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Abstract
Computational Fluid Dynamic Simulation of Airfoils in Unsteady

Low Reynolds Number Flows

c©Mohammadreza Amiralaei, 2012

Doctor of Philosophy

Aerospace Engineering

Ryerson University

The inherent complexity of low Reynolds number (LRN) flows and their respective viscous

vortical patterns demand an accurate solution method to achieve the desired accuracy. This

complicated flow field needs even more robust methods when the flow is unsteady. The flow

field of unsteady airfoils and wings in LRN regime is challenging to solve and Computational

Fluid Dynamics (CFD) simulations stand out as solid solution techniques in this area. This

thesis is motivated by an existing rotating-flapping mechanism, whose kinematics compo-

nents can be broken into pitching, plunging and a novel figure-of-eight-like flapping motion

of its blades and each blade’s cross section. The focus is on two-dimensional low Reynolds

number (LRN) flows using Computational Fluid Dynamics (CFD) and a Finite Volume

Method (FVM). As one of the targets is to simulate a pair of blades, and consequently a

pair of airfoils, a mesh motion library is developed to perform rotational and translational

motions of multi-body configurations. The library and its sub-routines are tested on pairs of

pitching, plunging and flapping airfoils, where the moving mesh problem is performed with

a significant gain in the computational time compared to other moving mesh techniques

such as Laplacian smoothing algorithm. The simulations of a single airfoil under harmonic

and the novel figure-of-eight-like flapping motions, respectively, are conducted within 67%

and 80% time it took to obtain a steady solution using the Laplace smoothing mesh motion

algorithm, while the calculated force coefficients were in reasonably close agreement. Flow

fields of single unsteady airfoils under pitching, plunging and figure-of-eight flapping mo-

tions are also simulated in this thesis accompanied with extensive parametric studies. The
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simulations of the considered figure-of-eight flapping pattern shows that its highly inclined

asymmetrical kinematics results in higher vertical lift coefficients than the existing flapping

patterns in the literature, useful for stable hovering flight.

The studies over paired-airfoils arrangements under pitching and plunging and the figure-

of-eight flapping motion show that the airfoil-airfoil interaction affects the fluid forces notice-

ably. The multi-plunging analysis, for example, reveals that the maximum lift coefficient is

higher than that of a single plunging airfoil, while minimum drag coefficient is lower, showing

the favorable effect of airfoil-airfoil interaction in the studied multi-plunging cases.

iv



Acknowledgments

I would like to extend my gratitude to my supervisors professors H. Alighanbari and S. M.

Hashemi and thank them for their guidance, support and constant encouragement during

the course of this research.

I would also like to thank Dr. D. Poirel of Royal Military College for serving as my

external examiner. The positive feedback, suggestion and advice of my internal committee

members professors B. Jubran, F. Sharifi, P. Walsh and J. Yokota from Ryerson University

are greatly appreciated.

I would also thank my friends: Noushin, Robin and Masroor for their support, encour-

agement and advise, and the last but certainly not the least to my mother for her love and

support and my father who always believed in me and encouraged me at all the times.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Modeling airfoils under different LRN unsteady conditions . . . . . . 4

1.3.2 Extensive parametric studies . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Implementation, validation and modification of the fast and robust

mesh motion algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Analysis of flow field characteristics and force signatures of airfoils

under unsteady conditions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Development of mesh motion methodologies for simulating multi-body

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and literature review 9

vi



2.1 LRN flow physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Dynamic stall and leading edge vortex . . . . . . . . . . . . . . . . . 10

2.1.2 Rotational circulation (rotational forces) . . . . . . . . . . . . . . . . 10

2.1.3 Wake-capturing mechanism (wing-wake interaction) . . . . . . . . . . 11

2.1.4 Weis-Fogh clap and fling mechanism . . . . . . . . . . . . . . . . . . 12

2.2 LRN solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Numerical Simulation Method 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Discretization of N-S equations . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Discretization of temporal and spatial terms in incompressible momen-

tum equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Solution of the governing equations . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 N-S equations for moving grid problems . . . . . . . . . . . . . . . . . . . . . 34

3.7 Moving mesh algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 On the LRN flow characteristics of a pitching airfoil 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Theory and numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Governing equations and flow solver . . . . . . . . . . . . . . . . . . . 45

4.2.2 Mesh generation and boundary conditions . . . . . . . . . . . . . . . 46

4.2.3 Validation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



4.3.1 Effects of amplitude of oscillation . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Effects of reduced frequency . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Effects of Reynolds number . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Numerical modeling of the flow field characteristics of a LRN plunging

airfoil 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Reference velocity, force and moment coefficients calculations . . . . . . . . . 66

5.4 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Mesh and time step sensitivity analyses . . . . . . . . . . . . . . . . . 67

5.4.2 Validation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 Effect of the Strouhal number without freestream flow . . . . . . . . 71

5.5.2 Effect of the Strouhal number with freestream flow . . . . . . . . . . 73

5.5.3 Effect of the Reynolds number . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Flow field characteristics of a figure-of-eight-like flapping airfoil 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Numerical simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Kinematics and equations of motion . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Reference velocity, force and moment coefficients calculations . . . . . . . . . 92

6.5 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.1 Effect of the amplitude of pitching oscillations . . . . . . . . . . . . . 97

6.5.2 Effect of the phase angle . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.3 Effect of the mean angle of attack . . . . . . . . . . . . . . . . . . . . 106

viii



6.5.4 Effect of the Reynolds number . . . . . . . . . . . . . . . . . . . . . . 108

6.5.5 Effect of Strouhal Number . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5.6 Effect of the pitching axis location . . . . . . . . . . . . . . . . . . . 112

6.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 The unsteady aerodynamics of a pair of pitching airfoils 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Numerical simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4.1 Effect of amplitude of pitching oscillations . . . . . . . . . . . . . . . 120

7.4.2 Effect of Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 On the force signatures of a pair of plunging airfoils 129

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Numerical simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3 Evaluation of the numerical approach . . . . . . . . . . . . . . . . . . . . . . 133

8.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.4.1 Effect of the Reynolds number . . . . . . . . . . . . . . . . . . . . . . 137

8.4.2 Effect of the frequency of oscillations . . . . . . . . . . . . . . . . . . 142

8.4.3 Effect of the amplitude of oscillations . . . . . . . . . . . . . . . . . . 146

8.4.4 Effect of the airfoil spacing . . . . . . . . . . . . . . . . . . . . . . . . 151

8.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 Multi figure-of-eight flapping airfoils 154

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.2 Numerical simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.3 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

ix



9.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10 Concluding Remarks 169

10.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.2 Thesis Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.2.1 Published Chapters in Books . . . . . . . . . . . . . . . . . . . . . . 172

10.2.2 Refereed Journal Publications . . . . . . . . . . . . . . . . . . . . . . 172

10.2.3 Submitted Journal Publications . . . . . . . . . . . . . . . . . . . . . 172

10.2.4 Refereed Conference Publications . . . . . . . . . . . . . . . . . . . . 173

A Motion Methodology for Multi Figure-of-Eight Flapping Motions 176

Bibliography 210

x



List of Tables

Table 4.1 Spatial and temporal sensitivity analyses, difference is calculated based

on the lift coefficient of the base line case (26×103 cells and 2000 time steps

in a cycle). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 4.2 Summary of experimental and numerical pitching studies in the literature. 53

Table 5.1 Summary of experimental and numerical plunging studies in the literature. 71

Table 5.2 Mean lift and drag coefficients (C̄l and C̄d) for the investigated St where

Re = 100, Y0 = c and U0 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 5.3 Mean lift and drag coefficients (C̄l and C̄d) for the investigated Re when

U0 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 6.1 Mean lift and drag coefficients (C̄l and C̄d) for the considered amplitudes
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1.4c, d = 0.7c, f = 0.25, ᾱ = 45◦, φ = 0 and Re = 75: (a) α0 = 45◦; (b) α0

= 60◦; (c) α0 = 90◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xviii



Figure 6.23 Vorticity contours at the second maximum lift coefficient (Clmax) for
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the lower airfoil at ᾱ = 15◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 9.9 Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for
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Chapter 1

Introduction

1.1 Overview

Ever-increasing efficiency and budget constraints highlight the necessity of highly accurate

solution methods for applications such as low Reynolds number (LRN) flight, fish-like robot

locomotion, offshore structures and the respective fluid-structure interaction (FSI) prob-

lems. The nature of the LRN fluid phenomena differs widely from those seen in conventional

intermediate and high Reynolds number cases. Often, the operation of these applications

encounters complicated unsteady conditions, which could be a combination of harmonic

pitching, plunging and flapping oscillations as well as aperiodic fluctuations and revolv-

ing motions. Efficient design of unsteady LRN applications, usually referred to Reynolds

numbers of O(10 − 104), needs a thorough understanding of their flow physics. However,

these applications mostly face or generate vortical patterns and viscous structures, adding

to the inherent complexity of the flow field. More studies have been recently conducted to

investigate the details of these flows. Consequently, the mechanism of the respective fluid

phenomena are understood and documented in the literature [1–4], but there are still open

questions about, for instance, the stability of LEVs in the LRN regime. The required in-

sight about the corresponding flow characteristics under different operating conditions and

1



their dependence on the governing flow and system parameters need more investigations,

especially when it comes to the analysis of instantaneous force and moment signatures.

Therefore, further studies into these flows are required to contribute to the required knowl-

edge. These investigations are beneficial for improving the existing designs and assisting in

the development of new methodologies in the LRN discipline.

1.2 Motivation

The present research was originally initiated from an existing blade configuration employing

simultaneous rotating and flapping motions to provide sustainable hovering flight [5]. This

state-of-the-art mechanism is shown in Fig. 1.1.

This mechanism’s two-dimensional (2-D) counterpart kinematics is a novel figure-of-

Figure 1.1: The rotating-flapping mechanism, adopted from Ania [5].

eight-like flapping pattern of each cross section [6], for which different types of unsteady

conditions namely pitching, plunging and flapping of single and paired airfoils are present.

The current study was then motivated by the fact that there is a wide gap between the re-

quired insight and existing knowledge in LRN airfoils/wings under unsteady motions. This

gap is even more noticeable when two or more airfoils are in relative unsteady motion, where

the airfoil-airfoil interactions alter the flow physics.

Forced-induced oscillations in MAVs and fish-like robots and flow-induced excitations in
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offshore structures and similar applications play a dominant role in exploiting LRN highly

viscous phenomena, which lead to significant force and moment signatures. The successful

design and modeling of such applications strongly depend on the accurate knowledge of these

mechanisms, their dependence on the governing parameters and the variation of fluid forces

and moments under different conditions, which unfortunately are not studied well.

LRN flows diverge from conventional applications in terms of velocity, characteristic di-

mensions, surrounding viscosity and density and the respective fluid phenomena. As most

of the LRN applications run into rapid unsteady motions, the flow field is highly complex,

vastly unsteady and mostly viscous. Also, the occurrence of the respective aerodynamic

mechanisms and their strength/significance differ, depending on numerous factors such as

kinematics and governing conditions, further increasing the degree of complexity of the prob-

lem.

Recent LRN unsteady studies have mostly utilized experimental and numerical tech-

niques. The capability of analytical methods is restricted to special cases of extremely

simplified flow conditions; hence, they lack LRN applications’ desired accuracy and are not

well-suited to solve these flows [7]. Quasi-steady solution, panel and Wagner’s methods or

Theodorsen’s method for two dimensional (2-D) harmonic pitching and plunging oscilla-

tions [8] are amongst the mostly utilized analytical methods. Experimental studies provide

reliable results, but they are rather expensive in terms of the required precision and testing

equipment. Also, through the existing experimental techniques, the flow field cannot be

visualized in great details and usually only a limited number of flow characteristics can be

measured. Advanced visualization techniques such as PIV (Particle Image Velocimetry) and

LDV (Laser Doppler Velocimetry) [9] are commonly used for these studies. Computational

Fluid Dynamics (CFD) is another solution technique which has attracted a great attention

in LRN unsteady studies. The CFD-based methods can yield accurate solutions and the

flow structure can be explored in detail through numerical simulations [10].

The present study numerically investigates the LRN flow field of single/paired airfoil con-
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figurations under forced-induced oscillations. To do so, different mesh motion algorithms are

utilized and developed to investigate the respective motions, aimed to improve the under-

standing of unsteady LRN flow fields and phenomena through extensive parametric studies.

These investigations contribute to the required knowledge in LRN flows and are useful in

having more efficient LRN applications from a preliminary design step perspective.

1.3 Objectives

The objectives of the present study are divided into three main categories as the following:

1.3.1 Modeling airfoils under different LRN unsteady conditions

Thorough numerical investigations of airfoils at LRN regime under prevalent unsteady mo-

tions are conducted in this thesis. The conditions include pitching, plunging and a novel

figure-of-eight-like flapping motion for single and pairs of the considered airfoils. These de-

tailed computational studies contribute to the required insight in LRN flows by showing how

the kinematics affect the flow, while analytical methods have limitations and experimental

means are expensive.

1.3.2 Extensive parametric studies

In this thesis, extensive two-dimensional (2-D) parametric studies on the effect of the gov-

erning flow and system parameters on the force and moment signatures are conducted in

each investigated unsteady motion. These 2-D investigations, more appropriate for para-

metric sensitivity analyses than 3-D studies, will help in understanding the significance of

the complex viscous phenomena under different governing flow and system parameters. The

dependence of the flow physics and forces and moments on the governing conditions will

also be revealed, helping LRN application designer by providing a conceptual overview of

all the fluid phenomena in the application as well as the effect of these parameters on the
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fluid force generation. Moreover, the conducted 2-D parametric studies are useful if they

are compared with the respective 3-D results, revealing the significance of 3-D effects such

as spanwise vortices and downwash effects.

1.3.3 Implementation, validation and modification of the fast and

robust mesh motion algorithms

In the present research, both single and multi airfoil arrangements are studied. In the case

of multi airfoils, the basic topological mesh motion algorithms in OpenFOAM R© are adapted

and modified to investigate the motion of multi airfoils under pitching, plunging and the novel

figure-of-eight-like flapping motions. The LRN unsteady aerodynamics of moving boundary

problems, in both single and multi airfoil arrangements, needs accurate and robust mesh

motion algorithms. The moving mesh methods have to be capable of preserving an initially

valid mesh and maintain the mesh quality (orthogonality and skewness) throughout the

simulations. In the case of a pair of airfoils interacting in an unsteady motion, the existing

motion algorithms are modified and new motion libraries are created to perform the motion.

1.4 Thesis Contributions

In this thesis, numerical simulations of single- and paired-airfoil arrangements under un-

steady LRN flow conditions are performed. Extensive parametric studies in each case are

also conducted. The paired-airfoil studies are simulated by developing relatively new mesh

motion methodologies. The contributions of this research are categorized into the following

two topics:
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1.4.1 Analysis of flow field characteristics and force signatures of

airfoils under unsteady conditions

The 2-D simulations throughout this thesis are accompanied by extensive 2-D paramet-

ric studies, which may provide valuable information about the respective 3-D unsteady

wings/blades [58]. The conducted parametric studies reveal important information about

influential flow and system parameters and their effects on the performance characteristics,

namely lift, drag and moment signatures of the airfoils under unsteady motion. The present

results may also be used in the respective 3-D studies, when the 2-D and 3-D results will be

compared and the importance of 3-D effects and vortical interactions can be investigated.

The flow structures are also explored at the points of interest, e.g. maximum lift coefficient,

showing how the viscous phenomena behave and affect the flow field; hence contributing to

unsteady LRN flows sought insight. In Chapter 4, for example, it is shown how reduced

frequency affects the flow by delaying the initiation and separation of vortices at the trail-

ing edge of a pitching airfoil, and that a higher reduced frequency weakens the strength of

these vortices and reduces the number of the generated ones. In Chapter 5, it is shown that

despite having a symmetrical plunging kinematics the calculated lift and drag can have an

asymmetrical pattern, based on the governing Reynolds (Re) and Strouhal (St) numbers. An

initially drag-producing plunging airfoil can produce thrust depending on the governing Re

ans st. LEVs, TEVs and very complex interaction between the plunging airfoil’s surrounding

vortices could explain these changes.

In Chapter 6, a novel figure-of-eight-like flapping kinematics (motivated by RotaFlap

mechanism [5]) is thoroughly investigated and the corresponding parametric study reveals

important information about its force and moment coefficients as well as flow structures.

Most of the hovering kinematic patterns found in the literature are elliptical, non-crossing

parabolic-like or almost horizontal figure-of-eight patterns [5], while a very inclined asym-

metrical figure-of-eight flapping kinematics is used in this study. In the horizontally flat

patterns, the vertical motion is negligible compared to the horizontal portion; hence, it does
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not contribute to the force generation significantly. However, in this figure-of-eight the ver-

tical motion plays a substantial role in the generation of the unsteady forces. This feature of

the model allows for the contribution of lift and drag forces in vertical lift resulting in more

efficient upstrokes [5]. Another aspect of this kinematics is the simultaneous rotation and

significant vertical translation at the end of each stroke, which could improve fluid dynamic

efficiency. It is shown, for example, that this novel kinematics generates higher lift through

its flapping cycle compared to the existing harmonic flapping patterns in the literature.

The multi-airfoil studies in this thesis show the significance of airfoil-airfoil interaction

to the instantaneous fluid forces. The force signatures of a single plunging airfoil are com-

pared with those of the corresponding paired-airfoils arrangement, and it is observed that the

interaction changes the magnitude of the instantaneous force coefficients. Detailed exami-

nation shows that these changes are accompanied with complex flow patterns and vortical

interactions. The effect of the airfoil-airfoil interaction is not always only quantitative, and

it can vary the transient trend of the fluid forces, depending on the kinematic pattern. The

simulations of a pair of figure-of-eight-like flapping airfoils show that the instantaneous forces

of each of the simulated airfoils differ both quantitatively and qualitatively from those of a

single figure-of-eight flapping airfoil.

1.4.2 Development of mesh motion methodologies for simulating

multi-body problems

Relatively new methodologies are developed based on layer addition/removal and Gener-

alized Grid Interface (GGI) algorithms to perform pitching, plunging and figure-of-eight

flapping motions of a pair of airfoils. Although the developed motion libraries are applied

towards paired-airfoil arrangements, they can also be applied to more than two moving

objects, and any kinematics different than those studied in this research may also be in-

vestigated. Moreover, the developed motion methodologies can be used for the simulation

of single moving geometries with significant gain in the computational time. For example,
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the harmonic and figure-of-eight-like flapping motions of a thin airfoil are simulated using

the developed methodology in Chapter 9. The calculated lift coefficients are compared with

those obtained from Laplace smoothing mesh motion algorithm. The results are within

reasonably close agreement (5% of difference in the mean values), while the computational

time is almost 125% to 150% (depending on the kinematics and governing parameters) times

bigger in the Laplacian method compared to that of the developed methodology.

1.5 Thesis organization

The present thesis is divided into ten chapters. The present chapter is an overview of the

problem in hand, motivation, contribution and the objectives of the study. In chapter 2,

the physics of LRN flows, the research endeavors in this area and different existing solu-

tion methods are presented. Chapter 3 is designated to provide detailed information on

the numerical solution method, governing equations, FVM discretization, solution and mesh

motion algorithms available and those used in this study. Chapter 4 presents the results of

the LRN pitching study conducted on a 2-D airfoil and the investigation on the effects of

the governing flow and system parameters on its instantaneous force coefficients. Chapter

5 stages the study on a plunging airfoil and the conducted parametric study. Chapter 6

presents the numerical study of the novel figure-of-eight flapping mechanism and the moti-

vation behind such a kinematics. An extensive parametric study is conducted and details of

the generated vortical patterns and their effects on the flow field are also discussed in detail.

Chapters 7, 8 and 9 are dedicated to paired airfoils in pitching, plunging and figure-of-eight-

like flapping motions, respectively, using mesh topological changes for the motion, followed

by the conclusions and suggested future work in Chapter 10.
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Chapter 2

Background and literature review

In the present chapter an overview of the most prevalent LRN phenomena and the respective

flow physics in the operation of unsteady LRN airfoils and wings is presented. Moreover, a

review of the recent research endeavors and findings available in the literature are catego-

rized based on the three main solution approaches: analytical, experimental and numerical

techniques.

2.1 LRN flow physics

The flow field of unsteady airfoils/wings in LRN flow regime is associated with complex

nonlinear vortex shedding and viscous phenomena. These force generation mechanisms are

briefly addressed in this section. The LRN respective phenomena are mostly viscous, ex-

cept the added mass effect [11], and can be classified as dynamic stall and leading edge

vortices [1], rotational circulation (forces), wake-capturing mechanism [3] and clap and fling

mechanism [4]. In the following, a brief overview of some of the most important LRN viscous

phenomena are presented. More details about these phenomena and the ones that are not

discussed here are provided in [12].
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2.1.1 Dynamic stall and leading edge vortex

LRN Dynamic stall [1] is referred to the generation of a leading edge vortex (LEV), also shown

in Fig. 2.1, which remains attached to the airfoil surface in translational motion, and is very

similar to what is observed for unsteady moving bodies at high angles of attack [8,13]. This

usually occurs when the body translates with a high angle of attack. The flow reaches the

translating body and separates from the airfoil surface at its leading edge, but reattaches

at a further point downstream. Consequently, a LEV is generated which provides a low

pressure zone on the airfoil upper portion, enhancing lift noticeably [2]. The LEV remains

attached to the airfoil surface for some chord-lengths of travel, and sheds into the downstream

wake in the following strokes. The repetition of LEV generation and shedding process may

lead to the formation of periodic downstream vortical patterns such as Von Karman Vortex

street [14] or chaotic vortical patterns, the type of which depends on the kinematics and

governing conditions.

The stability of three-dimensional (3-D) LEVs is still not fully understood and seems

to strongly depend on the governing conditions. It appears that a 3-D LEV is more stable

around the unsteady wings compared to the 2-D counterpart around airfoils [15, 16]. Some

experimental investigations have shown that this higher stability could be related to the

wing spanwise flow or downwash effects [15, 17], which constraint the growth of the LEV,

resulting in lift augmentation [15].

2.1.2 Rotational circulation (rotational forces)

Direct measurements have shown that the maximum (peak) forces are generated during a

wing rotation and not during the translational motion [18]. One possible source for this

lift augmentation, which could make up to 35% of the total lift along with wake-capturing

mechanism [3], could be the wing rotation and the respective induced circulation, changing

the force signatures significantly [12]. The generated rotational circulation and its strength

directly depend on the rotational axis [19] as well as the phasing between the rotational
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Figure 2.1: LEV and TEV around a flapping airfoil resulted from the present investigations.

and translational motions in a LRN flapping/wing [3]. It is shown that advanced rotations,

where the rotation is started and finished before the stroke reversal, results in higher mean

lift forces than a delayed rotational case [3]. The rotational forces differ from the Kramer

effect [12], which is referred to the ability of a wing to delay stall during its translational

motion. 3-D numerical investigations in [20] also confirmed the significance of the rotational

forces along with dynamic stall and rotational accelerations.

2.1.3 Wake-capturing mechanism (wing-wake interaction)

An airfoil subjected to unsteady motions such as flapping oscillations may encounter its

own wake or previously separated vortices. The interaction causes the momentum exchange

between the surrounding fluid and the unsteady airfoil, changing the instantaneous forces

and stabilizing vortical structures around the model [12]. Dickinson et al. [3] termed this

phenomenon as wake-capturing mechanism in LRN flows. However, the contribution of wake-

capturing mechanism depends on the rotational forces and timing, and it could increase or

even decrease the lift [21] based on the rotational phase [3]. Force augmentation during the

wake-capturing mechanism is also observed in the Digital Particle Image Velocimetry (DPIV)
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robotic experiments in [22]. Figure 2.2 shows the pressure contours around a plunging airfoil

during its upstroke at two consecutive time steps. Figure 2.2(a) shows a vortex on the

airfoil’s upper surface, previously separated during downstroke, and Fig. 2.2(b) shows that

the airfoil faces this vortex, an example of wake-capturing mechanism.

Figure 2.2: Wake-capturing mechanism during the upstroke motion of a plunging airfoil;
(a) airfoil approaches the vortex; (b) airfoil encounters the vortex, corresponding to the
simulations of Chapter 5.

2.1.4 Weis-Fogh clap and fling mechanism

Weis-Fogh proposed a mechanism for lift enhancement in tiny wasps [4], named clap and fling

mechanism or wing-wing interaction. Although this mechanism does not occur frequently in

nature, it can change the force signatures significantly. The clap is referred to the instant at

which two wings approach each other and their leading edges (LE) get closer, hence vortices

are shed and downward wake is generated. In the fling phase [23], the wings take apart

from each other having a rotation axis around their trailing edges (TE). Based on previous

studies, it is suggested that the clap and fling mechanism augments the unsteady forces in

flapping kinematics [12]. However, the benefit of this mechanism is still not well understood

and some data [24] show that the effect of clap and fling mechanism vanishes after some

angular separation between the two wings during their fling phase.
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2.2 LRN solution methods

Different techniques and solution methods are employed to analyze the inherently viscous

flows of unsteady airfoils/wings at LRN regime. The applied methods can be categorized as

analytical, experimental and numerical approaches. The available methods and studies are

briefly addressed in the following subsections.

2.2.1 Analytical methods

Several researchers attempted to construct appropriate models for LRN unsteady flows [25,

26], however, the inherently complex and viscous LRN flows have limited the application

of analytical methods. The quasi-steady approach which is founded on the basis of linear

classical aerodynamic theories [27] is one of the theoretical methods in LRN unsteady flows.

The force signatures are assumed to be time-invariant and the effect of the shed wake on

the airfoil is not considered. Ellington [7] was one of the first researchers who applied quasi-

steady approach towards flapping flight and found that the method yields lower forces than

those obtained from the respective experiments [7, 28]. Sane and Dickinson [19] modified

the quasi-steady model by adding rotational forces and added mass effects and obtained

closer results to the experimental findings. However, as the LRN unsteady aerodynamic

mechanisms and phenomena, e.g. dynamic stall, LEVs and wake-capturing, are not consid-

ered in the quasi-steady approach, usually the quasi-steady predictions underestimate the

force measurements in experimental studies [4, 29]. Therefore, quasi-steady model is not a

sufficient and reliable tool for LRN unsteady studies.

The potential flow panel method [30], which is based on the inviscid flow assumption,

is also used in some investigations [31, 32]. These solutions yield reasonably good accuracy

in predicting the trailing wake, whereas the close proximity of airfoil/wing flow is not re-

solved well due to the inviscid assumption, causing the failure to capture LRN viscous force

generation mechanisms such as LEVs [33]. Unsteady aerodynamic thin airfoil theory with
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linear assumption [8] provides a foundation for some methods such as those seen in [8,34,35].

These methods provide the force-induced oscillation solution of 2-D, incompressible fully at-

tached flows, with some extensions to subsonic compressible and three-dimensional rotating

flows [8], having reasonable accuracy for small disturbance assumption and small and mod-

erate reduced frequencies [36]. For example, Theodorsen’s method [34] presents frequency

domain solutions of pitching and plunging flat plates by modeling circulatory terms (shed

wake) and non-circulatory terms (apparent mass effect), or Garrick’s equations yield the

thrust and peak lift coefficients [37]. But, extensive simplifications and the the lack of con-

sidering the LRN highly viscous phenomena [1, 3, 4] encountered in LRN flows cause their

break down at high amplitudes of oscillation and/or highly viscous flows [38].

2.2.2 Experimental methods

Experiments are performed in order to shed light on the LRN unsteady flows and their

corresponding mechanisms as well as the significance of the governing flow and system pa-

rameters to the aerodynamic performance. The generated vortical patterns in LRN pitching

airfoils strongly depend on the governing reduced frequency [39,40]; however Fuchiwaki and

Tanaka [40] observed that the airfoil configuration and mean angle of attack do not affect

these vortical patterns noticeably. Fuchiwaki et al. [41] showed the significance of the re-

duced frequency (k) with regard to the instantaneous aerodynamic forces. The inherently

complex behavior of viscous LRN unsteady flows does not merely depend on a single pa-

rameter, e.g. k, but a collection of governing parameters like frequency and amplitude of

the oscillations. Koochesfahani’s series of LRN pitching experimentations [42] demonstrated

the effect of the frequency and amplitude of oscillations on the wake structures, thrust co-

efficients and vortex-vortex interactions, but the 3-D counterpart flow structure and other

force characteristics were not investigated. Pitching-up airfoil’s generated force signatures

are also affected by vortex-vortex interactions, where the interactions also affect separation

and dynamic stall [1]. This was explored by Shih et al. [43] PIV measurements, where they
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only considered different Reynolds numbers. Other governing parameters were not investi-

gated.

Plunging oscillations is another prevalent unsteady condition in LRN flows. More stud-

ies are conducted on plunging (heaving) cylinders than on the plunging airfoils/wings, e.g.

Bishop and Hassan [44] and Williamson and Roshko [45]. PIV investigations of Lam et

al. [46] and Digital Particle Image Velocimetry visualizations of Techet et al. [47] showed

that the generated vortices around heaving cylinders differ based on the imposed frequency

and amplitude of oscillations as well as the Re. The flow around 2-D airfoils and their wake

structures are affected by leading/trailing edge vortices (LEVs/TEVs) shown by the PIV

experiments of Lua et al. [48]. These vortical patterns could be deflected with an angle with

respect to the airfoil’s chord-length, depending on the frequency and amplitude of the plung-

ing oscillations [9]. TEVs [49] play a significant role in the determination of aerodynamic

characteristics of 2-D plunging airfoils [50]. Freymuth [51] and Lai and Platzer [52] showed

that the governing flow and system parameters such as k and amplitude of oscillations change

the downstream wake of 2-D plunging airfoil aerodynamic characteristics, similar to heaving

cylinders’ observations. Triantafyllou et al. [53] also showed that the wake could be in the

form of drag producing, thrust producing or neutral patterns. Interestingly, heaving air-

foils can produce thrust, developed through the formation of a reverse Von Karman vortex

street [35]. In fact, the wake dynamics and its vortex topologies play a dominant role in the

plunging airfoil fluid dynamics performance and efficiency.

Flapping, the most common means of force generation in LRN applications, has gained

a considerable attention in the recent few years. Indeed, the exploitation of both pitching

and plunging motions leads to the well-known unique unsteady and viscous mechanisms [54].

2-D flapping airfoil experiments of Freymuth [55] showed the importance of dynamic stall

in increasing thrust coefficients. 3-D studies conducted by Nagai et al. [56] also showed the

significance of dynamic stall [1], rotational forces [18] and wing-wake interaction [3] in a

flapping kinematics, and showed that they act differently during strokes. Flapping kinemat-
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ics parameters play a dominant role in the hovering performance [57]. Instantaneous force

coefficients are some of the performance benchmarks that the knowledge of their dependence

on the governing conditions yields a better insight about the flow. 3-D flapping experiments

carried out by Wang et al. [58] and Singh and Chopra [59] showed the relationship between

force signatures and pitching/plunging phasing, amplitude and frequency of oscillations.

In some applications, multi-moving bodies exist where the body-body interactions change

the aerodynamics and vortical interactions, compared to the characteristic of a single moving

body, and adds to the complexity of the corresponding fluid flow. The tube bundle of a heat

exchanger, counter-rotating propellers, wings of a MAV or blades of a wind turbine are some

examples in which relative oscillations could occur. To the best of the author’s knowledge,

the existing studies on moving bodies interactions are very limited and they are mostly on

tandem and staggered cylinder arrangements. Mahir and Rockwell [61,62] experimented on

the wakes of tandem/staggered cylinder arrangements at Re = 160. In their study, the cylin-

ders’ arrangement was subjected to forced-excitation for different frequencies and different

phase angles between the oscillating cylinders. They observed that the generated vortical

patterns and their mechanisms vary with respect to the excitation frequency significantly.

Assi et al. [63] also carried out experiments of two tandem cylinders under flow-induced oscil-

lations. In one of the most recent experimental and numerical studies, Rival et al. [64], the

aerodynamic interactions between tandem pitching and plunging airfoils was investigated

using PIV for the experiments and Reynolds-averaged N-S equations for the simulations.

They showed the significant effect of airfoils’ vortical interactions and investigated the ef-

fects of the phase angle on the fluid forces. The tandem arrangement of two flapping wings

was experimentally investigated by Warkentin and Delaurier [65]. They discovered that the

tandem arrangement can lead to increased thrust and efficiency compared to a single set of

flapping wings for certain relative phase angles and longitudinal spacing between the wing

sets.

Experimental studies are believed to yield the most accurate results between all the avail-

16



able solution methods. However, the discrete nature of testing, meaning the limited number

of allowable tests for different points, makes it difficult to generalize the LRN experimen-

tal findings. Moreover, as the LRN fluid phenomena and their occurrence depend on the

governing conditions, the details of these mechanisms, their strength and effectiveness still

remain uninvestigated. Therefore, the other solution approach, CFD, can be an excellent

candidate for investigating LRN unsteady flows in more details.

2.2.3 Numerical methods

Computational Fluid Dynamics (CFD) is also widely used in LRN unsteady flows to shed

light on the corresponding flow characteristics. Most of the conducted numerical studies in

the literature focus on three main unsteady conditions namely pitching, plunging and flap-

ping of cylinders, airfoils and wings (objects under unsteady conditions in general), presented

as the following.

2.2.3.1 Pitching studies

Highly viscous flows of LRN pitching motions and the respective phenomena cannot be

resolved accurately by inviscid numerical simulations and ignoring diffusive terms [66, 67].

Therefore, Navier-Stokes (N-S) equations represent the actual physics of these flows satisfy-

ing the desired accuracy. Most of the investigations on LRN 2-D and 3-D pitching motions

correspond to Re order of magnitude O(104) and O(105), while lower Re studies relevant to

the proposed study, O(102) and O(103), are scarce. Akbari and Price [68] utilized a vortex

method to simulate the flow field around a pitching airfoil utilizing N-S equations. They ex-

amined the effects of some parameters on the instantaneous forces, and found that k and Re

have the maximum and minimum effects, respectively, amongst the investigated parameters.

