
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

An Efficient Qos-Based Ranking Model for Web
Service Selection with Consideration \of User's
Requirement
Anita Mohebi
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Databases and Information Systems Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Mohebi, Anita, "An Efficient Qos-Based Ranking Model for Web Service Selection with Consideration \of User's Requirement"
(2012). Theses and dissertations. Paper 782.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/782?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

AN EFFICIENT QOS-BASED RANKING MODEL FOR WEB

SERVICE SELECTION WITH CONSIDERATION OF USER'S

REQUIREMENT

by

Anita Mohebi

B.Sc., Applied Mathematics, Isfahan University

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada, 2012

©Anita Mohebi 2012

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

ANITA MOHEBI

iii

AN EFFICIENT QOS-BASED RANKING MODEL FOR WEB

SERVICE SELECTION WITH CONSIDERATION OF USER’S

REQUIREMENT

Anita Mohebi

Master of Science, Computer Science, 2012

Ryerson University

ABSTRACT

The power of Web services to address the incompatibility issue of standalone systems,

has led them to play a major role in business application development. Adopting an efficient and

effective method to locate and select desired services among thousands of available candidates is

an important task in the service-oriented computing. As part of a Web service discovery system,

the ranking process enables users to locate their desired services more effectively. Many of the

existing approaches ignore the role of user's requirements which is an important factor in the

ranking process. In this thesis we enhance a vector-based ranking method by considering user's

requirements. The vector-based model is chosen because of its simplicity and high efficiency.

We evaluate all Web services in terms of their similarity degrees to the optimal or the best

available values of each quality attribute, and penalize the services that fail to meet the user's

requirements. Through our extensive experiments using real datasets, we compare the improved

algorithm with other approaches to evaluate it in terms of efficiency (the execution time to return

the result) and quality of the results (accuracy).

iv

ACKNOWLEDGEMENTS

This thesis would not be finished without the support of my companions during my

study. Firstly I would like to thank my supervisor Dr. Cherie Ding, for her consideration and

valuable assistance to conduct this research. She patiently supported me in different situations,

helped me to overcome the obstacles and guided me through all my academic requirements.

 Furthermore, I would like to thank the computer science department for supporting me

and providing me with all the requirements to fulfill this research. I also would like to express

my deepest respect and gratitude to Dr. Sadeghian for all his guidance and support.

Moreover my appreciation goes to my husband for being a patient companion during my

study. Without his constant encouragement this thesis could not be finished. Finally I would like

to express my love and respect to my parents and acknowledge their support to accomplish this

work. I could not pursue my study without their invaluable support and encouragement.

v

TABLE OF CONTENTS

AUTHOR'S DECLRATION .. ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... vii

LIST OF FIGURES ... ix

LIST OF ACRONYMS ... x

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Background .. 1

1.2. Problem Statement ... 3

1.3. Motivation and Objective .. 4

1.4. Main Contributions .. 6

1.5. Outline of Thesis .. 6

CHAPTER 2 ... 8

RELATED WORK ... 8

2.1. Semantic Web service Discovery .. 8

2.2. Syntactic Web service Discovery .. 11

2.3. Rank Aggregation Methods ... 16

2.4. Skyline Operation .. 18

2.5. Chapter Summary .. 20

CHAPTER 3 ... 22

WEB SERVICE DISCOVERY AND RANKING FRAMEWORK .. 22

3.1. Overview ... 22

3.2. Functional and QoS Requirements .. 23

3.2.1. QoS Attributes Types .. 23

3.2.2. QoS Tendency ... 24

3.2.3. QoS Data Comparison Rules .. 25

vi

3.2.4. QoS Data Normalization ... 26

3.3. Skyline Operation ... 28

3.4. Enhanced Borda Fuse Algorithm ... 32

3.4.1. Basic Borda Fuse Algorithm .. 33

3.4.2. Enhanced Borda Fuse Algorithm with Consideration of User's Requirements 34

3.5. Enhanced Distance-based Algorithm ... 37

3.5.1. Basic Distance-based Algorithm ... 37

3.5.2. A Motivating Example .. 39

3.5.3. Improved Distance-Based Method with Consideration of User's Requirements 40

3.6. Chapter Summary ... 43

CHAPTER 4 ... 44

IMPLEMENTATION AND EVALUATION ... 44

4.1. Implementation and Testing Environment .. 44

4.2. Experiment Design .. 45

4.3. Evaluation of the Result .. 45

4.3.1. Evaluation on Efficiency .. 46

4.3.2. Quality of Results .. 60

4.4. Chapter Summary ... 70

CHAPTER 5 ... 71

CONCLUSION AND FUTURE WORK .. 71

5.1. Conclusion .. 71

5.2. Main Contributions .. 72

5.3. Future Work ... 73

APPENDIX A: RESULTS FROM EXPERIMENTS .. 74

REFERENCES ... 79

vii

LIST OF TABLES

Table 3.1- Example of a list of rental apartments ... 29

Table 3.2- Results in the Skyline .. 30

Table 3.3- Similar Web services with different QoS values ... 34

Table 3.4- Ranked lists based on 4 QoS attributes ... 35

Table 3.5- Ranked lists baseed on the user's requirements ... 36

Table 3.6- Values of 3 similar Web services with 4 QoS attributes ... 39

Table 4.1- Execution time of algorithms on different datasets containing 9 QoS attributes 48

Table 4.2- Execution time of algorithms on datasets including 10 web services and different

number of attributes .. 50

Table 4.3- Execution time of algorithms on datasets including 50 web services and different

number of attributes .. 51

Table 4.4- Execution time of algorithms on datasets including 200 web services and different

number of attributes .. 53

Table 4.5- Execution time of algorithms on datasets including 1000 web services and different

number of attributes .. 54

Table 4.6- Execution time of algorithms on datasets with different type of attributes 57

Table 4.7- Dataset including 10 similar Web services ... 61

Table 4.8- 9 Quality attributes of Web services ... 62

Table 4.9- Ranked results from DS and DS_I algorithms .. 63

Table 4.10- Ranked results from BF and BF_Q algorithms ... 65

Table 4.11- Comparison of Kendall Tau correlation coefficient between our improved algorithm

and original DS model ... 67

Table 4.12- Comparison of Kendall Tau correlation coefficient between BF, BF_Q, SFS and

DS_I algorithm.. 69

Table A.1- Execution time of algorithms on datasets including 150 web services and different

number of attributes ... 74

Table A.2- Execution time of algorithms on datasets including 500 web services and different

number of attributes ... 74

viii

Table A.3- Execution time of algorithms on datasets including 1500 web services and different

number of attributes ... 75

Table A.4- Execution time of algorithms on datasets including 2000 web services and different

number of attributes .. 75

Table A.5- Execution time of algorithms on different sized datasets with different type of

attributes ... 76

ix

LIST OF FIGURES

Figure 3.1- Web service discovery architecture ... 2

Figure 3.1- Skyline results based on the user's requirements ... 30

Figure 3.2- Sort-Filter-Skyline algorithm ... 32

Figure 3.3- Borda Fuse algorithm ... 33

Figure 3.4- Distance-based gorith ... 38

Figure 4.1- Comparison of execution time of 5 algorithms on different sized datasets containing

9 QoS attributes……..…..48

Figure 4.2- Comparison of execution time of 5 algorithms on datasets including 10 Web services

and different number of attributes……………………………………………………………………………………..50

Figure 4.3- Comparison of execution time of 5 algorithms on datasets including 50 Web services

and different number of attributes……………………………………………………………………………………..52

Figure 4.4- Comparison of execution time of 5 algorithms on datasets including 200 Web

services and different number of attributes ………………………………………………………………………..53

Figure 4.5- Comparison of execution time of 5 algorithms on datasets including 1000 Web

services and different number of attributes ………………………………………………………………………..55

Figure 4.6- Comparison of execution time of 5 algorithms on datasets including 50 Web services

and 1 QoS attribute with different data types……………………………………………………………………...58

Figure 4.7- Comparison of execution time of 5 algorithms on datasets including 100 Web

services and 5 QoS attributes with different data types ………………………………………………….……59

Figure 4.8- Comparison of execution time of 5 algorithms on datasets including 200 Web

services and 5 QoS attributes with different data types ………………………………………………….…... 60

Figure A.1- Comparison of execution time of 5 algorithms on datasets including 50 Web services

and 5 QoS attributes with different data types ……………………………………………………………………77

Figure A.2- Comparison of execution time of 5 algorithms on datasets including 100 Web

services and 1 QoS attribute with different data types ………………………………………………………..77

Figure A.3- Comparison of execution time of 5 algorithms on datasets including 200 Web

services and 1 QoS attribute with different data types ………………………………………………………..78

file:///G:/mythesis.docx%23_Toc270000015
file:///C:/Users/delnavaz/Desktop/thesis/writing/thesis-V3.docx%23_Toc270000011
file:///G:/mythesis.docx%23_Toc270000015

x

LIST OF ACRONYMS

AHP Analytic Hierarchy Process

BF Borda Fuse

BF_Q Borda Fuse with Query

CP Constraint Programming

CSO Constraint Satisfaction Optimization

CSP Constraint Satisfaction Problem

DS Distance Based

DS_I Improved DS

HTTP Hypertest Transfer Protocol

IR Information Retrieval

MCDA Multi-Criteria Decision Analysis

MCDM Multi-Criteria Decision Making

MIP Mixed Integer Programming

NFP Non-Functional Properties

OPL Optimization Programming Language

OWL-Q Ontology Web Language for Query Language

OWL-S Ontology Web Language for Semantic Web services

PTF Public Transportation Facility

QoS Quality of Service

QWS Quality Web Service

SAW Simple Additive Weighting

SFD Spearman Footrule Distance

SFS Sort -Filter- Skyline

SOA Service Oriented Architecture

UDDI Universal Description, Definition, and Integration

VSM Vector Space Model

WSDL Web Service Description Language

XML Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1. Background

 The growing number of business applications in distributed systems has resulted in the

increasing demand of communication between business modules. In context of the business

community, Service Oriented Architecture (SOA) was proposed based on the idea that to provide

a solution for a large problem in a more effective way, the required process can be decomposed

into a collection of smaller, but related parts [1]. The most common way to implement SOA is

through Web services. According to W3C (World Wide Web Consortium), a Web service is

defined as a software module which is implemented through standard XML-based technologies

such as WSDL and SOAP. With the increasing number of Web services, discovering and

selecting best services to fulfill a required task is becoming more important. In order to search

and invoke Web services based on user’s requirements, first all functional services need to be

advertised by their providers in a public UDDI (Universal Description, Discovery, and

Integration) registry [2]. Service providers publish descriptions and properties of their Web

services in a standard file, i.e. WSDL (Web Service Description Language). A WSDL file

contains the information about data types, operations and the network location of the Web

services. Then consumers create their queries and use a discovery facility or an agent to search

UDDI and locate the set of Web services relevant to their desired requirements. Finally,

consumers need to select and invoke one of the Web services among all retrieved results [3]. The

steps of Web service discovery process are represented in Figure 1.1.

2

 Figure1.1- Web Service discovery architecture

More and more web services with the similar functionality are made available on the

Web. In order to locate and select the appropriate Web services, additional features, i.e. non-

functional attributes or quality of Web services (QoS) such as response time, scalability, etc. are

taken into consideration in the discovery and selection process.

With the increasing size of the UDDI registry, it is becoming more difficult to locate and

retrieve all matched web services and present them to consumers. Furthermore, it is evident that

the retrieved result contains more than one matched Web services that meet the functional and

UDDI

Discovery facility

Service

Provider

Service

Consumer

Send request/

Select service

Invoke

Advertise Interact /Find

Service N

Service 2

Service 1

3

non-functional criteria. Therefore, it is essential to devise an efficient technique to measure the

ranking relation order between the retrieved services based on user’s requirements on different

QoS attributes. The process of ranking Web services is a dominant part of a Web service

selection system, as it helps users select their desired service easily.

1.2. Problem Statement

 Calculating the similarity degree between the user's request and a service is the

fundamental step in the ranking process. There have been different approaches proposed for the

problem of ranking Web services. These models mostly used different methods to compare all

quality parameters of similar Web services with the optimal values for each QoS attribute.

According to these approaches, the service with the maximum similarity degree to the optimal

values will be returned as the result. There are some open issues that are not well supported by

the current approaches. Firstly in some works they either used complicated data indexing

methods in their query structure of the ranking process or compared all Web services in a pair-

wise fashion which will result in a larger computation time. With the growing number of Web

services with the similar functionality in a registry, the number of pair-wise comparisons will

increase, which in turn makes the algorithms much slower.

 Moreover, they mostly ignored the role of consumers in developing their models. To

implement the discovery system, they only focused on the services with the optimal values, not

the real constraints appeared in the query. In the final result list, users can only have access to

those Web Services with minimum distance to the data items with optimal values. Regardless of

user's actual requirements, the result of the algorithms is always the same. It is not rational to

ignore consumer’s needs, while the main goal of the model is to respond to user's request.

4

Clients have different anticipations and definitions of an appropriate service, so without

considering their demands, there is no guarantee to satisfy them.

 Furthermore, most of the existing frameworks concentrated on a small and limited

number of QoS attributes. In the majority of works, they considered variables of only numeric

type and conducted their experiments on small-sized Web service repositories. In reality, there

are various types of variables for QoS attributes, which need to be considered to fulfill a desired

task. Consumers prefer efficient methods capable of dealing with different types of constraints

and large-sized Web service repositories.

1.3. Motivation and Objective

Among the results returned from the matching process of the current solutions, there

might be some Web services that are good candidates with regards to some QoS attributes and

user’s actual demand. They can be potentially good options if a requester cares more about some

specific attributes of services. But they are ranked very low as they do not attain enough scores

compared to optimal values. Depending on the user's preferences they might also be willing to

relax some of their requirements. Suppose that a user has a request for a travel Web service with

response time less than 5 ms, availability greater than 90% and cost less than $50. The existing

complicated algorithms only return those services with the optimal values on all three attributes.

