o f various solvents used in  V A P E X . L ite ra tu re  

survey ind icates a p a u c ity  o f the much-needed dispersion data. In  th is  w ork, we develop 

and sim ulate a deta iled m athem atica l m odel to  determ ine solvent dispersion in  V A P E X . A  

labo ra to ry  scale physical m odel o f heavy o il and b itum en saturated porous m edium  is u tilize d  

fo r th is  purpose. The physical m odel was invented, and has been used by the researchers 

a t U n ive rs ity  o f W aterloo in  various studies on V A P E X  [O duntan et a l., O duntan, 2001, 

R am akrishnan, 2003]. The experim ental data o f live  o il p roduction  from  V A P E X  reported 

by  O duntan et al. are used in  the  sim u la tion  o f the developed m odel to  determ ine the 

dispersion o f butane in  C old Lake bitum en.

4.2 M odel Developm ent

F igure  4.1 shows a la te ra l cross section o f the physical model [O duntan et a l., O duntan, 

2 0 0 1 ], w hich is a rectangular block o f porous m edium  saturated w ith  heavy o il and b itum en 

th roughou t a t the onset o f VA P E X . Under specified tem perature and pressure conditions, 

the block is in itia lly  exposed to  a solvent gas on the ve rtica l face on rig h t hand side. The 

gas diffuses in to  the block, and gets absorbed in  heavy o il and b itum en. The absorption o f 

gas reduces the viscosity o f heavy o il and b itum en causing i t  to  flow  under g ra v ity  th rough 

porous m edium . The low -viscosity o il or “ live  o il”  is produced a t the bo ttom  o f the  block. 

The flow  o f live  o il a t the  exposed surface renews i t  continuously, thereby enhancing the 

transfer o f gas in to  heavy o il and bitum en. The production o f live  o il w ith  tim e causes the 

b lock to  sh rin k  in  size. The height o f block reduces w ith  tim e, and varies along %-axis, i.e. 

along the w id th  o f the block. The reduction o f height exposes the block to  the  gas from  top, 

thereby augm enting the  exposed surface area. Th is effect fu rth e r enhances the transfer o f 

gas.

In  the m athem atical m odel developed below, the m ain assumptions are as follows:
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4 .2  M o d e l D e v e lo p m e n t

Figure 4.1 L a te ra l cross section o f the  physical m odel w ith  the arrangem ent o f g rid  po in ts 
a t the  onset o f V A P E X

y

W A LL

(0,0)

D -

GAS

P R O D U C TIO N  END
( A i- 1 , 0 )

X
—o

1. V A P E X  is carried ou t a t constant tem perature and pressure.

2. The porous m edium  has un ifo rm  porosity and perm eability.

3. The mass fra c tio n  o f gas a t the exposed surface o f porous m edium  is the sa tu ra tion  

mass fra c tio n  under equ ilib rium .

4. The dispersion o f gas takes place along x-d irection . The transfer o f gas along ^/-d irection 

is governed by the ^/-component o f D arcy ve locity in  porous m edium , and the so lu tion  

has constant mass density.

5. The dispersion o f gas incorporates m olecular d iffusion, the effects o f surface renewal
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and augm entation, and any convective component along Æ -direction.

6 . There is no mass transfer across the ve rtica l face o f the block on le ft hand side, w hich 

is a w a ll.

7. There is no va ria tio n  o f state variables along the  thickness o f the block.

The unsteady state mass balance fo r solvent gas in  the block results;

As per our assum ption, the dispersion o f gas takes place along i-d ire c tio n , and dispersion 

incorporates convective component along ^-d irection :

rix =  —7 ) ^  (4.2)

The transfer o f gas along y-d irection  governed by darcy velocity, and d iffusion is neglig ib le 

w h ile  bu lk  is m oving along y-d irection :

Uy V (4.3)

B y sub s titu tin g  equation (4.2) and (4.3) in to  equation (4.1), results in  the fo llow ing p a rtia l 

d iffe ren tia l equation:

In  E quation (4.4), (j) is the porosity o f medium , w is the mass fraction  o f gas in  the block, V

is the dispersion o f gas along ^-d irection , and v is the Darcy ve locity along y-d irection  given

by

.  =  (4.5)
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4 .2  M o d e l D ev e lo p m en t

In  E quation (4.5), K i  is re la tive  perm eability, and K  is perm eability o f porous m edium , p is 

the density o f live  o il, g is gravity, and 0 is the angle between the base o f physical m odel and 

the horizonta l, p, is the concentration-dependent viscosity o f live  o il given by the fo llow ing 

corre la tion  [O duntan, 2001]:

p =  PoUi~^ (4.6)

For the  dispersion o f gas in  heavy o il and bitum en, we use the fo llow ing dependence

V  oc ® (4.7)

based on an em pirica l m odel correlated by Das and B u tle r [1996]. C om bining Equations (4.6) 

and E quation (4.7), we get the fo llow ing linear, concentration-dependent m odel fo r dispersion

T> =  (4.8)

where T)^ is dispersion coefficient, or gas dispersion fo r w =  1 .