In other studies, the effects of the governing parameters on the airfoil surrounding flow field

are investigated. For example, Okong
′
o and Knight’s [69] 2-D pitching airfoil simulations

showed that the main influence of Re is to reduce the angle of attack at which the primary
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recirculation region starts to develop on the leeward side of the airfoil, and higher Re causes

the location of these recirculation regions to be closer to the LE. Hamdani and Sun [70]

attributed large unsteady forces in their simulations to extensive generated vortical patterns

around unsteady pitching airfoils. The importance of the governing flow and system param-

eters such as the frequency and amplitude of oscillations, pitching axis location and pitching

rate on the generated forces and vortical patterns were shown by Young and Lai [71] and

Visbal and Shang [72]. Visbal and Shang [72] also showed that the highly unsteady flow

structures are accompanied by reverse flow in the boundary layer, shedding of TEVs into

downstream and formation of LEV with a shear layer on the leeward section of the airfoil.

2.2.3.2 Plunging studies

Plunging motion is another prevalent unsteady condition observed in LRN flows. Plung-

ing cylinders have gained more attention than plunging airfoils due to their higher number

of applications. For example, Leontini et al. [73], Marzouk [74] and Yang and Zheng [75]

numerically investigated plunging cylinders downstream wakes and their dependence on the

governing conditions. Andro and Jacquin [76] simulated the flow field of a heaving airfoil, and

analyzed the significance of LEVs, added mass [11] and wake-capturing [3] mechanisms to the

flow structure. They studied the effect of the frequency of oscillations on the strength and

effectiveness of these mechanisms, and classified their findings into three categories: quasi

steady, transitional and added mass regimes at which LEV, wake-capturing and added mass

effects, respectively, are the most significant fluid phenomena. The importance of some gov-

erning parameters such as thickness ratio (thickness to chord ratio), Re and Strouhal number

(St) to the flow characteristics [77, 78], TE geometry and ground effect to the aerodynamic

forces [79] and different airfoil shapes to thrust generation and performance [80] are also

shown by performing 2-D numerical studies. Viscous unsteady mechanisms also play a sig-

nificant role in the determination of LRN plunging fluid forces and flow structures. Lewin

and Haj-Hariri [81] explored flow characteristics of a heaving airfoil numerically, calculated
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power and thrust coefficients and examined the effects of LEV/TEV and their interaction on

the aerodynamic efficiency. They also showed that the optimal efficiency is obtained for an

intermediate Strouhal number (St), and that the LEV separation leads to decreased thrust

and efficiency. Pederzani and Haj-Hariri [82] simulated the flow field of a chordwise flexible

heaving airfoil and found that it is more aerodynamically efficient than a rigid airfoil. 2-D

simulations of Young and Lai [71] showed that the wake structure and lift and thrust of a

plunging airfoil strongly depend on reduced frequency and St, and displayed the remark-

able influence of leading edge separation and trailing edge effects on the flow field. Young

and Lai [83] conducted simulations of a 2-D transversally oscillating airfoil and observed

asymmetric vortex lock-in phenomenon, which is prevalent in oscillating cylinders.

2.2.3.3 Flapping studies

More studies have investigated LRN flapping motions than LRN pitching and plunging os-

cillations. Vortical patterns affect the instantaneous forces in a flapping flight. Lee et al. [84]

investigated the role of LEVs/TEVs in force generation and concluded that LEVs affect

thrust beside their known effect on increasing lift. Force generation mechanisms act dif-

ferently during flapping up and down strokes [3]. Mittal et al. [85] numerically simulated

a flapping airfoil flow field and concluded that the formation of an inverse Karman vortex

street is accompanied with the highest thrust efficiency. The 2-D figure-of-eight-like mo-

tion simulations of Lee et al. [86] showed that lift is mainly produced during downstrokes,

while thrust is mostly achieved at the end of upstrokes, where they attributed the generated

thrust to vortex pairing, which is different from the conventional inverse Karman vortex

street found in sinusoidal flapping motions [85]. The significance of delayed stall and wake-

capturing mechanism in flapping airfoils as well as the effects of Re and reduced frequency

were investigated by Tang et al. [87]. The influence of flapping kinematics on the aerody-

namic performance of flapping airfoils are also studied by Tang et al. [87] and Bos et al. [88].

System parameters such as plunging amplitude and frequency of oscillations were shown
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by Kinsey and Dumas [89] to have the highest impact on the instantaneous fluid forces.

They noticed that higher lift is produced during advanced rotations, where the pitching

oscillation starts before the end of each plunging stroke. Kaya and Tuncer [90] studied a

nonsinusoidal flapping pattern and performed an optimization study on the kinematics to

obtain maximum thrust and/or propulsive efficiency. In their 2-D numerical simulation,

they observed that the maximum thrust coefficient can be obtained if the airfoil stays at

almost constant angle of attack during up and down strokes, and the pitching occurs at the

end of each stroke. However this is achieved at very high acceleration rates in both pitch

and plunge, and at the expense of a lower propulsive efficiency. Sun and Tang [91] simu-

lated a 3-D hovering wing using N-S equations and examined advanced, symmetrical and

delayed rotation cases. Young et al. [92] conducted simulations of a 3-D flapping wing and

performed a parametric study. They concluded that both lift and thrust are influenced by

the frequency of oscillations. In another study, Dong et al. [93] explored the wake topology

of a finite aspect ratio wing performing a harmonic flapping motion and reconfirmed that

the topology is different from those of infinitely long wings. They also studied the effects

of Re and St on the wing’s performance and investigated their importance to the unsteady

forces. Ramamurti and Sandberg [94] performed 3-D Finite Element Method (FEM) based

simulations of flapping motion and studied the effect of phase angle between rotational and

translational motions on the instantaneous forces. They observed that advanced rotations

yield higher thrust coefficients than symmetrical and delayed cases.

Ramamurti and Sandberg [95] also investigated 3-D flapping motions under different con-

ditions such as gust loading and flexibility and compared lift and thrust coefficients as the

performance benchmarks. Chern et al. [96] simulated flow patterns of a pair of side-by-side

square cylinders. They prescribed harmonic oscillatory motion to cylinders and investigated

the generated flow patterns. They evaluated the effects of Keulegan-Carpenter (KC) number

(a nondimensional number defined as the ratio of drag to inertia forces), Reynolds number

and cylinder gap spacing on the surrounding flow, and concluded that Re has fewer effects
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on the flow physics than KC and gap spacing. Lee et al. [97] used an immersed boundary

method to simulate the flow around two side-by-side oscillating cylinders at Re = 185. They

investigated the effect of the gap between two cylinders and the frequency of oscillations on

the wake topology and instantaneous force coefficients of the cylinders. They concluded that

two oscillating cylinders have similar flow characteristics to two stationary cylinders as well

as a single oscillating cylinder. Mittal and Kumar [98] used a Finite Element formulation

to study the flow-induced oscillations between two tandem and staggered cylinders at LRN

regime. They used cylinder spacing such that the flow-induced oscillations occurred in wake-

inference regime, where the cylinders are within close distance with respect to each other

and the wake of one cylinder affects the other cylinder flow patterns. They observed that

the downstream cylinder undergoes very large amplitude oscillations. The numerical simula-

tions of Papaioannou et al. [99] showed the effect of spacing in a tandem arrangement under

vortex-induced oscillations. They observed that the response region of the upstream cylinder

is widened when spacing decreases. They also showed that the amplitude of vortex-induced

oscillations depends on the spacing. Prasanth and Mittal [100] used FEM to study the

2-D flow-induced oscillations of two tandem/staggered cylinders at low Reynolds numbers.

They allowed the cylinders to move in both in-flow and cross-flow directions. Singha and

Sinhamahapatra [101] simulated the flow field of two stationary tandem cylinders at LRN

regime using FVM. They studied the effect of Reynolds number and gap spacing and found

that these two parameters affect the flow field significantly. Jester and Kallinderis [102] nu-

merically investigated the incompressible flow about transversally oscillating cylinder pairs,

in both tandem and side-by-side arrangements, and explored the effect of phase angle on the

wake structures of the cylinder pairs. Akhtar et al. [103] simulated the effect of an upstream

flapping foil on the thrust generation of a similar downstream flapping foil and found that

this vortical interaction is capable of increasing the thrust generation of the downstream

flapping foil. They also concluded that the thrust augmentation depends on the phase angle

between the two flapping motions.
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This chapter presented different existing techniques to investigate LRN flows along with

some of the most important findings in LRN flow literature. The methods span the an-

alytical, experimental and numerical means, where each of these methods have their own

pros and cons. As the focus of the present thesis is on CFD with a finite volume approach,

the next chapter is devoted to the details of the existing CFD methods for discretization

of the N-S equations, solving discretized governing equations and mesh motion algorithms

necessary to study unsteady motions.
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Chapter 3

Numerical Simulation Method

Different solution techniques in LRN flow regime were presented in Chapter 2 along with sev-

eral studies available in literature. The focus of this chapter is on the numerical techniques,

Computational Fluid Dynamics (CFD) with a Finite Volume Method. In what follows, gov-

erning (N-S) equations are presented, followed by the discretization schemes, boundary and

initial condition treatment and matrix solution methods. Different mesh motion algorithms

for investigating moving mesh problems in addition to those of the present thesis are also

presented in this chapter.

3.1 Introduction

The starting point of the Finite Volume Method (FVM) is to write the N-S equations on an

infinitesimally small control volume surrounding a fluid element, where the N-S equations

are integrated over the control volume and discretized so that a system of algebraic equations

for all the computational domain’s nodes are obtained. Boundary and initial conditions are

then applied and the obtained matrix system is solved using matrix solution methods. In the

present chapter, the governing N-S equations and their discretization, boundary conditions,

matrix solution methods and the pressure-velocity coupling algorithms for incompressible

N-S equations are presented followed by the mesh motion algorithms for the investigated
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moving airfoils’ problems. The open source code OpenFOAM R© is used and the existing

mesh motion methods are modified to handle the desired motions.

3.2 Governing equations

The governing equations of fluid flow represent the mathematical statement of conservative-

ness in terms of mass, momentum and energy. These conservation equations can be written

for an infinitesimally small fluid particle (control volume). Versteeg and Malalasekera [105],

for example, presented the details of obtaining these equations. The continuity equation

(mass conservation equation) is obtained by equating the rate of increase of mass within the

fluid control volume to the net rate of mass flow into the control volume, resulting in:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (3.1)

where ρ is the fluid density, t is the physical time and u, v and w stand for the x, y and z

directions velocity components. Equation 3.1 can be written in the following compact form:

∂ρ

∂t
+∇·(ρU) = 0, (3.2)

with ∇ = (∂/∂x, ∂/∂y, ∂/∂z) and U = (u, v, w). Equation 3.2 is the general continu-

ity equation for compressible flows and can be simplified into the following equation for

incompressible (ρ = constant) flows:

∇·(U) =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.3)

The momentum equations are derived based on the Newton’s second law, stating that

the rate of increase of fluid momentum within an infinitesimally small control volume is

equal to the summation of the exerted forces on the control volume. The forces are generally
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divided into surface and body forces [104]. Surface forces include pressure (normal) and

shear stresses, surface tension, etc., while the body forces contain gravitational, centrifugal,

Coriolis, etc [104]. The application of Newton’s law leads to the following 3-D momentum

equations (on a space-fixed coordinate system):

ρ
Du

Dt
=
∂(−p+ τxx)

∂x
+
∂τyx
∂y

+
∂τzx
∂z

+ SMx,

ρ
Dv

Dt
=
∂τxy
∂x

+
∂(−p+ τyy)

∂y
+
∂τzy
∂z

+ SMy, (3.4)

ρ
Dw

Dt
=
∂τxz
∂x

+
∂τyz
∂y

+
∂(−p+ τzz)

∂z
+ SMz,

where p is static pressure, τij (i and j = x, y, z) represents viscous stresses, SM is the vector

of source terms equal to SM = (SMx , SMy , SMz) = (0, 0, -ρg) and D/Dt is the substantive

derivative defined as D/Dt = ∂/∂t + U ·∇. The viscous stresses can be modeled as a function

of deformation or strain rate as the following:

τij = 2µ
∂Ui
∂xi

+ λ∇ · U i = j, (3.5)

τij = µ(
∂Ui
∂xj

+
∂Uj
∂xj

) i 6= j,

where µ and λ are the first and second dynamic viscosity coefficients, respectively, correlated

by λ = -(2/3)µ according to Stokes hypothesis [106]. Finally, by implementing the viscous

stress models (Equations 3.5), the 3-D momentum equations are:

∂(ρuiU)

∂t
+∇ · (ρuiU) = − ∂p

∂xi
+∇ · (µ∇ui) + SMi, (3.6)

where i = 1, 2 and 3 represents x, y and z directions.

The governing fluid flow equations also include the energy equation if the flow is com-

pressible [104]. However, the current study is conducted for 2-D unsteady, incompressible

flow (with laminar assumption). The continuity and momentum (N-S) equations under these
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assumptions are simplified into the following equations:

∂ui
∂xi

= 0, (3.7)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

,

where i = 1 and 2 represents the x and y coordinate for 2-D flow, respectively, ui is the

velocity in i direction and ν = µ
ρ

symbolizes the kinematic viscosity. It is a common practice

to nondimensionalize the governing equations in fluid dynamics studies so that the important

nondimensional numbers are known and highlighted, the comparison and validation purposes

can be better performed and scaling to real applications is made feasible [104]. Equations

3.7 are nondimensionalized by defining appropriate dimensionless variables as the following:

u∗i =
ui
Uref

; x∗i =
xi
Lref

; t∗ =
t

tref
; ρ∗ =

ρ

ρref
; p∗ =

p

ρrefU2
ref

, (3.8)

where the variables with asterisk are the dimensionless variables. Uref is defined based on

the problem specifications, e.g. mean airfoil velocity in a period of flapping oscillations in

a quiescent environment, Lref is mostly the airfoil/wing chord-length, tref is the period of

oscillations and ρref = ρ, hence ρ∗ = 1.

Substituting the taken nondimensional variables in Equations 3.8 into Equations 3.7

yields:

∂u∗i
∂x∗i

= 0, (3.9)

St
∂u∗i
∂t∗

+
∂u∗iu

∗
j

∂x∗j
= −∂p

∗

∂x∗i
+

1

Re

∂2u∗i
∂x∗j

2 ,

where St and Re stand for the Strouhal and Reynolds numbers, respectively, given by:
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St =
Lref

Uref tref
=
frefLref
Uref

; Re =
ρrefUrefLref

µ
=
UrefLref

ν
(3.10)

From a fluid dynamicist perspective, the effect of the governing nondimensional param-

eters on the instantaneous force generation and the respective flow physics of an unsteady

moving airfoil is important as it reveals the possible ways of improving the performance of

an existing design as well as designing a new application. Therefore, parametric studies of

each investigated case in this thesis are presented to show these effects.

3.3 Discretization of N-S equations

The form of Equations 3.6, 3.7 and 3.9 are not appropriate for FVM as the approach dis-

cretizes the fluid equations in their integral form. Continuity, momentum and energy con-

servation equations can be written in the so-called general transport equation [105]:

∂(ρφ)

∂t
+∇ · (ρφU) = ∇ · (Γ∇φ) + Sφ, (3.11)

where φ is 1, u, v, w and i (fluid internal energy) and Γ and Sφ are diffusion coefficient

and source term, respectively, corresponding to the utilized φ in Equation 3.11. The key

step of FVM is the integration of Equation 3.11 over an infinitesimally small control volume

resulting in:

∫
CV

∂(ρφ)

∂t
dV +

∫
CV

∇ · (ρφU)dV =

∫
CV

∇ · (Γ∇φ)dV +

∫
CV

SφdV (3.12)

Applying Gauss’s divergence theorem [105] is another important step in FVM discretiza-

tion, converting the convective and diffusive terms’ (the second and third terms in Equation

3.12 from left) volume integrals into control volume bounding surface integrals as the fol-

lowing:
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∂

∂t

∫
CV

ρφdV +

∮
A

n · (ρφU)dA =

∮
A

n · (Γ∇φ)dA+

∫
CV

SφdV, (3.13)

where n represents unit normal vector to the control volume faces/edges.

Finally, as unsteady motions are investigated in this study, integration of Equation 3.13

with respect to time has to be taken, resulting in:

∫
∆t

∂

∂t

∫
CV

ρφdV dt+

∫
∆t

∮
A

n ·(ρφU)dAdt =

∫
∆t

∮
A

n ·(Γ∇φ)dAdt+

∫
∆t

∫
CV

SφdV dt (3.14)

Using Equation 3.13, incompressible 2-D momentum equations are obtained by taking φ

= U = (u, v), Γ = µ and Sφ = 0 (assuming no source term), as the following [105]:

∫
∆t

∫
CV

∂U

∂t
dV dt+

∫
∆t

∮
A

n·(UU)dAdt =

∫
∆t

∫
CV

(
−∇p
ρ

)dV dt+

∫
∆t

∮
A

n·(ν∇U)dAdt (3.15)

3.3.1 Discretization of temporal and spatial terms in incompress-

ible momentum equations

The first terms in Equations 3.13 and 3.14 represent the rate of change of the fluid property

(φ) with respect to time for unsteady flows, where a proper temporal discretization scheme

has to be employed. In the case of incompressible flow, where Equation 3.14 is divided by

constant density, this term can be rewritten as:

∫
∆t

∂

∂t
(

∫
CV

φdV )dt =

∫
CV

∫
∆t

∂φ

∂t
dtdV = (

∫
∆t

∂φ

∂t
dt)VCV , (3.16)

where the volume integral is approximated by the multiplication of the fluid property in the

control volume center (φP ) and the volume of the fluid element (
∫
CV

φdV ≈ φpVCV ). The

rate of change of φ (∂φ
∂t

) is discretized based on:
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∂φ

∂t
= f(t, φ(t)); φ(t0) = φ∗,

(3.17)∫ tn+1

tn

∂φ

∂t
dt = φn+1 − φn =

∫ tn+1

tn

f(t, φ(t))dt = f̄(t, φ(t))∆t,

where φ0 is the initial condition [104], φn and φn+1 are the old and new variables at tn and

tn+1 respectively and f(t,φ(t)) is the discretization scheme applied to the time gradient. In

the present study first and second order implicit schemes are used for temporal discretization,

shown in Equations 3.18. The second order implicit method (asymmetric) in Equations 3.18

is less prone to producing oscillatory solutions than the symmetric second order Crank-

Nicolson scheme [104], if the time step is small enough. This scheme is also unconditionally

stable.

f(t, φ(t)) =
∂φ

∂t
∼=
φn+1 − φn

∆t
,

(3.18)

f(t, φ(t)) =
∂φ

∂t
∼=

3
2
φn+1 − 2φn + 1

2
φn−1

∆t

The implicit schemes are preferred when explicit schemes fail to result in stable solu-

tions [104]. However, the higher stability is achieved at the expense of the higher com-

putational resources and longer calculation times needed for implicit schemes. Maximum

Courant number is used to monitor the stability of the simulations. The relation between

time step (∆t) and a prescribed Courant number is:

Co =
U∆t

∆x
, (3.19)

where ∆t is the time step and ∆x
U

is the time required for a disturbance to be convected a
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distance ∆x [104].

The second term in the left hand side of Equation 3.13 (divided by density for incom-

pressible flows) is called the convective term:

∫
∆t

∮
A

n · (φU)dAdt = (

∮
A

n · (φU)dA)∆t, (3.20)

where φ = (1, u, v) for incompressible 2-D flow and U = (u, v) is the velocity vector. The

surface integral using FVM discretization is converted into the summation of normal fluxes

(φfUfAf ) over the control volume faces (denoted by f) [105]:

∮
A

n · (φU)dA =
∑
f

Af (Uφ)f =
∑
f

Fφf , (3.21)

where F = AfUf (face area times the velocity vector at the respective face) and φf is the fluid

property at the face. However, in FVM, the fluid properties such as pressure and velocity

components are not restored at the faces but at the control volumes’ centers. Hence, φf

has to be obtained using an appropriate discretization scheme. Central Differencing Scheme

(CDS), [105], is used in this study for interpolating the fluid property at the faces.

Diffusive term is the first term in the right hand side of Equation 3.13. The diffusion

coefficient for incompressible momentum equations (divided by density) is Γ = ν. The

diffusive term in Equation 3.13 is discretized as the following:

∮
A

n · (Γ∇φ)dA =

∮
A

n · (ν∇φ)dA ∼=
∑
f

Af (ν∇φ)f =
∑
f

νfAf∇φf , (3.22)

where νf stands for the kinematic viscosity at the cell face and is obtained by interpolating

from neighbor cells’ centers to the faces. The diffusive terms in this study are also discretized

based on CDS [105].
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3.4 Boundary and initial conditions

The present study investigates the flow field of unsteady moving airfoils in single and paired

arrangements. The solution of the respective governing (N-S) equations needs the flow field

properties (velocity and pressure) to be specified on the computational domain boundaries.

Four different boundary conditions are used in this study.

• At the inflow boundary, the velocity is specified (velocity Dirichlet boundary condi-

tion [104]) based on the desired Re, and the pressure is restricted to the zero-gradient

condition (Neumann boundary condition [104]).

• At the outflow boundary, the pressure is set to the freestream value (Dirichlet boundary

condition), while the velocity is set to the zero-gradient condition (Neumann boundary

condition).

• The far-field boundary is set to symmetry boundary condition [104], and is placed at

an appropriate distance from the moving body surface to minimize its undesired effects

on the airfoil’s surrounding flow field.

• The stationary airfoils/cylinders are set to no-slip boundary condition with fixed ve-

locity (U = 0) and zero gradient pressure boundary condition.

• The unsteady moving airfoils are set to moving wall velocity boundary condition in

OpenFOAM R©, [107]. This boundary condition guarantees the no-slip boundary con-

dition by introducing an extra velocity to keep the flux through the moving boundary

equal to zero.

The solution of N-S equations also needs the initial fluid properties (velocity pressure,

kinematic viscosity) to be specified at the start of the simulations. The steady state solutions

are used as the initial conditions for the time-marching unsteady calculations with freestream

velocity. However, the unsteady solutions without freestream velocity are started from zero

velocity and freestream pressure over the computational domain.
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3.5 Solution of the governing equations

Equations 3.7 present the governing N-S equations of the unsteady, incompressible flow

around airfoils, and can be written in their extended form as:

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
), (3.23)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
)

The solution of Equations 3.23 faces two challenges. First, the convective terms such

as u∂u/∂x are non-linear quantities. Second, all the equations are coupled as the velocity

components appear in continuity as well as x and y momentum equations. Both of these

problems can be resolved by adopting iterative solution strategies such as the Semi Implicit

Method for Pressure Linked Equations (SIMPLE) of Patankar and Spalding [108] or the

Pressure Implicit with Splitting of Operators (PISO) algorithm of Issa [109]. Both SIMPLE

and PISO algorithms are founded on a similar concept. Convective fluxes (F ) in Equation

3.21 are evaluated using a guessed initial velocity field. A guessed pressure field is also

used to solve the momentum equations. Moreover, the continuity equation is converted into

a pressure correction equation [105], used for modifying the guessed pressure field. This

pressure correction is used to update the velocity and pressure consequently. Both SIMPLE

and PISO algorithms are used in this study, where the main difference between them is

that PISO has one more corrector step than SIMPLE. SIMPLE algorithm is originally put

forward by Patankar and Spalding [108] having a guess and correct procedure on staggered

grids, where scalar variables such as pressure and viscosity are evaluated at ordinary nodal

points and velocity components are evaluated on staggered grids centered around the cell

faces [110]. However, OpenFOAM R© uses a collocated grid arrangement, where all the fluid
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properties are restored as the cell centers, and the required modifications are taken into

account using Rhie and Chow method [111]. The steps involved in the SIMPLE calculation,

for example, are as the following:

• Discretized momentum equations are solved with a guessed value for pressure field; so,

guessed values for velocity components are obtained.

• The discretized momentum equations are solved using the initially guessed values for

pressure and velocity.

• The new values are used in the discretized continuity equation (pressure correction

equation) to obtain pressure corrections.

• The new velocity and pressure values are evaluated and convergence is checked.

• The procedure is repeated until convergence is achieved [112].

The governing (N-S) equations are in the form of Partial Differential Equations (PDEs).

After the computational domain is discretized, the N-S equations, having linear and nonlinear

algebraic expressions, are written for all the mesh points, resulting in a sparse matrix [104].

The obtained algebraic equations are then arranged into a form similar to Equation 3.24,

where appropriate iterative matrix methods have to be adopted to solve for theses nonlinear

equations. Moreover, a convergence criterion, usually based on the residual, is specified and

the iterations are conducted until the convergence criterion is met. The matrix form of the

governing equations is:

Aφ = Q, (3.24)

where A is the sparse matrix obtained from the discretized N-S equations, φ = (1, u, v)

in 2-D flows and Q is the vector obtained applying initial and boundary conditions. Pre-

conditioned Conjugate Gradient (PCG) solvers for pressure and mesh motion equation and

Preconditioned Bistab Conjugate Gradient (PBiCG) solver [104] and [112] for pressure veloc-
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ity coupling are used in this study, where preconditioning varied from Incomplete Cholesky

(IC) to LU decomposition [104].

3.6 N-S equations for moving grid problems

In many fluid engineering applications, boundaries move, which accordingly makes the so-

lution domain change in time. The source of the motion can be forced oscillations such

as MAVs’ wing flapping or flow-induced oscillations such as wing flutter. The integrated

general transport equation (Equation 3.13) for a scalar variable φ in an arbitrarily moving

control volume bounded by closed surface As can be rewritten as:

∂

∂t

∫
VCV

ρφdV +

∮
As

n · (ρφ(U − Us))dA =

∮
As

n · (Γ∇φ)dA+

∫
VCV

SφdV, (3.25)

where Us = (us, vs, ws) is the velocity vector of the control volume bounding surface and VCV

and As are the volume of the fluid element and the area of the bounding surface, respectively,

correlated by the so-called Space Conservation Law (SCL), [104] and [107], as the following:

∂

∂t

∫
VCV

dV −
∮
As

n · UsdA = 0, (3.26)

Equation 3.26 can be physically interpreted as the mass conservation equation for zero

fluid velocity, describing the conservation of space when the control volume changes its shape

and/or position in an arbitrarily moving problem [104].

After applying the FVM reasoning to discretize the temporal and spatial terms in Equa-

tion 3.25, the computational domain is split into a finite number of convex polyhedral cells

(Fig. 3.1) and a time marching problem. For example, discretization of Equation 3.25 for a

cell around point P (Figure 3.1) results:
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Figure 3.1: Arbitrary polyhedral cell around point P in the computational domain, adopted
from Jasak and Tuković [107].

(ρPφPVCV )n − (ρPφPVCV )n−1

∆t
+
∑
f

ρfφfAf (U − Us) =
∑
f

ΓfAf∇φf + SφVP , (3.27)

where P and f show the cell center and face in Fig. 3.1, respectively, VCV is the cell volume

and n and n-1 are the new and old times. The fluid flux (AfU) is obtained during the

solution and satisfies the mass conservation in N-S equations 3.23. The mesh motion flux

(AfUs), however, has to satisfy the Space Conservation Law (SCL) presented in Equation

3.26, which is always satisfied in its integral form [107], however it also needs to be preserved

in its discrete form as the following:

V n
P − V n−1

P

∆t
−

∑
f

AfUs = 0, (3.28)

Therefore, the mesh motion flux is calculated based on Equation 3.28, where the volume

swept [104] by the mesh face f is calculated based on the geometric specifications [107]. This

constraint was successfully considered and implemented in OpenFOAM R© [107].
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3.7 Moving mesh algorithms

There are numerous examples in fluid engineering applications, in which the boundaries move

and cause the interior medium to deform, e.g. fluid-structure interaction and unsteady aero-

dynamics of pitching/plunging/flapping and unharmonically moving lifting surface devices.

Investigation of unsteady airfoils/wings fluid dynamics needs an accurate mesh motion algo-

rithm to account for the displacement and deformation of the computational domain interior

points and cells. The mesh motion algorithm has to be capable of preserving a high quality

and initially valid mesh [107], owing to the fact that the simulation accuracy strongly de-

pends on the mesh motion solution, where the internal point motion influences the solution

through mesh discretization errors [107]. This may lead to the wrong answers or even failure

of the simulation if not treated properly. The most important mesh quality benchmarks are

the cell orthogonality and skewness [107]. Other criteria such as non-negative cell volumes,

mesh convexness, geometrically closed cells and boundaries are assumed to be satisfied by

having an initially valid mesh and a motion algorithm preserving these criteria. Other mea-

sures such as the efficiency, computational cost and robustness (defined as the level of the

required user input) are other benchmarks for selecting the appropriate mesh motion algo-

rithm.

There exist different algorithms to handle the motion of the mesh interior points due

to the boundaries’ movement. Harlow and Welch [110] used the marker and cell method

to tackle the problem of moving incompressible flows using N-S equations. Lai and Pe-

skin [113] used immersed boundary (IB) method to investigate moving cylinder simulations.

In this method, a region is considered around the moving boundary, moving on a stationary

Cartesian grid. The implementation of this method is not trivial and difficulty arises in cap-

turing boundary layer and meeting the mass and momentum conservation [114]. Chesshire

and Henshaw [115] developed a composite overlapping grid, consisting of a set of curvilinear

component grids, where the continuity condition was imposed at the overlapping boundaries,

for the simulation of moving problems.
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In the mesh deformation methods, a mesh motion solver is used to relocate the com-

putational domain internal points according to the prescribed boundary motion. The main

challenge in the deforming mesh methods is the preservation of the mesh validity. Indeed,

the initial computational mesh has to be valid for the simulations. The motion solver has

to maintain the initial mesh validity and the quality measures, mostly referred to the mesh

face and cell convexness, orthogonality and skewness [107] during simulations. Therefore the

choice of an appropriate mesh motion solver is critical in the moving mesh problems.

The mesh deformation algorithms can be point-based, face-based and/or cell-based. One

of the most utilized methods is the point-based spring analogy [116]. In this method, the

point-to-point connections, edges, are modeled as elastic linear springs [107] and the point

motion is calculated based on the spring response to a moving boundary. The analogy is

applied to both structured and unstructured moving mesh applications; yet, it lacks robust-

ness specifically for unstructured finite volume moving mesh simulations [117]. For example,

the use of the spring analogy on polyhedral cells may result in the failure of cell topology

and quality. In the case of a triangular cell, the corner points on one edge may coincide or

move such that cell flipping occurs [107]. These problems could be remedied using nonlinear

and torsional springs [118] and [119]. Consequently, having nonlinear and torsional springs

add to the degree of complexity of the obtained system of equations, also demanding higher

computational time and resources.

The moving solid/flexible boundaries in a mesh cause the deformation of the interior

points. The whole deforming computational domain may be modelled as a solid geometry

with internal stresses [120]; however, the solution of the obtained stress-strain matrix using

existing numerical methods is computationally expensive, due to its highly nonlinear nature.

Therefore, appropriate and fairly inexpensive mesh motion solvers are needed, while

keeping the mesh validity and quality [107]. Laplacian smoothing with constant or variable

diffusivity is one of the techniques used in Arbitrary Lagrangian-Eulerian (ALE) codes [107].

For example, Littlefield [121] used Laplacian smoothing mesh motion algorithm to determine
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the position of the nodes in hypervelocity impact and penetration, and obtained very accu-

rate results with high mesh quality. Löhner and Yang [122] used Laplacian smoothing on

mesh velocities along with variable diffusivity for the mesh points. The variable diffusivity

has the advantage of enforcing a more uniform mesh velocity in the near vicinity of the

moving boundary, where the most important fluid phenomena and the highest changes in

the fluid properties occur. They could reduce the mesh distortion in the close proximity

of the moving object, the region that contains small elements. The Laplace smoothing is

implemented in OpenFOAM R© [107] and is governed by the following equation:

∇ · (γ∇u) = 0, (3.29)

where γ is the diffusion coefficient, which can be constant or variable, and u is the point

motion velocity field used to update the point positions based on:

xnew = xold + u∆t, (3.30)

where xnew and xold are the new and old point positions and ∆t is the time step. In

OpenFOAM R©, Equation 3.29 is discretized based on a second order FEM, where arbi-

trary polyhedral cells are converted into tetrahedral cells, producing a diagonally equal

matrix [107]. The obtained matrix, after applying the boundary conditions, can be treated

with PCCG solvers with IC preconditioning [104].

Use of biharmonic equations as the mesh motion solver is another technique used in

the moving problems. The advantage of this method is that two conditions on the moving

boundary, mesh position and normal mesh spacing, can be specified using a fourth order PDE

developed from the second order Laplacian equation [123]. This method is highly useful in

free surface and interfacial flow simulations with the main disadvantage of the increased com-

putational time. The biharmonic method is also useful in resolving the boundary layer, but

the required accuracy can be obtained in the computationally cheaper Laplacian smoothing
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method using a variable diffusivity [123]. Moreover, according to the Helenbrook [123] the

biharmonic method is not optimal for all moving problems, e.g. using mutligrid in solving

the system of equations, and Laplacian method is almost computationally cheaper than the

biharmonic technique. Johnson and Tezduyar [124] developed a method in which a computa-

tional nodes’ motion is governed by the linear elasticity equations, the so-called pseudo-solid

equations. Indeed, they used the Jacobian matrix obtained from the conversion of physical

domain into ALE FEM computational domain, giving the smaller elements a higher rigid-

ity; hence lower element deformation occurs in the close proximity of the moving boundary.

However, the solution of the added linear elasticity equations adds to the computational

expenses. The mesh deformation is continued until a specified tolerance for linear elasticity

equations is achieved and then remeshing is done. It should be mentioned that remeshing

projection errors from the old mesh to the new one, the cost of calling an automatic mesh

generator at each time, and the added problems in parallel simulations can be counted as

the drawbacks of this method, despite the fact that Johnson and Tezduyar [124] proposed

some remedies to lower these penalties. Other researchers such as Chiandussi et al. [125]

minimized the deformation and distortion of the elements in the pseudo-solid approach and

reduced the number of remeshing steps in fluid-structure interaction problems. Dwight [126]

modified the pseudo-solid method to account for large boundary translational and rotational

motions, the so-called solid body rotation (SBR) stress equation.