Suppose service A has response time: 3 ms, availability: 95% and cost $40, and service B has

response time: 4 ms, availability 93% and price: $38. Using the current algorithms, service B

might not be returned to the user as it gains smaller score than service A. Service A has better

values for two attributes: "availability" and "response time". However service B can be a good

candidate for some users who care more about the price of the service.

5

Another noticeable issue arises when user changes his demand. Using the current

algorithms, even with different requirements, the result of the algorithms would always be the

same, i.e. service A always appears on the top of the result list. Even for such a simple example,

we can notice that how user's requirements can affect the output. As a result consumers' demands

should play a pivotal role in the ranking process.

In real scenarios, value types of QoS attributes might be more diverse and complex. With

different value types, we need to devise appropriate methods to compare their values in an

effective way. We also need to consider a unified structure to combine various values of different

QoS attributes into an overall ranking score to evaluate the ranking relation between the Web

services.

Another problem is the existing complicated frameworks suffer from high computation

time for processing a request. With the increasing number of published Web services, it is

important to return the searching result to users fast. User's tolerance on slow response from the

selection system is usually very low.

 Our main goal is to develop a Web service ranking model in which, we not only consider

the optimal values, but also exert user’s actual request and preferences in the model. We consider

equal weights for both mentioned factors. Inspired from previous works, in this research we

would like to use a simple and more straightforward method to rank retrieved Web services and

achieve accurate results. By developing and optimizing a vector-based framework and

considering user’s requests and preferences, we introduce a methodology to process the ranking

task effectively.

 In this thesis, we also consider one of the promising existing ranking algorithms to

compare with the improved model in terms of the quality of the result and the efficiency. We

6

believe that without applying a complicated methodology into the ranking process, which is

vastly used in the current complex approaches, we can still have reliable results.

 Considering efficiency and quality of the results, we also compare our model with a

simple positional algorithm to show that our model is reliable and efficient. We compare the

algorithms by using different number of Web services and different types of QoS attributes such

as interval data and list which directly affect the processing time. Our experiment is based on a

real QoS dataset.

1.4. Main Contributions

As the main contributions in this work, we provided an enhancement ranking algorithm

based on a vector-based model which is capable of dealing with user's requirements and

measuring the ranking relation between services and providing more accurate results efficiently.

We also improved a rank aggregation based algorithm (i.e. Borda Fuse) to cover the user's

requirement and provide more accurate results. Finally we compared the enhanced algorithms

with one of the well-accepted skyline ranking algorithms (Sort-Filter-Skyline) with complex

structure to show how they are more efficient on large sized datasets with a large number of

attributes and different data types.

1.5. Outline of Thesis

 The rest of the thesis is organized as follows:

Chapter 2 provides briefly the related information about selection and ranking methods of

Web service discovery system and introduces some existing algorithms such as: Distance-based

model, Vector-based approach, Mixed Integer Programming (MIP), etc.

7

 Chapter 3 presents the baseline of three current well approved ranking algorithms such

as: Borda Fuse, original Distance-based and Skyline operation methods. We discuss how they

are applied to ranking Web services, and then we examine the common issues and problems that

arise in ranking Web services in a selection system. Then we present our optimized Distance-

based algorithm with consideration of user's requirements. We also enhance an improved

Positional-based model by considering user’s requirements in the algorithm. We process user

queries by applying equal weights on optimal-value based ranking scores and user-request based

ranking scores to solve the current problems we mentioned earlier to some extent.

 In Chapter 4, we explain the implementation of the optimized model and how we apply the

new features in the original approach. In the experiment part, we discuss the model and the

related results by using a real dataset including over 2000 Web services. Then we provide the

evaluations of our developed ranking algorithm compared with the three current ranking methods

in terms of their efficiencies and accuracies.

Finally, in Chapter 5 we conclude the thesis with a summary and discuss about the future

work.

8

CHAPTER 2

RELATED WORK

Web services are becoming more popular in the business communities. There are more

services coming to market to accomplish different tasks with the same functionality. Therefore it

is crucial to use an effective method based on quality attributes to discover the best services in a

desired ranked list according to consumers' requirements. Quality attributes of services (QoS) are

considered as the discrimination factor for similar Web services. In general, most researchers

classify Web service discovery and ranking methods into two different groups: syntactic and

semantic approaches. In semantic methods, the ontology concepts are used in the discovery

process, whereas in syntactic methods, the selection process is based on the syntactic

information. In this chapter we will review some of the efforts under these two different

categories. We also review some promising ranking methods originally presented in different

fields, but are being used in the Web service selection systems.

2.1. Semantic Web Service Discovery

 It is argued that as syntactic-based models only rely on syntactic information, so there is

no guarantee to gain accurate results. Some researchers believe those models have low

performance in locating desired results among retrieved services with the same functionality. On

the contrary, in semantic-based methods, similarity between Web services and the request are

computed based on some predefined QoS ontology, and their corresponding QoS metrics.

9

Bianchini et al. [4] introduced an ontology-based model which enriches the functional-

based Web service discovery by considering both general and specific descriptions of QoS of

Web services. In this model, they described each quality parameter by a name, a domain, a set of

admissible values, and one or more measure units. They also considered a set of rules to convert

the parameter values from a measure unit to another one. They used a semi-automated technique

to find the relation between services and, then they assigned the weights to each relationship. In

the next step, they formed a path from each service to its related services based on their semantic

relationship. At the end they grouped the services in the similar sets. The drawback of their

model is that they only considered the static quality attributes while there might be some

dynamic parameters required to be taken into consideration.

 Martin et al. [5] introduced OWL-S as a technology based on Ontology Web Language

(OWL) which supports the structure for describing the characteristics of Web services published

by providers and requested by user. Based on this model the results of the selection phase are

more accurate and reliable and closer to consumer’s demand. However this method suffers from

its lack of ability to deal with new metrics. Kritikos and Plexousakis [6] proposed a new

ontology (OWL-Q) by extending OWL-S to overcome the issues related to new metrics. The

structure is developed in a way to be able to adopt and extend new metrics with no need to

modify the structure of the discovery algorithm. In other words, the advantage of this approach is

to deal with dynamic quality properties.

 Giallonardo and Zimeo [7] presented onQoS ontology to provide an automatic QoS-

based service discovery. The model consists of three different layers: upper, middle and lower

ontology. In the upper ontology the generic descriptions required for dealing with the query

terms are provided. It provides the "words" required for answering the QoS queries. The middle

10

layer describes the basic vocabulary list of different QoS features such as QoS metrics, scales

and attributes. The vocabulary list consists of different parameters according to their

conceptualizations. The last layer (lower layer) provides all specific definitions of a particular

domain. Their algorithm includes two stages: atomic matching and aggregated matching. The

output of the first phase is a list named atomicMappingList with information about required QoS

metrics, advertisement QoS metrics and matching scores. The second phase recovers the

template metrics that are not supported in the atomic matching layer.

 Tomal et al. [8] described non-functional properties (NFP) of Web services by

introducing an ontological model. To generate the ranked lists of the Web services based on

user's preferences, they considered both semantic and multi-criteria types of ranking. They

applied a reasoning engine to rank Web services according to NFP semantically. They set a tuple

of QoS properties and their associated weights. The reasoning engine evaluates the logical rules

used to model NFPs of services. To evaluate the ordering relations between the services, they

used an aggregated score calculated for each service. The score is computed by summing up the

normalized values of weighted NFP multiplied by their associated weight values. Then the scores

are sorted to generate the final ranked list.

 There is another category of methods based on Vector Space Model (VSM). In general,

VSM is an algebraic model to represent different objects as vectors of identifiers. Each

dimension represents a separate element. In the model introduced by Mola et al. [9], all retrieved

Web services from the functional discovery process, are ranked according to a VSM model.

They used OWL-S ontology to describe all properties of both queries and advertised Web

services semantically. In this approach all requirements in the query and all properties of the

retrieved Web services are considered as separate vectors. By using a defined semantic function,

11

the similarity between the query vector and the vector of the offered Web services is measured.

Those services which are more similar to the query will acquire higher position in the ultimate

ranked list.

 Zhou et al. [10] designed a QoS Ontology language in order to provide an agreement at

the semantic level between different groups. Their Ontology consists of three layers: 1) the QoS

profile layer designed to define a common class to accomplish the matching task. This step

checks the retrieved services to see if they satisfy user's functional requirement; 2) the QoS

property definition layer designed to define the properties and constraints based on a common

language. They specified five classes for the QoS property’s domain: QoSCore, QoSInput,

QoSOutput, QoSPrecondition, and QoSEffect. In this stage the services are compared based on

their QoS values; 3) the metrics layer to define metrics. The metrics are categorized in two

groups: AtomicMetrics and ComplexMetrics. The definition and properties of each

AtomicMetric provide the important information to initiate the observer. ComplexMetircs are

composed of AtomicMetrics or other ComplexMetrics. ComplexMetrics can be considered as a

QoS metric which is able to describe any metric aggregation.

2.2. Syntactic Web Service Discovery

 According to some researchers, semantic-based approaches suffer from massive human

effort and complicated computational process resulting in the slow processing time. It is also

assumed that there is no standard definition of ontology to use for different situations. People

might use alternate concepts to define metrics. To address these issues, another category of

service discovery approaches has been developed which is based on the syntactic information. It

is believed by many researchers that syntactic-based models are more efficient than semantic-

12

based approaches. There are various models with different methodologies introduced in this

context.

Constraint Programming (CP) was proposed by Hentenryck and Saraswat [11] is one of

the approaches in this context. According to the CP paradigm, the relations between variables are

defined as constraints. Finding the optimal offers is an optimization problem which is well

supported by the CP model. In the model proposed by Ruiz-Cortés et al. [12], CP was used for

the following purposes: 1) to measure the conformance and consistency of the offers and

demands to check if they have any internal contradictions, 2) to check if offered services and

demanded services are similar, 3) to locate the optimal offer out of a set of similar services, 4) to

support a two- way matchmaker which accepts condition both on published offers and demanded

services. They used an OPL (optimization programming language) studio as the constraint solver

to accomplish the mentioned tasks.

 Sha [13] introduced WSSM-Q by using a QoS management module to evaluate the

quality of Web services in compared to the user's requirements. In this work, they considered

only four non functional attributes: availability, price, latency and performance. Their work

consists of two levels: QoS information collecting and, QoS information processing. In the QoS

information collecting stage, they use a monitor facility based on a handler provided by the JAX

RPC and JAX WS specifications. The quality information of the requested Web service from the

time a user sends a request until he receives the result is collected and sent to the management

module. In the QoS information processing level, all the quality data are calculated and stored in

a QoS repository.

Yan and Piao [14] modeled a vector-based algorithm by extending UDDI to cover all

QoS information of advertised Web services. Providers need to add an entity (QoSInformation)

13

to the advertisement that contains the information about all QoS attributes. Each QoS parameter

is defined as a 5-tuple: <attributeName, attributeType, attributeValue, attributeUnit,

constraints>, which represented the name, type, value, unit and related constraints of the

parameter. To store the QoS information, they generated a tModel QoS information structure. To

accomplish this goal, they devised an external file to minimize the modifications to UDDI

registry. The external file might be maintained by the provider. In the ranking process they

considered both parameters requested in the query and QoS information of a matched service as

two vectors and calculated the distance between the vectors. Those services with lower distance

value appear on top of the ranked list.

 Liu and He [15] proposed a vector-based ranking algorithm to measure the goodness of

the matched services and make recommendations to users based on their requirements. They

modeled all the published services in a vector. They also modeled the query QoS requirements

and their related weights in an n-dimension binary vector. The weights are required to be

assigned by consumer. Then they calculated the distance between the query vector and the

published. In their framework, all services are sorted based on their distance scores. The

framework solves the problem by returning the final ranked list based on a minimum score.

 Constraint Programming approach was introduced to specify attributes to all registered

and also requested Web services. Degwekar et al. [16] extended WSDL to support specifications

and constraints assigned to attributes. The extension helps the matching process to select correct

candidates. To accomplish the matching process, they proposed a Constraint Satisfaction

Processor (CSP). As an input, the processor takes the constraints of a requested service and also

specifications advertised by a provider. In CSP, a normalization technique is used to normalize

14

constraint specifications of all numerical attributes into "interval sets". The output determines

which Web service and to what degree it matches with the user's request.

 Li et al. [17] proposed a solution based on Hierarchical Constraint Logic Programming to

specify the descriptions of the non-functional properties of all attributes. The model is composed

of three stages: matching phase in which the tuple of request properties and offered solutions that

need to be evaluated are defined. The second stage is the local evaluation phase in which the

items of each tuple are compared based on their functional capabilities. Finally there is a third

stage named global evaluation phase in which the matching degree between offered service and

the requested item is evaluated by adopting a Simple Additive Weighting (SAW) scheme and a

multi-criteria decision making technique.

 Kritikos and Plexousakis [18] devised two CSP-based QoS-based WS discovery

algorithms. The first simple algorithm covers only unary constraints. The second framework is

based on Constraint Satisfaction Optimization (CSO) techniques and supports n-ary constraints.

The WS discovery process in this model is composed of four steps: alignment, matchmaking,

optimization, and selection. In the alignment step the QoS metrics of advertised QoS and user's

demand are aligned by using a defined ontology (OWL-Q). In the matching step, the matched

offers with the user's demands are returned. If the constraints of the demand are over-

constrained, the matching step won't return any result. In this case the constraints of the demand

are relaxed in the optimization level. In the last step, using a CSO the results are ordered based

on the weights provided by user.