The change in  the  height o f b lock {Y )  w ith  tim e a t any location on x-axis is the negative o f

D arcy ve locity a t the bo ttom  o f block, i. e. |

 ̂= I
Ii

In itia lly , there is no gas in  the block except a t its  exposed vertica l face on rig h t hand side, ;

where gas concentration is its  equihbrium  satura tion  value under preva iling  tem perature and 

pressure. Furtherm ore, there is no production o f live o il a t the beginning so th a t the in itia l j

height o f b lock is its  specified height, Yq. Thus, the in itia l conditions at t  =  0 are |

r 0 , fo r 0  <  y <  To. 0  <  a; <  X , I
w =  < (4.10)

I  Wsat, fo r 0 <  y <  To, x -  X

Y  =  Yo (4.11)

A t a ll tim es, any exposed surface o f block is saturated w ith  gas. T h is  cond ition  applies to 

the top  face o f block when i t  gets exposed to  gas. Furtherm ore, the concentration gradient is
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zero a t the w a ll on the ve rtica l face on le ft hand side across which there is no mass transfer. 

Thus, the boundary conditions fo r t  >  0 are

{:fo r 0 <  <  y , X — X
CÜ ~  (jJsa,t ^ (4.12)

fo r 0 <  æ <  X , y =  Y ; i f  F  <  y ,

^  = 0 ; fo r 0 <  y <  y  and z  =  0 (4.13)
ox

A t any tim e, the cum ulative volume freed up w ith in  the in itia l boundaries o f porous block 

due to  o il p roduction  is given by

X

Kai Z  j  (Vo ~  Y )  da: (4.14)
0

and is the cum ulative volum e o f o il produced. However, th is  volum e corresponds to  the 

volum e o f dead o il in itia lly  present in  the porous block. Hence, the cum ulative volume o f 

live  o il produced a t any tim e  is given by

X

Kai Z  j ( X ^ ~  y )  d i  (4.15)
0

where, 5 is the coefficient fo r volume correlation.

4.3 Solution

The above m athem atical m odel can no t be solved analytica lly. In  th is  work, i t  was num eri

ca lly  solved using fin ite  differences. The application o f second order fin ite  differences along x  

and y  d irections results in  the set o f simultaneous ord inary d iffe ren tia l equations w ith  tim e 

as an independent variable. W ith  Ni and Nj g rid  points respectively along x  and y  d irection  

as shown in  F igure 4.1, the finite-differenced ord inary d iffe rentia l equations are as follows:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 .3  S o lu tio n

For in term ediate g rid  po in ts in  the block;
dw,

d t <t> V ^  V
K r K p g c o s e  2 / W(J+ 1  -

I  2Ay, j  '
0 < i < iV; — 1, and 0 < j  < A?j — 1

2Arc

For a ll g rid  po in ts (except corners) on le ft hand side: 
dwn^  o < j < J V j - l

t  p^(t> \  2 A y o  )d t

For the  corner g rid  p o in t on le ft hand side at and bottom : 
dwo.o K rK p g  cos 6  ̂ +  4wo,i
 ----------------- - ^  jd t Po(t>

For the corner g rid  p o in t a t le ft hand side and top:
dwo,N j-i _  K rK p g  cos 0 g

d t
w:

> (  3W o,Nj-l

2 Aj/o

For g rid  po in ts on rig h t hand side exposed to  gas:

% “ =0;  0 < y < J V ,

For g rid  po in ts (excluding corners) a t the bottom :

dWi,o 1 /wi+1,0 — 2Wi,o+‘̂ i-l,o'\ , (
-  T  I  (Aip ) + { - ^ x ----- )

K r K p g  cos 0 2 f  ~^i,2  +  4 W;_1 — 3W; ()\

V ^  / ’

dt

Po<t>
-w.t,0

0 <  i  <  iVi -  1 

For g rid  po ints (excluding corners) a t the top:

d t

2 »
<t>

( ~  +  aJj-i'ATj-A
V (Ar)2 )

—

K rK p g  COS 6

Po<l>
i f F i ^ n  

0 ; i f y - < X .

0 < i  <  N i - 1

2 /3 w , - , j V i - l  — 4Wi,ATj-

^ 2A%
+ U),ï.-Vj-3
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4 .3  S o lu tio n

In  the  above equations, is the mass frac tion  o f gas a t the node, (i, j )  corresponding to  the 

coordinate, {x, y). A x  and A y  are the distances between equispaced g rid  po ints respectively 

along X and y d irections. Note th a t F , which is the height o f block, changes w ith  tim e and 

X ,  and is calculable though the simultaneous in tegra tion  o f the fo llow ing equation;

0 < i < W , - l  (4.23)
d t ' f i .

W hile  A x  is constant, and is given by

Ax =  ^  (4.24)

A y, varies along x-d irection  w ith  tim e, and is given by

=  0 < j < N |  (4.25)
J  J

Equations (4.16)~(4.23) are coupled, h igh ly  nonlinear and s tiff to  solve. In  th is  work, they 

were num erically integrated using sem i-im p lic it Bader-Deuflhard a lgorithm , and adaptive 

step-size contro l [Press- et al., 2002]. A na ly tica l jacobians o f Equations (4.16)-(4.23) were 

employed fo r in tegra tion . To fix  the number o f g rid  points, TVj and N j, the equations were

integrated w ith  the increasing number o f g rid  points u n til the changes in  solution became

negligible.

Table 4.1 lis ts  the various parameters used in  the sim ulation o f the m athem atical model. 

The cum ulative volume o f live o il produced a t any tim e is given by the fo llow ing equation;

VLü =  J AxZ ^  1 (4.26)
t « = 0  ^ /

The a lgorithm  was programmed to  generate Vca} a t the experim ental tim e instants fo r its  

i d irect comparison w ith  its  experim ental counterpart, I4xp- The roo t mean square fractiona l

' error between these volumes was calculated as

n= 0
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4 .3  S o lu tio n

In  E quation  (4.27), N  is the number o f experim ental data points, and n  denotes the n th  

experim ental tim e  instant.