Other schemes such as the Transfinite Interpolation between the boundary motion and

mesh interior points [127] have also been used in moving structured grid simulations, but they

are are unsuitable for unstructured grids [128]. In the case of severe large translational and

rotational displacements of unstructured meshes, other mesh deformation methods such as

the Radial Basis Function (RBF) interpolation schemes may also be utilized. In this method,

the displacements of the boundary nodes are interpolated to the whole computational do-

main nodes using RBFs [128]. The information about grid connectivity is not needed in

this approach and only the system of equations on the boundary nodes is solved; however,
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the performance is strongly dependent on the utilized RBF. Potsdam and Guruswamy [129]

used RBFs in multi-block simulations and concluded that the application of this method

to all the mesh points in the computational domain is computationally expensive. Other

researchers [130] and [114] have done some modifications to increase the efficiency of RBF

method.

The number and connectivity of the domain cells are not changed in the deforming mesh

algorithms; spring analogy [116], Laplace smoothing [122], Pseudo-solid [124], biharmonic

equations [123] and RBF [128] methods. For problems in which large mesh deformations

occur, topological changes are useful, where the mesh size and point/face/cell connectivity is

varied during the simulation. The rotations of an axial compressor rotor stage is one example

for which mesh deformation methods would fail due to the high discretization errors. All

possible topological changes are obtained using nine fundamental actions: addition, removal

and modification of points, faces and cells at each time step [107].

In the present study, some mesh modifiers, which are obtained by combining the men-

tioned fundamental topological actions are used, combined and developed to obtain the

desired motion. The basic mesh modifiers used are implemented in OpenFOAM R© [131]: cell

layer addition/removal, sliding interfaces and Generalized Grid Interfaces [132]. Cell layer

addition/removal is governed by its triggering mechanism, the specified maximum and mini-

mum layer thicknesses. If the maximum thickness is achieved, a layer is added to the back of

the moving object defined bounding box, and when the minimum thickness is achieved layer

removal occurs at the front [131]. Sliding interfaces are defined as two detached surfaces

which are in relative rotational motion, and are attached at the overlapping region. When

the two interfaces rotate and the position of the interfacial faces are changed, the method

replaces the faces with new facets to re-achieve one-by-one facet connectivity [131]. Beu-

doin and Jasak [132] have developed another method, Generalized Grid Interfaces (GGI), to

eliminate the need for topological actions performed in Sliding Interface method. Instead, a

set of weighting factors is evaluated to balance the flux at the interface [132]. GGI method
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provides a robust tool for large rotational motions such as airfoils’ high angle pitching oscilla-

tions and turbomachinery applications such as pumps and compressors. GGI is based on the

FVM discretization reasoning where the flow properties are transmitted between a pair of

conformal/nonconformal patches using weighted interpolation. The so-called master/shadow

patches are used for each of the interfaces. A flow variable φ is obtained using [132]:

φSi =
∑
n

WMn−to−SiφMn,

(3.31)

φMj =
∑
m

WSm−to−MjφSm,

where φS and φM are the flow variables at the shadow and master patches, i and j are the ith

and jth shadow and master patch faces, respectively, n/m is the number of master/shadow

face neighbors for shadow patch i/j, respectively, and WM−to−S and WS−to−M show the mas-

ter facet to shadow facets/shadow facet to master facets weighting factors, respectively.

The calculation of the weighting factors is associated with three constraints as the fol-

lowing:

∑
n

WMn−to−Si = 1;
∑
m

WSm−to−Mj = 1,

(3.32)

WMn−to−Si ∗ |SMn| = WSm−to−Mj ∗ |SSm| = |S∩M−to−S
|,

where |SMn| is the surface area of master facet, |SSm| is the surface area of shadow facet

and |S∩M−to−S
| is the intersection surface area between shadow and master facets. GGI uses

several algorithms, such as Sutherland-Hodgman [132] to calculate the weighting factors or

Axis Aligned Bounding Box (AABB) to quickly reject the non-overlapping facets. The de-
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scription of these algorithms is beyond the scope of this document and the interested reader

is referred to Beudoin and Jasak [132] and the references cited therein.

Different mesh motion algorithms are used and modified in this study to study the un-

steady motion of airfoils in single and paired arrangements. Laplacian smoothing [107] is used

where the mesh topology is fixed, and dynamic mesh layering and GGI are used, adapted

and modified for the paired airfoils simulations. The adopted and developed mesh motion

methodologies are applied towards simulations of single and multi airfoil arrangements under

different unsteady conditions. The respective results and conducted parametric studies are

presented in the subsequent chapters.
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Chapter 4

On the LRN flow characteristics of a

pitching airfoil

In this chapter, the flow field of a NACA0012 airfoil under harmonic pitching oscillations is

investigated using FVM based on 2-D time-dependent, incompressible N-S equations (Equa-

tions 3.7) at LRN regime. NACA0012 is chosen due to the availability of relevant studies in

the literature for validation purposes. The influence of different unsteady flow and system

parameters, namely amplitude of oscillations, reduced frequency and Reynolds number on

the lift and drag signatures and the vortical patterns surrounding the airfoil are investi-

gated. The resulting forces are also compared with Theodorsen’s method and the numerical

database available in the literature. The simulation results reveal that the investigated pa-

rameters are of great importance in the aerodynamic performance of the system, as they

affect the maximum lift coefficients, hysteresis loops, strength and number of the generated

vortices within the harmonic motion, and the extent of the so-called figure-of-eight phe-

nomenon region. Thus, achieving the optimum lift coefficients demands a careful selection

of these parameters.
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4.1 Introduction

2-D pitching oscillation is one of the prevalent unsteady conditions in LRN flows for which

each of the LRN phenomena, such as dynamic stall [1], could occur and affect the flow field

noticeably. The aerodynamic performance of LRN pitching airfoils is a function of their

instantaneous forces and moments, where these performance benchmarks significantly vary

with respect to governing conditions. 2-D LRN studies shed light on the respective flow

characteristics and reveal the dependence of the aerodynamic performance on different pa-

rameters such as the amplitude of oscillation, reduced frequency, Re and kinematic patterns.

These investigations are also of great importance in revealing the effectiveness of the 3-D

aspects, such as tip vortices, spanwise flow and vortex interactions. Several studies are con-

ducted to explore the effects of the governing flow and system parameters on the pitching

airfoils and wings. The experiments of Jung and Park [39] and Fuchiwaki and Tanaka [40]

showed that reduced frequency (k) affects a pitching airfoils’ vortex shedding and scaling

significantly, with consequent changes in the unsteady dynamic lift [41], drag and moments.

Koochesfahani [42] conducted a series of LRN experiments and showed the strong depen-

dence of the resulting wake structures and thrust coefficients of a pitching airfoil on the

governing frequency and amplitude of oscillations.

The Euler equation-based simulations of Jameson [66] showed the importance of ampli-

tude of oscillation and effect of ignoring viscous terms in LRN pitching airfoils. Akbari and

Price [68] simulated the LRN flow field around a pitching airfoil using N-S equations. They

examined the effects of Re, k, mean angle of attack (α0) and pitching axis location (x/c)

on the predicted aerodynamic forces and concluded that k and Re have the highest and

lowest effects, respectively. Yang et al. [67] examined the impact of α0 on the flow field by

simulating compressible Euler equation based on FVM. Okongo and Knight [69] simulated

2-D, laminar, compressible flow using N-S equations with FVM and concluded that the main

influence of increasing Re is to reduce the angle of attack at which the primary recirculation

region starts to develop on the leeward side of the airfoil. They also showed that increasing
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Re causes the location of these recirculation regions to become closer to the LE of the model.

Young and Lai [71] investigated the effects of frequency and amplitude of oscillation on the

2-D flow field of a pitching airfoil, where Young and Lai [71] showed that thrust coefficients

are dependent on the product kα rather than k or α individually. The 2-D simulations of

Visbal and Shang [72] over a pitching airfoil showed that the forces and induced vortical

structures depend on the pitch rate and x/c. They also showed that the highly unsteady

flow structures are accompanied by reverse flow in the boundary layer, shedding of TEV into

downstream, and formation of LE vortex with a shear layer on the leeward section of the

airfoil.

In this chapter, the flow field of a NACA0012 airfoil is simulated and the effects of dif-

ferent unsteady flow and system parameters on the dynamic forces and vortical patterns

are explored in detail, hence a better understanding of the effects of these parameters on

corresponding aerodynamic behavior is obtained. These parameters are amplitude of pitch-

ing oscillation (d), k and Reynolds number and the study is conducted for the Re range of

555 ≤ Re ≤ 5000. 2-D N-S equations discretized based on FVM using OpenFOAM R© are

the governing equations and the flow is assumed to be incompressible and laminar. This

section will be followed by the numerical simulation method in Section 4.2. Next, results and

discussion will be presented including the validation and the conducted parametric studies.

Finally, the summary and main conclusions of the chapter will be presented in Section 4.4.

4.2 Theory and numerical simulations

4.2.1 Governing equations and flow solver

The governing equations for the laminar incompressible flow of a harmonically pitching

NACA0012 airfoil are the 2-D N-S equations. These equations are discretized based on

FVM in OpenFOAM R© and the desired pitching motion is implemented within the code.

Diffusive terms are considered due to their importance in LRN flows. The flow is assumed
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to be laminar and incompressible. The governing equations, which consist of continuity and

momentum, are solved in a fixed reference frame, and Laplace smoothing mesh motion al-

gorithm [107] is used to perform the mesh motion. In the simulations presented throughout

this thesis, convective and diffusive terms are discretized based on a second order central

differencing scheme, and the resulting linear system of equations is treated with a Precondi-

tioned Conjugate Gradient (PCG) solver. The pressure and the pressure-velocity coupling

was handled using a Pressure Implicit and Splitting of Operators (PISO) algorithm. , and

the first order Euler implicit scheme is used for the transient terms

4.2.2 Mesh generation and boundary conditions

An O-type mesh is generated to model the airfoil and the surrounding flow. The selection

of the O-type mesh over a C-type is based on an earlier study by Yang et al. [67]. They

showed that O-type mesh yields almost the same aerodynamic forces as those resulting from

C-type, but needs much less computer time. The schematic of the O-type grid used in the

present simulations is shown in Fig. 4.1.

Figure 4.1: Schematic of the O-type grid around the airfoil.

The continuity equation demands initial conditions on p, while momentum equations

need the initial velocity components on u and v. The steady state solutions are used as

the initial conditions for the time-marching calculations. Along the airfoil surface a no-

slip boundary condition is applied. The far-field boundary is set to 30c from the airfoil to

minimize its undesired effects on the flow surrounding the moving surface [80,88] and is set
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to a slip boundary condition, as illustrated in Fig. 4.2. At the inflow boundary, the velocity

is specified (velocity Dirichlet boundary condition) based on the desired Re, and the pressure

is restricted to the zero-gradient condition. At the outflow boundary, the pressure is set to

the freestream value, while the velocity is set to the zero-gradient condition. The present

simulations are conducted for a mesh size of 26 × 103 and temporal resolution of 2000 time

steps within one oscillation cycle.

Figure 4.2: Schematic of the O-type grid around the airfoil.

4.2.3 Validation studies

In order to assess the accuracy of the results, extensive numerical tests are performed to

address the issues concerning grid sensitivity and time step resolution. Also, several sim-

ulations are conducted and the results are compared with the database available in the

literature ( [68], [133] and [134]). The lift coefficients are also compared with those obtained

from Theodorsen’s method. This is done to show that Theodorsen’s method [8] only yields

reasonable results when the effect of viscosity is minimal, and that the numerical simula-

tions greatly differ from Theodorsen’s results both qualitatively and quantitatively, when
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significant viscosity and vortical structures exist. Since the quality of the simulation results

depends on the mesh and temporal resolution, a convergence study is first carried out to

find the appropriate mesh size and time step for the present study. The pitching motion

equation for the mesh dependence analysis is α = α0 + d sin(2πft). This grid analysis is

performed for several cases; however, only the results for d = 2◦, Re = 555 and d = 10◦,

Re=5000 are presented here for the sake of brevity. Four different mesh sizes were consid-

ered: 5×103, 11×103, 26×103 and 50×103, corresponding to 100, 140, 176, and 200 points

on the airfoil surface, respectively, and each simulation emerged from its fully converged

stationary solution. The instantaneous lift coefficients (Cl) versus time were obtained for

each case, and since they are small, the close view of their peak values is depicted in Figs.

4.3(a) and 4.3(b). The difference between the Cl values computed from 26×103-cell and

50×103-cell models was found to be negligible. Thus, the mesh of 26×103 cells was selected

as the baseline mesh for further analyses.

Figure 4.3: Instantaneous peak lift coefficients (Cl) versus nondimensional time (τ) for dif-
ferent mesh sizes (k = 0.1, x/c = 0.25): +, 5×103; �, 11×103; 2, 26×103; ×, 50×103, (a) d
= 2◦ and Re = 555; (b): d = 10◦ and Re = 5000.

Similar observations are also made for the temporal resolution analysis. The baseline

grid (26×103) was examined for several time steps: 500, 1000, 2000 and 4000, within one

excitation period. As expected [104], the results are less sensitive to the temporal resolution
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than the spatial refinement. The lift coefficients for 2000 and 4000 time steps had negligible

differences, Table 4.1. Therefore, with the present solver settings, 26×103 cells and 2000 time

steps in a pitching cycle are sufficient and yield accurate results for the dynamic pitching

simulations.

Table 4.1: Spatial and temporal sensitivity analyses, difference is calculated based on the
lift coefficient of the base line case (26×103 cells and 2000 time steps in a cycle).

T/∆t Grid Size ×103 Difference (%)

500 26 1.47
1000 26 1
4000 26 0.2
2000 5 2.6
2000 11 1.2
2000 50 0.4

The simulations are further validated against the existing literature. First, the flow field

of a pitching circular cylinder is simulated following the numerical studies by Mahfouz and

Badr [133] and Okajima et al. [134]. The nondimensional surface velocity of the cylinder is

given by Uw = 0.2sin(0.1πt) and Re = 40. The calculated Cl is in good agreement with that

of Mahfouz and Badr [133] and Okajima et al. [134], as shown in Fig. 4.4.

Figure 4.4: Instantaneous lift coefficient of a pitching cylinder at Re = 40, Uw = 0.2
sin(0.1πt): +, Mahfouz and Badr [133]; ×, Okajima et al. [134]; ∗, present simulation.

Moreover, the pitching oscillation of a NACA0012 airfoil studied by Akbari and Price [68]
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is investigated. The pitching oscillation is governed by α = 15◦ + 10◦cos(2πft), and k =

0.25 (k = πfc
U∞

) and Re = 3000. Fig. 4.5 shows the normal force coefficient (Cn) versus α,

which is in close agreement with that of Akbari and Price [68]. The observed discrepancy

could be related to the different LE/TE shapes considered for the NACA0012 models (see

Akbari and Price [68]), or it could be due to the different utilized time and grid resolutions

between the present study and that of Akbari and Price [68].

Figure 4.5: Normal force coefficient (Cn) of a pitching NACA0012 at Re = 3000 (α = 15◦

+10◦ cos(2πft), k = 0.25, x/c = 0.25): -, present simulation; o, Akbari and Price [68].

Finally, the lift coefficients obtained from this numerical study are compared with those

calculated from Theodorsen’s method. The details of Theodorsen’s method are well docu-

mented (see, e.g., Leishman [8] and the references cited therein); however, for the sake of

completeness, a brief explanation is given here.

Theodorsen’s method for pitching airfoils is based on inviscid, incompressible and small

disturbance assumptions and yields the aerodynamic lift by the following equation:

L = πρV 2b[
b

V
α̇− b2

V 2
aα̈] + 2πρV 2b[α +

bα̇

V
(
1

2
− a)]C(k), (4.1)

where ρ, b, V , α, a and C(k) are respectively the density, airfoil half-chord length, flow

velocity, instantaneous angle of attack, pitching axis location and Theodorsen’s function.
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For pure pitching oscillations (α = ᾱ eiωt) the lift coefficient (Cl) is obtained by the following

equation:

Cl = 2π(F [1 + ik] +G[i− k])ᾱeiωt + πk(i− k

2
)ᾱeiωt, (4.2)

where k is the reduced frequency, and F andG are the real and imaginary parts of Theodorsen’s

function (C(k) = F(k) + iG(k)), respectively. In the present study, the pitching motion is

governed by the following equation:

α = α0 + d sin(2πft), (4.3)

The simulation is conducted for both viscous and inviscid flows where Re = 555, k = 0.1 and

d = 2◦. According to Leishman [8], Theodorsen’s method gives accurate results for small

amplitudes of oscillation. Figure 4.6 shows that our inviscid simulation matches the results

of Theodorsen’s method; however, for the viscous flow case, the numerically computed lift

coefficients are lower than those calculated from Theodorsen’s method as the simulations are

viscous and the theory is inviscid, showing the contribution of viscous terms in the generation

of the lift coefficient, Fig. 4.6.

Figure 4.6: Instantaneous lift coefficient versus nondimensional time (Re = 555, k = 0.1, d
= 2◦): -, viscous NS simulation; ×, inviscid N-S simulation; *, Theodorsen.

Figure 4.7 shows the lift coefficients versus nondimensional time for d = 10◦. In this
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figure, the lift coefficient computed by the numerical solution of the viscous N-S equations is

compared with that calculated via Theodorsen’s method. Figure 4.7 shows that the difference

between the analytical and numerical results is increased for d = 10o , which can be related

to the breakdown of Kutta condition [see Leishman [8]] and the stronger effects of vortices

around TE, which cause inaccuracies in the predictions of the analytical method.

Figure 4.7: Instantaneous lift coefficient versus nondimensional time (Re = 555, k = 0.1, d
= 10◦): o, numerical; -, Theodorsen; (Airfoil pitch angle is also shown on the figure as α/2).

4.3 Results and Discussion

The present parametric study is carried out to investigate the influence of d, k and Re on the

aerodynamics of a NACA0012 when x/c = 0.25 and α0 = 0. A summary of the cases studied

is shown in Fig. 4.8. The parametric space corresponds to LRN flows where the taken

governing parameters and their combination are not paid a due attention in the literature.

Table 4.2 shows the available data in the literature with their studied parametric space.

The emphasis in this work is put on the influence of the above-mentioned parameters on

the generated lift and drag coefficients, and wherever necessary the vortical patterns around
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Table 4.2: Summary of experimental and numerical pitching studies in the literature.
Author Performed investigation

Akbari and Price [68] 2-D, Numerical (N-S), Re = 3000, 104, high α, α0 = 15◦, 20◦,
effect of Re, k, α0, x/c

Hamdani and Sun [70] 2-D, Numerical (N-S), Re = 100, high α, effect of k
Jameson [66] 2-D, Numerical (Euler), d = 5◦

Koochesfahani [42] 2-D, Experimental, Re = 12000, f = 0.5-6 Hz, d = 2◦, 4◦,
effect of f and d on the wake structures

Okongo and Knight [69] 2-D, Numerical (N-S), Re = 104, 2×104, effect of Re
Shih et al. [43] 2-D, Experimental (PIV), Re = 5000-25000, 10◦ < d
Yang et al. [67] 2-D, Numerical (Euler), d = 5◦, effect of α0

Young and Lai [71] 2-D, Numerical (N-S), Re = 12×104

the airfoil are discussed in detail. It should be mentioned that all the presented instantaneous

force coefficients are presented for one pitching cycle when the numerical transient terms fade

and the results steadily change in each cycle.

Figure 4.8: Schematic view of the conducted case studies.

4.3.1 Effects of amplitude of oscillation

The effect of the airfoil amplitude of oscillation on the simulated lift coefficients is first

explored. The instantaneous Cl versus τ is depicted in Fig. 4.9 for d = 2◦, 4◦, 6◦, 8◦ and 10◦,

where k = 0.1 and Re = 555. As illustrated, the maximum lift coefficient (Clmax) increases

at higher amplitudes of oscillation. The calculated lift coefficients are periodic and resemble

harmonic-like patterns; however, for d = 8◦ there is a deviation from sinusoidal behavior
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after the peak lift coefficient. This deviation is more noticeable in the d = 10◦ case, which

can be explained by the generation of three consecutive vortices and flow separation at the

TE of the airfoil. These counter-rotating vortical structures are shown in Fig. 4.10.

Figure 4.9: Instantaneous lift coefficient (Cl) versus nondimensional time (τ): (-), d = 2◦;
(+), d = 4◦; (�), d = 6◦; (2), d = 8◦; (×), d = 10◦.

Figure 4.10: The generated vortical structures after the peak lift coefficient Clmax , d = 10◦, k
= 0.1, Re = 555: (a), α = −9.75◦; (b), α = −7.8◦; (c), α = −5.6◦, the airfoil is in up-stroke.

Furthermore, increasing d induces significant lead in the Cl results meaning that Clmax is

obtained at a lower τ (Fig. 4.9). This can be attributed to the stronger effects of the shed

wake and vortical structures on the surrounding fluid at the higher amplitudes. Figure 4.11

shows Cl versus α for the conducted simulations. As it can be seen, the hysteresis loops

are broadened by increasing the amplitudes. It means that at larger amplitudes, for the

same angle of attack, the airfoil produces higher lift during downstroke than the upstroke.
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The existence of these loops is the result of induced velocities, which result in different lift

coefficients between the up and downstrokes.

Figure 4.11: Lift coefficient (Cl) versus angle of attack (α), k = 0.1, Re = 555: (-), d = 2◦;
(+), d = 4◦; (�), d = 6◦; (2), d = 8◦; (×), d = 10◦.

The predicted drag coefficients versus angle of attack are illustrated in Fig. 4.12 showing

a figure-of-eight-like pattern. Likewise the Cl curves (Fig. 4.11), the maximum value (Cdmax)

as well as hysteresis-loop width are increased at the higher amplitudes of oscillation. The

upstroke Cd is higher than the downstroke one, which is contrary to the trend seen in Fig.

4.11. Also, Cdmin
is almost constant and does not change with d noticeably.

4.3.2 Effects of reduced frequency

The effect of reduced frequency on the unsteady pitching motion is investigated by plotting

the Cl versus α curves for different reduced frequencies: k = 0.1, 0.125, 0.17 and 0.25 at Re

= 555 and d = 4◦, 6◦ and 10◦. As shown in Fig. 4.13 (d = 4o), Clmax increases with reduced

frequency; from Clmax = 0.265 at k = 0.1 to Clmax = 0.27 at k = 0.125 and from Clmax =

0.275 at k = 0.17 to Clmax = 0.28 at k = 0.25. Moreover, a higher k broadens the hysteresis

loops, but does not have any noticeable effect on the lift curve slope.
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Figure 4.12: Drag coefficient (Cd) versus angle of attack (α), k = 0.1, Re = 555: (-), d = 2◦;
(+), d = 4◦; (�), d = 6◦; (2), d = 8◦; (×), d = 10◦.

Figure 4.13: Lift coefficient (Cl) versus angle of attack (α), d = 4◦, Re = 555): (-), k = 0.1;
(+), k = 0.125; (�), k = 0.17; (×), k = 0.25.

A similar behavior is observed for d = 6◦ (Fig. 4.14); however, in this case, k has

a stronger effect on the lift coefficients and a more noticeable effect on Clmax . That is,

increasing k changes Clmax from 0.38 at k = 0.1 to Clmax = 0.4 at k = 0.125 and from Clmax

= 0.41 at k = 0.17 to Clmax = 0.43 at k = 0.25.

Figure 4.15 reveals that increasing k at d = 10◦, where there are consecutive vortical
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Figure 4.14: Lift coefficient (Cl) versus angle of attack (α), d = 6◦, Re = 555: (-), k = 0.1;
(+), k = 0.125; (�), k = 0.17; (×), k = 0.25.

patterns in the Cl curves, has considerable influence on the strength of these vortices and

their initiation location during the harmonic motion. As described in the previous section,

three consecutive vortices are generated at TE after the peak value of lift for k = 0.1 and d =

10◦. These vortices amplify the lift force from the instant they are generated to the instant

of their separation and shedding into the downstream wake. As k is increased to 0.125, the

pitch angle at which these vortices form is changed from α = 10◦ at k = 0.1 to α = 9.5◦ at

k = 0.125. The effect of these two vortices is observed at k = 0.125 (Fig. 4.15) in the lift

coefficient curves, the second one occurring at α = 7◦. At k = 0.17, the first vortex starts

to develop and sheds at α ≈ 8◦. Moreover, as shown in Fig. 4.15, the number of effective

vortices in the lift generation is reduced from three at k = 0.1 to two at k = 0.125 and to

one at k = 0.17. The pitch angle of the first vortical structure is further changed to α ≈ 4◦

for k = 0.25, and this vortex is the only effective one in the simulated lift coefficients.

Figure 4.16 shows the respective Cd versus α curve of Fig. 4.15. As shown, increasing the

reduced frequency increases Cdmax and broadens the hysteresis-loops width. The effect of k

during the downstroke is greater than during the upstroke. The minimum drag coefficient

remains constant for k = 0.1, 0.125 and 0.17; however, it is reduced for k = 0.25, where the
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Figure 4.15: Lift coefficient (Cl) versus angle of attack (α), d = 10◦, Re = 555: (-), k = 0.1;
(+), k = 0.125; (�), k = 0.17; (×), k = 0.25.

number of the vortical structures is reduced to one and occurs at α ≈ 4◦.

Figure 4.16: Drag coefficient (Cd) versus angle of attack (α), d = 10o, Re = 555: (-), k =
0.1; (+), k = 0.125; (�), k = 0.17; (×), k = 0.25.
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4.3.3 Effects of Reynolds number

The influence of Re on the simulated lift coefficients is studied for Re = 555, 1000, 2000 and

5000. This investigation is conducted for k = 0.1 and d = 2◦ and 10◦, which are the lowest

and highest considered amplitudes of oscillation in this chapter. As Re is increased from Re

= 555 to Re = 1000 for d = 10◦, Clmax increases from Clmax = 0.61 to Clmax = 0.67 (see Fig.

4.17); however, the pitch angle at which Clmax occurs remains the same, α ≈ 9◦ for both Re.

Figure 4.17: Lift coefficient (Cl) versus angle of attack (α), d = 10◦, k = 0.1: (-), Re = 555;
(+), Re = 1000; (�), Re = 2000; (×), Re = 5000.

The increase in Clmax at Re = 1000 is accompanied by a figure-of-eight-like phenomenon

at α ≈ 9.5o. After this point, the upstroke lift coefficients are higher than those at the

downstroke at the same angle of attack. Both Re = 555 and 1000 include three sudden rise-

and-falls after the peak lift coefficients. This behaviour can be attributed to the generation

of extensive vortical patterns after the maximum angle of attack. Further increase in Re,

Re = 2000, results in decrease in Clmax and decrease in the figure-of-eight-like phenomenon

region. However, further increase of Re to 5000 slightly increases Clmax and eliminates the

figure-of-eight-like phenomenon. Figs. 4.18(a)-(d) show the vortical patterns around the

airfoil when Clmax is achieved.
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Figure 4.18: Vortical patterns around the airfoil when maximum lift coefficient (Clmax) is
obtained (d = 10◦, k = 0.1).

As can be seen, increasing Re from 555 to 1000 slightly increases the size of the TE

vortex and the strength of the lower surface vortex. Further increase of Re from 1000 to

2000 causes the lower surface vortex to separate, which could be the reason for the decrease

of Clmax previously observed in Fig. 4.17. The lower and upper surface vortices are not

separated from the airfoil at Re = 5000, but the TEV is separated and convected into the

downstream wake. This could be the reason for higher Clmax at Re = 5000 than that Re =

2000, and the reason for the lower Clmax than those at Re = 555 and 1000. The effect of

increasing Re is also investigated at the lowest explored amplitude of oscillation, d = 2◦, and

the same trends as those effects of Re at d = 10◦ are observed (see Fig. 4.19). Figure 4.20

shows the Cd versus α curves at d = 10◦ for different Reynolds numbers. As can be seen,

Cdmin
is reduced by increasing Re from 555 to 2000, but increases for Re = 5000.

4.4 Summary and conclusion

A numerical aerodynamics study was carried out for a 2-D flow around a NACA0012 airfoil

performing dynamic pitching motion in LRN regime. The aerodynamic characteristics of

the model were explored and the effect of some unsteady flow and system parameters (d,

k and Re) on the instantaneous force coefficients and flow patterns were investigated. The

analysis was conducted by means of N-S equations discretized based on FVM. The results

show the substantial influence of the aforementioned unsteady parameters on the maximum
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Figure 4.19: Lift coefficient (Cl) versus angle of attack (α), d = 2◦, k = 0.1: (-), Re = 555;
(+), Re = 1000; (�), Re = 2000; (×), Re = 5000.

Figure 4.20: Drag coefficient (Cd) versus angle of attack (α), d = 10◦, k = 0.1: (-), Re =
555; (+), Re = 1000; (�), Re = 2000; (×), Re = 5000.

lift and drag coefficients. The parameters increase or decrease the aerodynamic force peak

values depending on the surrounding flow structure. Hysteresis loops are also broadened or

narrowed due to similar reasons. It is also observed that d, k and Re are effective in changing

the number, strength, and even the development angle of the generated vortical patterns.
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Moreover, a pattern called figure-of-eight phenomenon is observed in the predicted force

coefficients at Re = 2000, which is eliminated at Re = 5000. Similar effects are noticed in

the drag coefficient results, but the minimum drag coefficient is not affected substantially by

the investigated parameters except at the high amplitudes of oscillation and high Reynolds

numbers. Numerical modeling of the flow field characteristics of a LRN plunging airfoil is

investigated and will be presented in the following chapter.
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Chapter 5

Numerical modeling of the flow field

characteristics of a LRN plunging

airfoil

In what follows, the flow field and vortical patterns around a thin ellipsoidal plunging airfoil

are examined in detail with and without freestream velocity, and the effects of Reynolds (Re)

and Strouhal (St) numbers on the flow characteristics are explored. It is shown that both Re

and St increase the aerodynamic performance in non-zero freestream velocity simulations.

Increasing Re and St causes the airfoil to generate thrust for some time intervals of the

plunging period. This thrust generation is penalized with higher peaks of drag coefficient

when St increases. However, the same penalty in the Re effect simulations is negligible

compared to that of the St effects. Increasing St causes the airfoil to experience negative

pitching moment with higher peak values for longer time intervals, however, Re does not

change the time at which negative pitching moment is exerted on the airfoil, but the peaks of

pitching moment depend on the governing Re. The lift coefficient changes noticeably versus

St, where there is significant lead/lag at the peak lift coefficient for zero-freestream velocity

simulations. Reynolds number effects on the lift coefficients mostly occur around the time
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at which the peak lift coefficient is obtained for both zero and non-zero freestream velocity

cases. All of these effects are caused by the complex vortical patterns around the airfoil,

described throughout the present chapter.

5.1 Introduction

Plunging motion is another prevalent unsteady condition observed in applications such as

MAVs. Unfortunately most of conducted LRN studies are focused on the harmonic flapping

motions and less attention is paid to the LRN plunging and pitching motions. As the

occurring fluid phenomena are affected by the kinematic pattern, the plunging studies are

needed to reveal the dependence. The phenomena, which are mostly viscous, such as LEVs

and dynamic stall, are the major mechanisms of force and moment generation in LRN

unsteady flows. The importance of LEVs and TEVs in LRN plunging motions are shown in

the studies of Lewin and Haj-Hariri [81] and Prangemeier et al. [50].The downstream wake

of a plunging airfoil also plays a significant role in the flow behavior and force coefficients.

Triantafyllou et al. [53], Freymuth [51], Lai and Platzer [52], Heathcote and Gursul [9]

and Young and Lai [71] investigated plunging airfoils’ downstream wake and showed its

dependence on the plunging motion unsteady parameters. Andro and Jacquin [76] studied

the flow field of a heaving airfoil numerically, and analyzed the significance of LEVs, added

mass and the wake-capturing mechanisms. They also showed how these phenomena change

when subjected to different frequencies of oscillations. The objective of the present chapter

is to improve the existing understanding of LRN plunging airfoil flow characteristics and its

dependency on the governing flow and system parameters. To this end, the flow field of an

elliptic airfoil under harmonically heaving motion is simulated using CFD based on FVM and

incompressible N-S equations. In the present 2-D study, the effects of Reynolds and Strouhal

numbers on the instantaneous lift, drag and moment coefficients at both zero and nonzero

freestream velocities are investigated (Section 5.5). These parameters have been shown to
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be of great importance to the fluid dynamics characteristics of pitching [10], plunging [135],

and flapping [6] airfoils.

5.2 Solution method

Equations 3.9 govern the flow field of a LRN plunging airfoil. In this chapter, the effects

of St and Re (Equations 3.10) on the force and moment coefficients of an ellipsoidal airfoil

under heaving oscillations are investigated. The computational domain is discretized using

an O-type mesh. The far-field boundary with symmetry condition is set to 30c in order

to minimize its undesired effects on the airfoil’s surrounding flow field. The simulations

in the present chapter are conducted for both zero and nonzero freestream velocities. The

inlet and outlet are set to symmetry condition in zero freestream velocity simulations. For

nonzero freestream simulations, the inlet is set to a velocity Dirichlet and zero-gradient

pressure condition, and the outlet is set to freestream pressure and zero-gradient velocity.

The airfoil surface is set to a no-slip boundary condition. The computations utilize 48×103

cells and 2000 time steps per period. This choice was made after extensive grid and time step

independence analyses. Fig. 5.1 shows the schematic of the airfoil and the computational

domain.

Figure 5.1: Schematic of the airfoil and the computational domain.
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FVM is used to investigate the aerodynamic characteristics of an ellipse with 2% thick-

ness. Thin airfoils are the commonly used lifting surfaces in Micro Aerial Vehicle (MAV)

applications and LRN flows. The computations utilize a second order central differencing

scheme (CDS) for the convective and diffusive terms and a second order Euler implicit scheme

for temporal discretizations. The resulting linear system of equations is treated with a Pre-

conditioned Conjugate Gradient (PCG) solver, and the Semi-Implicit Method for Pressure

Linked Equations (SIMPLE) algorithm is used for the pressure-velocity coupling. The mesh

motion is based on the Laplace smoothing mesh motion algorithm [107]. The airfoil plunging

equation of motion is given by:

y(t) = Y0 cos(2πft), (5.1)

where y(t) is the vertical position vector, Y0 is the amplitude of plunging oscillations, and f

is the frequency of oscillations.