 The model proposed by Li et al. [19] tries to provide a framework for describing the non-

functional properties to be used in the service evaluation process. They used a Policy-Centered

Meta model (PCM) to implement the framework. The evaluation is done by using a CSP in

15

which the user's requirements are modeled in a hierarchical style. They used a satisfaction and an

error function under each level to evaluate services. The role of the functions is to measure the

similarity degree between the non-functional properties specified in a query and the non-

functional properties of offered services. Then they used a multi-criteria decision making method

to rank the Web services.

 It is argued that Constraint Programming techniques are not able to solve problems

including discrete variables. To address the drawback of CP models, MIP (Mixed Integer

Programming) was introduced which supports linear constraints and both continuous and

discrete variables. The framework is based on a set of variables and a set of constraints

associated with the variables and a function to be minimized or maximized. Kritikos, and

Plexousakis [20] used MIP solution in the matchmaking process. In their model, after the query

is submitted, the specifications in the query are checked to see if they have right syntax or not. If

they pass this stage, they will be transformed into a MIP solver engine. If there is any MIP

solution applicable to the document, then it is stored in the MIP repository. At the end, a

matchmaking algorithm is adopted to check all matched documents in the MIP repository with

the requirements.

 MCDM (Multiple Criteria Decision Making) or MCDA (Multiple Criteria Decision

Analysis) is a family of methods being used in the decision making environment. Herssens et al.

[21] presented a method based on the MCDM technique that provides the definition of a global

priority constraint in the service discovery algorithm. In this model, a global priority constraint is

defined to indicate the priority orders of QoS parameters. Then the global priority constraints are

specified based on a MCDM technique (PROMETHEE) in which the pair-wise comparisons of

16

items are executed by considering the deviation between the evaluations of the alternatives. The

priority orders are converted into priority weights to be used in the selection process.

 Tran et al. [22] introduced a model based on Analytic Hierarchy Process (AHP) which is

another method to solve the MCDM problems. The model consists of three steps: first the

complex problem is modeled in a hierarchy structure to present the relation between the overall

goal, the criteria and the solutions. In the second step, the criteria items are compared to compute

the priorities over the criteria and provide their relative ranking relation. In the last step, the

ranks of all criteria are combined to indicate the ranking relation between all offered services.

2.3. Rank Aggregation Methods

 Many Web service discovery and ranking methods are inspired by the effective

techniques developed in the database community. Rank-based aggregation technique proposed

by Aslam and Montague [23] is one of the methods used in this context. In this model, first the

services are ranked in different lists based on each individual attribute, and then the algorithm

combines different ranked lists to compute the final ranked list.

 Rank aggregation problem is the problem of how to aggregate m ranked lists generated

by n sources. According to the latest researches, there are two types of rank-based aggregation

methods: supervised rank aggregation technique which relies on the training data and un-

supervised rank aggregation method with no need of the training data. Unsupervised rank

aggregation technique is categorized in two groups: positional methods and Majoritarian

techniques. Positional methods generate the final ranked list based on the combination of all

ranking scores gained by summing all the positional values of each element in each ranked list.

The most common method in regards with the rank aggregation method is the Linear Score

17

Combination method in which the scores of items are aggregated by some operators such as

weighted sum to compute the final ranked list.

Another important algorithm in this context is referred as Borda-Fuse proposed by Bartell

et al. [24]. It is considered an effective algorithm to rank a set of data points. The algorithm was

introduced to solve the voting problem. Suppose we have n voters to rank a fixed set of m data

points. As a result we will receive n ranked lists including m data points. For each individual

ranked list, the top ranked item receives m points, the second candidate receives points,

and so on. The last item in the list receives 1 point. The final score for each candidate is

calculated based on the summation of all n points assigned to the candidate. The item with the

most points will be ranked the best. It is a very simple procedure, which has been proved to be

effective.

 Another positional algorithm that can be named in this area is Median-Rank aggregation

method introduced by Fagin et al. [25], in which the candidate documents are ranked based on

their median ranks. Given m data points and n lists of values assigned to each point, the ranking

process works as follows: first, all m documents are sorted according to their values in the lists,

thus n ranked lists will be returned; then, the final rank list is computed as the median of the

positional values of each element in the rank lists. The final ranked list is generated by sorting

the median value of each element. This method is not able to support ties.

 Footrule Optimal Rank Aggregation method [26], [27] is another type of positional rank

aggregation methods. The ranking prototype is used to minimize the Spearman Footrule Distance

(SFD) from the input rankings. Based on this theory, for any given two rank lists li and l j in a set

of n lists, the SFD is computed as follows:

 SFD |_∑|=),(
1=

rrll l
i

n

i

l
iji

ji (2.1)

18

 Where ri is the ranking position of candidate i in each related list. The lower value of SFD

shows the more similarity between the two mentioned lists.

 Majoritarian rank aggregation approaches are another type of unsupervised rank

aggregation methods. In this type of algorithms every item is compared with another candidate

[28]. The method consists of repetitive steps. First they considered a list of all candidates and

then each item in the list is compared with the next one. The winner stays in the list, but the loser

will be removed from the list. The comparison steps are repeated until there is no other item in

the list to be compared. This method suffers from low speed, as the number of comparisons gets

larger, when the number of items in the dataset increases.

 Condorcet-Fuse method proposed by Montague, and Aslam [29] is one of the voting

models based on Majoritarian rank aggregation technique. This model is also based on pair-wise

comparisons. Each candidate is compared to all other items in the dataset in terms of all QoS

attributes. The model works based on a theory that the item which wins in majority of pair-wise

comparisons, will appear in the final ranked list. However this method suffers from high

computation time, and lack of capability to deal with ties, i.e. the situation that it is not feasible

to choose a winner from a comparison contest.

2.4. Skyline Operation

 There is another type of matchmaking and ranking algorithms based on Skyline query

concept which is a dominant topic in the database field .The skyline operation was introduced by

Kossman et al. [30] to solve maximum vector problems. The model calculates and filters the

desired points relevant to a query and returns all possible solutions among a large set of data

points in a given domain. Suppose that a client is seeking cheapest hotels closer to the shopping

19

centers. It is difficult to choose a hotel between all possible options, as closer hotels to the

shopping centre tend to be more expensive. According to the skyline operation, the desired hotels

are those not worse than the others in both dimensions. The ultimate set of desired hotels is

called as skyline points. Skyline points are composed of services that are not dominated by other

services. A service S i dominates service S j if it is better than S j in at least one attribute and not

worse than the service in other attributes. Skyline points assist consumers to select their desired

service easier based on their preferences. From the graphical point of view, the name of skyline

was selected for the computation of result set.

 In context of the skyline query field, Papadias et al. [31] introduced a progressive

algorithm which relies on Branch and Bound Skyline (BBS) based on a nearest-neighbor search

method. On a given set of points, this model computes the skyline points based on their distances

to a query point in an ascending order. In this work they first indexed the data by applying an R-

tree technique to reduce the computation cost by decreasing the number of pair-wise

comparisons. Then they computed the dominance relationship between each two services. They

argued that in their framework any pre-computation functions would not be required. BBS is

widely used in multi-criteria optimization problem.

 To extend the Skyline query model to relational databases, [32], [33] presented a new

algorithm called Sort Filter Skyline (SFS) model. They implemented their model based on a

sorting technique. According to their theory all data points are sorted by using a sorting

technique and considering a monotone function. In other words, SFS sorts all candidates that

maximize the scoring function in an ascending order. After sorting the data, the services which

dominate the other services over most attributes will appear in upper positions. Thus the number

of pair-wise comparisons will decrease. Any service with the best score over the monotone

20

function will appear in the skyline list. This method is used extensively and is a fundamental

structure for methodologies invented later. This model is also considered as a baseline for

comparison purpose in many works.

 Inspired by skyline query concept, Han et al. [34] introduced a new Fast Item Skyline

(FI-Skyline) algorithm for matching and ranking Web services. Their design is a solution for

defining the appropriate Web services as skyline points. In their model they adopted Latice-

based indexing method and R-tree sorting technique to index and sort data. The low cardinality

attributes are transformed to dimensional lattice and then they use an indexing technique to set

an R-tree and to index the data. To compute the skyline query, a topological sorting order is used

to traverse the R-tree. They claim their work outperforms the state-of-the-art skyline method.

 Skoutas et al. [35] proposed a new algorithm for ranking and clustering Web services

according to the dominance concept. Their model supports multi criteria matching without

combining matching scores of each individual parameter. The model combines top-k queries and

skyline operation. A threshold is also considered in this work to compute the probability of being

in skyline for each service. The algorithm is composed of 3 steps: 1- Select the services that their

probability to be in the skyline above the threshold, 2- Select k representatives from the list

returned in the previous step, 3- Form the clusters by assigning the other services to their related

cluster. Their model also reflects the trade- offs between matched parameters.

2.5. Chapter Summary

In this chapter, we reviewed some of the popular Web service discovery and ranking

algorithms from semantic and syntactic based approaches. In the semantic-based category,

ontology definitions play vital roles in measuring the similarity between requested and published

21

Web services. All the queries and advertised properties are transformed to a semantic-based

model, and then the discovery and ranking procedures are applied. There are two major issues

related to this category: 1- The time to process the request is long. 2- There is no standard

ontology definition for different problems. On the contrary the syntactic-based algorithms are

introduced which rely on the syntax data, and usually are faster. We also reviewed some other

approaches such as Skyline operation and Rank aggregation techniques that were originally

introduced in context of different fields such as Web search or database context.

 Most of the reviewed models are reasonable work; however they suffer from some

deficiencies: 1- Many of them are complicated methods based on data indexing and sorting

techniques which generally have a longer processing time. 2- They mostly either ignore the role

of users' requirement or their methods require users to compute the importance degree of each

parameter. On the other hand they put more load on users. Consumers tend to use applications

which run fast without involving them in the computations. 3- They only considered a limited

number and a few types of attributes (mostly numeric type), while in reality there are various

types of data.

 In our work, we tried to address the above mentioned issues by developing a simple, but

effective method which considers user requirement as an important factor in the ranking process

without imposing any further load on consumers. In our model, we also take into account

different number and types of data.

22

CHAPTER 3

WEB SERVICE DISCOVERY AND RANKING FRAMEWORK

3.1. Overview

Web service selection and discovery system is essential to provide clients with proper

results according to their requirements. It is impossible to fulfill this task without considering the

ranking relation between thousands of available candidates with similar functionalities. Ranking

process is a fundamental step in a Web service selection system, as it integrates the results

gathered from previous stages (functional and non-functional matching process) and presents

them to the requestors. In this work we focus on the ranking process by considering user's QoS

requirements. This chapter begins with an overview on functional and QoS requirements, and

then we review one of the Skyline algorithms in details. We use this algorithm as a baseline for

our comparison purpose. The main reason is that Skyline is well-accepted algorithm in database

area for the multi-criteria based selection problem, and recently is being used in Web service

selection area due to the accuracy of the generated results. However, efficiency is one of the big

concerns on this algorithm. We would like to see whether a much simpler algorithm with higher

efficiency could achieve the similar level of accuracy. The simple algorithms we chose in this

thesis are a vector-based (Distance-based) algorithm and a rank aggregation algorithm (Borda

Fuse). Since both of them (also the skyline algorithm) do not consider the actual user

requirements at all. We introduce the enhanced algorithms by taking into account the user's QoS

requirements. The goal of the proposed models is to provide a simple and effective method for

generating a ranked list of desired Web services with consideration of user's requirements. The

23

QoS data considered in this research include different types of data such as interval, list,

Boolean, numeric, etc.

3.2. Functional and QoS Requirements

Requestor is an important entity in the Web service discovery and selection model. The

discovery process starts from the time when a user submits a request for a desired service with a

specific functional task such as "travel booking" or "weather report". There are thousands of

services to be retrieved in respond to the query. More and more services with the same

functionality are coming to the market. Functional property of a service is not sufficient to make

the service qualified for different users. The best way to narrow down the results for a user is to

classify and rank the items based on their QoS properties. The QoS property of a service

indicates how a service behaves. The QoS attributes are provided by either service providers, or

monitored by some agents. An example for a QoS attribute is "Availability" which is a service

quality to represent the probability of a service being up and running without a breakdown, when

a user sends an invocation request. "Cost" is another quality attribute indicating the fee that a

user needs to pay for using a particular service. There are different QoS features to represent

different aspects of a service. In this thesis we concentrate on QoS properties as the deciding

factors for our selection framework.

3.2.1. QoS Attributes Types

 QoS attributes hold two different types of values: a single value such as numeric,

Boolean, string, etc.; or multiple values such as list, set, range or fuzzy type. Most attributes

considered in majority of the current works are numeric types such as response time: = 0.10 ms

24

or availability: =90 %. However it is not accurate to represent all types of QoS value in this way,

as different invocations may have different values. They might need to be represented as an

interval such as (0, 0.10).

 There are also other QoS parameters with different types rather than a single numeric

value. In most cases it is infeasible to represent them in numeric format. As an example attribute

"supported standards" is mostly defined as an unordered list such as: ["WSDL1.1", "WSDL2.0",

"SOAP1.1", "SOAP2.0", "UDDI3.0", "UDDI3.4"]. This attribute is defined to present which

standards are supported by a Web service.

 To the best of our knowledge multiple-values type of attributes was not considered in the

majority of current approaches. The models in which the multiple-values type were taken into

account, did not study the impact of these data types on the efficiency of algorithms using large

sized datasets. In most of the existing models, the QoS values are considered as a single number.

In this research we consider various attributes with different types including numeric, Boolean,

data interval, and unordered list.