In  th is  w ork, the experim ental data published earlie r by O duntan [2001] were used fo r the 

operation tim e  o f about 4 h. These data are fo r the vapor extraction o f Cold Lake b itum en 

from  a labora to ry  scale physical model using butane a t tem perature in  the range, 19-22°C 

w ith  pressure close to  dew po in t, i. e. in  the range, 0.21-0.23 MPa.
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4.3  S o lu tio n

T a b le  4.1 Various param eters used in  th is  study

P a ra m e te r V a lu e S ource

g ,  cm /s^ 981

N i 6

N i 34

I>o. cm ^/s 0.194-1.39
T his study

^ s a t G.7-1.0

K ,  cm^ 1.34 X IQ -fi

K r 1

if ,  h 4

Xo, cm 1.9

K , cm 2 1 O duntan [2001]

■Zo, cm 1 . 6

6 ,  rad 7 r /4

Mo, g/cm -s 5.4709 X  10-3

p ,  g/cm ^ 0.85

0 0.38

5 2
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5 Result and Discussion

Root mean square errors were obtained by solving Equations (4.16)-(4.27) w ith  various 

values o f Wsat and V „  in  the range 0.7-1.0 and 0.194-1.39 cm ^/s, respectively. Table 

5.1 shows the errors th a t are less than 8 %, and surround the m inim um  error. The F igure 5.1 

shows the va ria tion  o f RMS% error w ith  respect to  various sa tura tion  mass frac tion  and 

various dispersion coefficient used in  th is  study. I t  can be analyzed from  Table 5.1 and 

F igures . 1  th a t optim um  RMS% error found was 2.2198%, w ith  corresponding op tim a l values 

o f Wgat =  0.87, and T>o =  0.556 cm ^/s. This op tim a l value o f is fou r orders o f m agnitude 

higher than the corresponding coefficient reported fo r the m olecular d iffusion o f butane in  

Peace R iver b itum en. The high value o f X>o underlines the role o f convection and surface 

renewal encapsulated through dispersion in  V APEX. Figure 5.1 shows the va ria tion  o f RMS% 

erro r w ith  respect to  various dispersion values fo r 0.87 saturation mass fraction .

F urthe r calculations w ith  Wgat >  0.88, and >  1.39 cm ^/s d id  no t result in  the roo t 

mean square erro r lower than its  op tim a l value o f 2.2198%. A t very high values o f V q, the 

in tegra tion  o f the set o f d iffe ren tia l equations, i. e. Equations (4.16)-(4.23) became very tim e 

consuming as the step size o f in tegration became p roh ib itive ly  sm all. The reason is th a t 

Po appears on ly in  Equations (4.16), (4.21) and (4.22) o f the set o f o rd inary d iffe ren tia l 

equations. A  higher value o f P „ as such increases the stiffness o f the whole set o f equations 

requ iring  sm aller step sizes fo r in tegration.

Predicted live  o il p roduction versus tim e fo r the op tim a l values of ujs&t and P „ is compared 

w ith  the experim ental da ta  o f O duntan [2001] in  F igure 5.2. I t  is observed th a t the pre

dicted production follows experim ental production very closely during the operation tim e o f 

about 4 h. The rate o f production during th is  tim e stays p ractica lly  constant as has been 

experim enta lly reported earlier [Oduntan, 2001].

For the op tim a l values o f Wgat and P<,, Figure 5.3 shows the varia tion  o f height o f the porous
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T a b le  5.1  Percentage root  mean square e rro r (in  gray cells) between p red icted  and experi
m enta l live  o il p roduction

-Do X 10^

(cm ^/s)

S a tu ra tio n  m ass fra c tio n  o f b u ta n e

0.85 0 . 8 6 *0.87 0.88

1.94 7.9925 5.9630 4.2130 3.1795

2.50 6.8543 4.8592 3.2361 2.7811

2.78 6.4580 4.4752 2.9202 2.7616

*5.56 4.7998 . 2.9416 *2.2198 3.4657

8.33 4.2823 2.5685 2.3366 3.8916

1 1 . 1 4.0360 2.4226 2.4497 4.1382

13.9 3.9009 2.3461 2.5417 4.2852
* .: optim al
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F ig u r e  5.1 RMS% error versus Dispersion Coefficient for 0.87 saturation mass fraction

4.4
4.2

.  3.G 
3.4
3.2

2
o

2.6
2.4
2.2

0.4 0.6 0.8 1
dispersion coefficient, cm ^/s

0.2 1.2 1.4

b lock a t d iffe ren t tim es. The height is observed to  reduce w ith  w id th  a t any tim e. The 

gradient of he ight w ith  respect to  w id th  decreases considerably w ith  tim e as can be seen 

from  the ^gure. The gradient is the m ost negative in  the end. The reason fo r th is  behavior 

is the im plem entation o f V A P E X  under the constra int o f in itia l and boundary conditions 

given by Equations (4 .10)-(4.13). In itia lly , the concentration o f gas and resu lting  live  o il 

production are higher, closer to  the exposed surface o f block on rig h t hand side where the 

consequent reduction o f height begins. W ith  the passage o f tim e, th is  reduction increasingly 

exposes the b lock to  gas from  the top, beginning from  the top rig h t corner. T h is exposure, 

w hich progressively increases w ith  tim e, results in  the increasingly negative gradient o f height 

o f block w ith  respect to  its  thickness. The rate o f production w ith  tim e, however, remains 

alm ost constant fo r m ost o f the operation tim e as can be seen in  F igure 5.2.