5.3 Reference velocity, force and moment coefficients

calculations

The flow field of an airfoil under heaving oscillations (y(t) = Y0cos(2πft)) is simulated

with and without freestream velocity (U0 in Fig. 5.2). The reference velocity (Uref ) in the

calculation of Re and St (Equations 3.10) is either the maximum plunging velocity (Uref =

ẏmax) when there is no freestream velocity or the freestream velocity (Uref = U0) [70] when

there is oncoming flow velocity.

The unsteady force and moment coefficients also need a reference velocity. The instan-

taneous lift (Cl), drag (Cd), and moment (Cm) coefficients are obtained using the following

equations:

Cl(t) =
Fy(t)
1
2
ρcU2

; Cd(t) =
Fx(t)
1
2
ρcU2

; Cm(t) =
M(t)

1
2
ρc2U2

, (5.2)

where Fy(t) and Fx(t) are the instantaneous forces in y (lift) and x (drag) directions, re-
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Figure 5.2: Schematic of the plunging airfoil and force and moment signatures.

spectively, M(t) is the instantaneous pitching moment calculated at x/c = 0.5, c is the

chord-length and ρ is the density. U is calculated using the following equation:

U =
√
U2

0 + ẏ2
max, (5.3)

5.4 Evaluation of the results

In what follows (Subsection 5.4.1), several simulations are first performed to investigate

the grid and time step resolutions and to validate the results using the available data in

the literature. In the following Subsection ( 5.4.2), three case studies (also reported by

Williamson [136], Guilmineau and Queutey [137] and Lian and Shyy [138] and Young [139])

are then carried out to further validate the proposed numerical approach and settings. The

main numerical results and discussions are presented in the next Section (Section 5.5).

5.4.1 Mesh and time step sensitivity analyses

In order to obtain grid and time independent solutions, several cases with different grid

size and time step resolutions are examined. The results of these analyses are shown in

Figs. 5.3(a) and 5.3(b) for the plunging ellipsoidal airfoil at St = 0.16 and Re = 100, when

U0 = 0. First, the grid sensitivity is investigated using 24, 48, and 96 (×103) cells and 2000

time steps per plunging cycle. Figure 5.3(a) shows the obtained Cl versus τ for a half stroke
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of the airfoil motion, where the second half stroke has been omitted because it has the same

profile as that of the first half but with the opposite values. As shown, the difference between

48 and 96 (×103) cell cases is negligible. Hence, 48×103 is sufficiently refined to yield grid

independent solutions. The time step is also varied for 1000, 2000 and 4000 time steps within

a cycle having 48×103 cells. The results show that the difference between the lift coefficients

of 2000 and 4000 time step cases is negligible, Fig. 5.3(b). Therefore, the computations are

performed using 48×103 cells and 2000 time steps.

Figure 5.3: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for St = 0.16,
Re = 100, and U0 = 0, (a): (-) 24×103, (+) 48×103, (×) 96×103 cells with 2000 time
steps;(b): (-) 1000, (+) 2000, (×) 4000 time steps with 48×103 cells.

5.4.2 Validation studies

The first validation case, also studied by Williamson [136], is the flow field of a static cylinder

at Re = 150. The mean drag coefficient (C̄d) is the benchmark for the comparison. The

present simulation gives C̄d = 1.375 which is in very close agreement (3% difference) with

C̄d = 1.334, reported by Williamson [136]. Figure 5.4 shows the numerically computed

instantaneous Cd versus time (t) in the present simulations.

The second validation case is a plunging cylinder at Re = 185, reported by Guilmineau
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Figure 5.4: Instantaneous drag coefficient (Cd) versus time (t) for a static cylinder at Re =
150.

and Queutey [137]. The motion is governed by the following equation:

y(t) = −Ae sin(2πfet), (5.4)

with Ae = 0.2c (c being the cylinder diameter) and fe = 0.154. The resulting C̄d is 1.25 which

is in close agreement (4% difference) with that reported by Guilmineau and Queutey [137],

C̄d = 1.2. Figure 5.5 shows the obtained instantaneous Cd and Cl versus t.

Finally the plunging oscillations of a NACA0012 airfoil is simulated, also studied by

Lian and Shyy [138] and Young [139]. The nondimensional amplitude of oscillations (Y0/c)

is 0.0125 and Strouhal number, defined as St = 2fcY0

U∞
by Lian and Shyy [138], is St =

0.03. Figs. 5.6 shows the comparison between the calculated Cl and Cd, respectively, of the

present simulations and those of the considered references. As can be seen, the lift and drag

coefficients are in very good agreement with those of Lian and Shyy [138] and Young [139].
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Figure 5.5: Instantaneous lift and drag coefficients (Cl and Cd) versus time (t) of a plunging
cylinder following Equation 5.4 at Re = 185, Ae = 0.2c (c being the cylinder diameter) and
fe = 0.154.

Figure 5.6: Instantaneous lift coefficient (left) and drag coefficient (right) versus τ for a
plunging NACA0012 airfoil with Y0/c = 0.0125 and St = 0.03: (*), Lian and Shyy [138];
(+), Young [139]; (×), present simulations.

5.5 Evaluation of the results

In this section, numerical simulations of a thin plunging ellipse (t/c = 0.02) are conducted.

The effects of St and Re (based on airfoil’s chord-length, St = fc
Uref

) on the force and moment

signatures (Cl, Cd and Cm) and on the vortical patterns surrounding the airfoil, for both
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Table 5.1: Summary of experimental and numerical plunging studies in the literature.
Author Performed investigation

Andro and Jacquin [76] 2-D, numerical (N-S), NACA0012, Re = 1000, effect of
St

Chandar and Damodaran [79] 2-D, numerical (N-S), NACA0012, Re = 104, 4.5×104,
effect of airfoil TE

Hamdani and Sun [70] 2-D, numerical, Re = 100, effect of acceleration/decel-
eration

Heathcote and Gursul [9] 2-D, 3-D, experimental, Re = 104, 2×104, 3×104, k =
0-14

Lai and Platzer [52] 2-D, experimental (LDV), NACA0012, Re = 500-
2.1×104

Lentink and Gerritsma [80] 2-D, numerical (N-S), Re = 150, 192, effect of different
airfoil shapes

Lewin and Haj-Hariri [81] 2-D, numerical (N-S), elliptic airfoil, 0.25 < St < 0.48,
Re = 500

Lua et al. [48] 2-D, experimental (DPIV), elliptic airfoil, Re = 1000, k
= 1-2

Pederzani and Haj-Hariri [82] 2-D, numerical (N-S), NACA0012, Re = 500, kh = 0.8,
1

Prangemeier et al. [50] 2-D, experimental (PIV), Re = 3×104, k = 0.25
Triantafyllou et al. [53] 2-D, experimental, Re = 3000, St = 0.25-0.35
Young and Lai [71] 2-D, numerical (N-S), Re = 2×104, effect of k, St

zero and nonzero freestream velocities, are investigated. The parametric study corresponds

to LRN regime, which is not studied well in the literature. Table 5.1 shows a summary of

some of the existing studies in the literature.

5.5.1 Effect of the Strouhal number without freestream flow

Here, the effect of St on the airfoil lift coefficients at Re = 100 is investigated for St = 0.32,

0.16 and 0.11, corresponding to Y0 = 0.5c, c and 1.5c, respectively. Figure 5.7 shows Cl

versus τ for one plunging cycle. As can be seen, increasing Y0 (decreasing St) decreases the

maximum lift coefficient (Clmax). That is, Clmax = 13.2, 8.8 and 6.6, at St = 0.32, 0.16 and

0.11, respectively. This decreasing effect is associated with a lead in the generation of Clmax .

The maximum lift coefficient is obtained at τ = 0.2, 0.12 and 0.1 at St = 0.32, 0.16 and 0.11,

respectively. Similarly, the magnitude of the minimum lift coefficient (Clmin
) is decreased,

71



and Clmin
is obtained at τ = 0.7, 0.62, and 0.6 for St = 0.32, 0.16, and 0.11. Examining

the magnitudes of Clmax in Fig. 5.7 also confirms that the lift coefficients are dependent

on St rather than the amplitude of oscillations. That is, examining the calculated Clmax

values shows that their percentage of decrease is proportional to the St values rather than

Y0. Figures 5.8(a-c) show the pressure field around the airfoil when Clmax is obtained. In

these figures, the black color shows low pressure, while the white-colored areas indicate high

pressure. As can be seen, the pressure field at St = 0.32 has two symmetric low-pressure

zones at the LE and TE of the airfoil. These regions show LE and TE vortices, which

enhance the lift coefficient. The vortices are also stretched and deflected towards the lower

surface of the airfoil and surround the high-pressure zone. Decreasing Strouhal number from

St = 0.32 to 0.16 generates smaller low-pressure zones with lower strength (brighter color),

which results in the decreased Clmax . The LE and TE vortices are further deflected into the

downstream of the airfoil when St is changed from 0.16 to 0.11, which is the reason for the

decreased Clmax . It should be mentioned that despite having a symmetrical plunging motion,

Fig.5.7 shows that the lift values do not have a symmetrical pattern. The reason for this

behavior should be studied in more detail as a future work.

Figure 5.7: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) when Re =
100 and U0 = 0: (-) St = 0.32, (+) St = 0.16, (×) St = 0.11.
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Figure 5.8: Pressure contours when maximum lift coefficient (Clmax) is achieved at Re = 100
and U0 = 0: (a) St = 0.32, (b) St = 0.16, (c) St = 0.11.

5.5.2 Effect of the Strouhal number with freestream flow

In this subsection, the effect of St on Cl, Cd and Cm of the plunging airfoil is investigated for

St = 0.08, 0.16 and 0.32, where Uref is the freestream velocity. According to the following

discussions, it is found that increasing St increases peak lift coefficients significantly. The

magnitudes of the peak lift coefficients are almost equal in up- and down-strokes. However, at

the highest investigated St, secondary peaks are induced into the instantaneous lift followed

by smaller peaks in down-stroke compared to that in the up-stroke. Moreover, increasing

St decreases drag coefficients such that at the highest considered St, thrust is generated

by the airfoil, penalized by the increased maximum drag coefficients. The peaks of the

pitching moment coefficient also strongly depend on the governing St, and the time interval

at which the airfoil is subjected to negative or positive moment is changed with respect to

St. Moreover, calculation of the aerodynamic performance ( C̄l

C̄d
) for up- and down-strokes

shows that St increases C̄l

C̄d
.

Fig. 5.9 shows Cl versus τ . It can be observed that increasing St increases Clmax in both

up- and down-strokes. The instantaneous Cl at St = 0.32 shows that there is a secondary

peak Cl at τ ≈ 0.6. Moreover, the close examination of the peaks of Cl at St = 0.32 shows

that |Clmin
| is less than |Clmax| , which is accompanied by the generation of the observed

secondary peak. Moreover, the influence of St on Clmax is more than that on the Clmin
, which

could also be related to the generation of the inflection point at τ ≈ 0.6.
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Figure 5.9: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for Re = 100,
Y0 = c and U0 6= 0: (-) St = 0.08, (+) St = 0.16, (×) St = 0.32.

Figure 5.10 shows Cd versus τ . Increasing St from 0.08 to 0.16 is beneficial to Cd as the

drag coefficient is reduced. The changes resemble a down-shift of Cd with Cdmax = 0.26 and

0.13 and Clmin
= 0.127 and 0.01 for St = 0.08 and 0.16, respectively. Further increase of St

from 0.16 to 0.32 shows an interesting behavior. The drag producing airfoil at St = 0.08 and

0.16 is capable of producing thrust at St = 0.32 between 0.2 ≤ τ ≤ 0.57 and 0.76 ≤ τ ≤ 1.

The generated thrust could be of high importance to applications such as forward flight and

fish-like locomotion; however, this benefit is gained with the expense of increased Cd around

the second Cdmax , between St = 0.16 and 0.32. It should also be mentioned that Cdmax and

Cdmin
are obtained with negligible lead and lag, respectively, between St = 0.08 and 0.16.

However, all the peak drag coefficients (Cdmax and Cdmin
) are obtained with significant lag

at St = 0.32. The effect of St on Cdmin
(drag coefficient at St = 0.08 and 0.16 and thrust

coefficient at St = 0.32) is investigated in more details on the airfoil’s vortical patterns in

Figs. 5.11(a-c). It is seen from these figures that by increasing St, the LEV is strengthened

and leans towards the airfoil surface. The TEV is also strengthened, where these changes

cause the first Cdmin
to decrease versus St and eventually converts into a thrust coefficient

(Cdmin
≤ 0) at St = 0.32.
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Figure 5.10: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for Re =
100, Y0 = c and U0 6= 0: (-) St = 0.08, (+) St = 0.16, (×) St = 0.32.

Figure 5.11: Vortical patterns around the airfoil when first maximum drag coefficient (Cdmin
)

is obtained for Y0 = c, Re = 100 and U0 6= 0: (a), St = 0.08; (b), St = 0.16; (c), St = 0.32.

Figure 5.12 shows Cm versus τ . As it is observed, St has significant effects on both Cmmin

and Cmmax , where |Cmmin
| is consistently increased, which could be a negative trend from a

stability perspective. However, the effect of St on |Cmmax| does not follow a constant trend,

meaning that |Cmmax | initially decreases between St = 0.08 and 0.16, and then increases

between St = 0.16 and 0.32. Moreover, the time intervals in which the airfoil is subjected

to negative and positive pitching moment coefficients, changes with respect to the governing

St. The airfoil encounters negative instantaneous Cm between 0 < τ < 0.32, 0 < τ < 0.38

and 0 < τ < 0.54 for St = 0.08, 0.16 and 0.32, respectively, and it undergoes positive Cm
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for almost the rest of plunging cycle at the three investigated St values, with the exception

of a small period of negative Cm at the end of St = 0.32. Hence, by increasing St, the

surrounding fluid flow applies nose-down pitching moment on the airfoil for a longer time

interval.

Figure 5.12: Instantaneous pitching moment coefficient (Cm) versus nondimensional time
(τ) for Re = 100, Y0 = c and U0 6= 0: (-) St = 0.08, (+) St = 0.16, (×) St = 0.32.

The average lift and drag coefficients (C̄l and C̄d) are studied and listed in Table 5.2.

The mean force coefficients are calculated for the up- and down-strokes separately. As it

can be seen, increasing St increases C̄l, but decreases C̄d, resulting in a higher aerodynamic

performance ( C̄l

C̄d
) in each half stroke.

Table 5.2: Mean lift and drag coefficients (C̄l and C̄d) for the investigated St where Re =
100, Y0 = c and U0 6= 0

St Upstroke Downstroke

0.08 C̄l = 0.838 and C̄d = 0.197 C̄l = 0.837 and C̄d = 0.197
0.16 C̄l = 1.304 and C̄d = 0.065 C̄l = 1.303 and C̄d = 0.065
0.32 C̄l = 1.977 and C̄d = 0.032 C̄l = 1.447 and C̄d = 0.005
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5.5.3 Effect of the Reynolds number

In what follows, the effect of Reynolds number (Re) on Cl, Cd and Cm of the plunging airfoil

is investigated for Re = 100, 200 and 500, with freestream velocity. The Re effect on the

Cl for Re = 50 and 100 without freestream velocity is also studied. The vortical patterns

around the airfoil are also investigated at the points of interest. It is found, according to the

following discussions, that based on the governing Re (U0 6= 0), the airfoil could generate

drag and thrust during a plunging cycle, and increasing Re can cause the airfoil to produce

thrust for a longer period of the oscillations with the expense of a slightly higher peak of

the drag coefficient, i.e., lower thrust. Moreover, increasing Re could increase or decrease

the pitching moment coefficient, depending on the position of the airfoil during its plunging

motion. However, the time interval at which the airfoil is subjected to negative or positive

moment is not a function of Re. Although Re effects on the lift coefficient are minimal

compared to those on drag and moment coefficients, these effects occur at different time

intervals of the plunging motion. The corresponding vortical patterns show very complex

LEV and TEV structures and their interactions. Moreover, it is found that increasing

Re increases the aerodynamic performance ( C̄l

C̄d
), where C̄l and C̄d are the average lift and

drag coefficients within a plunging cycle and are calculated for the up- and down-strokes

separately. In addition, the simulations without freestream velocity also show that Re only

affects Cl in the regions around the peak lift coefficient.

Figure 5.13 shows Cl versus τ for Re = 50 and 100, where Re has negligible effects on Cl

in most part of the cycle except for a narrow range of Cl near the Clmax .

Figure 5.14 shows Cl versus τ when U0 6= 0. Increasing Re from 100 to 200 increases

the magnitude of peak lift coefficients. For example, Clmax ≈ 2.4 and 2.7 at Re = 100 and

200, respectively. In addition to the increased Clmax , the instantaneous Cl is higher at Re

= 200 for. However, it is observed that Re does not increase Clmax from Re = 200 to 500,

and the difference between the real time Cl at Re = 200 and 500 mostly occurs when 0 <

τ < 0.17 and 0.5 < τ < 0.67. This behavior could be interpreted as if the lowered viscous
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Figure 5.13: Instantaneous lift coefficient (Cl) versus nondimensional (τ) when St = 0.16
and U0 = 0: (-), Re = 50; (+), Re = 100.

forces (increased Reynolds number) affect the lift coefficients more in specific intervals of the

plunging motion, based on the governing Re. Moreover, comparing the difference between

Cl of Re = 200 and 500 at τ = 0.15 and 0.35 shows that although the airfoil is at the same

location at these two nondimensional times, the discrepancy is much higher at τ = 0.15.

Figure 5.14: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for St = 0.16
when U0 6= 0: (-) Re = 100, (+) Re = 200, (×) Re = 500.

Figures 5.15(a-c) show the vortical patterns around the airfoil when Clmax is obtained for
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the considered Re, where the black color shows higher vorticity magnitude. It is observed

that the leading edge vortex (LEV) at Re = 200 is more deflected towards airfoil surface

than that of Re = 100, while TEV is not changed noticeably between Re = 100 and 200.

This explains the increase in Clmax when Re increases from 100 to 200. The LEV at Re =

500 seems to be stronger and more concentrated than that of Re = 200. However, TEV is

shown to have a higher strength at Re = 500, explaining the equality of Clmax between Re

= 200 and 500.

Figure 5.15: Vortical patterns around the airfoil when maximum lift coefficient (Clmax) is
obtained for St = 0.16 and U0 6= 0: (a), Re = 100; (b), Re = 200; (c), Re = 500.

Figure 5.16 shows the calculated Cd versus τ . The maximum drag coefficient (Cdmax) is

0.132, 0.115 and 0.08, at Re = 100, 200 and 500, respectively, showing that increasing Re

decreases Cdmax . This behavior can be investigated in Figs. 5.17(a-c), presenting the vortical

patterns around the airfoil when Cdmax is obtained (τ ≈ 0.52). Fig. 5.17(a) shows that there

is a LEV mostly concentrated around LE, which sweeps on the airfoil’s pressure side by

increasing Re, stretches towards TE, but is not separated at any of the considered Re. On

the suction side, however, there is a complex vortical pattern; a LEV which is deflected and

stays around the TE is strengthened by increasing Re. It seems that there is a secondary

circulation region at Re = 100 around LE, attached to the airfoil suction side. Increasing

Re from 100 to 200 (Fig. 5.17(b)) causes this secondary vortical pattern to detach from the

surface, which is eventually strengthened at Re = 500, Fig. 5.17(c). Moreover, a TEV non-

existing at Re = 100, is formed at Re = 200 (Figs. 5.17(b, c)). This TEV is also deflected
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towards LE, although there is freestream velocity. This TEV is strengthened at Re = 500

and is more interacted with the secondary LEV, Fig. 5.17(c). This complex vortical pattern

causes Cdmax to decrease by increasing Re.

Another interesting effect of Re is that increasing Re also causes the airfoil to generate

thrust. The plunging airfoil only generates drag at Re = 100, Fig. 5.16. However, for some

intervals of the plunging motion, the airfoil generates thrust at Re = 200. In fact, for Re

= 200, thrust is produced within 0.15 < τ < 0.35 and 0.65 < τ < 0.85 intervals. It should

also be mentioned that Cdmin
= 0.01 at Re = 100, decreases to Cdmin

= -0.04 (thrust) at

Re = 200. Increasing Re from 200 to 500 decreases the magnitude of Cdmin
, however, the

airfoil generates thrust for a longer period of time; 0.12 < τ < 0.36 and 0.62 < τ < 0.86.

Moreover, the first Cdmin
is obtained with lead at τ ≈ 0.28, 0.25 and 0.23, for Re = 100, 200

and 500, respectively, whereas, the calculated Cdmax does not show a significant lead or lag,

compared to those observed for Cdmin
.

Figure 5.16: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for St =
0.16 when U0 6= 0: (-) Re = 100, (+) Re = 200, (×) Re = 500.

The pitching moment coefficient (Cm) is an important parameter from control and sta-

bility perspectives. The effect of Re on Cm versus τ is shown in Fig. 5.18. It is observed

that the airfoil faces negative Cm for τ < 0.4 and positive Cm for 0.4 < τ . Increasing Re
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Figure 5.17: Vortical patterns around the airfoil when maximum drag coefficient (Cdmax) at
τ = 0.52 is obtained for St = 0.16 and U0 6= 0: (a), Re = 100; (b), Re = 200; (c), Re = 500.

increases |Cm| for τ < 0.4. For example, |Cmmax| increases when Re increases, where the

corresponding vortical patterns are shown in Figs. 5.19(a-c). It should be mentioned that as

Cmmax between 0 < τ < 0.4 is negative, it could be concluded that the influence of counter

clockwise circulation of the TEV on the calculated Cm is greater than that of the LEV. Re

has an inverses effect on Cm when 0.4 < τ < 1, with the exception of 200 < Re < 500 and

0.66 < τ < 0.8.

The vortical patterns are investigated at τ = 0.6 in Figs. 5.19(a-c). Fig. 5.19(a) shows a

LEV attached to LE and stretched towards TE. Increasing Re causes this vortex to approach

the airfoil surface and to rotate around the TE at Re = 200. Increasing Re further to 500

causes this vortex to be closer to the surface with a higher strength. Moreover, increasing

Re strengthens the TEV. In addition, the flow on the suction side of the airfoil at Re = 100

starts to separate at Re = 200, which eventually forms a secondary vortical pattern at Re

= 500. Therefore, the decreasing effect of Re on Cm is accompanied with the very complex

vortical behavior, as shown in Figs. 5.19(a-c).

Finally, the changes in the average C̄l and C̄d are studied and listed in Table 5.3. As it can

be seen, the magnitude of |C̄l| does not change significantly, but |C̄d| decreases noticeably,

resulting in increased | C̄l

C̄d
| .

81



Figure 5.18: Instantaneous pitching moment coefficient (Cm) versus nondimensional time
(τ) for St = 0.16 when U0 6= 0: (-) Re = 100, (+) Re = 200, (×) Re = 500.

Figure 5.19: Vortical patterns around the airfoil when minimum moment coefficient (Cmmin
)

at τ = 0.6 is obtained for St = 0.16 and U0 6= 0: (a), Re = 100; (b), Re = 200; (c), Re =
500, the vertical position is the same for all figures.

5.6 Summary and conclusion

Simulations of a 2-D plunging airfoil in LRN flow regime are carried out based on FVM

and N-S equations. The computations are conducted for both zero and nonzero freestream

velocities. The effects of Re and St on the lift, drag, and moment coefficients are investigated

and the details of flow patterns and vortical structures are examined. In the simulations

of the effects of St without freestream velocity, it is found that higher St increases the

magnitude of the lift coefficients with significant lead/lag induced into the instantaneous lift

coefficients. The lead and lag in the location of the peak lift coefficients are found to be
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Table 5.3: Mean lift and drag coefficients (C̄l and C̄d) for the investigated Re when U0 6= 0

Re Upstroke Downstroke

100 C̄l = 1.304 and C̄d = 0.065 C̄l = 1.303 and C̄d = 0.065
200 C̄l = 1.439 and C̄d = 0.028 C̄l = 1.434 and C̄d = 0.028
500 C̄l = 1.411 and C̄d = 0.013 C̄l = 1.409 and C̄d = 0.013

negligible in the simulations of St effect with freestream velocity compared to those without

freestream. Moreover, including the freestream in the simulation, a secondary peak of lift

coefficient is observed at the highest St, followed by the lower minimum peak lift coefficient

than the maximum lift coefficient, where maximum and minimum lift coefficients are almost

equal for other Strouhal numbers for both zero and non-zero freestream velocity simulations.

Moreover, the non-zero freestream velocity simulations show that drag coefficient decreases

with increasing St, where eventually the airfoil generates thrust at some time intervals during

its plunging motion with the expense of a higher maximum drag coefficient. In addition, the

airfoil encounters a negative pitching moment for a longer time interval when St increases in

non-zero oncoming flow cases. The aerodynamic performance also increases with increasing

St.

Reynolds number increases the lift coefficient mostly around its peak values. However, the

non-zero oncoming flow simulations show that Re does not change the peak lift coefficients

significantly for the range of Re considered in this study. The drag coefficients is found to

decrease when Re increases, and the initially drag producing airfoil, generates thrust for some

time intervals during the motion. Further increase of Re causes the airfoil to generate thrust

for a longer period, penalized by a slightly higher drag coefficient (lower thrust coefficient).

Unlike the effects of St on the pitching moment, Re does not change the time interval for

which negative or positive pitching moment is exerted on the airfoil, but Re changes the peaks

of the pitching moment coefficient. Moreover, Re increases the aerodynamic performance in

the non-zero oncoming velocity computations.

The conclusions drawn from this chapter show that most the mentioned effects of St and
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Re are the direct results of LEV and TEV patterns, their interactions and secondary vortical

patterns generated during the plunging motion, well explaining the need for more studies on

the aerodynamics of oscillating airfoil/wings in LRN flow regime. In the next chapter, the

flow field characteristics of a figure-of-eight-like flapping airfoil are investigated.
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Chapter 6

Flow field characteristics of a

figure-of-eight-like flapping airfoil

The flow field of a thin ellipsoidal geometry performing a modified figure-of-eight-like flapping

pattern is simulated, and vortical patterns around the airfoil are examined in detail. The

effects of different unsteady flow and system parameters on the flow characteristics are also

explored. The investigated parameters are namely the amplitude of pitching oscillations,

phase angle between pitching and plunging motions, mean angle of attack, Reynolds number

(Re) and Strouhal number (St) based on the translational amplitudes of oscillations and the

pitching axis location (x/c). It is shown that these parameters change the instantaneous

force coefficients both quantitatively and qualitatively. It is also observed that the strength,

interaction, and convection of the vortical structures surrounding the airfoil are significantly

affected by the variations of these parameters.

6.1 Introduction

Flapping, in the form of both forced and flow-induced oscillations, is the most observed

means of force generation in different LRN applications, such as MAVs. Various kinematic

patterns simulating LRN flapping motion are reported in the literature, which are meant to
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improve efficiency and/or thrust and lift and contribute to the understanding of the respec-

tive phenomena. Yet, more studies are needed to obtain a better insight into the subject

matter. Flapping flow field characteristics depend on the governing kinematics and parame-

ters. Ellington [7] stated that the predicted unsteady forces by classical analytical methods

are insufficient and unreliable for flapping motions. The importance of the corresponding

viscous flow phenomena, LE/TE vortical patterns and their interaction, which are not con-

sidered in the analytical solutions, makes these methods inappropriate for LRN flapping

studies. Several experimental studies have shown the importance of the LRN viscous phe-

nomena in a flapping motion force generation. Experimental techniques can provide the

most accurate results, but they are rather expensive and time consuming.

Freymuth’s experiments [55] on a flapping airfoil in its thrust generating regime showed

that dynamic stall leads to high thrust coefficients. The importance of dynamic stall, ro-

tational effect and wake-capturing mechanisms on an insect flapping wing was investigated

by Nagai et al. [56]. They illustrated that these mechanisms act differently during up-

and down-strokes, and concluded that lift is mainly generated during downstroke while a

higher thrust is achieved during upstroke. Three-dimensional (3-D) investigation of a flap-

ping wing by Isaac et al. [57] showed that an optimum flapping frequency might exist that

gives the highest performance. The 3-D harmonic flapping wing experiments of Wang et

al. [58] demonstrated that the unsteady force coefficients weakly depend on the amplitude of

oscillations but are strongly affected by the phase difference between pitching and plunging

portions of the flapping motion. Singh and Chopra [59] investigated different shapes of hov-

ering insect-based flapping wings in hover. They observed that the amplitude and frequency

of the pitching oscillations are of great importance to the thrust generation.

CFD is also widely used in LRN flapping studies. Lee et al. [84] investigated the role of

LEVs/TEVs in force generation and concluded that LEVs affect thrust beside their effect

on increasing the lift. The two dimensional (2-D) figure-of-eight-like motion simulations

of Lee et al. [86] showed that lift is mainly produced during downstrokes, while thrust is
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mostly achieved at the end of upstrokes. They attributed the generated thrust to the vor-

tex pairing, which is different from the conventional inverse Karman vortex street found in

sinusoidal flapping motions. Mittal et al. [85] numerically simulated a flapping airfoil flow

field and concluded that the formation of an inverse Karman vortex street is accompanied

with the highest thrust efficiency. Tang et al. [87] simulated a hovering elliptic airfoil using

N-S equations and investigated the effects of Re, reduced frequency and flapping kinematics

on the flow field. They also confirmed the significance of the delayed stall mechanism on the

generated forces and observed the existence of the wake-capturing mechanism in their simu-

lations. Bos et al. [88] studied different flapping kinematics and compared their aerodynamic

performance numerically. The system parameters such as plunging amplitude and frequency

of oscillations were shown by Kinsey and Dumas [89] to have the highest impact on the

instantaneous fluid forces. They noticed that higher lift is produced during advanced rota-

tions, where the pitching oscillation starts before the end of each plunging stroke. Kaya and

Tuncer [90] studied a nonsinusoidal flapping pattern and performed an optimization study

on the kinematics to obtain the maximum thrust and/or propulsive efficiency. In their 2-D

numerical simulation, they observed that the maximum thrust coefficient can be obtained

if the airfoil stays at almost constant angle of attack during the up and down strokes, and

the pitching occurs at the end of each stroke. However this is achieved at very high accel-

eration rates in both pitch and plunge, and at the expense of the propulsive efficiency. Sun

and Tang [91] simulated a 3-D hovering wing using N-S equations and examined advanced,

symmetrical and delayed rotation cases. Young et al. [92] conducted simulations of a 3-D

flapping wing and performed a parametric study. They concluded that both lift and thrust

are influenced by the frequency of oscillations. In another study, Dong et al. [93] explored

the wake topology of a finite aspect ratio wing performing a harmonic flapping motion and

reconfirmed that the topology is different from those of infinitely long wings. They also

studied the effects of Re and St on the wing’s performance and investigated their impor-

tance to the unsteady forces. Ramamurti and Sandberg [94] performed 3-D Finite Element
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Method (FEM) based simulations of flapping motion and studied the effect of the phase

angle between the rotational and translational motions on the instantaneous forces. They

observed that the advanced rotations yield higher thrust coefficients than the symmetrical

and delayed cases. Ramamurti and Sandberg [95] also investigated 3-D flapping motions

under different conditions such as gust loading and flexibility and compared the lift and

thrust coefficients as the performance benchmarks.

The present study is conducted to provide a better understanding of the effective pa-

rameters on the fluid dynamics of a flapping airfoil under a figure-eight-like kinematics in

LRN regime. Figure-of-eight patterns are not investigated extensively in the literature, and

the reported studies are based on almost horizontally-flat pattern figure-of-eight kinematics.

The kinematics considered in the present investigation has very inclined up/down strokes.

As it was also shown by Wang [140], the inclined patterns have substantial drag forces,

which contribute to the required hovering force. Some patterns reported in the literature

have constant angle of attack during their strokes and the pitching oscillations occur at the

end of each stroke, while the pitching oscillations of the present kinematics are constantly

performed during a whole cycle. Moreover, in the present research, an extensive parametric

study is conducted, while most of the investigations reported in the literature examine the

effects of a few parameters on the flapping fluid dynamics. The investigated range of Re is

chosen based on the typical range of applications such as MAVs and fish-like robots. The

flow field is simulated using CFD with unsteady, incompressible N-S equations and FVM,

and the variations of lift, drag and pitching moment coefficients under different operating

conditions are explored in detail.

6.2 Numerical simulation method

The flow field of a 2-D flapping airfoil in LRN regime is governed by the continuity and x

and y direction momentum equations. The computational domain is discretized using an
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O-type mesh. The far-field boundary with symmetry condition is set to 30c to minimize its

undesired effects on the airfoil’s surrounding flow field. The airfoil surface is set to a no-slip

boundary condition. The computations utilize 50×103 cells and 2000 time steps per period.

The grid has 8800 (176 tangentially × 50 radially) cells within one chord-length from the

airfoil surface, and is graded radially and tangentially (from LE/TE to the mid-chord). The

radial grading is such that the distance between the center of the first layer and the airfoil

surface is 0.002c. This choice was made after extensive grid and time step independence

analyses. Fig. 6.1 shows the schematic of the airfoil and the computational domain and Fig.

6.2 shows the schematic of the O-type grid used around the airfoil.

FVM is used to investigate the fluid dynamics of an ellipsoidal airfoil with 2% thick-

Figure 6.1: Schematic of the airfoil and the computational domain.

Figure 6.2: Schematic of the O-type grid around the airfoil.
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ness. The computations utilize a second order central differencing scheme for the convective

and diffusive terms and a second order Euler implicit scheme for temporal discretizations.

The resulting linear system of equations is treated with a Preconditioned Conjugate Gradi-

ent (PCG) solver, and the Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

algorithm is used for the pressure-velocity coupling. The computations are carried out in

OpenFOAM R©, and the motion is based on the Laplace mesh motion algorithm [107].

6.3 Kinematics and equations of motion

The present flapping pattern is a figure-of-eight-like kinematics [5] obtained from a pair of

counter rotating-flapping blade configuration, Fig. 6.3.

Figure 6.3: The schematic of the pair of rotating-flapping blade configuration.

As it can be seen in Fig. 6.3, two blades with span R and distance d from the centerline

are connected to a shaft. The blades counter-rotate about the y axis (θw). The shaft rotates

about the x axis (θg) and its motion is transferred to the blades causing the simultaneous

flapping and rotation of the blades in opposite directions with respect to each other. Using an

appropriate rotation matrix, the 3-D equations of motion can be found in spherical coordinate

system. Specifically, the following equations are obtained for the mid-chord position of each
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blade tip cross section:

XMC =


R sin(θ)

d cos(φ)−R sin(φ) cos(θ)

d sin(φ) +R cos(φ) cos(θ)

 (6.1)

where XMC is the mid-chord position vector, θ = θw = -ωt and φ = θg = ωt (where ω is the

angular velocity).