3.2.2. QoS Tendency

In order to evaluate two attributes fairly, we need to consider their direction or tendency

of their values. In other word, if the tendency of the attribute is positive, it means a bigger value

is better. On the contrary if the tendency is referred as negative, it means smaller values are

preferred. For example for attribute "cost" the smaller value is usually preferred, so the tendency

of this parameter is negative, whereas for attribute "availability" the bigger value indicates a

better quality for the specified parameter, so the tendency is positive.

25

3.2.3. QoS Data Comparison Rules

 There are different rules required to be considered in ranking two different Web services

in terms of their QoS values. To denote the relative rank between two services S i and S j , if S i is

better than S j over quality q, we represent it as Sq
i > Sq

j . In this research, we only consider 4 data

types including Boolean, numeric, list and range. For each value type we use the following rules

to evaluate the relative ranking between two services:

Boolean: in case of an attribute with a Boolean type, we have two different scenarios. In case a

"True" value means a better attribute, the service with "False" value is the worse service. On the

contrary if "False" value means a better attribute, then the service with "True" value is the worse.

Numeric: When a QoS property has a numeric value, the evaluation depends on the tendency of

the attribute. If the tendency of Qos attribute is positive, the service with bigger value is ranked

higher, whereas if the tendency of the attribute is negative, the service with smaller value is

considered a better service.

 List: In case of comparing an attribute with unordered set type, in this research we evaluate

services according to the number of their common items with the user request. The service which

has a larger number of similar items will be ranked higher.

Range: In terms of data interval values, we use the theory introduced by Sengupta, and Pal [36]

to express the order relation between two data intervals and find the maximum data range.

Suppose an interval data A= [,] where and are lower and upper bounds of the interval.

According to their assumption, the range data might also be represented as (m(A),w(a)) where

m(A) and w(A) are mid-point and half-mid of the interval A. m(A) and w(A) are computed as

follows :

 m (A)=1/2(+), (3.1)

26

 w (A)=1/2(-) (3.2)

Suppose A= [,] and B= F [,] as two intervals in real line . Based on their

theory a function f is used to indicate the grade of acceptability that first interval is larger than

the second interval. The function is defined as:

 f (A, B) =
)()(

)()(

AwBw

AmBm




 (3.3)

where w (A) +w (B) 0.

According to the theory, the function f is interpreted as follows:

 =0 if m(A) = m(B),

f (A, B) >0, <1 if m(A)<m(B) and > , (3.4)

 >=1 if m(A)<m(B) and <=

If f (A, B) =0 then the assumption that the interval A is better than interval B fails. In that

case, the ranking order is based on the value of m (A) and m (B). If f (A, B)>=1, it means that

the first interval A is larger than the second interval B. If 0<f (A, B) <1, then the function f

interprets the degree of the acceptability of interval A to be smaller than interval B.

3.2.4. QoS Data Normalization

 As QoS attributes have different value spans, and are measured in different units, it is

hard to compare them accurately. In order to have a fair evaluation, all data need to be

normalized into a common range for example [0, 1] to guarantee they are evaluated in the same

span. For each query attribute (), we take the maximum value as and the minimum value

27

as . Based on the direction of the attribute, the normalized value (
) is calculated according

to the following equations [37]:

1) If the tendency of attribute is negative:

)_(

)_(
=

'

qq

qq
q

minmax

imax
i where q

max ≠ q
min (3.5)

2) If the tendency of attribute is positive:

)_(

)_(
='

q
min

q
max

q
min

q
iq

i where q
max ≠ q

min (3.6)

 q
i
' =1 if q

max = q
min ≠0

 q
i
' =0 if q

max = q
min =0

The methods of normalizing interval data are mostly based on interval arithmetic. Let q
i

= [q l
i , qu

i] where ql
i and qu

i are lower bound and upper bound of the data range respectively. To

normalize q
i we use the following equation [38]:

],[=]

∑

,

∑

[=
''

1=1=

' qq

q

q

q

q
q u

i
l
in

i

l
i

u
i

n

i

u
i

l
i

i

where

='q l
i

∑
1=

n

i

u
i

l
i

q

q
 and ='q u

i
∑

1=

n

i

l
i

u
i

q

q

In order to normalize the attributes of an unordered list type such as "Supported

Standards" attribute, we assign a numeric value to each QoS parameter based on the number of

(3.7)

i = 1, 2,…,n (3.8)

28

items in the assigned list. Then we adopt one of the equation (3.5), (3.6) or (3.7) for the

normalization process.

Boolean types are considered as numeric type. We consider 1 for True values and 0 for

false values. As a result, the normalized value will be either 1 or 0 based on the value of the QoS

property.

3.3. Skyline Operation

 Skyline operator in the context of database was first introduced by Kossmann et al. [30]

as multi-objective optimization concept to solve maximum vector problems. On a given set of

data, skyline consists of a subset of data points that are not dominated by other entities.

According to their definition, in a given domain, a point dominates another one, if it is as good as

or better than the other point in terms of all requirements, or better in at least one requirement.

Real Estate industry is a sample field in that we can use Skyline operation to assist the clients to

select the best options according to their requirements. As an example we consider the price of

an apartment and its distance to the public transportation facility (PTF) as two dimensions in a

small dataset of rental apartments as in Table 3.1. In this example, we ignore the other properties

of the apartments and only focus on the two mentioned attributes. In this case the ideal choice

would be the apartments with the lowest price and the minimum distance to PTF. However there

is no apartment in this set of data that is better than the others on both criterions. This is the fact

that we experience in real life too.

29

Table 3.1- Example of a list of rental apartments

 Distance to public

 Apartment Price ($) transportation (mile)

A 1050 0.9

B 1200 0.8

 C 1220 0.78

 D 1100 0.85

 E 1420 0.95

 F 1250 0.78

G 1300 0.7

 H 1350 0.65

 I 1370 0.91

J 1375 0.7

K 1400 0.7

L 1200 0.9

 M 1250 0.87

 N 1150 0.95

 O 1400 0.99

To refine the results and provide a more desirable list based on user's demand, we remove

all those options that are worst on both criterions. In our case, apartments E, F, I, K, J, L, M, N

and O may be eliminated as there are still some better options in the list than these items. This

will result in options on skyline represented in Table 3.2.

30

Table 3.2- Results in the skyline

 Apartment Price (Dollar) Distance to PTF (Mile)

A 1050 0.9

B 1200 0.8

C 1220 0.78

D 1100 0.85

G 1300 0.7

H 1350 0.65

Using a skyline model, we can filter out a set of best options according to the required

criteria. To refine the skyline list according to a user's demand, we can execute any SQL

command on the filtered dataset. Suppose a client is looking for an apartment with the price

between $1000 and $1300 with its distance to the public transportation facility no more than 0.9

miles. Based on the available data in the dataset, the dashed line in Figure 3.1 shows the skyline

of the results in terms of the requirements.

Figure 3.1- Skyline results based on the user's requirements

0.5

0.6

0.7

0.8

0.9

1

1000 1100 1200 1300 1400

D
is

ta
n
ce

 (
m

il
e)

e)

Price ($)

31

The solid line is referred as the skyline due to its graphical representation. Any points

above the line do not meet either one or both requirements of a query. To generate the skyline,

any monotone scoring function can be considered. Those candidates that maximize the scoring

function will appear in the skyline. There are different ways to compute the skyline. SFS

algorithm [33] was proposed as a prominent skyline operation method based on sorting data to

reduce the computation time. In this framework a given dataset is sorted based on an aggregation

function over the constraints in the query. The result will be saved in a table and then all sorted

items are compared to each other to locate the points that dominate the other items. At the end,

all services that are not dominated by the rest of services are saved in an output table. As it is

evident, user's requirements have not been considered in the model. However after generating the

output table, we can execute different queries on the result table based on user's demand. All

services which meet the requirements will appear in the final list in a descending order. Figure

3.2 represents the steps of the SFS algorithm for computing skyline. The final list contains all

optimal services sorted based on their dominance scores.

32

3.4. Enhanced Borda Fuse Algorithm

 In this section we explain the original Borda Fuse algorithm in details and then provide

the extended method by considering user's requirements through an example.

Input: A set of services T

Dimensions (number of attributes) d

Output: Ranked list of Web services S

1 begin

2 initialize T’= ;

3 sort all data of T in descending order and save them in T’;

4 initialize S= ;

5 move the first record of T’ into S;

6 while T’ is not empty

7 for each record t in T’:

8 compare t with all records in S:

9 if t is dominated by some records in S then

10 remove t from T’;

11 else

12 move t from T’ to S;

13 returns S;

14 end;

Figure 3.2-Sort-Filter-Skyline algorithm

33

3.4.1. Basic Borda Fuse Algorithm

 There is another category of methods proposed for ranking data items which is called

rank aggregation methods. One of the efficient methods in this context is Borda Fuse [24]. This

model was proposed to solve the voting problems in different areas. In the context of Web

service discovery, a service which appears in the highest positions in the most ranking lists will

receive higher ranking score. In this model all services are first ranked in different lists in terms

of different QoS attributes. Each service is assigned a score based on its positional value in each

individual ranked list. Then the final ranked list is generated by computing the summation of all

obtained scores from all ranked lists. The required steps of the algorithm are presented in Figure

3.3.

Figure 3.3- Borda Fuse algorithm

Input: A set of m services T

Dimensions (number of QoS attributes) k

Output: Ranked list of Web services S

1 begin

2 sort T based on each dimension to get k ranked lists;

4 initialize S= ;

5 for each service s in T

6 initialize score=0;

7 for each individual ranked list

8 assign score= score + ((m- positional value of s in the list) +1);

9 move s and score to S;

10 sort S based on score;

11 returns S;

12 end;

34

3.4.2. Enhanced Borda Fuse Algorithm with Consideration of User's Requirements

 The Borda Fuse algorithm suffers from an important deficiency that may affect the

accuracy of the results. In this model the user's actual request is ignored which is an important

factor in selection systems. For different requirements from different users, the output of the

algorithm is always the same. To overcome this issue, we improved the algorithm to cover user's

requirements in the ranking process. To be more specific we include the requested constraints to

the rank lists before calculating the scores.

Suppose we have n services retrieved from the matching phase of the Web service

discovery, and k required QoS attributes determined by user. Based on the original method, k

ranked lists will be generated according to each attribute. For each service, the ranking score is

calculated by summing up the positional values of the service in each ranked list. As an example,

suppose we have 5 similar functional Web services with different quality attributes as

represented in Table 3.3. There are 4 criteria required to be considered for ranking these services.

Table 3.3- Similar Web services with different QoS values

Criteria
Availability

%

Response

time(ms)
Cost($)

Reliability

%

Tendency High Low Low High

Required QoS values >=92 <=4 <=3 >=85

Service1(S1) 93 1.8 2.5 80

Service2(S2) 94.5 2.65 2.3 92

Service3(S3) 92.5 2.1 2.6 85

Service4(S4) 96 2.0 3.0 90

Service5(S5) 94 1.95 3.2 84

35

According to the original Borda Fuse algorithm all services are first ranked separately

based on each constraint. In this case we have four ranked lists of services based on each

criterion and tendency of the attribute. The generated ranked lists are illustrated in Table 3.4.

Table 3.4- Ranked lists based on 4 QoS attributes

The final ranking score is calculated by adding the positional value of each service in

each individual ranked list. The problem is that, the actual user request plays no role in the

ranking score. With different requirements, we will receive the same result. To involve user's

requirements in the algorithm, we consider query attributes as a sample service Sq and add it to

the list of offered services. As a result we will have new ranked lists including Sq as indicated in

Table 3.5. We can notice that the position order of service S3 and S5 has changed in the new

ranked list. Service S5 does not meet the requirements for the last 2 attributes.

Ranked list

based on

availability

Ranked list

based on

response time

Ranked list

based on

cost

Ranked list

based on

reliability

Final Ranked

list

S4 S1 S2 S2 S2

S2 S5 S1 S4 S4

S5 S4 S3 S3 S1

S1 S3 S4 S5 S5

S3 S2 S5 S1 S3

36

Table 3.5-Ranked lists based on the user's requirements

The scores assigned to services depend on their position in each ranked list. We assign

negative score to those services which appear in the each rank list after Sq. The negative score

for each service is computed according to position of service in the new ranked list. Suppose n as

the number of services, Si .position as the position value of service S i in each ranked list,

Sq.position as the positional value of Sq in the new list with considering user’s requirements.

Considering the new list, if a service is in a higher position than Sq, then the score for each list is

computed as follows:

 Rankscore= (n – Si .position) +1

In case a service has a lower position than Sq in the ranked list, the score is calculated as:

Rankscore = Sq.position - Si .position

The total score (ScoreSi) for each service is calculated as:

∑=
1=

m

i
iSi wScore Rankscore where m is the number of QoS attributes.

Ranked list

based on

availability

Ranked list

based on

response time

Ranked list

based on

cost

Ranked list

based on

reliability

Final Ranked

list

S4 S1 S2 S2 S2

S2 S5 S1 S4 S4

S5 S4 S3 S3 S1

S1 S3 S4 Sq S3

S3 S2 Sq S5 S5

Sq Sq S5 S1 Sq

37

 The final ranked list could be generated by sorting the final scores in a descending order.

3.5. Enhanced Distance-Based Algorithm

In this section we discuss the classical Distance-based algorithm in details and then

provide the improvement algorithm with consideration of user's requirement. In the improved

model, we not only consider the optimal value of each requirement, but also take the real

consumer's demand into account.

3.5.1. Basic Distance-Based Algorithm

 In this model, the problem of matching and ranking Web services based on the

requirements is considered as a distance measurement problem [14]. To solve the problem, a

published Web service is modeled in a vector including its n QoS attributes. The optimal values

of each QoS attributes are also modeled in another vector. The distance between the two vectors

is measured according to Weighted Euclidean Distance formula. Then in the ranking process, the

ranked list is generated by sorting the distance values in an ascending order. The required steps

of the algorithm are indicated in Figure 3.4.

