
GPU IMPLEMENTATION OF RESTRICTED BOLTZMANN

M"ACHINES WITH ApPLICATION TO VIEW CLASSIFICATION

IN SPORTS VIDEOS

by

Andreas Fred Bernitzke

Dipl. lng. (FH), Hochschule Karlsruhe, 2009

A project

presented to Ryerson University

and Hochschule Karlsruhe

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2011

@Andreas Fred Bernitzke 2011

2011

I hereby declare that I am the sole author of this project.

'I'jIis project is subject to the regulations of the double degree program contract between Ryerson

University and University of Applied Science Karlsruhe. Therefore, any restrictions and conditions

implied by the contract apply to the report. In particular, this work may be published under different

terms in accordance to the regulations of University of Applied Science Karlsruhe.

I authorize Ryerson University to lend this project to other institutions or individuals for the purpose

of scholarly research.

I further authorize Ryerson University to reproduce this project by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Eidesstattliche ErkUirung

Hiermit versichere ieh, die vorliegende Masterthesis ohne unzuliissige fremde Hilfe selbstandig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben.

Toronto, den 23.11.2010

iii

GPU Implementation of Restricted Boltzmann Machines with Application to View Classification in

Sports Videos

}'laster of Engineering 2011

Andreas Fred Bernitzke

Electrical and Computer Engineering

Ryerson University and Hochschule Karlsruhe

A framework for Restricted Boltzmann Machines (RBM) accelerated by the power of graphic card

processors (GPU) is pre..<;ented in this project report. The framework and GPU speedup is analyzed

on the one hand side and applications to Network Intrusion Detection and View Classification on the

other hand. The framework is developed using C++ and CUDA on a Windows platform, and a 40x

speedup is achieved. The structure is versatile and application-domain independent, so the framework

can be applied to other research areas than the presented as well. The KDD 1999 Classifier Cup Data is

employed to assess the performance on network intrusion detection, where an Artificial Immune System

(AIS) is outperformed by our RBM. Novel approaches to facilitate RBMs for bag of word techniques

are presented in the context of view classification. Bag of visual words have demonstrated outstanding

capabilities, so a fusion of the techniques is a reasonable next step.

iv

Contents

1 Introduction

2 Deep Belief Networks

2.1 Restricted Boltzmann Machine

2.2 Forming DBNs based on RBMs .

2.3 DBNs as Classifiers

2.4 Extending to other input spaces.

2.5 Summary . . .

3 GPU Computing

3.1 Historic outline

3.2 API support. .

3.3 Hardware

3.4 CUDA Programming model

3.5 Development tools

3.6 Summary

4 KDD 99 Cup Evaluation

4.1 KDD 99 Cup Dataset

4.2 REM Classification .. .

4.3 Simulation results .. .

4.4 Comparison to other approaches

4.5 Summary

5 GPU RBM framework

5.1 Related work

5.2 Overview

5.3 GPU random number generators

5.4 Data layout

5.5 Kernel design

5.6 Performance evaluation ..

v

1

5

6

10

11

12

15

17

17

18

20
23
25

28

31
31

34

38
40

45

47
47
50

51

54
55
59

5.7 Extensions of the objective function

5.8 Summary

6 DBN for view classification

6.1 Previous work

6.2 Code book generation "

6.3 Raw image based approaches

6.4 SIFT based approaches

6.5 Summary

7 Conclusion

7.1 Contributions of the Thesis

7.2 Future work

Bibliography

vi

65

69

71

73
74
75

81

84

81
88
89

95

List of Tables

2.1 Quantizing data for RBMs. 13

3.1 Memory types of a CPU 22

4.1 Distribution of attack types in training and testing database.

4.2 Summary table of CUDA profiling results

4.3 Summary table of CUDA profiling results with revised kernels.

4.4 Identification mistakes for all classes

4.5 Confusion table trained vs. untrained classes

4.6 Correct classification for different AIS approaches compared to RBM technique

4.7 Correct classification on simplified KDD Cup 99 task

4.8 Confusion matrix of DBN on KDD Cup 99 dataset

4.9 Confusion matrix of classification by the winning entry [49]

4.10 Confusion matrix of the commercial tool Kernel Miner, scoring the 2nd place [32]

5.1 Memory transfer speed for the used NVidia Quadro FX 5800. The values are obtained

32

36
37

39

40

41

42
42
42
43

using the benchmark program included in the SDK. 52

5.2 Profiling results for CUDA memory allocation. .. 54

5.3 Benchmark of different pseudorandom number generators on the CPU. Execution time is

averaged over 100 iterations..