Using 2-D XMC along with the respective pitching oscillations, the present figure-of-

eight-like kinematics is given by:

x(t) = −R sin(2πft),

y(t) = d cos(2πft)− R

2
sin(4πft), (6.2)

α(t) = α0 − ᾱ sin(2πft+ φ),

where x(t) and y(t) indicate the horizontal and vertical positions of the airfoil mid-chord,

respectively, α(t) is the instantaneous angle of attack, d and R stand for the translational

amplitudes of oscillations (Figs. 6.3 and 6.4), and ᾱ, α0, φ and f indicate the amplitude of

pitching oscillations, mean angle of attack, phase lag/lead, and the frequency of oscillations,

respectively. Figure 6.4 shows the figure-of-eight pattern obtained from Equations 6.2.

As it was mentioned earlier in this chapter, most of the hovering kinematic patterns avail-

able in the literature are elliptical, non-crossing parabolic-like or almost horizontal figure-

of-eight patterns [5], whereas an asymmetrical figure-of-eight flapping kinematics is used in

this study. In the horizontally flat patterns, the vertical motion is negligible compared to

the horizontal portion; hence, it does not contribute to the force generation significantly.

However, in this figure-of-eight the vertical motion plays a substantial role in the generation

of the unsteady forces, Fig. 6.4. This feature of the model allows for the contribution of lift

and drag forces in vertical lift, resulting in more efficient upstrokes [5, 140]. Another aspect
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Figure 6.4: The 2-D kinematic pattern obtained from Equations 6.2.

of this kinematics is the simultaneous rotation and significant vertical translation at the end

of each stroke, which could the vertical lift generation.

6.4 Reference velocity, force and moment coefficients

calculations

The reference velocity in the computations of Re and St is based on the average velocity

during one period of figure-of-eight-like flapping oscillations [88]. This choice is made as the

flapping simulations are performed in a stationary fluid, and it is needed for the calculation

of Re, St, Cl, Cd and Cm. Thus, Uref is defined by the following equation:

Uref =
1

T

∫ T

0

√
u2 + v2dt, (6.3)

where u and v are the mid-chord horizontal and vertical velocity components, respectively,

and T stands for the period of oscillations.

A reference velocity (different from the one used for the nondimensionalization of N-S

equations) is also required for calculation of the unsteady force and moment coefficients. The
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lift (Cl), drag (Cd), and moment (Cm) coefficients are obtained from the following equations:

Cl =
Fy
q̄S

; Cd =
Fx
q̄S

; Cm =
M

q̄Sc
, (6.4)

where Fy and Fx are the forces in y (lift) and x (drag) directions, respectively, and M stands

for the pitching moment about the airfoil mid-chord (Fig. 6.5), S = c×b, where c is the

chord-length and b = 1, and q̄ stands for the mean dynamic pressure defined as:

q̄ =
1

2
ρŪ2 =

1

2
ρ

1

T

∫ T

0

((
∂x(t)

∂t
)2 + (

∂y(t)

∂t
)2)dt, (6.5)

where ρ is the fluid density.

Figure 6.5: Forces and moment on the airfoil.

6.5 Evaluation of the results

Several simulations are performed to obtain the required grid and time step resolutions and

to validate the results using the data available in the literature. The fluid dynamics of an

ellipse performing a flapping motion at Re = 75, also studied by Wang et al. [58] and Bos et

al. [88], is first simulated for various mesh and time step resolutions. The motion is governed
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by the following equations:

x(t) =
A0

2
cos(2πft),

(6.6)

α(t) = α0 + β sin(2πft+ φ),

with A0 = 2.8, f = 0.25, α0 = π/2, β = π/4 and φ = 0.

Four mesh sizes of 12.5×103, 25×103, 50×103 and 100×103 cells with 2000 time steps

in each flapping period, are examined. As shown in Fig. 6.6, the difference between the Cl

calculated from 50×103 and 100×103 cell models is negligible. Hence, the mesh of 50×103

cells is adequately refined to yield accurate solutions.

Figure 6.6: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for flapping
motion of Equations 6.6 and different grid sizes: (-), 12.5×103; (+), 25×103; ×, 50×103; (o),
100×103.

In 50×103 cells model, 176 and 284 cells are used in tangential and radial directions,

respectively. The mesh refinement is done in both tangential and radial directions simul-

taneously. Moreover, 176×50 cells are considered within one-chord length from the airfoil

surface to resolve the generated vortical patterns accurately. After obtaining a grid indepen-
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dent solution, the temporal resolution is also varied for 500, 1000 and 2000 time steps within

a period. Figure 6.7 shows that 2000 time steps are sufficient for a temporally independent

solution. Therefore, the simulation with 50×103 cells and 2000 time steps is found to yield

reasonably accurate solutions.

Figure 6.7: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for flapping
motion of Equations 6.6 and different time steps: (-), 500; (+), 1000; (×), 2000.

Finally, the calculated Cl of the flapping motion governed by Equations 6.6 is compared

with those reported by Wang et al. [58] and Bos et al. [88]. A thin (thickness of 2%)

ellipsoidal airfoil similar to those used in Bos et al. [88] and Wang et al. [58] is used. Figure

6.8 shows that the computed Cl is in good agreement (less than 5% difference in the mean

lift coefficient) with the results available in the literature. The small discrepancy can be

due to the different LE/TE shapes of the ellipse models, or different schemes used for the

discretization of the spatial terms in N-S equations. Wang et al. [58] used a 4th order finite

difference method and stream-vorticity function form of N-S equations. However, the 2nd

order finite volume method with N-S equations are used in the present study.

An extensive parametric study is conducted on a thin (t/c = 0.02) ellipsoidal airfoil

flapping according to Equations 6.2. The effects of α0, ᾱ, φ, St (R and d), Re and x/c

on Cl, Cd, Cm and the vortical patterns surrounding the airfoil are investigated. The base
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Figure 6.8: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) of for the
flapping motion of Equations 6.6: (-), present simulation; (+), Bos et al. [88]; (×), Wang et
al. [58].

case of the present study is when R = 1.4c, d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ =

0, x/c = 0.5 and Re = 75. The parametric studies are performed by changing one of the

variables while keeping the others fixed. The obtained vortical patterns for the base case are

shown in Figs. 6.9(a) through 6.9(i), where (a-i) are shown on the kinematics in Fig. 6.10.

Figure 6.9(a) corresponds to τ = 0.04 when the airfoil is almost at the beginning of the

figure-of-eight motion. As can be seen, two LEVs and one TEV are attached to the left

and right sides of the model, respectively. Figure 6.9(b) shows the flow contours at τ = 0.1,

where the LEV on the right side of the ellipse is mostly detached from the surface but not

from the LE. This explains the increase in Cl (Fig. 6.11) despite having the mostly detached

LEV from the surface. Figure 6.9(c) shows that the previous LEV is separated, but another

LEV is formed. A TEV is also generated which could explain the increase in Cd, Fig. 6.13.

Figure 6.9(d) shows the vorticity contour at τ = 0.25, when the model is at the maximum

pitch (midstroke); hence, Clmax and Cdmax are achieved (refer to Figs. 6.10 and 6.13). At

this instant, both LEV and TEV are strong vortices and attached to the surface. After the

midstroke, both Cl and Cd start to decrease, which is due to the full separation of LEV and
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mostly separated TEV. Figure 6.9(f) shows the contours after the first half cycle. It can

be seen that a LEV and a TEV are formed and the airfoil faces the previously separated

vortices, the so-called wake capturing mechanism, which causes the increase in Cl and Cd,

Figs. 6.11 and 6.13. The second peaks in the lift and drag coefficients are higher than

the first ones, which could be related to the wake-capturing mechanism observed in Figure

6.9(g). The drop seen in Figure 6.11 corresponds to the separation of the LEV and TEV

seen in Figure 6.9(h). After this separation, two LEVs are formed, which result in the minor

peak in Cl, Fig. 6.11.

6.5.1 Effect of the amplitude of pitching oscillations

The effect of the amplitude of pitching oscillations on the airfoil’s flow field is investigated

for ᾱ = 15◦, 30◦, 45◦ and 60◦. Figures 6.11 through 6.15 present the calculated Cl, first

and second Clmax corresponding vortical patterns, Cd and Cm, respectively, revealing the

effects of ᾱ on the airfoil’s fluid dynamics characteristics. It is found, based on the following

discussions, that the higher ᾱ improves the aerodynamic performance C̄l

C̄d
by increasing C̄l

but decreasing C̄d at the same time. It should be mentioned that the mean lift coefficient

(C̄l) is averaged over a complete flapping cycle, but C̄d is the average between the two half

strokes as the airfoil changes its direction at τ = 0.5.

As shown in Fig. 6.11, there are two major maximum lift coefficients (Clmax). The first

Clmax increases at higher values. The percentage increase of Clmax is almost 133% between ᾱ

= 15◦ and 30◦, 45% between ᾱ = 30◦ and 45◦, and 17% between ᾱ = 45◦ and 60◦. Therefore,

it seems that at higher ᾱ, increasing ᾱ has less increasing effect on the first Clmax . This trend

can be explained by investigating the generated vortical patterns around the airfoil.

Figures 6.12(a) through 6.12(d) show the vortices around the airfoil when the first major

Clmax is obtained. As seen in these figures, the LEVs are attached to the LE. The size of

the LEV core (indicated by the black colour) is increased at higher amplitudes of pitching

oscillations ᾱ, meaning that a stronger LEV is formed. Moreover, the LEVs are closer to
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Figure 6.9: Vortical patterns around the airfoil for R = 1.4c, d = 0.7c, f = 0.25, α0 = 90◦,
φ = 0, Re = 75, ᾱ = 45◦: (a) τ = 0.04; (b) τ = 0.1; (c) τ = 0.16; (d) τ = 0.24; (e) τ = 0.4;
(f) τ = 0.54; (g) τ = 0.72; (h) τ = 0.86; (i) τ = 0.94.

the airfoil surface and less convected at higher ᾱ values. The LEV/TEV interaction also

decreases by increasing ᾱ.

Similarly, the second major Clmax increases at higher amplitudes of pitching oscillations.

However, the percentage change of the second Clmax is less than that of the first one. That
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Figure 6.10: Locations of the airfoil on the investigated flapping pattern corresponding to
Fig 6.9.

Figure 6.11: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
d = 0.7c, f = 0.25, α0 = 90◦, φ = 0, Re = 75: (-), ᾱ = 15◦; (+), ᾱ = 30◦; (×), ᾱ = 45◦;
(◦), ᾱ = 60◦.

is, Clmax changes for almost 90% between ᾱ = 15◦ and 30◦, 43% between ᾱ = 30◦ and 45◦,

and 6% between ᾱ = 45◦ and 60◦. It should be mentioned that the second Clmax decreases

between ᾱ = 45◦ and 60◦, which is against the increasing trend seen between the lower ᾱ

values. This behaviour is accompanied with the generation of a minor peak of Clmax at τ

≈ 0.46 and ᾱ = 60◦. Figures 6.13(a) through 6.13(d) show the vortical patterns around
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Figure 6.12: LEV and TEV around the ellipse when the first major maximum lift coefficient
(Clmax) is obtained: (a) ᾱ = 15◦; (b) ᾱ = 30◦; (c) ᾱ = 45◦; (d) ᾱ = 60◦.

the airfoil when the second major Clmax is obtained. As observed, when increases, LEVs

turn out to be closer to the airfoil surface and the convection of LEV into the downstream

wake decreases. TEVs also show a similar behaviour, meaning that their size decreases and

they are less convected into the downstream wake at the higher ᾱ. Moreover, the LEV is

strengthened when ᾱ changes from 15◦ to 45◦, but is weakened from ᾱ = 45◦ to 60◦. The

weakened LEV at ᾱ = 60◦ could be the main cause for smaller second Clmax than that of ᾱ

= 45◦.

Figure 6.13: LEV and TEV around the ellipse when the second major maximum lift coeffi-
cient (Clmax) is obtained: (a) ᾱ = 15◦; (b) ᾱ = 30◦; (c) ᾱ = 45◦; (d) ᾱ = 60◦.

Figure 6.14 shows the effect of ᾱ on the drag coefficient (Cd). The amplitude of pitching

oscillations has a great influence on the first and second Cdmax , however the observed effect

is less than those on the first and second Clmax . As shown, when ᾱ increases from 15◦ to

30◦, the first Cdmax increases about 8%, but this trend is inversed at the higher ᾱ values.

Moreover, the percentage change of the Cdmax values is increased as ᾱ increases. The absolute

value of the second major Cdmax is decreased when ᾱ increases. This effect is accompanied
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by an induced lag in the results. It means that the second Cdmax is obtained at τ = 0.68,

0.71, 0.72 and 0.73 for ᾱ = 15◦, 30◦, 45◦ and 60◦, respectively. Higher ᾱ also generates a

minor peak in the Cd results which is absent for ᾱ = 15◦, but presents at ᾱ = 30◦, 45◦ and

60◦ at τ = 0.54, 0.5 and 0.48, respectively.

Figure 6.14: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
d = 0.7c, f = 0.25, α0 = 90◦, φ = 0, Re = 75: (-), ᾱ = 15◦; (+), ᾱ = 30◦; (×), ᾱ = 45◦;
(◦), ᾱ = 60◦.

Figure 6.15 also shows the variation of the pitching moment coefficient (Cm) with respect

to the ᾱ variations. The Cm major peaks variations are qualitatively similar to those ob-

served in Fig. 6.11.

The mean lift and drag coefficients for the investigated amplitudes of pitching oscillations

are calculated and presented in Table 6.1. The mean drag coefficient (C̄d) is the average

between the first and second half stroke mean drag coefficients.

6.5.2 Effect of the phase angle

The influence of the phase angle between pitching and plunging motions (φ) on the fluid

flow around the airfoil is investigated for φ = - 30◦ (delayed), φ = 0 (symmetrical) and φ =
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Figure 6.15: Instantaneous pitching moment coefficient (Cm) versus nondimensional time
(τ) for R = 1.4c, d = 0.7c, f = 0.25, α0 = 90◦, φ = 0, Re = 75: (-), ᾱ = 15◦; (+), ᾱ = 30◦;
(×), ᾱ = 45◦; (◦), ᾱ = 60◦.

Table 6.1: Mean lift and drag coefficients (C̄l and C̄d) for the considered amplitudes of
pitching oscillations (ᾱ).

ᾱ C̄l C̄dfirsthalf
C̄dsecondhalf

C̄d C̄l/C̄d
15◦ 0.253 1.61 -2.999 2.305 0.11
30◦ 0.744 1.491 -2.586 2.038 0.365
45◦ 1.132 1.125 -2.076 1.601 0.71
60◦ 1.258 0.857 -1.444 1.15 1.1

30◦ (advanced). Based on the following discussions, it is found that the best aerodynamic

performance ( C̄l

C̄d
) is achieved in symmetrical rotations (φ = 0). The calculated performance

is 0.237, 0.71, and 0.614 for φ = - 30◦, 0, and 30◦, respectively. Figure 6.16 presents Cl versus

τ for these phase angles. As can be seen, the first Clmax decreases from Clmax ≈ 4.53 at φ =

-30◦ to Clmax ≈ 4.03 at φ = 0. Similarly, the first Clmax decreases from Clmax ≈ 4.03 at φ =

0 to Clmax ≈ 1.89 at φ = 30◦. Hence, the percentage decrease from symmetrical to advanced

cases (53%) is much higher than that from delayed to symmetrical rotations (11%).

On the other hand, φ has an inverse effect on the second major Clmax . That is, the second

Clmax increases from Clmax ≈ 1.29 at φ = -30◦ to Clmax ≈ 4.82 at φ = 0 and to Clmax ≈ 8.02
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Figure 6.16: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦ and Re = 75: (-), φ = -30◦; (+), φ = 0; (×), φ = 30◦.

at φ = 30◦. It means that φ increases Clmax by 274% from delayed to symmetric cases and

by 66% from symmetric to advanced rotations. Hence, φ has a stronger effect on the second

major Clmax than on the first one. Moreover, the second major Clmax is obtained at τ ≈ 0.75,

0.72 and 0.71 for φ = -30◦, 0 and 30◦, respectively, meaning that higher φ induces a lead in

the second major Clmax .

The first and second Clmax corresponding vortical patterns are shown in Figs. 6.17 and

6.18, respectively. As can be seen in Fig. 6.17, when φ increases from φ = -30◦ to 0 (Figs.

6.17(a) and 6.17(b)) or from φ = 0 to 30◦ (Figs. 6.17(b) and 6.17(c)) both LEV and TEV

are closer to the airfoil surface, less convected into the downstream wake and less interacted

with each other. This behavior could be related to the decrease of the first Clmax previously

seen in Figure 6.16. However, the LEVs are strengthened by increasing φ, which is the major

cause of the increased second major lift coefficient, Fig. 6.18.

Figure 6.19 shows Cd versus τ for φ = -30◦, 0 and 30◦. It can be seen that increasing φ

increases the first major Cdmax , but it has an inverse effect on the magnitude of the second

major peak. Fig. 6.18 also shows the vortical patterns around the airfoil when the second

major Clmax is obtained. As can be seen, the airfoil faces its previously separated vortex
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Figure 6.17: Vorticity contours at the first maximum lift coefficient (Clmax) for R = 1.4c, d
= 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦ and Re = 75: (a) φ = -30◦; (b) φ = 0; (c) φ = 30◦.

Figure 6.18: Vorticity contours at the second maximum lift coefficient (Clmax) for R = 1.4c,
d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦ and Re = 75: (a) φ = -30◦; (b) φ = 0; (c) φ = 30◦.

(wake-capturing mechanism) around TE in Fig. 6.18(a). However, Figs. 6.18(b) and 6.18(c)

show that this vortex is more deflected away from TE as φ increases. Moreover, it seems

that the TEV strength is just slightly different in Figs. 6.18(a) through 6.18(c), but it is

more deflected into the downstream wake. These observations could be the reason for the

decreased second Cdmax . Moreover, increasing φ from 0 to 30◦ induces another peak in Cd

around τ = 0.4 (Fig. 6.19).

Fig. 6.20 shows the variation of the moment coefficient (Cm) versus τ . The first maximum

Cm is slightly different between φ = -30◦ and 0. This could be explained by comparing Figs.

6.17(a) and 6.17(b) where both LEV and TEV are strengthened simultaneously. However,

the magnitude of the first maximum Cm is decreased at φ = 30◦. It can be seen from Fig.

6.17(c) that TEV is closer to the airfoil surface than that of Fig. 6.17(b), which could result

in the decreased magnitude of moment coefficient. Figure 6.20 also shows that the magni-
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Figure 6.19: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for R =
1.4c, d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦ and Re = 75: (-), φ = -30◦; (+), φ = 0; (×), φ
= 30◦.

tude of the second major moment coefficient is increased at higher φ values. This could be

explained by Figs. 6.18(a)-6.18(c). The LEVs are strengthened significantly and are closer

to the airfoil surface as φ increases; however, the strength of TEVs does not increase as that

of LEVs, and TEVs are more deflected into the downstream wake when φ increases.

The mean lift and drag coefficients as well as the aerodynamic performance are presented

in Table 6.2. As can be seen, the highest performance is obtained for the symmetric (φ =

0) flapping motion.

Table 6.2: Mean lift and drag coefficients (C̄l and C̄d) for the considered phase angles (φ).

φ C̄l C̄dfirsthalf
C̄dsecondhalf

C̄d
C̄l

C̄d

-30◦ 0.331 0.755 -2.035 1.395 0.237
0 1.132 1.125 -2.076 1.601 0.71

30◦ 1.347 2.571 -1.818 2.195 0.614
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Figure 6.20: Instantaneous pitching moment coefficient (Cm) versus nondimensional time
(τ) for R = 1.4c, d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦ and Re = 75: (-), φ = -30◦; (+), φ
= 0; (×), φ = 30◦.

6.5.3 Effect of the mean angle of attack

The effect of the mean angle of attack (α0) on the lift coefficient (Cl) is investigated for α0

= 45◦, 60◦ and 90◦ and presented in Fig. 6.21. As shown, the instantaneous Cl at α0 =

45◦ has two peaks at τ ≈ 0.1 and 0.25. Changing α0 from 45◦ to 60◦ causes the first peak

to disappear and increases the value of the second Clmax by 110% (from Clmax = 0.57 to

1.3). Furthermore, increasing α0 from 60◦ to 90◦, increases the first Clmax by 212% (from

Clmax = 1.3 to 4.03). Hence, α0 has more influence at its higher values (for the investigated

kinematics). Conversely, the mean angle of attack has an inverse effect on the second Clmax .

That is, Clmax decreases from 8.32 to 6.46 when α0 increases from 45◦ to 60◦. This effect is

associated with a lag, i.e. the second Clmax for α0 = 45◦, 60◦ and 90◦ are obtained at τ ≈

0.66, 0.71 and 0.72, respectively. Mean angle of attack (α0) also has a great influence on the

second valley of Cl at the end of the flapping stroke.

Figures 6.22(a) through 6.22(c) show the vortical patterns around the airfoil when the

first major Clmax is obtained. As can be seen, the size of the LEV core is increased at higher

α0. This change is a measure of the increased LEV strength. Moreover, by increasing α0
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Figure 6.21: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
d = 0.7c, f = 0.25, ᾱ = 45◦, φ = 0 and Re = 75: (-), α0 = 45◦; (+), α0 = 60◦; (×), α0 =
90◦.

the LEV is deflected towards the airfoil surface. The strength of TEVs, however, does not

change significantly, but TEVs are also closer to the airfoil surface. Figs. 6.23(a)-6.23(c)

show the vortices around the airfoil when the second major Clmax is obtained. As observed,

the LEVs are weakened for higher α0, which is the main reason for the decreased second

Clmax .

Figure 6.22: Vorticity contours at the first maximum lift coefficient (Clmax) for R = 1.4c, d
= 0.7c, f = 0.25, ᾱ = 45◦, φ = 0 and Re = 75: (a) α0 = 45◦; (b) α0 = 60◦; (c) α0 = 90◦.
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Figure 6.23: Vorticity contours at the second maximum lift coefficient (Clmax) for R = 1.4c,
d = 0.7c, f = 0.25, ᾱ = 45◦, φ = 0 and Re = 75: (a) α0 = 45◦; (b) α0 = 60◦; (c) α0 = 90◦.

6.5.4 Effect of the Reynolds number

Effect of the Reynolds number (Re) on the airfoil’s fluid dynamic characteristics is investi-

gated for Re = 37.5, 75 and 150. It is observed that Re does not change the instantaneous

force and moment coefficients significantly, and increasing Re slightly increases the aerody-

namic performance. Figure 6.24 shows Cl versus τ for the investigated Re range. As shown,

Re does not have any noticeable effect on the first Clmax . It changes the first Clmax from 3.72

at Re = 37.5 to 4.03 at Re = 75. The effect is even less when Re changes from 75 to 150,

where the first Clmax remains almost unchanged. Similarly, the second Clmax increases from

4.03 at Re = 37.5 to 4.98 at Re = 75, and remains unchanged between Re = 75 and 150.

However, Re has more influence on the second Clmax . Despite the negligible influence of Re

on the major Clmax , the minor peak at the end of the flapping period changes considerably

with Re.

Figures 6.25(a) and 6.25(b) show first major Clmax corresponding vortical patterns for

Re = 37.5 and 75, respectively. The vortices at Re = 150 are not shown as they are very

similar to those at Re = 75. It can be seen that the size of both LEV and TEV cores is

increased by increasing Re. This trend is also observed in Figs. 6.25(c) and 6.25(d), showing

the respective vortices at second major Clmax . Therefore, increasing Re from Re = 37.5 to

75 strengthens both LEV and TEV, leading to the increased first and second Clmax .

The airfoil’s pitching moment coefficients at the investigated Re range are shown in Fig.
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Figure 6.24: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0: (-), Re = 37.5; (+), Re = 75; (×), Re = 150.

Figure 6.25: Vorticity contours for R = 1.4c, d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0:
(a) first Clmax at Re = 37.5; (b) first Clmax at Re = 75; (c) second Clmax at Re = 37.5; (d)
second Clmax at Re = 75.

6.26. As shown, the effect of Re on Cm peaks is more than that on the Cl peaks.

The mean lift and drag coefficients as well as the aerodynamic performance for the

considered Reynolds numbers are presented in Table 6.3. As can be seen, higher Re increases

the aerodynamic performance.

6.5.5 Effect of Strouhal Number

The effect of the Strouhal number (St) on Cl and Cd is investigated by changing the vertical

and horizontal amplitudes of translational oscillations (R and d). Based on the following
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Figure 6.26: Instantaneous pitching moment coefficient (Cm) versus nondimensional time
(τ) for R = 1.4c, d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0: (-), Re = 37.5; (+), Re =
75; (×), Re = 150.

Table 6.3: Mean lift and drag coefficients (C̄l and C̄d) for the considered Re.

Re C̄l C̄dfirsthalf
C̄dsecondhalf

C̄d
C̄l

C̄d

37.5 0.914 1.234 -2.171 1.702 0.536
75 1.132 1.125 -2.076 1.601 0.71
150 1.287 1.091 -2.089 1.589 0.81

discussions, it is found that St does not have a significant effect on the aerodynamic per-

formance. That is, C̄l

C̄d
is 0.664, 0.71 and 0.672 for St = 0.116, 0.113 and 0.11. Figure 6.27

shows Cl versus τ for St = 0.116, 0.113 and 0.110 corresponding to d = 0.4c, 0.7c and c,

respectively.

As shown, the first Clmax increases from 3.82 at St = 0.116 to 4.03 at St = 0.113. This

increase is associated with a lag in the Clmax . That is, Clmax is achieved at τ ≈ 0.22 for St =

0.116 and at τ ≈ 0.23 for St = 0.113. Conversely, the peak decreases from 4.03 to 3.7 for St =

0.113 to 0.110; however, the induced lag is still observed, and the first Clmax is obtained at τ

≈ 0.24 for St = 0.110. The increasing/decreasing trend is also observed for the second Clmax ,

but the lag is converted to a lead, i.e. the second Clmax is obtained at τ ≈ 0.73, 0.72 and
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Figure 6.27: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0 and Re = 75: (-), St = 0.116; (+), St = 0.113; (×), St
= 0.110.

0.71 for St = 0.116, 0.113 and 0.110, respectively. St also has similar effects on Cd (Fig. 6.28).

Figure 6.28: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for R =
1.4c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0 and Re = 75: (-), St = 0.116; (+), St = 0.113;
(×), St = 0.110.

The mean lift and drag coefficients as well as the aerodynamic performance for the
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considered Strouhal numbers (based on d) are presented in Table 6.4.

Table 6.4: Mean lift and drag coefficients (C̄l and C̄d) for the considered St.

St C̄l C̄dfirsthalf
C̄dsecondhalf

C̄d
C̄l

C̄d

0.116 1.051 1.286 -1.877 1.582 0.664
0.113 1.132 1.125 -2.076 1.601 0.71
0.11 0.982 0.888 -2.038 1.463 0.672

The effect of St is also investigated by changing R from c to 1.4c corresponding to St =

0.153 and 0.113, respectively. As shown in Fig. 6.29, the first Clmax decreases from 6.21 at

τ ≈ 0.22 to 4.03 at τ ≈ 0.23. The second major Clmax also decreases from Clmax = 5.62 at

St = 0.153 to Clmax = 4.92 at St = 0.113. This trend is associated with a lead observed in

the data.

Figure 6.29: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for d = 0.7c,
f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0 and Re = 75: (-), St = 0.153; (+), St = 0.113.

6.5.6 Effect of the pitching axis location

The effect of the pitching axis location on the airfoil’s Cl and Cm is investigated, Figs. 6.30

and 6.31. Two locations x/c = 0.25 and 0.5, measured from the airfoil LE, are considered.
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As shown in Figs. 6.30 and 6.31, the variation of x/c affects the minor peaks of Cl and Cm,

but it has negligible effects on the major peaks.

Figure 6.30: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0 and Re = 75: (-), x/c = 0.25; (+), x/c = 0.5.

Figure 6.31: Instantaneous pitching moment coefficient (Cm) versus nondimensional time
(τ) for R = 1.4c, d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0 and Re = 75: (-), x/c =
0.25; (+), x/c = 0.5.
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6.6 Summary and conclusion

CFD simulations of a flapping airfoil in LRN flow are conducted using 2-D N-S equations

based on the FVM approach. An extensive parametric study is performed and the effects

of flow and system parameters on the lift, drag and pitching moment coefficients as well

as the vortical patterns around the airfoil are investigated. It is observed that the pitching

amplitude of oscillations, phase angle, and mean angle of attack affect the force and moment

coefficients noticeably. They change the peak values of the force and moment coefficients.

The strength of the vortical patterns around the model is also affected by the flow and sys-

tem parameters, and it is shown that the LEV/TEV interactions as well as their convection

into the downstream wake of the airfoil are also dependent on the investigated parameters.

Increasing the amplitude of pitching oscillations increases the aerodynamic performance.

Moreover, it is shown that the best aerodynamic performance is obtained in the symmetri-

cal oscillations. Although Re and St are of great importance to the unsteady forces, their

influence turn out to be of secondary importance to the fluid dynamics compared to those

of the amplitude of pitching oscillations, phase angle and mean angle of attack. Increasing

Re slightly increases the aerodynamic performance, but St (based on the amplitude of trans-

lational oscillations) does not have any noticeable effect on the performance (at least for

the investigated magnitudes). The pitching axis location seems to influence only the minor

peaks of the force and moment coefficients. The results from this 2-D study may provide

valuable information about the respective 3-D figure-of-eight like flapping wing [58]. The

present study reveals important information about influential flow and system parameters

and their effects on the performance characteristics. The present results may be used in

the respective 3-D future studies, when the 2-D and 3-D results will be compared and the

importance of 3-D effects and vortical interactions will be investigated. In the next chapter,

the unsteady aerodynamics of a pair of pitching airfoils is thoroughly investigated.
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Chapter 7

The unsteady aerodynamics of a pair

of pitching airfoils

The objective of the present chapter is to investigate the LRN fluid dynamics of two airfoils

in pitching oscillations. The airfoils are in a tandem configuration and perform in-phase

oscillations. Navier-Stokes (NS) equations with Finite Volume Method (FVM) are used

and the instantaneous aerodynamic force coefficients are analyzed. The effect of amplitude

of pitching oscillations and Re are investigated on the fluid forces. It is found that the

amplitude of pitching oscillations is of primary importance to the fluid forces, affecting them

both quantitatively and qualitatively. As it will be discussed in details in the following

sections, Re is found to be of secondary importance compared to the effects of the amplitude

of pitching oscillations. It mainly affects the magnitude of the forces.

7.1 Introduction

Pitching oscillations occur frequently in a wide range of applications. These oscillations can

be in the form of single oscillating bodies, such as the oscillations of an aircraft wing, or multi-

pitching bodies such as the relative pitching oscillations between compressor blades. The

oscillations could also be destructive to the fluid dynamics and structure, such as wing flut-
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ter, or assistive in terms of the force generation. For example, Low-Reynolds-Number (LRN)

flapping motions consist of pitching and plunging portions. These unsteady conditions can

occur between several existing airfoils/blades, and their interaction can increase/decrease

the fluid forces, depending on the governing conditions.

Unfortunately, less attention has been paid to LRN multi-bodies under both pitching and

plunging motions. A clear understanding of the fluid dynamics of multi-oscillating bodies,

their interaction, and the effects of major parameters on their performance can result in

improved designs. Classical theoretical techniques such as Theodorsen’s method yield ac-

ceptable results only for small displacements and single bodies [8]. CFD simulations stand

out as the most common means of solution method in LRN flows. Certain numerical studies

have been conducted on multi-bodies oscillations and the effects of a number of unsteady

flow and system parameters on their aerodynamic characteristics were investigated [62], [97]

and [102].

The objective of the present chapter is to investigate the instantaneous unsteady force

coefficients of a pair of airfoils under harmonically pitching oscillations by developing gener-

alized grid interface (GGI) method to multi-body rotations [132]. The airfoils oscillate with

the same phase angle in a tandem configuration. Computational Fluid Dynamics (CFD)

is used to solve the 2D Navier-Stokes (NS) governing equations discretized based on Finite

Volume Method (FVM). The effects of the amplitude of pitching oscillations and Re on the

instantaneous unsteady forces are explored.

7.2 Numerical simulation method

The flow field of a pair of pitching airfoils (the centre-to-centre spacing is 4c) is governed

by Equations 3.7. The Reynolds number (Re) defined in Equations 3.10 is based on the

freestream velocity (U∞). The schematic of the airfoils in the computational domain is

shown in Fig 7.1.
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Figure 7.1: Schematic of the computational domain and the pitching airfoils.

The fluid dynamics of two flat plates in tandem configuration is investigated based on

FVM and N-S equations. The computations are based on a second order central differencing

scheme for convective and diffusive terms and a second order Euler implicit scheme for tem-

poral discretization. The resulting linear system of equations is treated with Preconditioned

Conjugate Gradient (PCG) solvers, and the Pressure Implicit and Splitting of Operators

(PISO) algorithm is used for the pressure-velocity coupling. The kinematics of the airfoils

is governed by:

α(t) = α0 + θ cos(2πft+ φ), (7.1)

where α(t) is the instantaneous angle of attack, α0 and θ are the mean angle of attack and

amplitude of oscillations, respectively, and φ is the phase lead/lag. In the present study,

α0 = 0, φ = 0 and f = 2 Hz. The mesh motion is performed using the Generalized Grid

Interface (GGI) algorithm [132], which is extended to perform multi-body rotations.

7.3 Evaluation of the results

The grid sensitivity analysis is first conducted using three mesh sizes of 23, 47, and 94 (×103)

cells, having 2000 time steps for the temporal resolution. Figure 7.2 shows that 47×103 is

reasonably refined to yield grid independent solutions. Different temporal resolutions (500,

1000, 2000, and 4000 time steps in a period) are also examined for a mesh size of 47×103
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cells. The results indicate that the temporal resolution of 2000 is enough to ensure temporally

independent solutions. Hence, the simulations are conducted for 47×103 cells and 2000 time

steps.