38

The Distance-Based algorithm is an efficient method to generate a list of ranked services.

However, the original algorithm only considers optimal value for each attribute. The algorithm

can be improved to cover user's requirements to be more realistic.

Input: A set of Web services including n QoS attributes

A vector to represent n weights for n QoS attributes

Output: Ranked list of Web services: S

1 begin

2 initialize S= ;

3 for each service s

4 arrange n QoS attributes of service s in a vector ;

5 arrange optimized values of QoS attributes in a vector ;

6 normalize items of vector to generate vector

7 normalize items of to generate vector
 ;

8 calculate the distance score between
 and

 ;

9 move distance score to S;

10 generate ranked list S by sorting distance scores;

11 returns S;

12 end;

Figure 3.4- Distance-based algorithm

39

3.5.2. A Motivating Example

 Suppose there are 3 similar Web services with 4 QoS attributes including "availability",

"reliability", "composability" and "response time" offered by service providers as indicated in

Table 3.6. The results were computed based on a query (availability >=92%, reliability>=80%,

composability>=85% and response time<=2.5ms).

Table 3.6- Values of 3 similar Web services with 4 QoS attributes

By applying the original Distance-based algorithm to the sample dataset, the ranked list is

retrieved as: S1 > S2 > S3 . Service S2 appears before service S3 in this list, however S2 does not

satisfy the fourth criteria specified in the query (response time<= 2.5ms). Although Service S3

meets all the requirements, it appears on the bottom of the list after S2 , as it does not acquire

sufficient similarity score in compared to the optimal value of the second attribute (99%). The

large difference between the values of each service for attribute (reliability) has led S2 to obtain

a higher ranking position in the list. If we consider the user's requirement in the model and apply

Criteria
Availability

%

Reliability

%

Composability

%

Response time

ms

Tendency High High High Low

Required QoS

values
>=92 >=80 >=85 <=2.5

Service1(S1) 94.5 90 92 2.3

Service2(S2) 93 99 89 3.5

Service3(S3) 92.5 90 91 2.4

40

the improved method, the result list based on the same data is returned as follows: S1 > S3 > S2 .

The service S2 is still in the ranked list, but appears after those services that satisfy all of user's

requirements and closer to the optimal values. In fact by penalizing this service for not satisfying

all requirements, we reassure that the list presented to the consumer could better meet his actual

demand.

3.5.3. Improved Distance-Based Algorithm with Consideration of User's Requirements

We model the values of n QoS attributes of a service S as a vector:

),...,,(= 21
QQQQ

snsss and consider the values of QoS requirements requested by a consumer as

a vector),...,,(= 21
qqqQ

rnrrr . We also set the consumer's preferences values on each QoS

attribute in a vector),...,,(= 21
pppP rnrrr where],1[∈ np

ri . User needs to assign a number

between 1 and n as the importance degree for each constraint. If the consumer has no preferences

for an attribute, n will be considered as the preference value for that specific parameter. We

represent the vector of weights assigned to attributes as:),...,(= 21 wwwW n , where 1=∑
1=

n

i
iw ,

and)1,0(∈wi . We set p
maxr as the maximum value in vector p

r and use the following

equations to compute the weight for each attribute:

∑
=

1=
'

'

n
i ri

ri
i

p

p
w i=1,2,…n (3.9)

where p
ri

p
maxr

p
ri _)1+(=' (3.10)

If we consider),...,2,1(= q
on

q
o

q
o

Q
o as the vector of the optimal values of the QoS

attributes, then the score assigned to service S (Scoreos) is computed based on its distance to the

41

vector Q
o . The distance score is calculated based on the Euclidean Distance formula. Up to this

point, only optimal values of attributes were considered in the algorithm. In order to apply the

real query values in the model, we also calculate the distance between the QoS of service S and

the real requested constraints specified in the query. The final distance score (dis (S)) which

indicates the distance between a service and both optimized and required QoS values is

calculated as explained in the following paragraph:

In order to evaluate the ranking relation between the services, we need to calculate the

distance between each QoS attribute of each service and the optimal OoS value. The optimal

value is the best value on a QoS property and it depends on the tendency of the attribute. Based

on the Euclidean distance measurement theory, the following formula is used to calculate the

score for each service based on its distance to vector of optimal OoS(:

)_ ''(=|_|=
2

q
oj

q
jw jQQScore osiosi (3.11)

Depending on the tendency of the QoS parameters, the normalized values for numeric,

list and Boolean attributes, are computed based on equation (3.5), (3.6), or (3.7). For any

attribute of the range type, the normalized value is calculated based on equation (3.8).

In order to calculate the distance between each service S i and the requested QoS (),

we penalize the services that fail to meet any requirement requested in the query. To fulfill this,

we consider a vector: },...,,{= 21
pppP iniii where p

ij [1…n]). The vector Pi includes 0 or 1

based on whether the service S i meets each requirement in the query or not.

We obtain the distance between each service and the real required QoS () as follows:

)_(=|_|=
'' 2

qqwpQQDis rjjjijrsisi (3.12)

42

In equations (3.11) and (3.12), q
j
'

refers to the normalized value of the jth quality

attribute (q
j), q

oj
' refers to the normalized value of the optimal value of the jth quality attribute

(q
j), and q

rj
' is the normalized value of the jth requirement specified in the query.

 In order to calculate the distance between two vectors of QoS and offered services for

the attributes with interval data type we consider the required QoS vector:

]),[],...,,[],,([= 2211
qqqqqqQ

nunlululr where q
jl and q

ju refer to the lower bound and upper

bound of the jth QoS attribute. To compute the distance between vector , and the vector of

QoS values of service S i :]),[],...,,[],,([= 2211 SSSSSSQ nunlululsi where S jl and S ju are the

lower bound and upper bound of the jth attribute of the service, we use the following equation to

calculate the distance between service and the QoS constraints:

)∑)_(+)_((=|_|=
1=

'' 2'' 2n

j
jujujljljijrsisi SqSqwpQQDis (3.13)

In equation (3.13), q
jl
' and q

ju
' are the normalized values of lower bound and upper bound

of the jth QoS attribute respectively. In this equation, S jl
' and S ju

' refer to the normalized values

of the lower bound and upper bound of the jth attribute of the service respectively.

We assign W1 as the weight for the score calculated by considering the user's

requirements and, W 2 as the importance degree for the score calculated by considering only

optimal values. Using Linear combination method, we compute the final score for each service

as in the following equation:

ScoreWDisWScore osisisi 21 += (3.14)

43

In this research we consider equal weights for each factor as W1 =0.5 and W 2 =0.5. The

final ranked list may be retrieved by sorting all the services based on the final score in an

ascending order.

3.6. Chapter Summary

 In this chapter, first we described a promising algorithm in the context of discovery and

ranking web services which will be used as one of the baseline algorithms for the comparison

purpose. We also described two efficient algorithms, i.e. Distance-based and Borda Fuse from

two different categories: vector-based and positional-based techniques. They will also be used as

baseline models for our comparison purpose. Then we proposed our framework by improving the

Distance-based algorithm. In the first step of our framework the distance-based algorithm is

adopted to compute the distance between the optimal values of QoS parameters, and the values

for services published by providers. Then we compute the distance between each retrieved Web

service and the query over the attributes specified in the query. In our model, the final ranked list

will be generated based on the overall scores gained from both phases. Finally we considered

actual user's queries in the Borda Fuse approach by applying penalty scores for those services

that do not satisfy user's demand. We consider the query as a Web service which is required to be

considered in the ranking evaluation process. Those Web services placed after query in the

ranked lists are the ones do not meet the requirements. Then they will be assigned with some

negative scores based on their positional values in the lists. The selected services in the final lists

are closer to user's demand.

44

CHAPTER 4

IMPLEMENTATION AND EVALUATION

In this chapter, we use various datasets with different sizes to study the performance of

our improved algorithms and compare their performance with those of other algorithms such as

the original Borda Fuse, Skyline, and the original Distance-based approaches. We consider the

QoS parameters described by Al-Masri, and Mahmoud [39] as follows: reliability (%) - The

ability of a service to perform the required tasks under specific conditions during a specified

period of time, availability (%) – The probability the service is up and is available to be used,

throughput (number of invocations/millisecond) – Total number of invocations managed in a

period of time , successability (%) – Number of successful responses/ number of requests,

response time (millisecond) – Required time to respond to a query, compliance (%) – The extent

that a service complies with the WSDL specification, best practices (%) – The extent a service

follows the standards defined in WS-I Basic Profile, latency (millisecond) – The measure of time

delay to respond to a request, documentation (%) – Measure of documentation in the WSDL file

and supported standards (list) – The standards supported by a Web service.

4.1. Implementation and Testing Environment

The algorithm has been implemented as a console-based application, using VB.Net

language, in Microsoft Visual Studio 2008 environment with .Net framework 3.5, to be used in

applications of selecting and ranking Web services. The experiments were run on a machine with

Intel R Core (TM) CPU 2.30 GHz, 4 GB RAM, and installed Microsoft Windows 7 as the

operating system.

45

4.2. Experiment Design

 In all of the following experiments we use different subsets derived from the QWS

dataset provided by Al-Masri, and Mahmoud [40]. The original dataset includes information of

over 2000 web services available on the Web. The dataset includes real data for various QoS

attributes such as response time, availability, throughput, successability, reliability, compliance,

best practices, latency and documentation. The service name and its WSDL address are also

included in the dataset.

 We consider different scenarios for the experiments as follows:

1) Test the efficiency of our algorithm by using real datasets;

2) Compare the performance of our improved algorithms with three baseline algorithms

using different datasets:

 2.1) Datasets with different sizes (increasing the number of the Web services);

 2.2) Datasets with different number of attributes (increasing the number of QoS

attributes);

 2.3) Datasets with different types of attributes (such as single number, list and range);

3) Study the quality of the results of the improved algorithms

4.3. Evaluation of the Results

 In the following sections we provide the results generated from different experiments to

evaluate our improved algorithms in terms of two factors: (1) Execution time which represents

the processing time from when the query is submitted, to the moment when the ranked results are

returned and presented to the user. (2) The quality of the results which is evaluated based on the

46

similarity degree between the ranked results obtained from the improved algorithms and that of

the original models. We consider Skyline algorithm as the baseline for comparison with our

improved algorithms in terms of efficiency. In the following descriptions, we use these

abbreviations for each algorithm: DS for the original Distance-based algorithm, DS_I for the

improved Distance-based algorithm, BF for the original Borda Fuse, BF_Q for the Borda Fuse

algorithm with consideration of user's query, and SFS for the Sort Filter Skyline algorithm.

4.3.1. Evaluation on Efficiency

 In this section we provide the results of different experiments conducted on different

sized datasets and then analyze and compared the algorithms in terms of the processing time.

 Experiment-1: Different Datasets with Different Sizes

In the following scenario we study the effect of increasing the size of dataset on the

performance of each model. To fulfill the task, we run the applications on different datasets

containing 10, 50, 100, 150, 200, 300, 500, 1000, 1500 and 2000 Web services. In this

experiment we consider nine QoS numeric attributes including: response time, availability,

throughput, successability, reliability, compliance, best practices, latency and documentation.

We measured the execution time of algorithms by running each application 500 times and get the

average value of the results. A sample query could be: response time<1000ms,

availability>95%, throughput >20, successability>95%, reliability>80%, compliance>85%, best

practice>80%, latency<50ms and documentation>50%. Then the query vector is set as :

 =(1000,95,20,95,80,85,80,50,50). A sample preference vector for this query could be:

 =(1,1,3,2,3,3,2,2,3).

47

The result of running each algorithm is presented in Table 4.1. As illustrated in Figure 4.1

the execution time of SFS algorithm is less than the others when the number of Web services is

less than 150. When increasing the number of services, we observe that the performance of SFS

is largely affected, whereas DS and DS_I algorithms run faster than the others. The average

execution time of our improved method (DS_I) is a little more than the processing time of the

original Distance-based for all different number of services, however the difference is very

small. It is reasonable because DS_I takes extra steps of comparing service QoS values with the

requested QoS values. When the number of Web services is increased, the execution time of

DS_I still remains close to the processing time of the original DS algorithm, but the difference

between its processing time and that of SFS is increasing. BF has higher performance than

BF_Q, but the difference is small. The reason is that BF_Q requires one more step to add the

query in the ranked lists. Due to the extra initial step in BF and BF_Q algorithms for generating

different ranking lists based on different attributes, they process the query slower than DS and

DS_I algorithms. BF and BF_Q outperform SFS on large sized datasets. When increasing the

size of the dataset, the number of pair-wise comparisons in SFS algorithm is growing which will

affect the processing time.