The changes in  mass fractions w ith  respect to  height, w id th  and tim e were obtained by 

solving equations (4.12)-(4.22) fo r optim um  case (where saturation mass fra c tio n  was 0.87). 

The va ria tion  o f mass fraction  in  the block a t 1.2 hrs and 4 hrs is shown in  F igure 5.4 and
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F ig u re  5.2 Experimental and model predicted production of live oil versus time

40
experimental 4" 

pred ic ted------35

30

25

20

15

10

5

0
2 2.51.5 3 3.5 410 0.5 4.5
time (h)

F igure 5.5, respectively. W hen tim e  t  =  0, the g rid  size o f the block is o rig in a l g rid  size. 

However, the  g rid  size shrink w ith  respect to  shrinkage o f the block a t a given tim e b u t the 

num ber o f g rid  po in ts rem ain same. In  order to  explain the va ria tio n  o f mass frac tion  in  the 

block a t given tim e, the extrapo la tion  o f shrinked g rid  size to  o rig ina l g rid  size was done. As 

the b lock was exposed to  gas a t rig h t hand side, the satura tion  mass fra c tio n  was obtained 

a t the o il-so lvent interface, which is shown in  Figures 5.4 and 5.5. The layer o f sa tu ra tion  

mass fra c tio n  was moved from  tim e  t  =  1 . 2  hrs to  t  =  4 hrs (Figures 5.4 and 5.5). The 

va ria tion  o f mass frac tion  from  exposed surface to  w a ll side was decreased. I t  could be due 

to  dispersion o f gas along % -direction. A t the w all side, there is no mass transfer. Hence, 

the mass fra c tio n  obtained a t the le ft hand side o f the block was zero.

As the p roduction  starts, the low  viscosity o il drains under the action o f g ravity, the surface 

renewal occurred due to  bu lk  m otion, and block exposed to  gas from  top  rig h t hand side 

(F igure 5.3). Once the low  viscosity live o il drains under the action o f g ravity , the solvent
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F ig u re  5 .3  T he  he igh t p f b lo ck  versus its  w id th  a t d iffe re n t tim es

?

time (h)

0.7
1.2

3.2

0 0.3 0.6 0.9 1.2 1.5 1.8
width (cm)
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F ig u re  5.4 The variation of mass fraction in the block at 1.2 hrs

CM

j=32

1=30

1=28

1=26

1=24

1=22

P
Ü 1=20

=18

o
X

1=14

1=12

1=10

1=8

1=6

1=4

1=2

1=0

0 0.87 1 1 1 1

0 0.3682 0.87 1 1 1

0 0.3677 0.5384 0.87 1 1

0 0.3677 0.5384 0.6673 0.87 1

0 0.3677 0.5384 0.6673 0.7753 0,87

0 0.3677 0.5383 0.6674 0.7752 0.87

0 0.3677 0.5384 0.6673 0.7753 0.87

0 0.3677 0.5385 0.6672 0.7754 0.87

0 0.3678 0.5383 0.6675 0.7752 0.87

0 0.3679 0.5380 0.6680 0.7748 0.87

0 0.368 0.5377 0.6684 0.7745 0.87

0 0.3681 0.5376 0.6686 0.7743 0.87

0 0.3681 0.5376 0.6686 0.7742 0.87

0 0.3681 0.5376 0.6686 0.7742 0.87

0 0.3681 0.5376 0.6686 0.7742 0.87

0 0.3681 0.5376 0.6687 0.7742 0.87
0 0.3681 0.5376 0.6687 0.7742 0.87

i=0 i=1 1=2 i=3 i=4 i=5

Width 1.9 cm
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F ig u re  5.5 The variation of mass fraction in the block a t 4.0 hrs

I

05
0 )
X

j=32

j=30

j=28

j=26

i=24

j=22

]=20

i=18

j=16

j=14

j=12

j=10

j=8

j=6

i=4

i=2

i=0

0 0.87 1 1 1 1

0 0.3691 1 1 1 1

0 0.3679 1 1 1 1

0 0.368 0.87 1 1 1

0 0.3676 0.5387 1 1 1

0 0.3675 0.5389 1 1 1

0 0.3678 0.5381 0.87 1 1

0 0.3678 0.5382 0.6675 1 1

0 0.3678 0.5381 0.6678 1 1

0 0.3679 0.5380 0.6680 0.87 1

0 0.3675 0.5390 0.6664 0.7761 1

0 0.3676 0.5387 0.6669 0.7757 1

0 0.3676 0.5386 0.6670 0.7756 0.87

0 0.3679 0.5381 0.6678 0.7750 0.87

0 0.3678 0.5382 0.6676 0.7750 0.87

0 0.3679 0.5381 0.6678 0.7748 0.87

0 0.3679 0.5381 0.6678 0.7748 0.87

i=0 i=1 i=2 1=3 i=4 i=5

Width 1.9 cm

5 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gas replaces the volum e vacated by o il. F igures 5.4 and 5.5 shows th a t w = 1 , w hich in 

dicates th a t gas was replaced by the volum e o f vacated o il. The figure 5.4 shows volum e 

o f o il was produced a t 1.2 hrs was less than th a t a t 4 hrs. A t 4 hrs, the  block shrinked 

rem arkably, and gas occupied higher volum e than at 1.2 hrs o f operation tim e . On rig h t 

hand side, as the o il was always exposed to  gas, the saturation mass fra c tio n  was observed 

in  o il (F igures 5.4and 5.5).