Figure 7.2: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for Re = 50
and θ = 15◦: (+), 23×103; (o), 47×103, (×), 94×103.

Due to the lack of published studies on multi-pitching airfoils, the pitching oscillations

of a single NACA0012 airfoil is first simulated. As mentioned above, the mesh motion is

based on GGI algorithm, which is extended to multi-body rotations. Therefore, the accuracy

of the simulations using GGI is investigated following the study reported in [68]. Akbari

and Price [68] studied the pitching oscillation of a single NACA0012 airfoil at Re = 3000,

governed by the following equation:

α(t) = α0 + A cos(2πft), (7.2)

with α0 = 15◦, A = 10◦ and f = 0.08. The simulated Cd (Fig. 7.3) is within good agreement

with that of Akbari and Price [68]. The difference could be attributed to the different LE/TE

shapes of the airfoils considered in the two studies.
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Figure 7.3: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for Re =
3000 following Equation 7.2, (+): present simulation, (×): Akbari and Price [68].

7.4 Results and discussion

Two flat plates with t/c = 10% and chord-length c perform harmonic pitching oscillations

according to Equation 2. The airfoils are in a tandem configuration and oscillate with the

same phase angle (in-phase oscillations). The distance between the airfoil’s centers is 4c.

The so-called right airfoil oscillates in the downstream wake of the so-called left airfoil. In the

following paragraphs, the difference between the unsteady forces of the left and right airfoils

in some investigated cases is compared. Then, the effects of θ and Re on the instantaneous

fluid forces and moment are discussed. The amplitude of pitching oscillations (θ) is varied

for θ = 15◦, 30◦ and 45◦, and Re is varied for Re = 50, 75 and 100. For the sake of brevity,

comparison between the Cl and Cd of the two airfoils is conducted for θ = 15◦, 30◦ and 45◦

when Re = 100. Figure 7.4 shows Cl and Cd of the two airfoils when Re = 100 and θ = 15◦.

As can be seen, both lift and drag coefficients have a sinusoidal pattern and the difference

between the force coefficients is small. The discrepancy is mainly around Clmax and Cdmax .

The difference between the forces coefficients (Figure 7.5) turns out to be larger at Re = 100

and θ = 30◦, and it is not just limited to the close proximity of the maximum lift and drag
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coefficients. It should be mentioned that Cl oscillates with the forcing reduced frequency (k

= πfc
U∞

), but Cd oscillates with twice the frequency, as expected. Increasing θ from 30◦ to

45◦, increases the observed difference between the lift and drag coefficients of the left and

right airfoils (Figure 7.6). This is mainly due to the stronger vortices generated around each

airfoil and the interaction between the vortical patterns of two airfoils. It should also be

mentioned that the difference is larger during downstorkes, i.e., 0.5 < τ , Fig. 7.6.

Figure 7.4: Instantaneous lift and drag coefficients (Cl and Cd) versus nondimensional time
(τ) for Re = 100 and θ = 15◦, (+ and ×), left airfoil; (o and �), right airfoil.

7.4.1 Effect of amplitude of pitching oscillations

The effect of the amplitude of pitching oscillations (θ) is investigated for θ = 15◦, 30◦

and 45◦. Based on the following figures and explanations, it is found that the amplitude

of pitching oscillation affects the instantaneous forces and moments both quantitatively

and qualitatively, and is of primary importance to fluid dynamic characteristics of pitching

airfoils. Figure 7.7 shows Cl versus non-dimensional time of the right airfoil when Re = 50

and θ = 15◦, 30◦ and 45◦. As can be seen, the maximum lift coefficient (Clmax) is increased

when θ increases. The lift coefficients at θ = 15◦ have the least fluctuations which means

the strength of the generated vortices is less than those at θ = 30◦ and 45◦, and lower vortex
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Figure 7.5: Instantaneous lift and drag coefficients (Cl and Cd) versus nondimensional time
(τ) for Re = 100 and θ = 30◦, (+ and ×), left airfoil; (o and �), right airfoil.

Figure 7.6: Instantaneous lift and drag coefficients (Cl and Cd) versus nondimensional time
(τ) for Re = 100 and θ = 45◦, (+ and ×), left airfoil; (o and �), right airfoil.

interaction has occurred between two airfoils. Increasing θ causes more fluctuations in the

lift coefficients at θ = 30◦ and 45◦.

Table 7.1 shows the magnitude of C̄l and C̄d for the up- and down-strokes for each

investigated θ at Re = 50.

Figure 7.8 shows Cl versus non-dimensional time when Re = 75 and θ = 15◦, 30◦ and
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Figure 7.7: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for right airfoil,
Re = 50, (+), θ = 15◦; (o), θ = 30◦; (×), θ = 45◦.

Table 7.1: Mean lift and drag coefficients (C̄l and C̄d) for the considered amplitudes of
pitching oscillations (θ) when Re = 50.

θ Upstroke Downstroke

15◦ |C̄l| = 0.696, |C̄d| = 0.532 |C̄l| = 0.88, |C̄d| = 0.524
30◦ |C̄l| = 2.226, |C̄d| = 0.788 |C̄l| = 1.723, |C̄d| = 0.687
45◦ |C̄l| = 5.932, |C̄d| = 0.148 |C̄l| = 5.731, |C̄d| = 1.708

45◦. Increasing θ increases Clmax noticeably. This increase is associated with significant lag.

That is, Clmax at θ = 15◦, 30◦ and 45◦ is obtained at τ = 0.54, 0.6 and 0.9, respectively.

It should also be mentioned that the observed valley (τ = 0.43) in Fig. 7.8 at θ = 45◦

corresponds to the so-called figure-of-eight phenomenon [10], after which the upstroke lift

coefficients are bigger than those of the downstroke (at the same angle of attack). Fig. 7.9

shows the drag coefficient (Cd) versus τ for Re = 75 and θ = 15◦, 30◦ and 45◦. As shown, θ

has significant effects on the magnitude and behavior of drag coefficients.

Table 7.2 shows the magnitude of C̄l and C̄d for the up- and down-strokes for each

investigated θ at Re = 75. It can be seen that higher θ increases C̄l and C̄d in each half

stroke.

Figs. 7.10- 7.12 show Cl, Cd and Cm, respectively, versus nondimensional time when Re
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Figure 7.8: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for right airfoil,
Re = 75: (+), θ = 15◦; (o), θ = 30◦; (×), θ = 45◦.

Figure 7.9: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for right
airfoil, Re = 75: (+), θ = 15◦; (o), θ = 30◦; (×), θ = 45◦.

Table 7.2: Mean lift and drag coefficients (C̄l and C̄d) for the considered amplitudes of
pitching oscillations (θ) when Re = 75.

θ Upstroke Downstroke

15◦ |C̄l| = 0.798, |C̄d| = 0.444 |C̄l| = 0.631, |C̄d| = 0.428
30◦ |C̄l| = 3.161, |C̄d| = 0.706 |C̄l| = 2.952, |C̄d| = 0.748
45◦ |C̄l| = 6.268, |C̄d| = 1.233 |C̄l| = 10.743, |C̄d| = 1.003
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= 100 and θ = 15◦, 30◦ and 45◦. Similar effects as those seen in the previous figures are

observed here.

Table 7.3 shows the magnitude of C̄l and C̄d for the up- and down-strokes for each

Figure 7.10: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for right
airfoil, Re = 100: (+), θ = 15◦; (o), θ = 30◦; (×), θ = 45◦.

Figure 7.11: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for right
airfoil, Re = 100: (+), θ = 15◦; (o), θ = 30◦; (×), θ = 45◦.

investigated θ at Re = 100.
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Figure 7.12: Instantaneous pitching moment coefficient (Cm) versus nondimensional time
(τ) for right airfoil, Re = 100: (+), θ = 15◦; (o), θ = 30◦; (×), θ = 45◦.

Table 7.3: Mean lift and drag coefficients (C̄l and C̄d) for the considered amplitudes of
pitching oscillations (θ) when Re = 100.

θ Upstroke Downstroke

15◦ |C̄l| = 0.821, |C̄d| = 0.405 |C̄l| = 0.607, |C̄d| = 0.419
30◦ |C̄l| = 2.346, |C̄d| = 0.276 |C̄l| = 4.013, |C̄d| = 1.377
45◦ |C̄l| = 6.347, |C̄d| = 0.903 |C̄l| = 15.388, |C̄d| = 2.545

7.4.2 Effect of Reynolds number

The effect of Reynolds number (Re) on the unsteady forces is investigated for Re = 50,

75 and 100. Based on the following figures and explanations, it is found that Re is of

secondary importance to the fluid dynamic characteristics of a pitching airfoil compared to

the importance of the amplitude of pitching oscillations.

Figure 7.13 shows Cl versus τ for θ = 30◦ and Re = 50, 75 and 100. As can be seen, Re

does not change the magnitude and the oscillatory pattern of Cl noticeably, when compared

to the effects of the amplitude of pitching oscillations. The drag coefficient of the right airfoil

is also shown in Fig. 7.14. Increasing Re from 50 to 75 does not have any noticeable effect

on Cd, but increasing Re from 75 to 100 changes both first and second Cdmax . These changes

are associated with lead/lag, Fig. 7.14.
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Table 7.4 shows the magnitude of C̄l and C̄d for the up- and down-strokes for each

Figure 7.13: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for right airfoil
when θ = 30◦: (+), Re = 50; (o), Re = 75; (×), Re = 100.

Figure 7.14: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for right
airfoil when θ = 30◦: (+), Re = 50; (o), Re = 75; (×), Re = 100.

investigated Re at θ = 30◦.

Figures 7.15 and 7.16 show Cl and Cd versus τ , respectively, for θ = 45◦ and Re = 50,

75 and 100. As shown, Re does not have any effect on the pattern of the unsteady force

126



Table 7.4: Mean lift and drag coefficients (C̄l and C̄d) for the considered Re when θ = 30◦.

Re Upstroke Downstroke

50 |C̄l| = 2.226, |C̄d| = 0.788 |C̄l| = 1.723, |C̄d| = 0.687
75 |C̄l| = 3.161, |C̄d| = 0.706 |C̄l| = 2.952, |C̄d| = 0.748
100 |C̄l| = 2.346, |C̄d| = 0.276 |C̄l| = 4.013, |C̄d| = 1.377

coefficients, but it changes the magnitude of the maximum unsteady forces.

Table 7.5 shows the magnitude of C̄l and C̄d for the up- and down-strokes for each

Figure 7.15: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for right airfoil
when θ = 45◦: (+), Re = 50; (o), Re = 75; (×), Re = 100.

investigated Re at θ = 45◦.

Table 7.5: Mean lift and drag coefficients (C̄l and C̄d) for the considered Re when θ = 45◦.

Re Upstroke Downstroke

50 |C̄l| = 5.932, |C̄d| = 0.148 |C̄l| = 5.731, |C̄d| = 1.708
75 |C̄l| = 6.268, |C̄d| = 1.233 |C̄l| = 10.743, |C̄d| = 1.003
100 |C̄l| = 6.347, |C̄d| = 0.903 |C̄l| = 15.388, |C̄d| = 2.545
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Figure 7.16: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for right
airfoil when θ = 45◦: (+), Re = 50; (o), Re = 75; (×), Re = 100.

7.5 Summary and conclusion

A numerical study is conducted to investigate the instantaneous unsteady forces of a pair

of flat plates in LRN flow regime by extending GGI technique [132] to handle multi body

rotations. The airfoils perform pitching oscillations with the same phase angle, and are in

a tandem configuration. The simulations are based on NS equations and FVM method.

As shown, the interaction between the two airfoil’s vortices changes the magnitude of the

unsteady forces. The effects of amplitude of pitching oscillations and Re on the lift, drag,

and moment coefficients are also investigated. It is shown that the amplitude of pitching

oscillation changes the instantaneous force coefficients both quantitatively and qualitatively.

However, Re is shown to be of secondary importance compared to the amplitude of pitching

oscillations. Re changes the magnitude of the force coefficients, but does not have any

significant effect on the pattern of the calculated forces. In the following chapter, the force

signatures of a pair of plunging airfoils are investigated.
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Chapter 8

On the force signatures of a pair of

plunging airfoils

The unsteady aerodynamics of a pair of multi-plunging airfoils is studied using Computa-

tional Fluid Dynamics (CFD) based on the Finite Volume Method (FVM) and dynamic

layering mesh motion algorithm. The two-dimensional unsteady, incompressible Navier-

Stokes (N-S) equations are used as the governing equations while the thin ellipsoidal airfoils,

commonly used in Micro Aerial Vehicles (MAVs), perform harmonic plunging motion. The

instantaneous lift and drag coefficients are examined in detail and the effects of Reynolds

number, frequency and amplitude of oscillations, and the airfoils’ centre-to-centre spacing

on the force coefficients are investigated. It is shown that the force coefficients of each of

the plunging airfoils differ noticeably from those of a single plunging airfoil both quantita-

tively and qualitatively, showing the significance of the airfoil-airfoil interaction. It is also

observed that the investigated parameters affect the magnitude and characteristics of the

instantaneous lift and drag coefficients. There is an optimum frequency of oscillations, re-

sulting in the highest thrust generation between the investigated frequencies. The amplitude

of oscillations increases the aerodynamic performance by increasing the mean lift coefficient

but decreasing the mean drag coefficient at the same time. Re effects on the lift coefficient
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are negligible; however, it is shown that increasing Re causes the airfoils to generate more

thrust compared to the lower Reynolds numbers.

8.1 Introduction

In some applications, multi-plunging bodies exist where the simultaneous transverse oscil-

lations change the aerodynamics and vortical patterns, compared to the characteristics of a

single plunging body, and adds to the complexity of the corresponding fluid flow. Kaya et

al. [60] showed that the aerodynamics of multi-flapping airfoils is significantly different from

single cases in terms of the generated thrust. The tube bundle of a heat exchanger, counter-

rotating propellers, wings of a MAV or blades of a wind turbine are some examples in which

multi-plunging oscillations could occur. To the best of author’s knowledge, the studies on

multi-plunging cylinders and airfoils are scarce and those existing are mostly on tandem and

staggered cylinder arrangements. Mahir and Rockwell [61] and [62] experimented on the

wakes of tandem/staggered cylinder arrangements at Re = 160. In their study, the cylinder

system was subjected to forced excitation with different frequencies and phase angles be-

tween the oscillating cylinders. They observed that the generated vortical patterns and their

mechanisms vary significantly with respect to the excitation frequency. Assi et al. [63] also

carried out experiments of two tandem cylinders under flow-induced oscillations. Chern et

al. [96] simulated the flow patterns of a pair of side-by-side squared cylinders. They used har-

monic oscillatory flow around cylinders and investigated the generated flow patterns. They

evaluated the effects of Reynolds number and cylinder gap spacing on the surrounding flow

and concluded that Re has fewer effects on the flow physics than does the gap spacing. Lee

et al. [97] used immersed boundary method to simulate the flow around two side-by-side os-

cillating cylinders at Re = 185. They investigated the effect of the gap between the cylinders

and the frequency of oscillations on the wake topology and instantaneous force coefficients,

and concluded that two oscillating cylinders have characteristics of two stationary cylinders
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and a single oscillating cylinder. Mital and Kumar [98] used a Finite Element formulation

to study the flow-induced oscillations between two tandem and staggered cylinders in low

Reynolds number flow. They used cylinder spacing such that the flow-induced oscillations

occurred in the wake-inference regime, where the cylinders are within close distance and the

wake of one cylinder affects the other cylinder flow patterns. They observed that the down-

stream cylinder undergoes very large amplitude oscillations. The numerical simulations of

Papaioannou et al. [99] showed the effect of spacing in a tandem arrangement under vortex-

induced oscillations. They observed that the response region of the upstream cylinder is

widened when spacing decreases. They also showed that the amplitude of vortex-induced

oscillations depends on the spacing. Prasanth and Mittal [100] used FEM to study the 2-D

flow-induced oscillations of two tandem cylinders at LRN regime. They allowed the cylinders

to move in both in-flow and cross-flow directions. Jester and Kallinderis [102] numerically

investigated the incompressible flow around transversally oscillating cylinder pairs, in both

tandem and side-by-side arrangements, and explored the effect of phase angle on the wake

structures of the oscillating bodies.

The present study is conducted to examine the effects of the important governing flow

and system parameters on a pair of plunging airfoils at LRN regime. Although there are

some limited studies on pairs of plunging cylinders, due attention has not been paid to the

airfoils. One example of a pair of plunging airfoils is in the MAVs. The present study reveals

the importance of the airfoil-airfoil interactions, and shows how this interaction affects the

instantaneous lift and drag coefficients. Moreover, by conducting a parametric study, the

effect of the governing parameters on the force benchmarks are investigated. The computa-

tions in this study are performed in OpenFOAM R©.
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8.2 Numerical simulation method

The flow field of a plunging airfoil is governed by the unsteady incompressible 2-D Navier-

Stokes (N-S) equations. The Reynolds number (Re) defined in Equations 3.10 is based on

the freestream velocity (U∞), as shown in Fig. 8.1.

Figure 8.1: Schematic of the plunging airfoils and the computational domain.

The aerodynamic simulation of a pair of plunging ellipsoidal airfoils is performed us-

ing FVM and N-S equations. The computations utilize a 2nd-order central differencing

scheme for convective and diffusive terms and a 2nd-order Euler implicit scheme for tempo-

ral discretizations. The resulting linear system of equations is treated with Preconditioned

Conjugate Gradient (PCG) solvers, and the Semi-Implicit Method for Pressure Linked Equa-

tions (SIMPLE) algorithm is used for the pressure-velocity coupling. The computations are

carried out in OpenFOAM R©. The equations of motion for the upper and lower airfoils are
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as the following:

yup = Y0 sin(2πft),

(8.1)

ydn = −Y0 sin(2πft),

where yup(t) and ydn(t) represent the variation of the upper and lower airfoils’ vertical po-

sition, respectively, Y0 and f are the amplitude and frequency of plunging oscillations, re-

spectively.

In the present analysis, the effects of several flow and system parameters on the lift

(Cl) and drag (Cd) coefficients of the upper and lower airfoils oscillating according to Equa-

tions 8.1 are investigated. The calculation of Cl and Cd is based on Fy (fluid force on the

airfoil in y direction) and Fx (fluid force on the airfoil in x direction), respectively, according

on the following equations:

Cl =
Fy

1
2
ρU2S

; Cd =
Fx

1
2
ρU2S

, (8.2)

where ρ is the fluid density, S = c and U =
√
U2
∞ + ẏ2

max.

8.3 Evaluation of the numerical approach

At first, the effects of grid size and temporal resolution on the calculated lift and drag coef-

ficients are examined in detail, and the mesh and time step are sufficiently refined such that

the simulations are independent of the mesh size and time step resolutions. The sensitivity

analyses presented in Figs. 8.2(a) and 8.2(b) correspond to g = 1.5, f = 0.25, Y0 = 0.5c and

Re = 75, and a plunging motion defined according to Equations 8.1. As the lift coefficients

of both the upper and lower airfoils are similar, the lift coefficient of the upper airfoil is only

133



shown in Figs. 8.2(a) and 8.2(b) in a period. First, the grid sensitivity is investigated using

25, 50 and 75 (×103) cells and 2000 time steps per plunging cycle. The results show that

the difference between the instantaneous and mean lift and drag coefficients of 25 and 50

(×103) cell cases are negligible. The time step is also varied for 1000, 2000 and 4000 time

steps within a cycle having 50×103 cells. The results show that the difference between the

lift coefficients of 2000 and 4000 time step cases is negligible. Therefore, the computations

are done using 50×103 cells and 2000 time steps.

Figure 8.2: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for g = 1.5, f
= 0.25, Y0 = 0.5 and Re = 75, (a): (*) 25×103, (+) 50×103, (×) 75×103 cell; (b): (*) 1000,
(+) 2000, (×) 4000 time steps within a cycle.

Next, the accuracy of the dynamic layering mesh motion algorithm [141] is investigated.

To do so, the ellipsoidal airfoil is forced to plunge according to y(t) = Y0sin(2πft) with no

freestream velocity. The same case with the same number of cells (50×103) and 2000 time

steps per cycle is also simulated using the Laplace motion algorithm [107] with Y0 = 0.5c and

f = 1 Hz. Figure 8.3 shows the lift coefficients obtained from both mesh motion algorithms.

As can be observed, there is a very good match between instantaneous Cl values obtained

from the dynamic layering method and those of Laplace smoothing algorithm.

The accuracy of the numerical method and the mesh motion algorithm is then assessed

based on the data published in the literature, available from studies conducted on cylinders.
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Figure 8.3: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for a 2% thick-
ness ellipsoidal airfoil plunging with y(t) = Y0sin(2πft) with Y0 = 0.5c and f = 1; (-),
dynamic layering; (+), Laplace smoothing.

The side-by-side cylinder arrangement studied by Lee et al. [97] was examined for the vali-

dation purposes. They simulated the flow field of a pair of cylinders at Re = 185, performing

plunging oscillations according to the following equations:

yup =
g0

2
+
D

2
+ Ae sin(2πft),

(8.3)

ydn = −g0

2
+
D

2
− Ae sin(2πft),

with g0 = 1.8, f = 0.154, D = 1, and Ae = 0.2.

Figures 8.4 and 8.5 show, respectively, the schematic of the computational domain and

the computed vortical patterns in the downstream wake of the cylinders at τ≈ 0.5.

Figure 8.6 shows the computed lift and drag coefficients of the cylinders in the simulation.

The simulation results are in close agreement (less than 4% of difference) with those reported

by Lee et al. [97].
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Figure 8.4: Schematic of cylinders and the computational domain.

Figure 8.5: Vortical pattern in the downstream wake of the side-by-side cylinders plunging
according to Equations 8.3 at τ≈ 0.5.

Figure 8.6: Instantaneous lift and drag coefficients (Cl and Cd) versus time for a pair of
cylinders plunging according to Equations 8.3 with g0 = 1.8, f = 0.154, D = 1, and Ae =
0.2; (-), upper cylinder; (...), lower cylinder.
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8.4 Results and discussion

In what follows, the effects of the governing flow and system main parameters, namely

f , Y0, Re and airfoils’ centre-to-centre spacing (g, referred to the centre-to-centre spacing

at the start time of the plunging motion) on the flow field of two ellipsoidal airfoils (2%

thickness) are investigated using N-S equations based on FVM and dynamic layering mesh

motion algorithm [141]. The airfoils perform out-of-phase plunging oscillations according

to Equations 8.1, also shown in Fig. 8.1. The airfoils plunge transversally with respect to

the oncoming freestream flow. The lift and drag coefficients are computed, and the effects

of the aforementioned parameters on the instantaneous force coefficients are investigated.

Table 8.1 shows the parametric study settings used in each case.

Table 8.1: Parameter settings for the conducted case-studies

Parametric study Variable parameters Fixed parameters

Effect of Re Re = 75, 150, 300, 600 f = 0.25, Y0 = 0.5c, g = 1.5c
Effect of f f = 0.5, 1, 2 Hz Y0 = 0.5c, g = 1.5c, Re = 75
Effect of Y0 Y0 = 0.3c, 0.5c g = 1.5c, f = 0.25, Re = 75
Effect of Y0 Y0 = 0.5c, 0.7c, 0.9c g = 3c, f = 0.25, Re = 75
Effect of g g = 1.5c, 3c f = 0.25, Re = 75, Y0 = 0.5c

8.4.1 Effect of the Reynolds number

The effects of the Reynolds number (Re) on the lift and drag coefficients are investigated for

the corresponding settings in Table 8.1. Based on the following observations and discussions,

it is shown that the initially drag-producing airfoils at the lower considered Re (Re = 75

and 150) are capable of generating thrust at the higher investigated Reynolds numbers (Re

= 300 and 600). Indeed, increasing Re causes the airfoil to generate more thrust. This

thrust generation occurs mostly during the first quarter period when the airfoils move away.

However, the airfoils always generate drag during the rest of the motion. The effects of Re

on Cd is mostly quantitative, whereas Re changes Cl qualitatively, mostly during the second

quarter period of the plunging cycle, when the airfoils start to move towards each other.
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Figure 8.7 shows Cl versus τ at Re = 75 for the upper and lower airfoils as well as a

single plunging airfoil under the same governing conditions. In the present analysis, the

so-called upper and lower airfoils refer to the location of the airfoils in the computational

domain according to Fig. 8.1. The calculated lift coefficients for upper and lower airfoils are

observed to be equal in magnitude but opposite in sign. Also, as expected, both airfoils have

the same drag coefficients, Fig. 8.8. As can be seen in Fig. 8.7, the minimum lift coefficient

(Clmin
) is almost the same as that of a single airfoil simulation; however, the lift coefficients

decrease more rapidly for the upper airfoil simulation in the first half stroke (τ < 0.5). It

should also be mentioned that as the airfoils oscillate in out-of-phase plunging motion, the

first half stroke corresponds to when the airfoils move away and the second half stroke (0.5

< τ) correspond to when the airfoils move towards each other. The magnitude of Clmax is

higher than Clmin
, showing the effect of the airfoils’ interaction. Comparing the Clmax of the

upper airfoil in Fig. 8.7 with that of the single airfoil also shows that the airfoils’ interaction

increases the maximum lift coefficient.

Fig. 8.8 shows Cd versus τ at Re = 75 for the upper and lower and the single plunging

airfoils under the same governing conditions. The Cdmax is negligibly changed when those of

the single and multi-plunging airfoils are compared, but the minimum drag coefficients are

obtained with lead/lag and considerably different magnitudes for single and multi-plunging

airfoils.

The lift and drag coefficients for the upper and lower airfoils are also computed for Re

= 150, 300 and 600 and the comparison between the Cl and Cd of the upper airfoil for

these cases are presented in Figs. 8.9 and 12, respectively. It should be mentioned that the

magnitude of the lower airfoil instantaneous lift coefficient is equal to that of the upper airfoil

but mirrored.

Figure 8.9 shows upper airfoil’s Cl versus τ for Re = 75, 150, 300 and 600. As shown,

Re does not change lift coefficient noticeably and most of the changes occur between 0.25

< τ < 0.5, when the airfoils finish their first quarter stroke and start to move towards each

138



Figure 8.7: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for Re = 75;
(+), Cl of the upper airfoil; (×), Cl of the lower airfoil; (-), Cl of a single plunging airfoil.

Figure 8.8: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for Re = 75;
(+), Cd of the upper and lower airfoils; (-), Cd of a single plunging airfoil.

other. It is also observed that the difference between the Cl for Re = 75 and 150 is higher

than the difference between Re = 150 and 300. These differences are even more noticeable

than the difference between Re = 300 and 600, which could be due to the lowered viscous

forces when Re increases.

The effect of Re on the upper airfoil’s Cd is shown in Fig. 8.10, where Re is found to
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Figure 8.9: Instantaneous lift coefficient (Cl) of the upper airfoil versus nondimensional time
(τ); (*), Re = 75; (+), Re = 150; (×), Re = 300; (�), Re = 600.

have more influence on the drag coefficients compared to those observed on lift coefficients,

Fig. 8.9. There are two Cdmax for each period of plunging oscillations for all investigated Re.

The first Cdmax is obtained at τ ≈ 0.5 and the second Cdmax is obtained at τ ≈ 0.85, where the

airfoils are in the second half stroke. The two maximum drag coefficients are almost equal

at Re = 75; however, increasing Re causes the first Cdmax to be smaller than the second one.

There are also two minimum drag coefficients (Cdmin
); the first one is obtained at τ ≈ 0.2,

where the airfoils move away from each other. Increasing Re, in this case, decreases Cdmin
.

The second Cdmin
is obtained at τ ≈ 0.6 and decreases when Re increases. Moreover, the

airfoil in Fig. 8.10 is in the so-called drag-producing regime at Re= 75, whereas increasing

Re and the subsequent decrease in the first Cdmin
causes the airfoil to produce thrust at the

beginning of the stroke at the higher considered Reynolds numbers.

Figs. 8.11(a-d) show the corresponding flow structures when the first Cdmax is obtained

for the investigated Re. The lighter color shows a higher pressure region. According to

Fig. 8.10, the first Cdmax decreases (the second Cdmax follows the same trend) when Re

increases and as can be seen in Figs. 8.11(a-d) the leading edge vortices (LEVs) of the upper

and lower airfoils have the highest interaction at Re = 75, decreasing for the higher Re,
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Figure 8.10: Instantaneous drag coefficient (Cd) of the upper airfoil versus nondimensional
time (τ); (*), Re = 75; (+), Re = 150; (×), Re = 300; (�), Re = 600.

which could explain the decreasing trend of the first Cdmax .

There are also two minimum drag coefficients (Cdmin
); the first one is obtained at τ ≈ 0.2,

Figure 8.11: Vortical patterns around the airfoils when the first Cdmax is obtained; (a), Re
= 75; (b) Re = 150; (c), Re = 300; (d), Re = 600.

where the airfoils move away from each other. Increasing Re, in this case, decreases Cdmin
.

Figs. 8.12(a-d) show the flow structures when Cdmin
is obtained. Fig. 8.12(a) corresponds to

Re = 75 where high pressure flow surrounds the airfoils. As mentioned previously, a positive

Cdmin
is obtained at Re = 75 at τ ≈ 0.2. Let’s call the upper airfoil top surface the suction

side, where the same terminology is used for the lower airfoil down surface. As observed,

by increasing Re from Re = 75 to 150, lower pressure is exerted on the suction surface and
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a recirculation region is formed, leading to the lowered Cdmin
at Re = 150 (Cdmin

< 0 or

thrust). The strength of the so-called recirculation region (low pressure area) increases for

the higher Reynolds numbers and as a result, the airfoils generates more thrust at the higher

investigated Re, Figs. 8.12(b-d).

The mean Cl and Cd (C̄l and C̄d) for the considered Re are presented in Table 8.2. The

Figure 8.12: Vortical patterns around the airfoils when the first Cdmin
is obtained; (a), Re =

75; (b) Re = 150; (c), Re = 300; (d), Re = 600.

values are presented for each half cycle as well as the whole cycle of the plunging motion. It

can be seen that increasing Re slightly increases C̄l and decreases C̄d more noticeably in a

cycle, resulting in a higher aerodynamic performance ( C̄l

C̄d
).

Table 8.2: Mean lift and drag coefficients (C̄l and C̄d) for the considered Re.

Re First half (0 ≤ τ ≤ 0.5) Second half (0.5 ≤ τ ≤ 1) Whole cycle (0 ≤ τ ≤ 1)

75 C̄l = -0.359, C̄d = 0.129 C̄l = 0.979, C̄d = 0.218 C̄l = 0.313, C̄d = 0.174
150 C̄l = -0.2, C̄d = 0.049 C̄l = 0.82, C̄d = 0.111 C̄l = 0.32, C̄d = 0.079
300 C̄l = -0.05, C̄d = 0.008 C̄l = 0.765, C̄d = 0.055 C̄l = 0.361, C̄d = 0.032
600 C̄l = -0.039, C̄d = -0.006 C̄l = 0.734, C̄d = 0.028 C̄l = 0.389, C̄d = 0.011

8.4.2 Effect of the frequency of oscillations

The flow field of the upper and lower airfoils is then simulated for various frequencies of

oscillations and parameter settings, listed in Table 8.1. The Strouhal number corresponding

to the investigated frequencies of oscillations is calculated where Lref = Y0 and Uref = U∞.
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According to the results presented in this section, it is found that there is an optimum

frequency of oscillations, resulting in the highest thrust generation between the investigated

frequencies. Drag coefficient for this frequency (f = 0.5 Hz, St = 1.571) has the lowest Cdmax

and the best thrust generation both in terms of the magnitude and the time interval during

which thrust is generated. Frequency also has very significant effects on Cl; however, the

influence is mostly quantitative, increasing the peak values.

The Cl and Cd variations for f = 0.5 Hz (St = 1.571), f = 1 Hz (St = 3.142) and f = 2

Hz (St = 6.283) are calculated. As seen in Fig. 8.13, the magnitude of Clmax , in this case, is

higher than the magnitude of the minimum lift coefficient (Clmin
) at f = 0.25 (St = 0.785);

Clmax ≈ 3 and Clmin
≈ 2. Increasing the frequency of oscillations from f = 0.25 (St = 0.785)

to f = 0.5 (St = 1.571) increases the magnitude of both Clmax and Clmin
and changes them

to 7.5 and 6, respectively. Further increase of f from f = 0.5 to f = 1 also increases the

magnitude of the lift extreme values; however, |Clmin
| ≈ 15, which is higher than |Clmax| ≈

9.5. This trend is also repeated for f = 2, where |Clmax| ≈ 11 and |Clmin
| ≈ 16.

The effect of the frequency of oscillations (f) on Cd is also investigated and presented

Figure 8.13: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the upper
airfoil: (*) f = 0.25, (+) f = 0.5, (×) f = 1, (�) f = 2.

in Fig. 8.14. As can be seen, for f = 0.25 Cd has two maximums (Cdmax) at τ ≈ 0.4 and
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τ ≈ 0.8. It means that both of the extremum values are obtained when the airfoils move

during the second quarter period of each half stroke for which the airfoil-airfoil interaction is

more significant than the first stroke. Interestingly, increasing f from 0.25 to 0.5 reduces the

number of Cdmax from two to one , Fig. 8.14. Moreover, increasing f lowers the magnitude of

Cdmax from Cdmax ≈ 0.25 at f = 0.25 to Cdmax ≈ 0.15 at f = 0.5. Moreover, the airfoil only

produces drag at f = 0.25, whereas it produces both drag and thrust at f = 0.5 (Fig. 8.14).

Thrust coefficient is namely a negative drag coefficient (Ct = -Cd). Exploring Fig. 8.14 at

f = 0.5 shows that the airfoil produces thrust (i.e., thrust-producing regime) for 0 < τ <

0.5 with the maximum thrust coefficient (Ctmax) of 0.25 at τ ≈ 0.05 at the beginning of the

plunging cycle. Then, it produces drag for 0.5 < τ < 0.8 with Cdmax ≈ 0.15 at τ ≈ 0.65,

where the airfoils move towards each other, and finally produces thrust for 0.8 < τ < 1.