48

Table 4.1- Execution time of algorithms on different datasets

containing 9 QoS attributes

Figure 4.1- Comparison of execution time of 5 algorithms on different sized datasets

 containing 9 QoS attributes

0

200

400

600

800

1000

1200

1400

10 50 100 150 200 300 500 1000 1500 2000

DS

DS_I

BF

BF_Q

SFS

Average execution Time (ms)

Number of

Services

DS

DS_I

BF

BF_Q

SFS

10 6 7 9 12 5

50 22 22 27 31 16

100 40 41 45 50 37

150 60 61 67 74 69

200 79 81 84 90 114

300 105 107 120 129 148

500 199 201 214 224 301

1000 403 410 420 431 802

1500 643 646 706 723 1015

2000 873 887 1005 1029 1215

Number of Web Services

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

49

Experiment-2: Different Datasets with Different Number of Attributes

 To study the impact of increasing the number of QoS attributes on execution time of

different algorithms, we did a different set of experiments with a combination of different

number of Web services and different number of QoS attributes. We run the different algorithms

on datasets with different sizes containing 10, 50, 100,150,200 and 1000 candidates. In this

section, we present the performance results on each dataset in a separate table. The first row of

each table shows the result when we have only one numeric attribute, i.e. response time (ms), the

query is considered as (response time<=1000ms) and user's preference is set to 1. The second

row shows the result for each algorithm when we have four QoS attributes: response time,

availability, throughput and successability. The user's preference vector is set as (2, 1, 1, 3) and

the query is submitted as (response time<=1000ms, availability>= 95%, throughput>=20,

successability>=95%). The third line shows the results with 6 QoS attributes: response time,

availability, throughput, successability, reliability and compliance. In this case the query was

submitted as (response time<=1000, availability>=95%, throughput>=20, sucessability>=95%,

reliability >=80%, compliance>=85%) and consumer's preference vector is set as: (2, 1, 1, 2, 3,

3). The last row shows the execution time of each algorithm based on 9 QoS attributes: response

time, availability, throughput, successability, reliability, compliance, best practice, latency and

documentation. The query and preference vector in this case are (response time <=1000,

availability>=95%, throughput>=20, sucessability>=95%, reliability>=80%, compliance>=80%,

best practice>=50%, latency<=50ms), and (1,1,3,2,3,3,2,2,3) respectively. The average execution

time was computed over 500 runs. Table 4.2 represents the performance of the algorithms on a

dataset including 10 Web services. As indicated in Figure 4.2 the average execution time of

DS_I is very close to that of DS algorithm. We can also notice that the algorithms are relatively

50

stable for different number of attributes. BF-Q is the slowest algorithm, but the difference

between its processing time and that of the other algorithms is not that much.

Table 4.2- Execution time of algorithms on datasets including 10 web services and different

number of attributes

Average execution Time(ms)

Number of

Attributes

DS

DS_I

BF

BF_Q

SFS

1 5 6 8 9 4

4 5 6 8 10 4

6 5 6 9 11 4

9 5 6 9 12 5

Figure 4.2- Comparison of execution time of 5 algorithms on datasets including 10 Web services

and different number of attributes

 In the next test we increase the size of the dataset. Table 4.3 compares the performance

of algorithms on datasets including 50 Web services with different number of attributes. From

0

2

4

6

8

10

12

14

1 4 6 9

DS

DS_I

BF

BF_Q

SFS

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

Number of attributes

51

Figure 4.3 which was generated from Table 4.3, we can notice that SFS takes relatively less time

than the other methods to generate the ranked list. We also can see that DS takes a very little

time than DS_I to process the request, however the DS_I algorithms requires extra step to

measure the distance between the services and the constraints specified in the query. According

to the results, increasing the number of attributes does not affect the processing time of DS_I and

BF_Q algorithms in large scale. Moreover, it is observed that the average execution time of

BF_Q is close to that of BF. In this experiment SFS outperforms the other methods.

Table 4.3- Execution time of algorithms on datasets including 50 web services and different

number of attributes

Average execution Time (ms)

Number of

Attributes

DS

DS_I

BF

BF_Q

SFS

1 21 22 27 29 15

4 22 23 27 30 15

6 22 23 28 31 15

9 22 23 28 31 16

52

Figure 4.3- Comparison of execution time of 5 algorithms on datasets including 50 Web services

and different number of attributes

We also conducted the same experiment with datasets containing 100 and 150 services

with different number of attributes. However as all the results have the same pattern as the last

two examples, we excluded them from this section. Please refer to Appendix A for further

information.

To evaluate the result for larger sized datasets with more than 150 services, we first

applied the algorithms on a dataset including 200 Web services with different number of

attributes. The results are displayed in Table 4.4.

0

5

10

15

20

25

30

35

1 4 6 9

DS

DS_I

BF

BF_Q

SFS E
x
ec

u
ti

o
n

 t
im

e
(m

s)

Number of attributes

53

Table 4.4- Execution time of algorithms on datasets including 200 web services

and different number of attributes

Average execution Time(ms)

Number of

Attributes

DS DS_I BF BF_Q SFS

1 78 79 82 85 75

4 78 79 82 85 82

6 79 79 84 88 98

9 79 80 84 90 114

We provide the comparison between performances of different approaches in Figure 4.4.

The figure was generated from Table 4.4. It shows that SFS performs better that the other

algorithms on the dataset when there is only one QoS attribute, however when the number of

attributes is increased, DS and DS_I algorithms outperform SFS. We can also notice that even

BF and BF_Q perform better than SFS when the number of attributes is greater than 4.

Figure 4.4- Comparison of execution time of 5 algorithms on datasets including 200 Web

services and different number of attributes

0

20

40

60

80

100

120

1 4 6 9

DS

DS_I

BF

BF_Q

SFS

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

Number of attributes

54

Next, we increased the number of candidate Web services to 1000 and provided the

average processing time of each algorithm in Table 4.5. The performance result of the algorithms

is compared in Figure 4.5. Similar to the previous test, the results reveal that although the SFS

runs faster when there is only one QoS attribute, its performance decreases dramatically when

the number of attributes is increased. So it does not scale well when the number of attributes

increases, whereas the performance of other 4 algorithms is very stable and is not affected by this

change that much.

Table 4.5- Execution time of algorithms on datasets including 1000 web services

and different number of attributes

Execution Time

Number of

Attributes

DS

DS-I

BF

BF_Q

SFS

1 392 392 415 435 286

4 395 395 418 437 545

6 398 398 418 440 798

9 403 410 420 431 1015

55

Figure 4.5- Comparison of execution time of 5 algorithms on datasets including 1000 Web

services and different number of attributes

According to the observations, SFS has the lowest performance on the large sized

datasets and large number of attributes. Moreover, it can be seen that the performance of DS and

DS_I is relatively stable for all types of datasets. The growing number of the QoS attributes does

not affect their processing time that much.

From all the tests done in experiment 2, we can conclude that SFS is a good option only

for either very small sized datasets or a limited number of attributes. Furthermore DS_I

algorithm is as effective as DS algorithm in all combination of datasets. We can also come to this

conclusion that both DS and DS_I algorithms outweigh the other reviewed approaches for large

sized datasets in terms of the efficiency.

Experiment-3: Different Datasets with Different Types of Attributes

 The aim of the next set of experiments is to study how the different algorithms deal with

attributes with different types. In this case we did the experiments by running the algorithms on

different data sets with different number of Web services containing a combination of attributes

0

200

400

600

800

1000

1200

1 4 6 9

DS

DS-I

BF

BF_Q

SFS

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Number of attributes

56

with different types. Due to the space limit, we present only the result of the experiments with

datasets including 50, 100 and 200 services. For further results, please refer to Appendix A.

The test was done in 2 steps: first we considered only one QoS attribute and then in the

second step, we used datasets with five QoS attributes. In the first step, we considered "response-

time" for numeric type, "throughput" for data interval type, "documentation" for Boolean type

and "supported standards" for list type. In the next step, we conducted the experiments with 5

numeric QoS attributes: ("response time", "availability", "reliability", "successability",

"latency"). To see how the algorithms behave when we add list, interval and Boolean types to the

list of numeric QoS attributes, we generated list type values for attribute "supported standards";

interval data type values for attribute "throughput" and Boolean values for attribute

"documentation". Then we added the generated data on top of 4 numeric attributes: ("response

time", "availability", "reliability", "successability") in the second set of experiment to study the

pattern of results for different data types. The results of both sets of tests are illustrated in Table

4.6.

57

Table 4.6- Execution time of algorithms on datasets with different type of attributes

We displayed the results for a dataset including 50 Web services with 1 QoS attributes in

Figure 4.6. We can observe how the interval data types affected the processing time of all

Average execution Time (ms)

Type of attribute

Number

of

services

Number

of

attributes

DS

DS_I

BF

BF_Q

SFS

Numeric/Boolean

50

1 21 22 27 29 15

5 22 23 27 30 15

100

1 41 43 45 51 35

5 41 43 45 51 35

200

1 78 79 82 85 75

5 78 79 84 87 84

Data interval

50

1 41 43 56 59 44

5 41 43 56 60 45

100

1 60 63 68 71 64

5 60 63 69 73 105

200

1 88 90 100 105 91

5 88 90 101 108 131

list

50 1 15 17 24 28 18

5 15 17 27 32 24

100

1 31 34 40 45 35

5 33 36 43 49 38

200 1 68 70 75 80 71

5 69 72 79 84 73

58

algorithms. We can also see that although SFS is a good candidate for numeric and Boolean data

types, its processing time for list and interval data type is higher than those of DS and DS-I

algorithms. BF-Q and BF algorithms process the request for all data types with a slight

difference. They are slower than the other algorithms due to the extra steps required for

generating the individual ranked lists for each QoS attributes.

Figure 4.6- Comparison of execution time of 5 algorithms on dataset including 50 Web services

and 1 QoS attribute with different data types

We excluded the graphical representation of the results for datasets including 50 Web

services and 5 QoS attributes from this section, as they have the same pattern as shown in the

previous figure. Please refer to Appendix A for further details.

In the next set of experiments we increased the number of Web services to 100 services.

As the pattern of the results is the same as that of the previous experiment, we excluded the

0

10

20

30

40

50

60

70

Numeric List Data Interval Boolean

DS

DS_I

BF

BF_Q

SFS

QoS data types

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

59

graph of observation for the dataset including 100 Web services and 1 QoS attribute. Please refer

to Appendix A for further information.

Figure 4.7 shows the comparison of the performance of all algorithms for the

combination of different type of attributes on a dataset including 100 Web services and 5 QoS

attributes. Similar to the previous results, SFS still has better performance for numeric and

Boolean data types. However its processing time for interval data types is even higher than those

of BF and BF_Q algorithms. The efficiency of SFS is dramatically decreased for large sized

datasets including one interval data type. According to the results, there is a small difference

between the performance of BF and BF_Q.

Figure 4.7- Comparison of execution time of 5 algorithms on dataset including 100 Web services

and 5 QoS attributes with different data types

In the next set of test we increased the size of dataset to 200 services. As the results for 1

QoS attribute have the same trend as those shown in Figure 4.6, we excluded the graphical

representation from this section. The detailed information is provided in Appendix A.

0

20

40

60

80

100

120

Numeric List Data Interval Boolean

DS

DS_I

BF

BF_Q

SFS

QoS data types

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

60

Figure 4.8 compares the average processing time of algorithm DS_I with the other

algorithms on a dataset including 200 Web services and 5 QoS attributes. We notice that the

performance of SFS has decreased for all data types and has the highest processing time for data

interval type. With a small difference, DS and DS_I have the best performance in this

experiment. As we discussed earlier, SFS is not a good candidate for large sized datasets. The

performance of SFS decreases when we increase the number of QoS attributes. The results also

indicate that efficiency of BF_Q algorithm is close to that of BF algorithm.

Figure 4.8- Comparison of execution time of 5 algorithms on dataset including 200 Web services

and 5 QoS attributes with different data types

4.3.2. Quality of Results

In the following section we provide the evaluation analyses of the quality of ranking

results by comparing the improved algorithms with the original algorithms and other approaches.

Table 4.7 presents the URLs of 10 Web services with the equal functionality provided from

0

20

40

60

80

100

120

140

Numeric List Data Interval Boolean

DS

DS_I

BF

BF_Q

SFS

QoS data types

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

61

QWS. The Web services calculate specific national holidays in US. The quality attributes of the

services are presented in Table 4.8.

Table 4.7- Dataset including 10 similar Web services

s1
 http://www.holidaywebservice.com/Holidays/GBEAW/Dates/GBEAWHolidayDates.asmx

?WSDL

s2
 http://www.holidaywebservice.com/Holidays/GBNIR/GBNIRHolidayService.asmx?wsdl

s3
 http://www.27seconds.com/Holidays/HolidayService.asmx?WSDL

s4
 http://www.holidaywebservice.com/Holidays/GBNIR/Dates/GBNIRHolidayDates.asmx?

wsdl

s5
 http://www.27seconds.com/Holidays/US/Dates/USHolidayDates.asmx?wsdl

s6
 http://www.27seconds.com/Holidays/US/USHolidayService.asmx?wsdl

s7
 http://www.holidaywebservice.com/Holidays/US/USHolidayService.asmx?WSDL

s8
 http://www.holidaywebservice.com/Holidays/US/Dates/USHolidayDates.asmx?WSDL

s9
 http://www.holidaywebservice.com/Holidays/HolidayService.asmx?WSDL

s10

http://www.holidaywebservice.com/Holidays/GBMBW/Dates/GBMBWHolidayDates.asm

x?WSDL

62

Table 4.8- 9 Quality attributes of Web services
Q

o
S

Response

time(ms)

Availability

%

Throughput Successability

%

Reliability

%

Compliance

%

Best

Practice

%

Latency

(ms)

Documentation

%

q
u

er
y
 =<1000 >=95 >=14 >=95 >=80 >=85 >=80 =<50 >=50

s1

302.75 89 7.1 90 73 78 80 187.75 32

s2

482 98 16 95 73 100 84 1 2

s3

108.3 89 1.4 96 73 78 80 2.6 96

s4
 126.17 98 12 100 67 78 82 22.77 89

s5
 107 87 1.9 95 73 89 62 58.33 93

s6
 107.57 80 1.7 81 67 78 82 18.21 61

s7
 255 98 1.3 99 67 100 82 51 4

s8
 136.71 76 2.8 76 60 89 69 11.57 8

s9
 102.62 91 15.3 97 67 78 82 0.93 91

s10

93.37 96 13.5 99 67 89 58 41.66 93

We applied two algorithms DS and DS_I on the dataset for a query: (response

time<=1000ms, availability>=95%, throughput>=14, successability>=95%, reliability>=80%,

compliance>=85%, best-practice >=80%, latency<=50ms and documentation>=50%), and

displayed the ranked lists results in Table 4.9. In this test we set the user's preferences on each

QoS attribute as (1, 2, 3, 2, 3, 3, 2, 1, 3).