I t  can be analyzed from  Figure 5.4 and F igure 5.5 th a t a t t= 1 .2  hrs, on ly 10 g rid  points 

have the pure gas i.e . w =  1. However, when tim e t  =  4 hrs the channel consists pure gas 

(w =  1) in  30 g rid  po in ts. T h is indicates th a t higher am ount o f o il was drained a fte r 4 hrs 

o f operation tim e, and the  volume vacated by o il was replaced by gas. Figures 5.3, 5.4 and 

5.5 clearly depicts the phenomena o f solvent mass fraction , and surface renewal du ring  the 

p roduction  a t various tim e  intervals.

The Cold Lake b itum en used in  VAP EX experiments had 40.55 Pa s viscosity, and 0.9703 

g/cm® density at room  tem perature [O duntan, 2001]. Experim ental tem perature varied in  

the range, 19-22°C w ith  pressure close to  dew po in t, i.e . in  the range, 0.21-0.23 MPa. 

Under these conditions on the basis o f the above calculations, the sa tu ra tion  mass frac tion  

or so lu b ility  o f butane is 0.87. The dispersion o f butane in  C old Lake b itum en (held in  

a homogenous porous m edium ) during its  vapor extraction  is expressed by the fo llow ing  

re la tion ;

V  =  0.556w [cm ^/s] (5.1)

where w is the mass fraction  o f butane in  C old Lake bitum en.
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6 Conclusion

T h is  thesis is the ground w ork fo r the determ ination o f dispersion o f solvent gases in  heavy 

o il and b itum en a t V A P E X  operating conditions. As a p a rt o f dispersion determ ination, 

the experim ental setup was designed to  perform  the lab-scale VAPEX  experim ent. Further, 

a m athem atical m odel was developed and sim ulated to  describe V A P E X  in  a rectangular 

block o f homogenous porous m edium  a t specified tem perature and pressure. T h is  m odel was 

used to  determ ine the  s o lu b ility  (sa tu ra tion  mass fraction ) and dispersion o f butane in  Cold 

Lake bitum en. B o th  heavy o il and bitum en viscosity, and gas dispersion were considered 

to  be dependent on com position. The shrinkage o f block during  VAPEX, i. e. its  m oving 

boundary w ith  tim e  and space was taken in to  account. The sim ulations o f m odel were based 

on the previously reported experim ental data o f VAPEX im plem entation in  a labora to ry 

scale physical m odel. D iffe ren t values fo r the so lu b ility  and dispersion o f butane were used 

in  the  sim ulations. The optim um  so lu b ility  and dispersion were determ ined fo r which the 

roo t mean square frac tiona l error between the sim ulated and experim ental values o f live  

o il production  is m inim um . Corresponding dispersion o f butane in  C old Lake b itum en was 

found to  be fou r orders o f m agnitude higher than previously reported m olecular d iffusion o f 

butane in  heavy o il and bitum en.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7 Recommendations for Future Work

1. The dispersion coefficients o f butane in  heavy o il and b itum en can be measured fo r 

above am bient tem perature.

2. The dispersion coefficients o f other gases i. e. propane, ethane, methane and carbon 

dioxide can be measured fo r d ifferent tem perature and pressure conditions.

3. Recent study has proved th a t the use o f m ixed solvents v /ith  proper p roportion  can 

give the production  rate alm ost same as pure solvent. As a m a tte r o f fact th a t m ixed 

solvents are more economic to  pure solvents, so the dispersion coefficients fo r m ixed 

solvents can be measured fo r economic v ia b ility .

62

I.:
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography
A ya to llah ! S. Akbarzadeh, K ., K . N asrifar, H. W . Y arranton, and M . M oshfeghian. E quation 

lead to  asphaltene deposition prediction. O il &  Gas Journal, 100(44):51-55, O ct 28 2002.

F. H . A llen . The Canadian O il Sands: A  Race Against the  C lock. 1st U N IT A R  Conference, 

Edm onton, A lb e rta  (June 4-12, 1979), reported in  The Future o f Heavy O ils and Tar 

Sands, 1981.

J. C. A llen . M ethod fo r recovering viscous oils by solvent extraction. 1973. Canadian Patent 

No. 1008361, Texaco Development, A p ril 12, 1977, US A pp lica tion  No. 391434, August

J. C. A llen . Gaseous solvent heavy o il recovery. 1974. Canadian Patent No. 1027851, Texaco 

Developm ent, M arch 14, 1978, US A pp lica tion  No. 446874, February 28.

J. C. A llen  and A . D . Redford. Com bination solvent-noncondensible gas in jection  m ethod 

fo r recovering petroleum  from  viscous petroleum -containing form ations inc lud ing  ta r sand 

deposits. U n ited  States Patent No. 4109720, Texaco, New York, August 29, 1978, US 

A pp lica tion  No. 740281, November 9, 1976.

C. E. Beecher and L . P. Parkhurst. E ffect o f dissolved gas upon the viscosity and surface 

tension o f crude oils. Petroleum Development and Technology in  1926, Petroleum D ivision  

A IM E , page 51, 1926.