Increasing f from 0.5 to 1 causes the airfoil to produce more drag and less thrust compared

to what observed for f = 0.5. That is, the airfoil produces thrust for 0 < τ < 0.4 with Ctmax

≈ 0.225 at τ ≈ 0.2 and produces drag for 0.4 < τ < 1 with Cdmax ≈ 0.425 at τ ≈ 0.55.

Hence the maximum thrust coefficient is decreased and obtained with lag, and the maximum

drag coefficient is increased and obtained with a lead when frequency of oscillations increases

from f = 0.5 to 1. Increasing f from 1 to 2 does change the time interval in which drag and

thrust are produced; however, the magnitude of the maximum drag and thrust coefficients

are both decreased.

As mentioned in the previous paragraph, the airfoils generate thrust for some of the

investigated frequencies. This is more investigated by exploring the flow structures for the

instant at which the minimum drag coefficient (Cdmin
) is obtained. Figs. 8.15(a-d) show

these flow structures. As can be seen the flow field of f = 0.25 (drag producing) is different

from f = 0.5, 1 and 2 (thrust producing). As seen, by increasing f = 0.25 (Fig. 8.15(a)) to f

= 0.5 (Fig. 8.15(b)), the bifurcated downstream wake at f = 0.25 is converted into separate

trailing edge vortices (TEVs) at f = 0.5. The high pressure region around the airfoils at f

= 0.25 is also confined to the LE. These changes are accompanied by the decreased Cdmin
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Figure 8.14: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the
upper airfoil: (*) f = 0.25, (+) f = 0.5, (×) f = 1, (�) f = 2.

at f = 0.5 compared to f = 0.25. As explained before, the magnitude of Cdmin
(Cdmin

<

0, thrust) is slightly lower at f = 1 compared to that of f = 0.5. The flow structure for

f = 0.5 and 1 are very similar except that the high pressure region at f = 0.5 is closer to

each airfoil’s surface than that of f = 1. Moreover, the extent of the higher pressure flow

field between the airfoils at f = 0.5 is more than that at f = 1. Comparing Figs. 8.15(c, d)

shows that the flow structures are very similar and the main difference exists around the LE

of both airfoils.

Table 8.3 shows C̄l and C̄d for each half stroke as well as the whole plunging cycle for

Figure 8.15: Vortical patterns around the airfoils when the first Cdmin
is obtained; (a), f =

0.25; (b), f = 0.5; (c), f = 1; (d), f = 2.
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the considered frequencies, where there exist downward mean lift (C̄l < 0) and mean thrust

(C̄d < 0) for some of the frequencies of oscillations.

Table 8.3: Mean lift and drag coefficients (C̄l and C̄d) for the considered frequencies of
oscillations (f).

f First half (0 ≤ τ ≤ 0.5) Second half (0.5 ≤ τ ≤ 1) Whole cycle (0 ≤ τ ≤ 1)

0.25 C̄l = -0.359, C̄d = 0.129 C̄l = 0.979, C̄d = 0.218 C̄l = 0.313, C̄d = 0.174
0.5 C̄l = -1.975, C̄d = -0.181 C̄l = 3.254, C̄d = 0.026 C̄l = 0.674, C̄d = -0.078
1 C̄l = -5.226, C̄d = -0.057 C̄l = 3.102, C̄d = 0.246 C̄l = -1.083, C̄d = 0.094
2 C̄l = -5.656, C̄d = -0.034 C̄l = 3.334, C̄d = 0.188 C̄l = -1.161, C̄d = 0.077

8.4.3 Effect of the amplitude of oscillations

The effect of the amplitude of plunging oscillations, Y0 in Equations 8.1, is investigated for

the values listed in Table 8.1. It is found, based on the following results, that increasing

the amplitude (Y0) when g = 1.5c and 3c decreases the mean drag coefficient, although Cl

increases when Y0 increases. Hence, C̄l

C̄d
increases at the higher amplitudes of oscillations.

As can be seen in Fig. 8.16, increasing the amplitude of oscillations from Y0 = 0.3c (St

= 0.471) to 0.5c (St = 0.785) at g = 1.5c increases the magnitude of Clmax from 1.9 to 3 (≈

58% of increase) and increases the magnitude of Clmin
from 1.5 to 2 (≈ 33% of increase).

Therefore, Y0 affects the maximum lift coefficient more than the minimum value.

Figs. 8.17(a, b) show the flow field around the airfoils when Clmin
is obtained for Y0 =

0.3c and 0.5c. As expected, the higher amplitude of oscillations results in more airfoil-airfoil

interaction. The interaction is observed around the leading/trailing edge of the airfoils, which

is strengthened for Y0 = 0.5c compared to that of Y0 = 0.3c. As a result, the magnitude of

Clmin
decreases with Y0. Figs. 8.17(c, d) correspond to the Clmax in Fig. 8.16. As mentioned

before, Clmax increases at the higher Y0. Fig. 8.17(d) shows that a higher pressure region

exists at the LE of both airfoils at Y0 = 0.5c, compared to Y0 = 0.3c. Moreover, the

downstream is deflected upward (for the upper airfoil) and downward (for the lower one) at

Y0 = 0.5c, affecting the flow structure at the airfoils’ TE. These complex vortical patterns
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Figure 8.16: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the upper
airfoil: (+) Y0 = 0.3c, (×) Y0 = 0.5c.

and trends at the higher amplitude explain the increase of Clmax in Fig. 8.16.

Figure 8.18 shows Cd versus τ for Y0 = 0.3c and 0.5c (g = 1.5c). There are two Cdmax

Figure 8.17: Flow field around the airfoils; (a), Clmin
at Y0 = 0.3c; (b), Clmin

at Y0 = 0.5c;
(c), Clmax at Y0 = 0.3c; (d), Clmax at Y0 = 0.5c.

values for Y0 = 0.3c, where Cdmax ≈ 0.34 at τ ≈ 0.4 and Cdmax ≈ 0.36 at τ ≈ 0.85. Increasing

Y0 from Y0 = 0.3c to 0.5c decreases both of the maximum values and changes them to Cdmax

≈ 0.25 at τ ≈ 0.5 (the first maximum) and Cdmax ≈ 0.25 at τ ≈ 0.85. Therefore, increasing

Y0 also induces a lag in the first Cdmax . In other words, the mean drag coefficient decreases

and the amplitude of Cd (the difference between the maximum and minimum Cd) increases

when Y0 increases.
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Figs. 8.19(a, b) show the flow structure when the first Cdmin
is obtained. Increasing

Figure 8.18: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the
upper airfoil: (+) Y0 = 0.3c, (×) Y0 = 0.5c.

Y0 from Y0 = 0.3c to 0.5c generates higher pressure region around the airfoils, where the

interaction between the upper and lower airfoils’ high pressure regions is more significant at

Y0 = 0.5c compared to that of Y0 = 0.3c. The downstream flow is also bifurcated at Y0 =

0.5c, which is not observed at Y0 = 0.3c. As mentioned earlier, both of the Cdmax decrease

at the higher considered amplitude (Y0 = 0.5c). The comparison between the corresponding

flow patterns of Y0 = 0.3c and 0.5c is presented in Figs. 8.19(c, d), when the second Cdmax

is obtained.

Table 8.4 shows C̄l and C̄d for the considered amplitudes of oscillations when g = 1.5c.

It is seen that C̄l and C̄d increases and decreases, respectively, at the higher Y0, resulting in

a higher C̄l

C̄d
.

Figure 8.20 shows the effect of Y0 on Cl versus τ , when g = 3c. As expected the

lift coefficients show a more harmonic pattern when compared to those obtained at g =

1.5c (Fig. 8.16). This is mainly due to the lower airfoil-airfoil interaction when g = 3c.

Consequently, the magnitude of the Clmax and Clmin
are closer than those obtained at g

= 1.5c, Fig. 8.16. However, the airfoil-airfoil interaction still produces different extremum
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Figure 8.19: Flow field around the airfoils; (a), Cdmin
at Y0 = 0.3c; (b), Cdmin

at Y0 = 0.5c;
(c), second Cdmax at Y0 = 0.3c; (d), second Cdmax at Y0 = 0.5c.

Table 8.4: Mean lift and drag coefficients (C̄l and C̄d) for the considered amplitude of
oscillations (Y0) when g = 1.5c.

Y0 First half (0 ≤ τ ≤ 0.5) Second half (0.5 ≤ τ ≤ 1) Whole cycle (0 ≤ τ ≤ 1)

0.3c C̄l = -0.342, C̄d = 0.295 C̄l = 0.725, C̄d = 0.329 C̄l = 0.186, C̄d = 0.312
0.5c C̄l = -0.359, C̄d = 0.129 C̄l = 0.979, C̄d = 0.218 C̄l = 0.313, C̄d = 0.174

values. The magnitude of Clmax and Clmin
are 2.3 and 2.2 for Y0 = 0.5c (St = 0.785), 2.8

and 2.6 for Y0 = 0.7c (St = 1.1) and 3.3 and 2.8 for Y0 = 0.9c (St = 1.414).

Figure 8.21 shows Cd versus τ when g = 3c. In each period of oscillation Cd has two

Figure 8.20: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the upper
airfoil at g = 3c: (*) Y0 = 0.5c, (+) Y0 = 0.7c, (×) Y0 = 0.9c.
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maximum and two minimum values for all the considered plunging amplitudes. Increasing

the amplitude of oscillations from Y0 = 0.5c to 0.7c decreases the magnitude of the first

Cdmax from Cdmax = 0.3 at τ ≈ 0.36 to Cdmax = 0.22 at τ ≈ 0.39. The second Cdmax and

the minimum drag coefficient also undergo similar changes versus Y0. The maximum and

minimum drag coefficients decrease for further increase of Y0 from Y0 = 0.7c to 0.9c such

that the airfoil produces thrust at Y0 = 0.9c between 0.05 < τ < 0.25.

Table 8.5 presents C̄l and C̄d for the considered amplitudes of oscillations when g = 3c,

Figure 8.21: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the
upper airfoil at g = 3c: (*) Y0 = 0.5c, (+) Y0 = 0.7c, (×) Y0 = 0.9c.

and it shows that increasing Y0 has a similar increasing effect on C̄l

C̄d
to the one at g = 1.5c.

Table 8.5: Mean lift and drag coefficients (C̄l and C̄d) for the considered amplitude of
oscillations (Y0) when g = 1.5c.

Y0 First half (0 ≤ τ ≤ 0.5) Second half (0.5 ≤ τ ≤ 1) Whole cycle (0 ≤ τ ≤ 1)

0.5c C̄l = -0.565, C̄d = 0.233 C̄l = 0.704, C̄d = 0.245 C̄l = 0.075, C̄d = 0.239
0.7c C̄l = -0.52, C̄d = 0.13 C̄l = 0.683, C̄d = 0.153 C̄l = 0.088, C̄d = 0.142
0.9c C̄l = -0.389, C̄d = 0.059 C̄l = 0.679, C̄d = 0.106 C̄l = 0.152, C̄d = 0.083
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8.4.4 Effect of the airfoil spacing

The effect of the airfoil spacing (g) on the lift and drag coefficients is shown in Figs.!8.22

and 8.23, respectively, for the values listed in Table 8.1. Fig. 8.22 shows the lift coefficient

versus τ . It is observed from the figure that increasing g affects Clmax noticeably. The Clmax

decreases by increasing the spacing, which is due to the lowered airfoil-airfoil interaction

influence. However, the magnitude of Clmin
is not changed as it is obtained when the airfoils

move away. Fig. 8.23 shows Cd versus τ , where both of the Cdmax values increase by increasing

g. The single minimum drag coefficient at g = 1.5c is also increased at g = 3c, where there

are two maximum drag coefficients.

Figure 8.22: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the upper
airfoil: (+) g = 1.5c, (×) g = 3c.

8.5 Summary and conclusion

Simulations of a pair of multi-plunging ellipsoidal airfoils in low Reynolds number regime

are conducted using two dimensional Navier-Stokes equations with a Finite Volume Method.
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Figure 8.23: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the
upper airfoil: (+) g = 1.5c, (×) g = 3c.

A parametric study is performed and the effects of Reynolds number, frequency and ampli-

tude of plunging oscillations (f , Y0) and the airfoil-airfoil spacing (g) on the lift and drag

coefficients are investigated. It is observed that the airfoil-airfoil interaction increases the

maximum lift coefficient compared to a single plunging airfoil, while the minimum lift co-

efficient does not change noticeably compared to the similar single plunging airfoil. The

observed quasi-sinusoidal pattern of the single airfoil’s instantaneous lift coefficient exists in

the multi-plunging airfoil simulation. It is shown that Reynolds number has fewer effects

on the lift and drag coefficients than those of the other investigated parameters. Reynolds

number alters the lift coefficients mostly during the plunging first half stroke, where the air-

foils move away from each other. Unlikely, it affects drag coefficients more significantly than

lift coefficients. The airfoil produces drag in the whole plunging cycle at the lower consid-

ered Reynolds numbers, whereas increasing Re causes the airfoil to generate thrust in some

portions of the plunging cycle, at least for the Re range studied. Frequency of oscillations is

shown to have major influence on the fluid forces, and changes both lift and drag coefficients

noticeably. The extent of the thrust-producing region increases at the intermediate consid-

ered frequencies, but decreases at the higher ones. Therefore, there is an optimum frequency
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for having the highest possible thrust coefficient. The amplitude of oscillations is also an-

other important factor to the peaks of lift and drag coefficients. As expected, the higher

amplitude of oscillations means more airfoil-airfoil interaction, which consequently changes

the peaks of lift and drag coefficient accordingly. The result of the presented two dimensional

analysis is important when compared to the corresponding two dimensional study of a single

plunging airfoil, revealing the importance of the vortical interaction effects. The findings

of this study and the similar studies will also provide a basis for a better understanding of

the respective three dimensional applications and their flow structures. In the next chapter,

multi figure-of-eight flapping airfoils are studied.
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Chapter 9

Multi figure-of-eight flapping airfoils

The objective of the present chapter is to investigate the low Reynolds number (LRN) fluid

dynamics of two airfoils in figure-of-eight-like flapping motion. A library is developed to

handle multi-body problems and is utilized to simulate the simultaneous motion of a pair of

airfoils, and a few test cases are investigated. Moreover, a brief parametric study is performed

to explore how the pitching amplitude of oscillations affects the lift and drag signatures. The

results show that the aerodynamic performance (lift and drag coefficients) of the simulated

airfoils is lower than the respective single flapping airfoil. This raises the question of how

a three-dimensional rotating-flapping configuration using the same investigated kinematics

flies steadily. Possibly, wing-wing interactions, three-dimensional effects and spanwise flows

could significantly help. The present preliminary investigation would hopefully pave the

road for further detailed and thorough studies.

9.1 Introduction

Flapping motion is advantageous to several low Reynolds number (LRN) applications such

as Micro Aerial Vehicles. The combination of the flapping kinematics and the respective

viscous fluid dynamics generates complex vortical patterns that help in obtaining the de-

sired force and moment signatures of MAVs and other applications such as swimming robots.
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Several researchers have examined the LRN flapping airfoils and wings fluid phenomena in

detail, as mentioned in chapter 6. Some other studies are devoted to the fluid dynamics of

these flows and their dependency on the governing flow and system parameters.

Usually there is a pair of multi-flapping wings, if not more, in MAVs and swimming

robots, demanding multi-body investigations. The moving mesh method to resolve the 3-D

vortical interactions in these flows is a concern. The respective two-dimensional simulations

are also very informative in terms of the 2-D respective phenomena, and a knowledge about

their effective governing flow and system parameters help in understanding the effectiveness

of these parameters in their respective 3-D flows. However, the multi-body motion in general

and multi flapping motions specifically are not trivial to solve, and several recent investiga-

tions are devoted to develop mesh motion methods required for these problems. Immersed

boundary method [113] is amongst the commonly utilized techniques for multi-body motion

studies. However, the implementation of these methods is not a trivial task and difficulty

arises in satisfying the boundary layers and continuity and momentum conservations [114].

In this chapter, a multi-body mesh motion method is developed based on the Generalized

Grid Interface [132] and layer addition/removal [141]. The motion library can handle multi

body figure-of-eight motion (motion in x and y directions) in addition to the rotation of

a single and multi moving system of airfoils. The method is validated for some test cases

and a few preliminary numerical investigations are performed to show the capability of the

developed motion library. In addition, a brief parametric study about the effect of the pitch-

ing amplitude of oscillations is conducted to observe the main effects on just lift and drag

coefficients. The simulations are carried out in OpenFOAM R©.

155



9.2 Numerical simulation method

The purpose of the present chapter is to simulate the figure-of-eight-like flapping motion of

two ellipsoidal airfoils (2% of thickness) according to the following equations of motion:

xupper airfoil(t) = −R sin(2πft),

xlower airfoil(t) = −R sin(2πft),

yupper airfoil(t) = d cos(2πft)− R

2
sin(4πft), (9.1)

ylower airfoil(t) = d cos(2πft) +
R

2
sin(4πft),

αupper airfoil(t) = α0 − ᾱ sin(2πft+ φ),

αlower airfoil(t) = α0 + ᾱ sin(2πft+ φ),

where all the parameters, e.g. R, are equivalent to the ones first introduced in Equations 6.2.

The schematic view of the airfoils and their kinematics is shown in Fig. 9.1.

Figure 9.1: Airfoils in the computational domain and their kinematics.

Several steps had to be taken to model and analyze the desired multi-flapping motion

in this chapter. First, the GGI algorithm [132] had to be extended to deal with multi-body

rotations. This was done in Chapter 7. The accuracy of the GGI method was also inves-
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tigated by simulating a pitching NACA0012 airfoil, studied by Akbari and Price [68] and

the respective results were presented in Fig. 7.3. The only concern about this method, is

the evaluation of the weighting factors for face-to-face interpolations at the rotating inter-

face (Equations 3.32). If the mesh is not refined enough at the interface, and/or the time

resolution is not adequately small, the difference between the interface patches tends to be

high. Therefore, it is tried to perform the present simulations with a very refined mesh at

the interface and small time steps.

The next step to develop the present motion technique was to extend the layer addi-

tion/removal motion algorithm in OpenFOAM R©, original work by Jasak [141], which was

developed to handle multi-body one-dimensional (1-D) motions (either in x or y direction).

The developed motion library was then used to simulate the multi-plunging motion of two

ellipsoidal airfoils in Chapter 8, and the validation study was presented in Fig. 8.6.

However, the 1-D layer addition/removal method (either in x or y direction) had to be

developed to handle 2-D moving cases (in x and y directions), required for figure-of-eight

flapping kinematics (Equations 9.1). After extending the original 1-D layer addition/re-

moval algorithm to a 2-D library, the GGI method had to be added into the library, which

is successfully done and the next section contains the validation studies performed using it.

Appendix A presents the developed code and details about its entries and specifications.

In the following sections, the fluid dynamics of a pair of flapping airfoils is simulated using

N-S equations. The computations are based on a second order central differencing scheme

for convective and diffusive terms and a second order Euler implicit scheme for temporal

discretization, similar to the previous simulations. The resulting linear system of equations

is treated with Preconditioned Conjugate Gradient (PCG) solvers, and the Pressure Implicit

and Splitting of Operators (PISO) algorithm is used for the pressure-velocity coupling.
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9.3 Evaluation of the results

In addition to the above-mentioned validation studies, the developed motion library is evalu-

ated for two flapping validation cases: a harmonic flapping airfoil governed by Equations 6.6

and a figure-of-eight-like flapping airfoil governed by Equations 6.2. An equivalent mesh size

(50×103) is utilized as the one used in Chapter 6. Time resolution, however, is set to 4000

time steps per cycle, unlike the previous resolution of 2000 time steps in a period. After

adding the second dimension in the layer addition/removal method, 2000 times steps were

not enough to achieve convergence, meaning that 2000 time steps either ended up with very

high Courant numbers (Equation 3.19), hence instability in the force coefficients and/or di-

vergence, and/or simply led to failure of the motion library. The other difference between

the validation test cases in Chapter 6 and the present cases is the far-field boundary which

resembles a square instead of the circular far-field boundary in Fig. 6.1.

Figure 9.2 shows the obtained Cl versus τ using the developed motion library compared with

the results of Amiralaei et al. [6], Bos et al. [88] and Wang et al. [58], for a harmonically

flapping airfoil (2 % of thickness) following Equations 6.6.

As can be seen in Fig. 9.2, the peaks of Cl are either higher or lower than those in the

other studies; however, similar differences are also observed between the references used in

Fig. 9.2. Moreover, the mean lift coefficients are within an acceptable difference margin (less

than 5%) comapred to the other studies.

Next, the figure-of-eight motion of the ellipsoidal airfoil governed by Equations 6.2 is

simulated. Figure 9.3 shows the comparison between the present simulation and that in

Chapter 6 in Fig. 6.11.

Similar to the observations in Fig. 9.2, the results achieved from the developed algorithm

are found to be in good agreement with those obtained utilizing Laplace mesh motion al-

gorithm [6]. Therefore, the present developed motion library is considered to be accurate

enough for the following multi-flapping studies. It is worth noting that no, multi-flapping

validation case is studied in this chapter due to the lack of the relevant data in the literature.
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Figure 9.2: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) of for the
flapping motion following Equations 6.6: (-), present simulation with the developed library;
(+), Bos et al. [88]; (×), Wang et al. [58]; (◦), Amiralaei et al. [6] using Laplace mesh motion
algorithm.

Figure 9.3: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for R = 1.4c,
d = 0.7c, f = 0.25, α0 = 90◦, ᾱ = 45◦, φ = 0 and Re = 75 following Equations 6.2: (-),
present simulations with the developed motion library; (+), Amiralaei et al. [6].

9.4 Results and discussion

Two thin ellipsoidal airfoils, each one with t/c = 2%, are simulated in this chapter. The

airfoils motion are governed by Equations 9.1, and the schematic of the computationl domain
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is shown in Fig. 9.4.

Figure 9.4: Schematic of the airfoils and the computational domain.

The computational domain is extended to 20c and 15c from the airfoils’ centers in the

x and y directions, respectively. Each airfoil’s square-like bounding box (Fig. 9.4) is at a

distance of one chord-length from its airfoil’s center. This bounding box is required for

performing the layer addition/removal portion of the flapping motion. The airfoils’ center-

to-center spacing is 4c. The square regions surrounding the airfoils are discretized using an

O-type mesh, while regular quadratic mesh is used for the remaining of the computational

domain. The far-field boundary is set to a symmetry condition and the airfoils’ surfaces are

set to a no-slip boundary condition. Similar to the single figure-of-eight flapping airfoil stud-

ied in Chapter 6, the domain within one chord-length from the airfoil surface is discretized

using 8800 (176 tangentially × 50 radially) cells and is graded both radially and tangentially

(from LE/TE to the mid-chord). The radial grading is such that the distance between the

center of the first layer and the airfoil surface is 0.002c. The evaluation of the lift and drag

coefficient follows the same method presented in Section 6.4.

Three cases are simulated where ᾱ = 15◦, 30◦ and 45◦. Other governing flow and system

parameters in Equations 9.1 are fixed to R = 1.4c, d = 0.7c, f = 0.25 [Hz], α0 = 90◦, φ = 0

160



and Re = 37.5. Figures 9.5 and 9.6 show, respectively, the obtained Cl and Cd versus τ for

the upper airfoil in the computational domain (Fig. 9.4) at ᾱ = 15◦.

Figure 9.5 shows Cl versus τ for the upper airfoil at ᾱ = 15◦. As can be seen, the instan-

taneous lift coefficients are repeated with constant amplitude after τ = 6, showing that the

transient variations in the solution have faded and the solution reaches the desired steady

state. The airfoil generates downward lift for the first half-stroke (τ < 0.5) with Clmax ≈

-1.7. Upward lift is generated for the second half-stroke (0.5 < τ) with two major peaks of

Clmax = 0.6 and 1.5 at τ = 0.7 and 0.9, respectively. The upper airfoil flapping equation

(Equations 9.1) resembles that of the figure-of-eight airfoil studied in Chapter 6. However,

all the Cl curves in Chapter 6 have positive first and second Clmax , while in Fig. 9.5 the first

half-stroke has a negative Clmax , which is even higher than that of the second half-stroke.

The study over how the vortical interaction affect the forces is a potential future work. Fig-

ure 9.6 also shows Cd versus τ for the upper airfoil at ᾱ = 15◦. Comparison of the peaks of

the drag coefficient with those of Cl, Fig. 9.5, shows that the dominant force coefficient on

the upper airfoil is drag. Moreover, the airfoil generates a very small thrust (negative drag

coefficient) for 0.4 < τ < 0.6.

Figure 9.5: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the upper
airfoil at ᾱ = 15◦.
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Figure 9.6: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the upper
airfoil at ᾱ = 15◦.

Figure 9.7 shows the Cl versus τ for the lower airfoil at ᾱ = 15◦. Unlike the upper airfoil,

the lower one has positive lift for the first half-stroke (τ < 0.5) and negative Cl for the second

half. The magnitudes of peaks of Cl are observed to be even higher than those of the upper

airfoil. It should be reminded that there are two main differences between the governing

equation of motions of the two airfoils. First, the rotations are out of phase, i.e. the upper

airfoil rotates counter clock-wise while the lower one rotates clock-wise. Second, as shown in

Fig. 9.1 the direction of the y-component of the two flapping motions are opposite to each

other. In addition to the differences in the equations of motion, the effect of the vortical

interactions could be a strong reason for the difference in the Cl variations of Figs. 9.5

and 9.7. Figure 9.8 shows Cd versus τ for the lower airfoil at ᾱ = 15◦, where similar to the

upper airfoil, higher drag coefficients than lift are observed.

Figures 9.9 and 9.10 are further provided to depict the differences between the Cl and

Cd values of the upper and lower airfoils at ᾱ = 15◦. Only the steady results (after τ = 6)

are presented. It should be noted that the lift and drag values are shifted downwards for 4

and 10 units, respectively, to ease the comparison.

Two more test cases are investigated to study the effect of the amplitude of the pitching
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Figure 9.7: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the lower
airfoil at ᾱ = 15◦.

Figure 9.8: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the lower
airfoil at ᾱ = 15◦.

oscillations (ᾱ) on the lift and drag of the lower airfoil. The lower airfoil is chosen as according

to the solution of single figure-of-eight-like flapping motion, the separated vortices from the

airfoil move downward. Fig. 2.1 presents the single figure-of-eight flapping airfoil studied in

Chapter 6, showing the direction the separated vortices move. Fig. 9.11 shows Cl versus τ

for the lower airfoil at ᾱ = 30◦. Similar to Fig. 9.7, positive lift coefficients are obtained
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Figure 9.9: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the upper
and lower airfoils at ᾱ = 15◦, the lower airfoil Cl are shifted 4 units downward.

Figure 9.10: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the
upper and lower airfoils at ᾱ = 15◦, the lower airfoil Cd are shifted 10 units downward.

in the first half-stroke while negative values are obtained in the second half. Comparing

the peaks of the lift coefficient shows that the first maximum lift coefficient (Clmax) is not

changed noticeably between ᾱ = 15◦ and 30◦. The Clmax is obtained with a lead at τ =

0.4 and 0.2 for ᾱ = 15◦ and 30◦, respectively. The amplitude of the pitching oscillations,

however, changes the magnitude of Clmin
in the second half stroke from |Clmin

| = 2.1 to 1.6
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at ᾱ = 15◦ and 30◦, respectively. This decreasing effect is accompanied with an induced lag

in the time at which Clmin
is obtained, Clmin

is obtained at τ = 0.7 and 0.9 at ᾱ = 15◦ and

30◦, respectively.

Figure 9.11: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the lower
airfoil at ᾱ = 30◦.

Figure 9.12 shows Cd versus τ for the lower airfoil at ᾱ = 30◦. It can be seen that

increasing ᾱ decreases the maximum drag coefficients. The first Cdmax = 5.4 and 3.5 at ᾱ

= 15◦ and 30◦, respectively. However, ᾱ does not induce lead or lag into the location of the

first Cdmax , both maximums are obtained at τ = 0.2. The second Cdmax also decreases from

ᾱ = 15◦ and 30◦. Cdmax = 9 and 6 at ᾱ = 15◦ and 30◦, where both maximums are obtained

at τ = 0.9, hence similar to the first Cdmax no lead or lag is induced. Moreover, comparing

Figs. 9.8 and 9.12 shows that higher thrust (Cd < 0) is generated at ᾱ = 30◦ than ᾱ = 15◦.

Finally, Cl and Cd versus τ are shown in Figs. 9.13 and 9.14, respectively, for the lower

airfoil for ᾱ = 45◦. Unlike, the previous two cases (ᾱ = 15◦ and ᾱ = 30◦), where Cl values

were positive in the first half and negative in the second half for ᾱ = 15◦ and ᾱ = 30◦, positive

and negative Cl values exist in both first and second half-strokes. This different lift variation

is also accompanied with decreased Clmax , Fig. 9.13. Figure 9.13 is obtained for the same

governing condition as those of Re = 37.5 in Fig. 6.24 (Chapter 6). However, it is seen in
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Figure 9.12: Instantaneous drag coefficient (Cd) versus nondimensional time (τ) for the lower
airfoil at ᾱ = 30◦.

Fig. 9.13 that significant downward lift coefficients are obtained. Moreover, noticeable drag

force is exerted on the airfoil, Fig . 9.14. This means that the 2-D airfoil-airfoil interactions

deteriorate the performance of the airfoils, or at least the lower airfoil.

Figure 9.13: Instantaneous lift coefficient (Cl) versus nondimensional time (τ) for the lower
airfoil at ᾱ = 45◦.

Figure 9.14 shows Cd versus τ for the lower airfoil at ᾱ = 45◦. First, higher thrust than

the ᾱ = 15◦ and 30◦ cases is generated at ᾱ = 45◦. The first Cdmax increases from Cdmax =
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3.5 to 4 at ᾱ = 30◦ and 45◦, respectively, accompanied with an induced lag at τ = 0.2 and

0.4 at ᾱ = 30◦ and 45◦. The second Cdmax at ᾱ = 15◦ and 30◦, however, is converted to a

maximum thrust coefficient (Cdmax < 0), but obtained at the same τ (τ = 0.9).

Figure 9.14: Instantaneous drag coefficient (Cd) versus nondimensional (τ) for lower airfoil
at ᾱ = 45◦.

9.5 Summary and conclusion

In this chapter, a mesh motion library is developed based on the layer addition/removal [141]

and Generalized Grid interface (GGI) [132] algorithms. The developed motion algorithm is

used for the multi figure-of-eight flapping airfoils simulations. The algorithm is first used

to study single harmonic and figure-of-eight flapping airfoils, for which previous studies

were performed using Laplace mesh motion technique. The results of the developed motion

library are found to be in good agreement with those of the Laplace algorithm when the

mean values of the force coefficients are compared. The main differences between the results

are observed around the peaks of the force signatures, where the discrepancy is less than

5%. Furthermore, the method is used to simulate the figure-of-eight flapping motion of

two airfoils. A few numerical examples are presented for different amplitudes of pitching
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oscillations to show the capability of the developed method in handling the multi flapping

motions, to investigate the lift and drag coefficients of both airfoil in one case and to study

the effect of the pitching amplitude of oscillations on the lift and drag coefficients of one of

the airfoils. In all the studied cases, the drag is significantly higher than the lift, showing

how the airfoil-airfoil interaction changes the instantaneous lift and drag coefficients when

compared to those of a single flapping airfoil.
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Chapter 10

Concluding Remarks

The growing interest in low Reynolds number (LRN) flow discipline emerges from their

corresponding state-of-the-art applications such as Micro Aerial Vehicles (MAVs), swim-

ming robots and off-shore structures. The respective fluid dynamics of these applications is

highly viscous, accompanied with complex vortical patterns affecting the performance and

flow characteristics. The inherent complexity of these flows rises at unsteady conditions,

demanding successful modeling to meet robust design targets. Fortunately, the main gov-

erning fluid phenomena are known in terms of their mechanisms. However, in spite of the

recent research endeavors, the tangible gap between the existing knowledge and the respec-

tive design constraints needs more thorough studies. For example, the behavior of the fluid

phenomena under different governing conditions is not yet well understood.

Forced and flow-induced oscillations of LRN airfoils, wings and geometries (in general)

in single and multi-body configurations are amongst highly challenging problems to solve in

terms of the computational time, accuracy and appropriate methods to perform the desired

kinematics. The existing analytical tools are not sufficiently accurate to capture the required

details of these flows. On the other hand, although experimental means stand out as very

accurate techniques, they are very time consuming and expensive to conduct a thorough

study. Hence, Computational Fluid Dynamics (CFD), also accurate, is an excellent candi-
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date for LRN flows.

The focus of this thesis is on the CFD study of force-induced oscillations of two-dimensional

(2-D) airfoils in both single and multi-moving arrangements, where pitching, plunging and

novel figure-of-eight-like flapping airfoils are investigated. The motivation of the performed

studies is a rotating-flapping mechanism which uses two blades for generating its required

unsteady forces in a stable hovering flight. Thorough parametric studies corresponding to

this application are conducted to contribute to the current LRN flow knowledge, and multi-

body motion algorithms are developed for handling multi-pitching, plunging and flapping

airfoils.

In the single airfoil studies in Chapters 4, 5 and 6, pitching, plunging and a novel figure-

of-eight-like flapping kinematics, respectively, are investigated. The conducted parametric

studies are mainly focused on the instantaneous force signatures, where in some cases of

interest pitching moment and flow structures surrounding the airfoil are also investigated.

The high lift generation of the studied figure-of-eight flapping pattern is favorable in LRN

flight, where this kinematic may be used instead of the common flapping patterns, e.g. in

MAVs.

In the multi airfoils studies in Chapters 7, 8 and 9, appropriate mesh motion methodolo-

gies are developed based on the so-called dynamic layering and Generalized Grid Interface

(GGI) algorithms to perform multi moving-airfoil unsteady problems. Although the purpose

of developing these methodologies is to study paired-airfoil problems, they can also be ap-

plied to more than two moving objects with any kinematics different than those studied in

this research. Moreover, the developed methodologies may be used for single moving objects

with a significant gain in the computational time.

10.1 Future Work

There are a number of possible future work which are categorized as the following:
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• The developed motion library is used for the fluid dynamic simulations of airfoils.