63

Table 4.9- Ranked results from DS and DS_I algorithms

DS DS_I

 http://www.holidaywebservice.com/Holidays/G

BNIR/Dates/GBNIRHolidayDates.asmx? wsdl

http://www.holidaywebservice.com/Holidays/HolidayS

ervice.asmx?WSDL

http://www.holidaywebservice.com/Holidays/Holid

ayService.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/GBNIR/

Dates/GBNIRHolidayDates.asmx? wsdl

http://www.27seconds.com/Holidays/HolidayServi

ce.asmx?WSDL

http://www.27seconds.com/Holidays/HolidayService.a

smx?WSDL

 http://www.holidaywebservice.com/Holidays/GBM

BW/Dates/GBMBWHolidayDates.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/GBMB

W/Dates/GBMBWHolidayDates.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/US/U

SHolidayService.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/GBNIR/

GBNIRHolidayService.asmx?wsdl

 http://www.27seconds.com/Holidays/US/Dates/US

HolidayDates.asmx?wsdl

 http://www.holidaywebservice.com/Holidays/US/USH

olidayService.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/GBN

IR/GBNIRHolidayService.asmx?wsdl

 http://www.27seconds.com/Holidays/US/Dates/USHol

idayDates.asmx?wsdl

 http://www.27seconds.com/Holidays/US/USHolida

yService.asmx?wsdl

 http://www.27seconds.com/Holidays/US/USHolidaySe

rvice.asmx?wsdl

 http://www.holidaywebservice.com/Holidays/GBE

AW/Dates/GBEAWHolidayDates.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/GBEAW

/Dates/GBEAWHolidayDates.asmx?WSDL

http://www.holidaywebservice.com/Holidays/US/D

ates/USHolidayDates.asmx?WSDL

http://www.holidaywebservice.com/Holidays/US/Date

s/USHolidayDates.asmx?WSDL

According to the result returned from DS algorithm, S4 obtains the higher ranking

position in the ranked list than S9 , while in the ranked list obtained from DS_I, these two

64

services appeared in an opposite order. The reason is that S4 has the optimal values for two

attributes: availability and successability, therefore it receives lower distance score than the other

services, even though it does not satisfy the requirement specified for attribute "throughput". On

the contrary, in results obtained from DS_I, S9 receives a higher ranking order, as it was

evaluated based on both its distance to optimal values and to the constraints specified by user.

Service s7
 also appears in higher ranking position than s2

 in the list returned by DS algorithm,

whereas it fails to satisfy the requirements specified for attribute "latency" and "throughput".

However service s2
 satisfies most of the user's requirements and is strictly better than service s7

in terms of some other qualities. So we could see that our improved algorithm actually takes into

account the actual user requirement so that a different ranking order could be generated for a

different user request. The user's demand is an essential feature for the selection task, however

missing in current solutions.

We also applied BF and BF_Q algorithms on the same dataset and requirements. The

ranked results are displayed in Table 4.10. In the result list retrieved from BF, service S1 has

higher ranking position than service S6 , whereas they appeared in an opposite order in the result

list retrieved from BF_Q algorithm. Service S1 meets none of the requirements specified in the

query, except the demand on attribute "response time" and "best practice", nevertheless it

appears in higher position than service S6 which meets the requirements specified for attributes

"response time", "documentation", "latency" and "best practice" and is similar to S1 over other

attributes.

From this case study we notice that how ignoring the user's requirements could impact

the ranking orders of the candidates in the result list. For larger sized datasets, many appropriate

65

services might be placed in the lower ranking positions or even excluded from the list, and

therefore they miss the chances to be selected by users.

Table 4.10- Ranked results from B and BF_Q algorithms

BF BF_Q

 http://www.holidaywebservice.com/Holidays/G

BNIR/Dates/GBNIRHolidayDates.asmx? wsdl

 http://www.holidaywebservice.com/Holidays/GBNIR/

Dates/GBNIRHolidayDates.asmx? wsdl

http://www.holidaywebservice.com/Holidays/Holid

ayService.asmx?WSDL

s4

http://www.holidaywebservice.com/Holidays/HolidayS

ervice.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/GBN

IR/GBNIRHolidayService.asmx?wsdl

 http://www.holidaywebservice.com/Holidays/GBNIR/

GBNIRHolidayService.asmx?wsdl

 http://www.holidaywebservice.com/Holidays/GBM

BW/Dates/GBMBWHolidayDates.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/GBMB

W/Dates/GBMBWHolidayDates.asmx?WSDL

 http://www.27seconds.com/Holidays/HolidayServi

ce.asmx?WSDL

 http://www.27seconds.com/Holidays/HolidayService.a

smx?WSDL

 http://www.27seconds.com/Holidays/US/Dates/US

HolidayDates.asmx?wsdl

 http://www.holidaywebservice.com/Holidays/US/USH

olidayService.asmx?WSDL

 http://www.holidaywebservice.com/Holidays/US/U

SHolidayService.asmx?WSDL

 http://www.27seconds.com/Holidays/US/Dates/USHol

idayDates.asmx?wsdl

 http://www.holidaywebservice.com/Holidays/GBE

AW/Dates/GBEAWHolidayDates.asmx?WSDL

 http://www.27seconds.com/Holidays/US/USHolidaySe

rvice.asmx?wsdl

 http://www.27seconds.com/Holidays/US/USHolida

yService.asmx?wsdl

 http://www.holidaywebservice.com/Holidays/GBEAW

/Dates/GBEAWHolidayDates.asmx?WSDL

http://www.holidaywebservice.com/Holidays/US/D

ates/USHolidayDates.asmx?WSDL

http://www.holidaywebservice.com/Holidays/US/Date

s/USHolidayDates.asmx?WSDL

66

 In order to evaluate the difference between the improved algorithm and the original

model, we used Kendall tau distance metric [41], [42]. Let S= { ,…, } as an input to two

different ranking algorithms. Suppose and are two ranked lists returned by each algorithm.

Kendall tau measures the rank correlation between the lists by counting the number of pair-wise

disagreements between the items of the lists. The Kendall tau correlation coefficient (τ), and the

Kendall tau distance (K) is measured as follows:

=),(21 LLτ

)1_(
2

1

pairs) discordant ofnumber -pairs concordant ofnumber (

nn

 (4.1)

 K (LL 21,) =

)1_(
2

1

pairs discordant ofnumber

nn

Kendall tau distance lies in the interval [0, 1]. The Kendall tau distance is 0 if the items of

each list are in the same order and is 1 if all the items of the lists are in the reverse orders.

Kendall tau correlation coefficient lies in the interval [-1, 1]. The coefficient is 1 if the ranking

lists are the same and is -1 if one ranking list is the reverse of the other one. According to [43],

the value of calculated correlation between [0, 0.2] shows a very weak correlation or similarity,

values between [0.21, 0.4] represent a weak correlation, values between [0.41, 0.60] indicates a

moderate correlation, [0.61, 0.80] shows a strong correlation and values in data range [0.81, 1]

shows a very strong correlation. We also studied the trend of changes in the quality of the results

based on datasets with different sizes. To accomplish this, we considered Distance-based

algorithm which is a fast and reliable method as the baseline for our comparison in terms of the

quality of the results. Our goal is to show how the results change when the query requirements

are employed in the model. To compare the results, we applied the algorithms to different

datasets from QWS. We used an online Kendall tau calculator provided by Wessa [44] to

(4.2)

67

estimate the correlation coefficient values. In order to compare DS and DS_I algorithms, we

performed three sets of tests. In the first experiment, we supposed that both query constraints and

optimal values play equal roles in the ranking process. So we set W1=0.5 and W 2 =0.5 in

equation (3.14). In the next experiment we set the bigger weight for the scores received by

considering query constraints in the algorithm and set the weights as W1=0.7 and W 2 =0.3. In the

last experiment we considered a larger weight for the optimal value as W1=0.3 and W 2 =0.7.

Table 4.11 shows all the computed correlation coefficient values for each algorithm on different

sized datasets in each experiment.

Table 4.11-Comparison of Kendall tau correlation coefficient between DS_I and original DS

algorithm

 Kendall tau values

Test 1 Test 2 Test 3

Number of Web

Services

DS_I

(=0.5, =0.5)

DS_I

(=0.7, =0.3)

DS_I

 (=0.3, =0.7)

10 0.86 0.81 0.99

50 0.89 0.84 0.92

100 0.88 0.84 0.94

150 0.89 0.86 0.94

200 0.88 0.85 0.94

250 0.88 0.86 0.95

300 0.89 0.84 0.94

500 0.87 0.84 0.95

1000 0.88 0.85 0.94

1500 0.87 0.84 0.95

2000 0.89 0.84 0.95

68

As a result we can observe that the Kendall tau correlation values decreased when a

bigger weight was assigned to query constraints. In this case, the results show the higher

dissimilarity between the original algorithm and the improved approach. It is possible that there

might be some services in the dataset that meet all of the requirements specified by the user, but

they get lower overall ranking score in the original method and consequently appear in the lower

positions in the final ranked list.

We also computed the Kendal tau correlation coefficient values between other algorithms

and DS_I algorithm. The results are presented in Table 4.12. According to the results, we can

notice that the ranking results retrieved from SFS approach is very similar to the results returned

by DS_I algorithm, however as we had already noticed, DS_I is more efficient and stable on

large sized datasets. We also noticed that DS_I algorithm is relatively as efficient as SFS on

small sized datasets. As a result DS_I can be considered an efficient method to be integrated in

different real-time Web service discovery and selection systems.

BF and BF_Q approaches have the smallest similarity degree with DS_I, as they rely

only on the positional value of a service in each individual ranked list. They do not consider a

balanced similarity degree between the quality of a service and the requirement specified in a

query.

69

Table 4.12- Comparison of Kendall tau correlation coefficient between BF, BF_Q, SFS and

DS_I algorithm

Number of

Services

BF BF_Q SFS

10 0.75 0.75 0.90

50 0.73 0.77 0.81

100 0.68 0.68 0.79

150 0.65 0.68 0.79

200 0.66 0.68 0.79

250 0.65 0.69 0.79

300 0.67 0.69 0.79

500 0.67 0.69 0.78

 1000 0.57 0.56 0.79

 1500 0.57 0.56 0.78

 2000 0.57 0.56 0.78

 In this section we compared the results of the improved algorithms with the original

models and SFS to show how the results vary when we consider user's requirement in the

algorithms. However it is hard to measure which one has better quality because to the best of our

knowledge, there is still no standard way to compare the quality of different ranking lists in a

Web service discovery system. Besides it is a subjective opinion depending on different people

and different scenarios and different people consider different scales for evaluating the results.

70

4.4. Chapter Summary

 In this chapter we explained our implementation of the proposed improved algorithms

and the baseline algorithms, as well as the experiment design and the datasets we used. Then we

presented the results of our experiment of conducting various tests and provided some analyses

on the final ranked lists. To measure the efficiency of the improved algorithm, we computed the

average execution time of each algorithm by using various datasets with different number of QoS

attributes from different data types. Then we compared the improved algorithms with the original

methods in terms of the average processing time. Finally we compared the quality of the results

of the improved algorithm with the original one to study the impact of user's demand on the

results.

71

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this thesis, we reviewed some of the ranking models for QoS-based Web service

selection system such as Borda Fuse, Skyline operation and Distance-based algorithms. We

addressed the issues related to each algorithm and then proposed a solution by presenting a

model inspired by Distance-based method. The advantage of the improved method is to address

the deficiency of other approaches caused by ignoring the role of user's requirements in their

ranking process. Different from the majority of the current works, in this method both the

optimal value of each QoS attribute, and also the constraints specified in a user's query are taken

into account. We implemented this model by using Euclidean metric to measure the similarity

between an offered service and the service with optimal values. Besides we computed the

similarity degree between the service and the constraints required by a user. The final ranking

score is the aggregation of both similarity scores.

Considering user's demand, we extended Borda Fuse method to deal with different user's

requirements. We considered this method to study how different algorithms with simple

structures deal with user’s requirements. To improve the Borda Fuse algorithm, we added the

query vector to list of candidate services in order to evaluate whether they could satisfy the user

queries, and then computed the final ranking score based on the summation of the positional

values of each service in each ranking list based on each QoS attribute. In order to validate the

framework and compare the optimized algorithms with other models, we conducted extensive

experiments on various datasets with different specifications. By increasing the size of datasets

72

and the number of QoS attributes, we compared all algorithms in terms of the processing time.

According to the observations, SFS is the fastest algorithm when we have only small sized

dataset and one QoS attribute. By increasing the size of the dataset and the number of attributes,

SFS runs slower. On the contrary DS and DS_I are the fastest algorithms on the large sized

datasets. BF and BF_Q run faster than SFS on large sized datasets with larger number of QoS

attributes. We also performed different experiments with different type of attributes such as

numeric, Boolean, list and data interval. We noticed that SFS has a poor performance on

attributes with data interval type. DS and DS_I with a slight different in execution time have the

best performance for all data types when the size of the dataset is large.

 We also compared the quality of results of DS_I method with that of DS, and noticed that

when we set a higher weight to query constraints, the dissimilarity between the results is larger.

If we consider equal weight for consumer's requirements and optimized services, then we receive

more similar results. As a result it can be left in consumer's hand to decide if the ranking system

should focus on query constraints or optimized services.

5.2. Main Contributions

There are three main contributions of this thesis:

 We provided an enhancement ranking algorithm based on a Vector-based model which is

capable of dealing with user's requirements and measuring the ranking relation between

services efficiently.