N ationa l Energy Board. Canada’s o il sands; O pportun ities and challenges to  2015. A  R eport 

Published by N ationa l Energy Board, May, 2004.

A . Boustani and B. B. M ain i. The role o f d iffusion and convective dispersion in  vapour 

extraction  process. J. Can. Pet. Tech., 40(4):68-77, 2001.

U. B . Bray and W . H. Bahlke. Refining w ith  liqu ified  propane. The Science o f Petroleum, 

3:1966-1979, 1938.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y ________________________________________________________________________

A . Brown, C. H . W u, and D . T . Konopnicki. Combined m u ltip le  solvent and therm al heavy 

o il recovery. 1977. U nited States Patent No. 4004636, Texaco, New York, January 25.

R . M . B u tle r. Steam-Assisted G rav ity  Drainage: Concept, Development, Performance and 

Future. J. Can. Pet. Tech.., 33(2):44, 1982.

R. M . B u tle r and Q. Jiang. Im proved recovery o f heavy o il by VA P E X  w ith  w ide ly spaced 

horizonta l in jectors and producers. J. Can. Pet. Tech., 39 (l):48 -56 , 2000.

R. M . B u tle r and I. J. M okrys. Solvent analog model o f steam-assisted g rav ity  drainage. 

AOSTRA Journal o f Research, 5 (l):17 -32 , 1989.

R . M . B u tle r and I. J. M okrys. A  new process (VAPEX) fo r recovering heavy o ils using hot 

w ater and hydrocarbon vapour. J. Can. Pet. Tech., 30(1):97-106, 1991.

R. M . B u tle r and I. J. M okrys. Recovery o f heavy oils using vaporized hydrocarbon solvents: 

Further development o f the VAPEX process. J. Can. Pet. Tech., 32(6):56-62, June 1993.

R. M . B u tle r and I. J. M okrys. Closed-loop extraction m ethod fo r the recovery of heavy 

oils and bitum ens underlain by aquifers: The VAPEX process. J. Can. Pet. Tech., 37(4): 

41-50, 1998.

R. M . B u tle r and C. T . Yee. Progress in  the in  situ  recovery of heavy oils and bitum en. J. 

Can. Pet. Tech., 41 (l):31 -40 , 2002.

D. C u th ie ll, C. M cC arthy, T . Frauenfeld, S. Cameron, and G. Kissel. Investigation o f the 

VAPEX process using C T scanning and num erical sim ulation. J. Can. Pet. Tech., 42(2): 

41-49, 2003.

S. Das. V A P E X  —  A  unique Canadian technology. J. Can. Pet. Tech., 41(8):32-34, 2002.

S. K . Das. In  S itu Recovery o f Heavy O il and Bitumen Using Vaporized Hydrocarbon Solvents. 

PhD thesis. U niversity o f Calgary, 1995.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y ________________________________________________________________________

S. K . Das. Vapex: A n  eflBcient process fo r the recovery o f hea\'y o il and b itum en. SPE 

37826, SPE In te rna tiona l Therm al Operations Symposium held in  Backersfield, C a lifo rn ia , 

(February 10-12), reported in  The Future o f Heavy O ils and Tar Sands, 1997.

S. K . Das and R. M . B u tle r. E ffect o f asphaltene deposition on the V A P E X  process: A  

p re lim ina ry  investigation using a hele-shaw cell. J. Can. Pet. Tech., 33(6):39-45, 1994a.

S. K . Das and R. M . B u tle r. Investigation o f vapex process in  a packed cell using butane as 

a solvent. In  Paper No. H W C  94-4'^, 20-23 M arch 1994b.

S. K . Das and R. M . B u tle r. D iffusion coefficients o f propane and butane in  peace river 

bitum en. Can. J. Chem. Eng., 74:985-992, 1996.

S. K . Das and R. M . B u tle r. Mechanism o f the vapour extraction  process fo r heavy o il and 

bitum en. J. Pet. Soi. Eng., 21(l):43-59 , 1998.

L . Denoyelle and C. Bardon. D iffu s iv ity  o f carbon dioxide in  reservoir flu ids. In  Paper C IM  

115-15-30, 86th Annual Meeting, Canadian Institu te  o f M ining and Mettallurgy, A pril, 

O ttaw a, ON, 1984.

S. G. Dunn, E. H. Neggiger, and V . S. Raj an. A  study o f bitum en recovery by g ravity  

drainage using low tem perature soluble gas in jection . Can. J. Chem. Eng., 67:978-991, 

1989.

B. C. H. Fu and C. R. P h ilips. New technique fo r determ ination o f d iffus iv ities o f vo la tile  

hydrocarbons in  sem i-solid bitum en. Fuel, 58:557-560, 1979.

A . T . Grogan, W . V . Pinczewski, G. J. Ruskauff, and F. M . O rr. D iffusion o f COg a t reservoir 

conditions: Models and measurements. SPE Journal, 3:93-102, 1988.

Hayduk and Cheng. Review o f re la tion between d iffu s iv ity  and solvent viscosity in  d ilu te  

liq u id  solutions. Chem. Eng. Soi, 26:635-646, 1971.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y ________________________________________________________________________

M . Hayduk and B. S. M inhas. C orrelations fo r pred iction  o f m olecular d iffus iv ities  in  liqu ids. 

Can. J. Chem. Eng., 60:295-299, A p ril 1982.

W . Hayduk, R. Castaneda, H. B rom fie ld, and R. R. Perras. D iffus iv ities o f propane in  norm al 

paraffin , chlorobenzene, and butano l solvents. A IC hE  Journal, 19(4):859-861, 1973.