Fluid-structure interaction is the most important extension to this work. As the fi-

nal target would be a multi-disciplinary design of an application, dynamics or flight

dynamics of the system could also be modeled, where all these disciplines require an

appropriate interface for the aerodynamic, structure and flight dynamic models to be

coupled. This eventually could result in a powerful optimization workflow for design

improvement or to start a design from scratch, where one could introduce some given

parameters in the optimization algorithm and extract accurate results as the outputs.

• Although experimental studies are extremely expensive, the multi-moving tests are

highly recommended. The present literature lacks a real-world insight about multi-

body systems.

• The developed motion library needs improvement to achieve more robustness, where

robustness is defined as to minimize the user interaction and expertise needed to set

up a test case. Further research is needed in that direction.

• Three-dimensional numerical and experimental studies of pitching, plunging and flap-

ping wings in both single and multi configurations are scarce in the literature.

• The application of Artificial Neural Networks (ANNs) and Adaptive Neuro-fuzzy In-

ference System (ANFIS) is recommended for both 2-D and 3-D unsteady LRN studies

to develop tools for rapid prediction of fluid forces under different conditions.

• More extensive research about multi-body airfoils can be conducted, as there is limited

data in the literature.

10.2 Thesis Publications

The publications resulted in this work are listed as the following:
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Appendix A

Motion Methodology for Multi

Figure-of-Eight Flapping Motions

The multi-airfoils simulations in Chapter 7-9 are performed by developing the original mesh

motion algorithms in OpenFOAM R©. The simulations of Chapter 9 correspond to two air-

foils under figure-of-eight-like flapping motion, where the developed mesh motion library is

a combination of those in Chapters 7 and 8 with further developments. Therefore, only the

code for the motion in Chapter 9 is presented here along with some specifications and file

settings required to perform the simulations. It should be mentioned that multi pitching

or multi plunging of two airfoils can be done using the provided code, if the corresponding

settings are changed according to the desired motion.

The following piece of code shows the entries in dynamicMeshDict, the file containing

the motion settings for Equations 9.1.

1 dynamicFvMesh ggiFigureOfEight;

2 ggiFigureOfEightCoeffs

3 {

4 motionVelAmplitude (0 0.14 0);

5 motionVelAmplitude2 (0.14 0 0);

6 motionVelPeriod 4;

7 rotationAmplitude 15;

8 leftObstacleEdge -0.1;
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9 downObstacleEdge 0.1;

10 rightObstacleEdge 0.1;

11 upObstacleEdge 0.3;

12 lowerUpObstacleEdge -0.1;

13 lowerDownObstacleEdge -0.3;

14 down

15 {

16 minThickness 0.01;

17 maxThickness 0.05;

18 }

19 up

20 {

21 minThickness 0.01;

22 maxThickness 0.05;

23 }

24 left

25 {

26 minThickness 0.01;

27 maxThickness 0.03;

28 }

29 right

30 {

31 minThickness 0.01;

32 maxThickness 0.03;

33 }

34 lowerDown

35 {

36 minThickness 0.01;

37 maxThickness 0.05;

38 }

39 lowerUp

40 {

41 minThickness 0.01;

42 maxThickness 0.05;

43 }

44 }

The geomterical entries of dynamicMehsDict file are shown in Fig. A.1. The entries showing

the left, right, up and down boundaries of each airfoil are necessary for performing the

translational motion (in x and y directions) of each airfoil. For example, downObstacleEdge

in dynamicMeshDict and Fig. A.1, set to 0.1, shows that this edge is as y = 0.1 in the

computational domain.

In the dynamicMeshDict there are other entries, e.g. down, containing maximum and

minimum cell layer thicknesses. For example, minThickness of 0.01 means that the cell layer

is removed when its thickness reaches 0.01, or maxThickness of 0.03 means that a new cell
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Figure A.1: The schematic of the airfoils and entries in the dynamicMeshDict file.

layer is added when the thickness reaches 0.03. It should be mentioned that according the

dynamicMeshDict file the developed motion library is called ggiFigureOfEight. The following

code shows ggiFigureOfEight code for performing figure-of-eight-like flapping motion of two

airfoils. The following code has been used with the unsteady flow solver in OpenFOAM,

icoDyMFoam, and is written in C++. In ggiFigureOfEight.C code provided in the following,

the required header files are called and cells are marked, where this marking is used for the

translational motions. For the rotations, two cell regions are also defined. The position of

the computational nodes within each circular region are updated considering rotational and

translational motions.

1 #include "ggiFigureOfEight2.H"

2 #include "Time.H"

3 #include "mapPolyMesh.H"

4 #include "layerAdditionRemoval.H"

5 #include "addToRunTimeSelectionTable.H"

6 #include "volMesh.H"

7 #include "mathematicalConstants.H"

8 #include "regionSplit.H"

9 #include "slidingInterface.H"

10 #include "transformField.H"

11 #include "cylindricalCS.H"

12 // * * * * * * * * Static Data Members * * ** * * * * * * * * //

13 namespace Foam

178



14 {

15 defineTypeNameAndDebug(ggiFigureOfEight, 0);

16 addToRunTimeSelectionTable

17 (

18 topoChangerFvMesh,

19 ggiFigureOfEight,

20 IOobject

21 );

22 scalar pitt = 2;

23 }

24 // * * * * * * * Private Member Functions * * * * * * * * * * //

25 Foam::tmp<Foam::scalarField> Foam::ggiFigureOfEight::vertexMarkup

26 (

27 const pointField& p,

28 const scalar& curDown,

29 const scalar& curUp

30 ) const

31 {

32 Info<< "Updating vertex markup. curDown: "

<< curDown << " curUp: " << curUp << endl;

33 tmp<scalarField> tvertexMarkup(new scalarField(p.size()));

34 scalarField& vertexMarkup = tvertexMarkup();

35 forAll (p, pI)

36 {

37 if (p[pI].y() < curDown - 1e-8)

38 {

39 vertexMarkup[pI] = 1;

40 }

41 else if (p[pI].y() > curUp + 1e-8)

42 {

43 vertexMarkup[pI] = -1;

44 }

45 else

46 {

47 vertexMarkup[pI] = 0;

48 }

49 }

50 return tvertexMarkup;

51 }

52 Fom::tmp<Foam::scalarField> Foam::ggiFigureOfEight::vertexMarkup2

53 (

54 const pointField& p,

55 const scalar& curLeft,

56 const scalar& curRight

57 //const scalar& curUpUpper,

58 //const scalar& curDownUpper

59 ) const

60 {

61 Info<< "Updating vertex markup. curLeft: "

<< curLeft << " curRight: " << curRight << endl;

62 tmp<scalarField> tvertexMarkup2(new scalarField(p.size()));

63 scalarField& vertexMarkup2 = tvertexMarkup2();

64 forAll (p, pI)

65 {
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66 if (p[pI].x() < curLeft - 1e-8)

67 {

68 vertexMarkup2[pI] = 1;

69 }

70 else if (p[pI].x() > curRight + 1e-8)

71 {

72 vertexMarkup2[pI] = -1;

73 }

74 else

75 {

76 vertexMarkup2[pI] = 0;

77 }

78 }

79 return tvertexMarkup2;

80 }

81 Foam::tmp<Foam::scalarField> Foam::ggiFigureOfEight::vertexMarkup3

82 (

83 const pointField& p,

84 const scalar& curLowerDown,

85 const scalar& curLowerUp

86 ) const

87 {

88 Info<< "Updating vertex markup. curLowerDown: "

<< curLowerDown << " curLowerUp: " << curLowerUp << endl;

89 tmp<scalarField> tvertexMarkup3(new scalarField(p.size()));

90 scalarField& vertexMarkup3 = tvertexMarkup3();

91 forAll (p, pI)

92 {

93 if (p[pI].y() < curLowerDown - 1e-8)

94 {

95 vertexMarkup3[pI] = 1;

96 }

97 else if (p[pI].y() > curLowerUp + 1e-8)

98 {

99 vertexMarkup3[pI] = -1;

100 }

101 else

102 {

103 vertexMarkup3[pI] = 0;

104 }

105 }

106 return tvertexMarkup3;

107 }void Foam::ggiFigureOfEight::addZonesAndModifiers()

108 {

109 topoChanger_.clear();

110 const vectorField& fc = faceCentres();

111 const vectorField& fa = faceAreas();

112 labelList zone1(fc.size());

113 boolList flipZone1(fc.size(), false);

114 label nZoneFaces1 = 0;

115 labelList zone2(fc.size());

116 boolList flipZone2(fc.size(), false);

117 label nZoneFaces2 = 0;

118 labelList zone3(fc.size());
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119 boolList flipZone3(fc.size(), false);

120 label nZoneFaces3 = 0;

121 labelList zone4(fc.size());

122 boolList flipZone4(fc.size(), false);

123 label nZoneFaces4 = 0;

124 labelList zone5(fc.size());

125 boolList flipZone5(fc.size(), false);

126 label nZoneFaces5 = 0;

127 labelList zone6(fc.size());

128 boolList flipZone6(fc.size(), false);

129 label nZoneFaces6 = 0;

130 forAll (fc, faceI)

131 {

132 if

133 (

134 fc[faceI].y() > curDown_ - 0.0001 && fc[faceI].y() < curDown_ + 0.0001)

{

135 if ((fa[faceI] & vector(0, 1, 0)) > 0)

136 {

137 flipZone1[nZoneFaces1] = true;

138 }

139 zone1[nZoneFaces1] = faceI;

140 Info<< "face " << faceI << " for zone 1. Flip: "

<< flipZone1[nZoneFaces1] << endl;

141 nZoneFaces1++;

142 }

143 else if

144 (

145 fc[faceI].y() < curUp_ + 0.0001 && fc[faceI].y() > curUp_ - 0.0001

146 )

147 {

148 zone2[nZoneFaces2] = faceI;

149 if ((fa[faceI] & vector(0, 1, 0)) < 0)

150 {

151 flipZone2[nZoneFaces2] = true;

152 }

153 Info << "face " << faceI << " for zone 2. Flip: "

154 << flipZone2[nZoneFaces2] << endl;

155 nZoneFaces2++;

156 }

157 }

158 forAll (fc, faceI)

159 {

160 if

161 (

162 fc[faceI].x() > curLeft_ - 0.0001

163 && fc[faceI].x() < curLeft_ + 0.0001

164 )

165 {

166 if ((fa[faceI] & vector(1, 0, 0)) > 0)

167 {

168 flipZone3[nZoneFaces3] = true;

169 }

170 zone3[nZoneFaces3] = faceI;
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171 nZoneFaces3++;

172 }

173 else if

174 (

175 fc[faceI].x() > curRight_ - 0.0001 && fc[faceI].x() < curRight_ + 0.0001

176 )

177 { zone4[nZoneFaces4] = faceI;

178 if ((fa[faceI] & vector(1, 0, 0)) < 0)

179 {

180 flipZone4[nZoneFaces4] = true;

181 }

182 nZoneFaces4++;

183 }

184 }

185 forAll (fc, faceI)

186 {

187 if

188 (

189 fc[faceI].y() > curLowerDown_ - 0.0001 &&

fc[faceI].y() < curLowerDown_ + 0.0001

190 )

200 {

201 if ((fa[faceI] & vector(0, 1, 0)) > 0)

202 {

203 flipZone5[nZoneFaces5] = true;

204 }

205 zone5[nZoneFaces5] = faceI;

206 Info<< "face " << faceI << " for zone 5. Flip: "

<< flipZone5[nZoneFaces5] << endl;

207 nZoneFaces5++;

208 }

209 else if

210 (

211 fc[faceI].y() < curLowerUp_ + 0.0001 &&

fc[faceI].y() > curLowerUp_ - 0.0001

212 )

213 {

214 zone6[nZoneFaces6] = faceI;

215 if ((fa[faceI] & vector(0, 1, 0)) < 0)

216 {

217 flipZone6[nZoneFaces6] = true;

218 }

219 Info << "face " << faceI << " for zone 6. Flip: "

<< flipZone6[nZoneFaces6] << endl;

220 nZoneFaces6++;

221 }

222 }

223 zone1.setSize(nZoneFaces1);

224 flipZone1.setSize(nZoneFaces1);

225 zone2.setSize(nZoneFaces2);

226 flipZone2.setSize(nZoneFaces2);

227 zone3.setSize(nZoneFaces3);

228 flipZone3.setSize(nZoneFaces3);

229 zone4.setSize(nZoneFaces4);
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230 flipZone4.setSize(nZoneFaces4);

231 zone5.setSize(nZoneFaces5);

232 flipZone5.setSize(nZoneFaces5);

233 zone6.setSize(nZoneFaces6);

234 flipZone6.setSize(nZoneFaces6);

235 //Info << "zone: " << zone1 << endl;

236 //Info << "zone: " << zone2 << endl;

237 List<pointZone*> pz(0);

238 List<faceZone*> fz(6);

239 fz.clear();

240 fz.setSize(6);

241 label nFz = 0;

242 fz[nFz] =

243 new faceZone

244 (

245 "upExtrusionFaces",

246 zone2,

247 flipZone2,

248 1,

249 faceZones()

250 );

251 nFz++;

252 fz[nFz] =

253 new faceZone

254 (

255 "downExtrusionFaces",

256 zone1,

257 flipZone1,

258 2,

259 faceZones()

260 );

261 nFz++;

262 fz[nFz] =

263 new faceZone

264 (

265 "leftExtrusionFaces",

266 zone3,

267 flipZone3,

268 3,

269 faceZones()

270 );

280 nFz++;

281 fz[nFz] =

282 new faceZone

283 (

284 "rightExtrusionFaces",

285 zone4,

286 flipZone4,

287 4,

288 faceZones()

289 );

290 nFz++;

291 fz[nFz] =

292 new faceZone
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293 (

294 "lowerUpExtrusionFaces",

295 zone6,

296 flipZone6,

297 5,

298 faceZones()

299 );

300 nFz++;

301 fz[nFz] =

302 new faceZone

303 (

304 "lowerDownExtrusionFaces",

305 zone5,

306 flipZone5,

307 6,

308 faceZones()

309 );

310 nFz++;

311 fz.setSize(nFz);

312 Info << fz[1] << endl;

313 List<cellZone*> cz(2);

314 regionSplit rs(*this);

315 vector movingOrigin = vector(0,0.2,0);

316 label originRegion = rs[findNearestCell(vector(0,0.2,0))];

317 labelList movingCells(nCells());

318 label nMovingCells = 0;

319 forAll(rs, cellI)

320 {

321 if (rs[cellI] == originRegion)

322 {

323 movingCells[nMovingCells] = cellI;

324 nMovingCells++;

325 }

326 }

327 movingCells.setSize(nMovingCells);

328 Info << "Number of cells in the moving region: " << nMovingCells << endl;

329 vector movingOrigin2 = vector(0,-0.2,0);

330 label originRegion2 = rs[findNearestCell(vector(0,-0.2,0))];

331 labelList movingCells2(nCells());

332 label nMovingCells2 = 0;

333 forAll(rs, cellI)

334 {

335 if (rs[cellI] == originRegion2)

336 {

337 movingCells2[nMovingCells2] = cellI;

338 nMovingCells2++;

339 }

340 }

341 movingCells2.setSize(nMovingCells2);

342 Info << "Number of cells in the moving region: " << nMovingCells << endl;

343 cz[0] = new cellZone

344 (

345 "movingCells",

346 movingCells,
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347 0,

348 cellZones()

349 );

350 cz[1] = new cellZone

351 (

352 "movingCells2",

353 movingCells2,

354 1,

355 cellZones()

356 );

357 Info << "Adding mesh zones." << endl;

358 addZones(pz, fz, cz);

359 List<polyMeshModifier*> tm(6);

360 label nMods = 0;

361 tm.clear();

362 tm.setSize(6);

363 tm[nMods] =

364 new layerAdditionRemoval

365 (

366 "up",

367 nMods,

368 topoChanger_,

369 "upExtrusionFaces",

370 readScalar

371 (

372 motionDict_.subDict("down").lookup("minThickness")

373 ),

374 readScalar

375 (

376 motionDict_.subDict("down").lookup("maxThickness")

377 )

378 );

379 nMods++;

380 tm[nMods] =

381 new layerAdditionRemoval

382 (

383 "down",

384 nMods,

385 topoChanger_,

386 "downExtrusionFaces",

387 readScalar

388 (

389 motionDict_.subDict("up").lookup("minThickness")

390 ),

391 readScalar

392 (

393 motionDict_.subDict("up").lookup("maxThickness")

394 )

395 );

396 nMods++;

397 tm[nMods] =

398 new layerAdditionRemoval

399 (

400 "left",
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401 nMods,

402 topoChanger_,

403 "leftExtrusionFaces",

404 readScalar

405 (

406 motionDict_.subDict("right").lookup("minThickness")

407 ),

408 readScalar

409 (

410 motionDict_.subDict("right").lookup("maxThickness")

411 )

412

413 );

414 nMods++;

415 tm[nMods] =

416 new layerAdditionRemoval

417 (

418 "right",

419 nMods,

420 topoChanger_,

421 "rightExtrusionFaces",

422 readScalar

423 (

424 motionDict_.subDict("left").lookup("minThickness")

425 ),

426 readScalar

427 (

428 motionDict_.subDict("left").lookup("maxThickness")

429 )

430 );

431 nMods++;

432 tm[nMods] =

433 new layerAdditionRemoval

434 (

435 "lowerUp",

436 nMods,

437 topoChanger_,

438 "lowerUpExtrusionFaces",

439 readScalar

440 (

441 motionDict_.subDict("lowerDown").lookup("minThickness")

442 ),

443 readScalar

444 (

445 motionDict_.subDict("lowerDown").lookup("maxThickness")

446 )

447 );

448 nMods++;

449 tm[nMods] =

450 new layerAdditionRemoval

451 (

452 "lowerDown",

453 nMods,

454 topoChanger_,
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455 "lowerDownExtrusionFaces",

456 readScalar

457 (

458 motionDict_.subDict("lowerUp").lookup("minThickness")

459 ),

460 readScalar

461 (

462 motionDict_.subDict("lowerUp").lookup("maxThickness")

463 )

464 );

465 nMods++;

466 tm.setSize(nMods);

467 Info << "Adding " << nMods << " mesh modifiers" << endl;

468 topoChanger_.addTopologyModifiers(tm);

469 write();

470 }

471 void Foam::ggiFigureOfEight2::calcMovingMasks() const

472 {

473 movingPointsMaskPtr_ = new scalarField(allPoints().size(), 0);

474 scalarField& movingPointsMask = *movingPointsMaskPtr_;

475 const cellList& c = cells();

476 const faceList& f = allFaces();

477 const labelList& cellAddr =

478 cellZones()[cellZones().findZoneID("movingCells")];

479 forAll (cellAddr, cellI)

480 {

481 const cell& curCell = c[cellAddr[cellI]];

482 forAll (curCell, faceI)

483 {

484 const face& curFace = f[curCell[faceI]];

485 forAll (curFace, pointI)

486 {

487 movingPointsMask[curFace[pointI]] = 1;

488 }

489 }

490 }

491 }

492 void Foam::ggiFigureOfEight2::calcMovingMasks2() const

493 {

494 movingPointsMaskPtr2_ = new scalarField(allPoints().size(), 0);

495 scalarField& movingPointsMask2 = *movingPointsMaskPtr2_;

496 const cellList& c = cells();

497 const faceList& f = allFaces();

498 const labelList& cellAddr =

499 cellZones()[cellZones().findZoneID("movingCells2")];

500 forAll (cellAddr, cellI)

501 {

502 const cell& curCell = c[cellAddr[cellI]];

503 forAll (curCell, faceI)

504 {

505 const face& curFace = f[curCell[faceI]];

506 forAll (curFace, pointI)

507 {

508 movingPointsMask2[curFace[pointI]] = 1;
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509 }

510 }

511 }

512 }

513 Foam::ggiFigureOfEight2::ggiFigureOfEight2(const IOobject& io):

514 topoChangerFvMesh(io),

515 motionDict_

516 (

517 IOdictionary

518 (

519 IOobject

520 (

521 "dynamicMeshDict",

522 time().constant(),

523 *this,

524 IOobject::MUST_READ,

525 IOobject::NO_WRITE

526 )

527 ).subDict(typeName + "Coeffs")

528 ),

529 motionVelAmplitude_(motionDict_.lookup("motionVelAmplitude")),

530 motionVelAmplitude2_(motionDict_.lookup("motionVelAmplitude2")),

531 motionVelPeriod_(readScalar(motionDict_.lookup("motionVelPeriod"))),

532 downEdge_(readScalar(motionDict_.lookup("downEdge"))),

533 curDown_(readScalar(motionDict_.lookup("downObstacleEdge"))),

534 rotationAmplitude_(readScalar(motionDict_.lookup("rotationAmplitude"))),

535 curLowerDown_(readScalar(motionDict_.lookup("lowerDownObstacleEdge"))),

536 curLowerUp_(readScalar(motionDict_.lookup("lowerUpObstacleEdge"))),

537 curUp_(readScalar(motionDict_.lookup("upObstacleEdge"))),

538 curLeft_(readScalar(motionDict_.lookup("leftObstacleEdge"))),

539 curRight_(readScalar(motionDict_.lookup("rightObstacleEdge"))),

540 motionMask_

541 (

542 vertexMarkup

543 (

544 points(),

545 curDown_,

546 curUp_

547 )

548 ),

549 motionMask2_

550 (

551 vertexMarkup2

552 (

553 points(),

554 curLeft_,

555 curRight_

556 )

557 ),

558 motionMask3_

559 (

560 vertexMarkup3

561 (

562 points(),
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563 curLowerDown_,

564 curLowerUp_

565 )

566 )

567 {

568 addZonesAndModifiers();

569 }

570 Foam::ggiFigureOfEight::~ggiFigureOfEight()

571 {}

572 const Foam::scalarField&Foam::ggiFigureOfEight2::movingPointsMask() const

573 {

574 if (!movingPointsMaskPtr_)

575 {

576 calcMovingMasks();

577 }

578 return *movingPointsMaskPtr_;

579 }

580 const Foam::scalarField& Foam::ggiFigureOfEight2::movingPointsMask2() const

581 {

582 if (!movingPointsMaskPtr2_)

583 {

584 calcMovingMasks2();

585 }

586 return *movingPointsMaskPtr2_;

587 }

588 bool Foam::ggiFigureOfEight2::update()

589 {

590 scalar curTime = time().value();

591 scalar oldTime = curTime - time().deltaT().value();

592 vector curRotationOrigin_ = vector(0,0.2,0)+(motionVelAmplitude_/2)*

(Foam::cos((2*mathematicalConstant::pi/motionVelPeriod_)*curTime)-1)

-(motionVelAmplitude_/2)*Foam::sin((4*mathematicalConstant::pi/motionVelPeriod_)

*curTime)-motionVelAmplitude2_*Foam::sin((2*mathematicalConstant::pi/

motionVelPeriod_)*curTime);

593 Info << "current rotation origin is: " << curRotationOrigin_ << endl;

594 vector axis_ = vector(0,0,1);

595 vector direction_ = vector(1,0,0);

596 cylindricalCS ccs("ccs",curRotationOrigin_,axis_,direction_);

597 movePoints

598 (

599 ccs.globalPosition

600 (

601 ccs.localPosition(allPoints())+ vector(0,rotationAmplitude_*

(sin(((2*mathematicalConstant::pi)/motionVelPeriod_)*

curTime)-sin(((2*mathematicalConstant::pi)/motionVelPeriod_)*oldTime)), 0)*

movingPointsMask()));

602 vector curRotationOrigin2_ = vector(0,-0.2,0)+

(motionVelAmplitude_/2)*(Foam::cos((2*mathematicalConstant::pi/motionVelPeriod_)

*curTime)-1)+(motionVelAmplitude_/2)*

Foam::sin((4*mathematicalConstant::pi/motionVelPeriod_)*curTime)-motionVelAmplitude2_

*Foam::sin((2*mathematicalConstant::pi/motionVelPeriod_)*curTime);

603 Info << "current rotation origin is: " << curRotationOrigin2_ << endl;

604 vector axis2_ = vector(0,0,1);

605 vector direction2_ = vector(1,0,0);
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606 cylindricalCS ccs2("ccs2",curRotationOrigin2_,axis2_,direction2_);

607 movePoints

608 (

609 ccs2.globalPosition

610 (

611 ccs2.localPosition(allPoints())+ vector(0,-rotationAmplitude_*

(sin(((2*mathematicalConstant::pi)/motionVelPeriod_)

*curTime)-sin(((2*mathematicalConstant::pi)/motionVelPeriod_)*oldTime)), 0)*

movingPointsMask2()));

612 autoPtr<mapPolyMesh> topoChangeMap = topoChanger_.changeMesh();

613 pointField newPoints;

614 pointField newPreMotionPoints;

615 vector curMotionVel_y;

616 vector curMotionVel_x;

617 curMotionVel_y.x() = 0;

618 curMotionVel_y.y() = curMotionVel_.y();

619 curMotionVel_y.z() = 0;

620 curMotionVel_x.x() = curMotionVel_.x();

621 curMotionVel_x.y() = 0;

622 curMotionVel_x.z() = 0;

623 vector curMotionVel_ = -((motionVelAmplitude_*mathematicalConstant::pi)/

motionVelPeriod_)*Foam::sin((2*mathematicalConstant::pi/motionVelPeriod_)*

time().value())-((motionVelAmplitude_*2*mathematicalConstant::pi)/

motionVelPeriod_)*Foam::cos((4*mathematicalConstant::pi/motionVelPeriod_)

*time().value());

624 vector curMotionVel2_ = -((motionVelAmplitude2_*2*mathematicalConstant::pi)

/motionVelPeriod_)*Foam::cos((2*mathematicalConstant::pi/motionVelPeriod_)*

time().value());

625 vector curMotionVel3_ = -((motionVelAmplitude_*mathematicalConstant::pi)/

motionVelPeriod_)*Foam::sin((2*mathematicalConstant::pi/motionVelPeriod_)*

time().value())+((motionVelAmplitude_*2*mathematicalConstant::pi)/

motionVelPeriod_)*Foam::cos((4*mathematicalConstant::pi/motionVelPeriod_)

*time().value());

626 if (topoChangeMap.valid())

627 {

628 if (topoChangeMap().hasMotionPoints())

629 {

630 motionMask_ =

631 vertexMarkup

632 (

633 topoChangeMap().preMotionPoints(),

634 curDown_,

635 curUp_

636 );

637 motionMask2_ =

638 vertexMarkup2

639 (

640 topoChangeMap().preMotionPoints(),

641 curLeft_,

642 curRight_

643 );

644 motionMask3_ =

645 vertexMarkup3

646 (
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647 topoChangeMap().preMotionPoints(),

648 curLowerDown_,

649 curLowerUp_

650 );

651 }

652 else

653 {

654 motionMask_ =

655 vertexMarkup

656 (

657 points(),

658 curDown_,

659 curUp_

660 );

661 motionMask2_ =

662 vertexMarkup2

663 (

664 points(),

665 curLeft_,

666 curRight_

667 );

668 motionMask3_ =

669 vertexMarkup3

670 (

671 points(),

672 curLowerDown_,

673 curLowerUp_

674 );

675 }

676 newPoints = points() + (pos(0.5 - mag(motionMask_)) )*

curMotionVel_*time().deltaT().value()+ (pos(0.5 - mag(motionMask2_)) )*

curMotionVel2_*time().deltaT().value()+ (pos(0.5 - mag(motionMask3_)))*

curMotionVel3_*time().deltaT().value();

677 movePoints(topoChangeMap().preMotionPoints());

678 resetMotion();

679 setV0();

680 }

681 else

682 {

683 motionMask_ =

684 vertexMarkup

685 (

686 points(),

687 curDown_,

688 curUp_

689 );

690 motionMask2_ =

691 vertexMarkup2

692 (

693 points(),

694 curLeft_,

695 curRight_

696 );

697 motionMask3_ =

191



698 vertexMarkup3

699 (

700 points(),

701 curLowerDown_,

702 curLowerUp_

703 );

704 newPoints =

705 points() + (pos(0.5 - mag(motionMask_)))*curMotionVel_*

time().deltaT().value()+ (pos(0.5 -mag(motionMask2_)))*

curMotionVel2_*time().deltaT().value()+ (pos(0.5 - mag(motionMask3_)))*

curMotionVel3_*time().deltaT().value();

706 }

707 curRight_ += curMotionVel2_.x()*time().deltaT().value();

708 curLeft_ += curMotionVel2_.x()*time().deltaT().value();

709 curUp_ += curMotionVel_.y()*time().deltaT().value();

710 curDown_ += curMotionVel_.y()*time().deltaT().value();

711 curLowerUp_ += curMotionVel3_.y()*time().deltaT().value();

712 curLowerDown_ += curMotionVel3_.y()*time().deltaT().value();

713 Info << "Executing mesh motion" << endl;

714 movePoints(newPoints);

715 if (pitt == 0)

716 {

717 {

718 pointZones().clear();

719 faceZones().clear();

720 addZonesAndModifiers();

721 pitt = 2;

722 }

723 }

724 if (pitt == 1)

725 {pitt = 0;}

726 if (topoChangeMap.valid())

727 {

728 pitt = 1;

729 }

730 return true;

731 }

The presented ggiFigureOfEight.C file needs a header file, calling the required subroutines
and classes. This file is called ggiFigureOfEight.H and presented in the following.

1 #ifndef ggiFigureOfEight_H

2 #define ggiFigureOfEight_H

3 #include "topoChangerFvMesh.H"

4 #include "motionSolver.H"

5 #include "dynamicFvMesh.H"

6 #include "cylindricalCS.H"

7 namespace Foam

8 {

9 class ggiFigureOfEight:

10 public topoChangerFvMesh

11 {

12 dictionary dict_;
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13 autoPtr<coordinateSystem> csPtr_;

14 mutable scalarField* movingPointsMaskPtr_;

15 void calcMovingMasks() const;

16 const scalarField& movingPointsMask() const;

17 autoPtr<motionSolver> motionPtr_;

18 autoPtr<coordinateSystem> csPtr2_;

19 mutable scalarField* movingPointsMaskPtr2_;

20 void calcMovingMasks2() const;

21 const scalarField& movingPointsMask2() const;

22 autoPtr<motionSolver> motionPtr2_;

23 dictionary motionDict_;

24 vector motionVelAmplitude_;

25 vector motionVelAmplitude2_;

26 scalar motionVelPeriod_;

27 vector curMotionVel_;

28 scalar downEdge_;

29 scalar curUp_;

30 scalar curRight_;

31 scalar curLeft_;

32 scalar rotationAmplitude_;

33 scalar curDown_;

34 scalar curLowerUp_;

35 scalar curLowerDown_;

36 scalarField motionMask_;

37 scalarField motionMask2_;

38 scalarField motionMask3_;

39 ggiFigureOfEight(const ggiFigureOfEight&);

40 void operator=(const ggiFigureOfEight&);

41 void addZonesAndModifiers();

42 tmp<scalarField> vertexMarkup

43 (

44 const pointField& p,

45 const scalar& curDown,

46 const scalar& curUp

47 ) const;

48 tmp<scalarField> vertexMarkup2

49 (

50 const pointField& p,

51 const scalar& curLeft,

52 const scalar& curRight

53 ) const;

54 tmp<scalarField> vertexMarkup3

55 (

56 const pointField& p,

57 const scalar& curLowerDown,

58 const scalar& curLowerUp

59 ) const;

60 public:

61 TypeName("ggiFigureOfEight");

62 explicit ggiFigureOfEight(const IOobject& io);

63 const coordinateSystem& cs() const

64 {

65 return csPtr_();

66 }
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67 const coordinateSystem& cs2() const

68 {

69 return csPtr2_();

70 }

71 virtual ~ggiFigureOfEight();

72 virtual bool update();

73 };

74 #endif
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[107] H. Jasak and Z. Tuković, “Automatic mesh motion for the unstructured finite volume

method,” Transactions of FAMENA, vol. 30, pp. 1-18, 2007.

[108] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and

momentum transfer in three-dimensional parabolic flows,” International Journal of Heat

and Mass Transfer, vol. 15, no. 10, pp. 1787-1806, 1972.

206



[109] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-

splitting,” International Journal of Heat and Mass Transfer, vol. 62, no. 1, pp. 40-65 ,

1986.

[110] F. H. Harlow and J. E. Welch, “Numerical computation of time dependent viscous

flows with free surface,” Physics of Fluids, vol. 8, no. 12, pp. 2182-2189, 1965.

[111] C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil

with trailing edge separation ,” AIAA Journal, vol. 21, no. 11, pp. 1525-1532, 1983.

[112] H. Jasak, Error analysis and estimation in the finite volume method with applications

to fluid flow. PhD thesis, Imperial College, University of London, 1996.

[113] M. C. Lai and C. S. Peskin, “An immersed boundary method with formal second-order

accuracy and reduced numerical viscosity,” Journal of Computational Physics, vol. 160,

no. 2, pp. 705-719, 2000.

[114] F. M. Bos, Numerical simulations of flapping foil and wing aerodynamics: Mesh de-

formation using radial basis functions. PhD thesis, Delft University of Technology, 2010.

[115] G. Chesshire and W. D. Henshaw, “Composite overlapping meshes for the solution of

partial differential equations,” Journal of Computational Physics, vol. 90, no. 1, pp. 1-64,

1990.

[116] J. T. Batina, “Unsteady Euler airfoil solutions using unstructured dynamic meshes,”

AIAA Journal, vol. 28, no. 8, pp. 1381-1388, 1990.

[117] F. J. Blom, “Considerations on the spring analogy,” International Journal for Numer-

ical Methods in Fluids, vol. 32, no. 6, pp. 647668, 2000.

[118] C. Farhat, C. Degand, B. Koobus, and M. Lesoinne, “Torsional springs for two-

dimensional dynamic unstructured fluid meshes,” Computer Methods in Applied Me-

chanics and Engineering, vol. 163, no. 1-4, pp. 231-245 , 1998.

207



[119] C. Degand and C. Farhat, “A three-dimensional torsional spring analogy method for

unstructured dynamic meshes,” Computers and Structures, vol. 80, no. 3-4, pp. 305-316,

2002.

[120] H. Baruh, Analytical Dynamics. McGraw-Hill, 1999.

[121] D. L. Littlefield, “The use of r-adaptivity with local, intermittent remesh for modeling

hypervelocity impact and penetration,” International Journal of Impact Engineering, vol.

26, no. 1-10, pp. 433-442, 2001.
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