 We improved a rank aggregation based algorithm (Borda Fuse) to cover the user's

requirement and provide more accurate results.

73

 We compared the enhanced algorithms with one of the well-accepted ranking algorithms

(SFS) to show how they are more efficient on large sized datasets with large number of

attributes and different data types.

5.3. Future Work

 As future work, we can consider the following directions:

(1) Improve the framework to support top-k query processing effectively. Users might be

interested in being presented with only a limited number of best options based on

their requirements. In the other word, we could focus on extending the model to be

able to return the k best results based on the user’s requirements. In this case the

processing time could be much lower, and users would be able to select their desired

services easily.

(2) To devise a user interface model for the service selection system and integrate the

ranking algorithm with the model to provide an easier method for user to select the

desired services based on his requirements.

(3) Improve the algorithm to support imprecise QoS dimensions by using fuzzy sets. In

our work we included different types of QoS attributes, but to be more flexible and

compatible with all kind of QoS parameters, we also need to include fuzzy sets in the

framework.

(4) To improve the algorithm to include a systemized method for assigning weights for

the scores based on both optimal values and user’s requirements. In this case the

system would by more user friendly as users are not obliged to assign the weights.

74

APPENDIX A- RESULTS FROM EXPERIMENTS

Table A.1-Execution time of algorithms on datasets including 150 web services and different

number of attributes

Average execution Time (ms)

Number of

Attributes

DS

DS_I

BF

BF_Q

SFS

1 59 22 27 29 50

4 59 23 27 29 51

6 60 23 28 31 59

9 60 61 67 74 69

Table A.2- Execution time of algorithms on datasets including 500 web services and different

number of attributes

Average execution Time (ms)

Number of

Attributes

DS

DS_I

BF

BF_Q

SFS

1 198 200 210 220 167

4 198 201 211 221 232

6 199 201 211 222 280

9 199 201 214 224 301

75

Table A.3- Execution time of algorithms on datasets including 1500 web services and different

number of attributes

Average execution Time(ms)

Number of

Attributes

DS

DS_I

BF

BF_Q

SFS

1 638 638 701 715 446

4 640 641 703 718 770

6 640 641 703 718 883

9 643 646 709 723 1015

Table A.4- Execution time of algorithms on datasets including 2000 web services and different

number of attributes

Average execution Time (ms)

Number of

Attributes

DS

DS_I

BF

BF_Q

SFS

1 870 871 995 1018 680

4 870 871 997 1020 885

6 871 873 998 1020 910

9 873 887 1005 1029 1215

76

Table A.5- Execution time of algorithms on different sized datasets with different type of

attributes

Average execution Time (ms)

Type of attribute

Number

of

services

Number

of

attributes

DS

DS_I

BF

BF_Q

SFS

Numeric/Boolean

250

1 94 95 106 110 83

5 94 95 107 111 113

500

1 198 200 210 220 167

5 198 201 210 220 227

1000

1 392 392 414 435 286

5 392 392 415 436 645

Data interval

250

1 173 178 184 191 184

5 173 178 185 191 199

500

1 192 200 208 215 205

5 192 201 209 215 225

1000

1 210 217 225 235 221

5 210 219 226 235 241

list

250 1 92 94 100 103 95

5 92 94 103 107 98

500

1 187 188 197 207 191

5 187 188 199 209 196

1000 1 390 392 401 410 395

5 390 392 404 415 453

77

Figure A.1-Comparison of execution time of 5 algorithms on dataset including 50 Web services

and 5 QoS attributes with different data types

Figure A.2- Comparison of execution time of 5 algorithms on dataset including 100 Web

services and 1 QoS attribute with different data types

0

10

20

30

40

50

60

70

Numeric List Data Interval Boolean

DS

DS_I

BF

BF_Q

SFS

0

10

20

30

40

50

60

70

80

Numeric List Data Interval Boolean

DS

DS_I

BF

BF_Q

SFS

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

E

x
ec

u
ti

o
n
 t

im
e

(m
s)

QoS data types

QoS data types

78

Figure A.3-Comparison of execution time of 5 algorithms on dataset including 200 Web services

and 1 QoS attribute with different data types

0

20

40

60

80

100

120

Numeric List Data Interval Boolean

DS

DS_I

BF

BF_Q

SFS

QoS data types

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

79

REFERENCES

[1] T. Earl, "SOA: Principles of Service Design", 2nd Edition. Upper Saddle River, N.J.,

Prentice-Hall, ISBN: 9780132344821, 2008.

[2] UDDI, "UDDI Technical White Paper", Sept. 2000 [cited July.9, 2011], available from Word

Wide Web: <http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf>.

[3] W. Rong, K. Liu, and L.Liang, "Towards Personalized Ranking in Web Service Selection",

in Proceedings of the IEEE International Conference on e-Business Engineering, Xi'an, China,

pp.165-172, 2008.

[4] D. Bianchini, V.De Antonellis, and M. Melchiori, "QoS in ontology-based service

classification and discovery", in Proceedings of the 15th International Workshop on Database

and expert Systems Applications, Zaragoza, pp. 145-150, 2004.

[5] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, and S. McIlraithm, "OWL-S:

Semantic Markup for Web Services" [online], Nov. 2004 [cited Aug 6, 2011], available from

World Wide Web: < http://www.w3.org/Submission/OWL-S/>.

[6] K. Kritikos, and D. Plexousakis, "Semantic QoS Metric Matching", in Proceedings of the

ECOWS 2006: 4th European Conference on Web Services, Zurich , pp. 265-274, 2006.

[7] E. Giallonardo, E. Zimeo, "More Semantics in QoS Matching", in Proceedings of the IEEE

International Conference on Service-Oriented Computing and Applications, Newport Beach,

CA, pp. 163-171, 2007.

[8] I. Toma1, D. Roman, D. Fensel, B. Sapkota, and J.M. Gomez, "A Multi-criteria Service

Ranking Approach Based on Non-Functional Properties Rules Evaluation", in Proceedings of the

Fifth International Conference on Service- Oriented Computing, Vienna, pp. 435-441, 2007.

http://www.w3.org/Submission/OWL-S/

80

[9] O. Mola, P. Emamian, and M. Razzazi, "A Vector Based Algorithm for Semantic Web", in

Proceedings of the 3rd International Conference on Information and Communication

Technologies:From Theory to Applications, Damascus, pp. 1-5,2008.

[10] C. Zhou, L.T. Chia, and B.S. Lee, "Web Services Discovery with DAML-Qos Ontology",

International Journal of Web Services Research, vol. 2, no. 2, pp. 44-67, 2005.

[11] P.V. Hentenryck, and V. Saraswat, "Strategic Directions in Constraint Programming",

Journal of ACM Computing Surveys , vol. 28, no. 4, pp. 701-726, 1996.

[12] A. Ruiz-Cortés, O. Martín-Díaz, A.D. Toro, and M. Toro, "Improving the Automatic

Procurement of Web Services Using Constraint Programming", International Journal on

Cooperative Information Systems, vol. 14, no. 4, pp. 439-468, 2005.

[13] L. Sha, "A QoS based Web Service Selection Model", in Proceedings of the International

Forum on Information Technology and Applications, Chengdu, pp. 353-356, 2009.

[14] J. Yan, and J. Piao, "Towards QoS-based Web Service Discovery", in Proceedings of the

International Conference on Service Oriented Computing, Sydney, pp. 200-210, 2009.

[15] Y. Liu, and H. He, "Grid Service Selection Using QoS Model", in Proceedings of the Third

International conference on Semantics, Knowledge and Grid, Xi'an, Shaanxi, pp. 576-577, 2007.

[16] S. Degwekar, S.Y.W. Su, and H. Lam, "Constraint Specification and Processing in Web

Services Publication and Discovery", in Proceedings of the IEEE International Conference on

Web Services , San Diego, CA , pp.210-217, 2004.

[17] P. Li, M. Comerio, A. Maurino, and F. De Paoli, "Advanced Non-functional Property

Evaluation ofWeb Services", in Proceedings of the Seventh IEEE European Conference on Web

Services, Eindhoven, pp. 27-36, 2009.

81

[18] K. Kritikos, and D. Plexousakis, "Semantic QoS-based Web Service Discovery

Algorithms", in Proceedings of the Fifth European Conference on Web Services, Halle, pp. 181-

190, 2007.

[19] P. Li, M. Comerio, A. Maurino, and F.D. Paoli, "Advanced Non-functional Property

Evaluation of Web Services", in Proceedings of the 7th IEEE European Conference on Web

Services , Eindhoven, pp. 27-36, 2009.

[20] K. Kritikos, and D. Plexousakis, "Mixed-Integer Programming for QoS-Based Web Service

Matchmaking", IEEE Transaction on Services Computing, vol. 2, no. 2, pp.122-139, 2009.

[21] C. Herssens, I.J. Jureta, and S. Faulkner, "Dealing with Quality Tradeoffs during Service

Selection", in Proceedings of the 5th International Conference on Autonomic Computing,

Chicago, IL, pp. 77-86, 2008.

[22] V.X. Tran, H. Tsuji, and R. Masuda, "A New QoS Ontology and its QoS-based Ranking

Algorithm for Web Services", Journal of Simulation Modeling Practice and Theory, vol. 17,

no. 8, pp. 1378-1398, 2009.

[23] J. A. Aslam, and M. Montague, "Models for Metasearch", in Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, New York, NY, pp. 276-284, 2001.

[24] B. T. Bartell, G. W. Cottrell , and R.K. Belew, "Automatic combination of multiple ranked

retrieval system", in Proceedings of the 17th annual international ACM SIGIR conference on

Research and development in information retrieval, New York, NY , pp. 173-181, 1994.

[25] R. Fagin, R. Kumar, and D. Sivakumar, "Efficient Similarity Search and Classification via

Rank Aggregation", in Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data, New York, NY , pp. 950-961, 2003.

82

[26] Y. Yao, X. Chen, and S. Zhu, "Rank Aggregation Algorithms Based on Voting Model for

Metasearch", in Proceedings of the 2006 International Conference on Wireless Communications,

Networking and Mobile Computing, Wuhan , pp. 1-4, 2006.

[27] P. Diaconis, and R.Graham, "Spearman’s Footrule as a Measure of Disarray", Journal of the

Royal Statistical Society, pp. 262-268, 1977.

[28] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, "Rank Aggregation Methods for the

Web", in Proceedings of the 10th World Wide Web Conference, New York, NY, pp. 613-622,

2001.

[29] M. Montague, and J. A. Aslam, "Condorcet Fusion for Improved Retrieval", in Proceedings

of the 11th International Conference on Information and knowledge management, New York,

NY, pp. 538-548, 2002.

[30] D. Kossmann , S. Borzsony, and K. Stocker, "The Skyline Operator", in Proceedings of the

17th International Conference on Data Engineering, Heidelberg, pp. 421-430 , 2001.

[31] D. Papadias, Y. Tau, G. Fu, and B. Seeger, "Progressive Skyline Computation in Database

Systems", ACM Transactions on Database Systems (TODS) , vol. 30, no. 1, pp. 41-82, 2005.

[32] J. Chomicki, B. Godfrey, P. Godfrey, J. Gryz, and D. Liang, "Skyline with Presorting", in

Proceedings of the 19th International Conference on Data Engineering, Bangalore, pp. 71-719,

2003.

[33] J.Chomicki, B. Godfrey, P. Godfrey, J. Gryz, and D. Liang, "Skyline with Presorting",

Department of Computer Science ,Toronot, Ont., Report No. CS-2002-04, Oct. 2002.

[34] H. Han, H. Jung, S. Kim, and H.Y. Yeom, "A Skyline Approach to the Matchmaking Web

Service", in Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing

and the Grid, Shanghai, China, pp. 436-443, 2009.

83

[35] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, "Ranking and Clustering Web Services

Using Multicriteria Dominance Relationships", IEEE Transactions on Services Computing, vol.

3, no. 3, pp. 163-177, 2010.

[36] A. Sengupta, and T.K. Pal, "On Comparing Interval Numbers", European Journal of

Operational Research, vol.127, no. 1, pp. 28-43, 2000.

[37] J. Hu, C. Guo, H. Wang, and P. Zou, "Quality Driven Web Services Selection", in

Proceedings of the IEEE International Conference on e-Business Engineering , 681-685, 2005.

[38] Y.M. Wang, and T.M.S. Elhag, "On the Normalization of Interval and Fuzzy Weights",

Journal of Fuzzy Sets and Systems, vol. 157, no. 18, pp. 2456-2471, 2006.

[39] E. Al-Masri, and Q.H. Mahmoud, "Discovering the Best Web Service", in Proceedings of

the 16th International Conference on World Wide Web, Banff, AB , pp. 1257 – 1258, 2007.

[40] E. Al-Masri, Q.H. Mahmoud, "QoS-based Discovery and Ranking of Web Services", in

Proceedings of the 16th International Conference on Computer Communications and Networks,

Honolulu, HI, pp. 529 – 534, 2007.

[41] M.G. Kendall, "A new measure of rank correlation", Biometrika journal, vol.30, no.1-2, pp.

81-93, 1938.

[42] R.B. Nelsen, "Kendall tau metric", in Hazewinkel Michiel Encyclopaedia of Mathematics,

Springer, ISBN 978-1556080104, 2001.

[43] J. Cohen, "Statistical power analysis for the behavioral sciences", 2nd Edition, Taylor &

Francis, Inc, ISBN: 0805802835, 1988.

[44] P. Wessa, "Multivariate Correlation Matrix in Free Statistics Software", Office for Research

Development and Education, available at: ttp://www.wessa.net/Patrick.Wessa/rwasp_pairs.wasp,

last retrieved in July 2011.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	An Efficient Qos-Based Ranking Model for Web Service Selection with Consideration \of User's Requirement
	Anita Mohebi
	Recommended Citation