L . A . James, I. Chatzis, and M . A . loannid is. D eterm ination o f d iffusion coefficient o f butane 

in  heavy o il and mass transfer rate at the pore scale in  VAPEX. In  Petroleum Society’s 

Canadian In ternationa l Petroleum Conference, Calgary, June 10-12 2003.

A . Janisch. O il sands and heavy oils: Can they ease the energy shortage. 1st U N IT A R  

Conference, Edm onton, A lbe rta  (June 4-12, 1979), reported in  The Future o f Heavy O ils 

and Tar Sands, 1981.

Q. Jiang. Recovery o f Heavy O il andBitumen Using VAPEX process in  Homogeneous and 

Heterogeneous Reservoirs. PhD thesis, Departm ent o f Chemical and Petroleum  Engineer

ing, U n iversity o f Calgary, Calgar^', 1996.

Q. Jiang and R. M. B u tle r. Experim ental studies on effects o f reservoir heterogeneity on 

VAPEX process. PAPER 95-21, 46th Annual Technical M eeting o f The Petroleum  Society 

o f C IM  in  Banff, May 14-17, A lberta , 1995.

W . J in . Heavy o il recovery using the VAPEX process. M aster’s thesis, U niversity o f W aterloo, 

W aterloo, 1999.

M . L a til. Enhanced O il Recovery. Ed itions Technip, Paris, 1980.

E. L. Lederer. Proceedings o f W orld Pet. Cong. 2:526-528, 1933.

G. B. L im , R. P. K ry, B. C. Barker, and K . X . Jha. Three-dim ensional scaled physical 

m odelling o f so vent vapour extraction o f cold lake bitum en. J. Can. Pet. Tech., 35(4): 

32-40, 1996.

66

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y ________________________________________________________________________

R. B . Long. In  Chemistry o f Asphaltene. E d ito r: Hunger, J. W . and L i, N. C., Chapter: 

The Concept o f Asphaltene. A m erical Chemical Society, W ashington, DC, 1981.

R . Luhning. Rem oving constraints on o il sands po ten tia l: P ipeline transpo rta tio n  o f em erging 

p a rtia lly  upgraded bitum en. J. Can. Pet. Tech., 42(8):7-8, 2003.

R. W . Luhning, S. K . Das, L . J. F isher, J. Bakker, J. Grabowski, J. R. Engleman, S. Wong, 

L . A . Sullivan, and H. A . Boyle. F u ll scale VA PEX process— clim ate change advantage 

and economic consequences. J. Can. Pet. Tech., 42(2):29-33, 2003.

A . K . M ehrotra and W . Y . Svrcek. V iscosity, density and gas so lu b ility  data fo r o il sand 

bitum ens, p a rt i: Atha.basca bitum en saturated w ith  CO and CzHg. AOSTRA Journal o f 

Research, 1(4):263, 1985a.

A . K . M ehrotra and W . Y . Svrcek. Viscosity, density and gas so lu b ility  data  fo r o il sand 

bitum ens, p a rt ii:  Peace rive r bitum en saturated w ith  N2, CO, CH4, CO2 and C 2 H 6 . 

AOSTRA Journal o f Research, 1(4):269, 1985b.

A . K . M ehrotra  and W . Y . Svrcek. Viscosity, density and gas so lu b ility  data fo r o il sand b itu 

mens. pa rt iii:  Wabasca bitum en saturated w ith  N 2 , CO, CH4 , CO 2  and C 2 H 6 . AOSTRA  

Journal of Research, 2(2):83, 1985c.

A . K . M ehrotra  and W . Y . Svrcek. Properties o f Cold Lake b itum en saturated w ith  pure 

gases and gas m ixtures. Can. J. Chem. Eng., 66:656-665, 1988.

I. J. M okrys and R. M . B u tle r. In -S itu  Upgrading o f heavy oils and b itum en by propane dea- 

sphalting: The VAPEX process. SPE 25452, P roduction O perations Symposium, M arch 

21-23, Oklahom a, 1993a.

I. J. M okrys and R. M . B u tle r. The Rise o f In terfering  Solvent Chambers: Solvent Analog 

M odel o f Steam-Assisted G ravity Drainage. J. Can. Pet. Tech., 32(3):26-36, 1993b.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y _________________________________________________________________________

E. H. Nenniger. H ydrocarbon recovery. 1979. Canadian Patent No. 1059432, Hatch Asso

ciates, Ju ly  31.

T . A . Nguyen and S. M . Farouq-A li. E ffect o f n itrogen on the so lu b ility  an i d iffu s iv ity  o f 

carbon dioxide in to  o il and o il recovery by the im m iscible W AG process. J. Can. Pet. 

Tech., 37(2):24-31, 1998.

V . O balla and R. M . B u tle r. A n experim ental study o f d iffusion in  the b itum en-to luene 

system. J. Can. Pet. Tech., 28:63-69, 1989.

A . R. O duntan. Heavy o il recovery using the V A P E X  process: Scale-up and mass transfer 

issues. M aster’s thesis, U n iversity o f W aterloo, 2001.

A . R. O duntan, I. Chatzis, J. Sm ith, and A . Loh i. Heavy o il recovery using the  V A P E X  pro

cess: Scale-up issues. Petroleum  Society’s Canadian In te rna tiona l Petroleum  Conference, 

June 12-14, Calgary. Paper 2001-127.

T . K . Perkins and O. C. Johnston. A  review o f diffusion and dispersion in  porous media. 

SPE Journal, 3:70-84, 1963.

S. J. P irson. O il Reservoir Engineering. M cGraw H ill Book Company, New York, second 

ed ition , 1958.

W . H. Press, S. A . Teukolsky, W . T . V e tte rling , and B. P. Flannery. Numerical Recipes in  

C + + . The A r t  of Scientific Computing, pages 719-727. Cambridge U n iversity Press, New 

York, second ed ition , 2002.

V . Ram akrishnan. In  s itu  recovery of heavy o il by VAPEX using propane. M aster’s thesis. 

U n iversity o f W aterloo, 2003.

T . A. Renner. Measurement and correlation o f d iffusion coefficients fo r CO ; and rich-gas 

applications. SPE Reservoir Eng., pages 517-523, May 1988.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y _________________________________________________________________________

M . R . R iazi. A  new m ethod fo r experim ental measurement o f d iffusion  coefScients in  reservoir 

flu ids. J. Pet. Sci. Eng., 14:235-250,'1996.

A . Rosman and E. Zana. E xperim enta l studies o f low  IF T  displacem ent by CO 2 in jection . 

SPE 6723, SPE 52nd A nnual F a ll M eeting, O ctober 9-12, Denver, 1977.

T . Schm idt, E. Jossy, and V . R. P uttagunta. Mass transfer studies, fin a l repo rt o f p ro ject 

188. Technical report, A lb e rta  Research C ouncil, Edm onton, A B , 1986.

T . Schm idt, T . H . Leshchyshyn, and V . R. P uttagunta . D iffu s iv ity  o f CO 2 in to  reservoir 

flu ids. In  33rd Annual Technical Meeting o f the Petroleum. Society o f C IM , Calgary, June 

6-9  1982.

F. A . Seyer and C. W . G yte. In  L . G. Kepler and G. Hsi, editors, AO STRA Technical 

Handbook on O il Sands, Bitumens and Heavy Oils, chapter V iscosity, pages 174-175. 

A lb e rta  O il Sands Technology and Research A u th o rity , Edm onton, Canada, 1989.

W . R . Shu. A  viscosity correlations fo r m ixtures o f heavy o il, b itum en and petroleum  

fractions. SPE Journal, 24(3);277-282, 1984.

R. Simon and D . J. Graue. Generalized correlations fo r pred icting  so lu b ility , sw elling, and 

viscosity behavior o f C 0 2 -crude o il systems. Journal o f Petroleum Technology, 17:102-106, 

1965.

A . K . S inghal, S. K . Das, S. M . Legg itt, M . Kasraie, and Y . Ito . Steam assisted g ravity- 

drainage and VA PEX process reservoir screening. JPT, pages 1122-1124, O ctober 1997.

J. G. Speight. Chemistry and Technology of Petroleum. 316-325, 1991.

O. P. Strausz. In  L. G. Kepler and C. Hsi, editors, AOSTRA Technical Handbook on O il 

Sands, Bitumens and Heavy Oils, chapter B itum en and Heavy O il Chem istry, pages 35-73. 

A lb e rta  O il Sands Technology and Research A u th o rity , Edm onton, Canada, 1989.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y _________________________________________________________________________

W . Y . Svrcek and A . K . M ehrotra. Gas so lub ility , viscosity and density measurements fo r 

athabasca b itum en. J. Can. P e t  Tech., 2 l(4 ):31 -38 , 1982.

A . T . T u rta  and A . K . S inghal. Overview o f short-distance o il displacem ent process. J. Can. 

Pet. Tech., 43(2):29-37, 2004.

S. R. U p re ti. Experim ental Measurement o f Gas D iffus iv ity  in  B itum en: Results fo r  CO2 , 

CHi, C2 HS, and % . PhD thesis, D epartm ent o f Chem ical and Petroleum  Engineering, 

U n ive rs ity  o f Calgary, Calgary, 2000.

S. R. U p re ti and A . K . M ehrotra. Experim ental measurement o f gas d iffu s iv ity  in  b itum en: 

Results fo r carbon dioxide. Industria l and Engineering Chemistry Research, 39(4): 1080- 

1087, 2000.

S. R. U p re ti and A . K . M ehrotra. D iffu s iv ity  o f CO 2 , CH 4 , CgHg and N 2 in  athabasca 

b itum en. Can. J. Chem. Eng., 80:116-125, 2002.

J. R. W elker and D . D . D unlop. Physical properties o f carbonated oils. Journal o f Petroleum  

Technology, 5:373, 1963.

B. W illiam s. Heavy hydrocarbons playing key role in  peak-oil debate, fu tu re  energy supply. 

o il &  Gas Journal, 101(29):20-27, Ju ly 28 2003.

D . E. Woessner, B. S. Jr. Snowden, R. A . George, and J. C. Melrose. Dense gas diffusion 

coefficients fo r the methane-propane system. Ind. Eng. Chem. Fundam., 8(4):779-786, 

1969.

C. S. L . Yu. The tim e-dependent d iffusion o f CO 2 in  normal-hexadecane a t elevated pressures. 

M aster’s thesis. U n ivers ity  o f Calgary, Calgary, 1984.

Y . P. Zhang, Hyndm an C. L ., and B. B. M a in i. Measurement o f gas d iffu s iv ity  in  heavy oils. 

J. Pet. Sci. Eng., 25:37-47, 2000.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