5.4 Benchmark of memory allocation and deallocation on CPU

5.5 Example of CPU memory allocation for a binary RBM .

5.6 RBM CPU function profiling results

5.7 Runtime comparison between CPU and MATLAB

5.8 Runtime comparision for different input and output layer sizes

5.9 Runtime requirements against batch size and iterations .

6.1 View classification using label regeneration on raw images

6.2 View classification using logistic regression on raw images

6.3 View classification using codebook generation on raw images

6.4 View classification using codebook generation on SIFT features

vii

55

60

60

61
61

63
66

79

79

79

83

List of Figures

2.1 Structure of an RBM

2.2 Training procedure for Contrastive Divergence with n iterations.

2.3 Extending RBMs to DBN

2.4 Different approches to use DBNs as classifiers .

2.5 Methods to feed RB1vfs with quantized values

3.1 Hardware architecture of a NVidia GPU

3.2 Dataflow in the CUDA compile process

3.3 Estimation of speedup with Amdal's Law based on percentage of serial code.

4.1 TCP Dump data as provided in the 98 DARPA IDS Evaluation dataset

4.2 Data provided in the KDD Cup 99 dataset

4.3 Learning stages of suggested architecture

4.4 DBN setup for KDD Cup

5.1 First layout of software partitioning between CPU and GPU

5.2 Revised layout of software partitioning between CPU and GPU

5.3 Employed data processing paUern within kernels . . .

5.4 Comparison of reconstruction errors against precision.

5.5 Effect of different weight decay functions. .

5.6 Perceptive fields of RBl\1 with sparsity cost

6.1 Genre classification in previous work .

6.2 Clustering of data by an RBM

6.3 Examples of view classification images

6.4 Perceptive fields for binary RBM on grayscale data .

6.5 Features learned from sub-patches of images.

6.6 Structure of convolutional neural networks ..

6.7 Features learned from result displays

6.8 Distribution of SIFT features in the database

6.9 Mean distributions for codeoook approach ..

ix

6

9

10

11

13

20

26
28

34
34
35
36

50

50

55

62
66
68

72

75

76

77
79

80
81

82
84

Chapter 1

Introduction

Neural Networks have caught the interest of researchers for decades, especially for function approximation

and classification without the need of an explicit model derivation. Many different structures have been

developed, usually inspired by similarities in nature or biology. Although results are encouraging, the

current state of research is far away from artificial intelligence. The cause is partly due to the limited

comput.ational power and the complexity of the proposed techniques. Based on constraints, two main

strains of research can be distinguished. In the first category, the underlying system is modeled as

exactly as possible at the expense of limited size and performance. Indeed, derivations of mathematical

approximations of the real world process are in the focus of this research to understand and explain

the underlying coherences. By contrast, other research tries to simplify the models to yield efficient

algorithms with adequate similarity. Those models are trained to find solutions to challenging

and thus prove their potential despite the simplification.

One of the most promising descendants of the latter approach, called Restricted Boltzmann Machine

is considered in this reportl. The Restricted Boltzmann Machine raised a great interest in the scientific

computing community due to unique attributes, most notable the unsupervised training technique

and generative property, accompanied by very promising results in many different domains of research.

A framework to employ this technique in research is developed in the scope of the work at hand. In

the end, applications of the Restricted Boltzmann Machine to Network Intrusion Detection and View

Classification are presented.

In general, a neural network will not lead automatically to superior results. In fact, several iterations

are required to find the best parameter values during research, 00 training speed gains more attention

due to the size of the training data and the number of repetitions. At the same time, newer CPU

architectures no longer yield higher execution speed, but try to offer more computational performance

work is presented to Ryerson and HS Karlsruhe as part of a double degree program. This work is
called thesis in the nomenclature of HS Karlsruhe, while this is considered as Master's project in the curriculum of Ryerson
University. Hence, the terms thesis and project ma.y be used equivalent throughout the document.

1

CHAPTER 1. INTRODUCTION

by providing more cores to cope with multiple tasks. In fact, current CPU architectures devote more

than 80 % of silicon to general speed improvement techniques like cache and out-of-order execution, but

the limit of re~'lOnable return of further investment in this direction has becn reached, so adding more

cores has become the favoured path. The problem however, is that software is not naturally optimized

to use these cores. Thus, software will not run faster on newer hardware if it does not exploit the new

dimension of parallelism, so a paradigm change into parallel computing is needed.

With this trend in mind, another recent technique is employed in this thesis. In recent PCs, the GPU

has superseded the computational power of a CPU for certain tasks. The design of a GPU processor is

very closely connected to the usual tasks in image processing to provide the realistic graphics in modern

computer games in real time for instance. Even general purpose software can exploit this performance

if the computation maps properly onto the new architecture. Nevertheless, a GPU consists of hundreds

of cores, so the paradigm change is more incisive than one may expect with a CPU in mind, although

the ideas are identical. Recently, GPU development has gathered momentum with new tools, reports of

significant speedups and a growing community.

In general, this thesis examines two major aspects. First, the suitability of the graphic processor

to a Restricted Boltzmann Machine is analysed. This aspect focuses on implementations of different

parts of the training and the evaluation of the obtained speedups and limitations. On the other hand,

the suitability of the Restricted Boltzmann Machine for different real world problems is investigated.

Two databases from completely different domains are used within the report. The first use case is

the KDD Cup classification challenge, so different attack types in network traffic must be identified.

Thus, the Restricted Boltzmann Machine is used as a network intrusion detection tool. By contrast,

the second application domain originates in video processing. Different sports and view types must be

distinguished here. Several utilization techniques of a Restricted Boltzmann Machine are examined to

solve the shortcomings of the k-nel:',rest neighbour clustering technique used in previous research. Similar

for both applications, the unsupervised discovery of features based on examples during learning plays a

key role. Thus, an implicit model is generated with the training data. Unlike common neural network

techniques, the training algorithm of a Restricted Boltzmann Machine does not focus on telling the classes

apart, so more effort needs to spent t.o achieve decisions. Popular techniques to attain classification are

highlighted in the introducing chapters and used for the different tasks in later sections.

Three different databases are used in the scope of this thesis. The first one is the KDD Cup 1999 clas­

sifier challenge database 13]. The suitability for network intrusion detection has to be proved by detecting

different attack patterns in features extracted from real network traffic. A database for video/genre de­

tection has been chosen as second use case. The data was compiled for previous work at Ryerson

University and is not publically available. Records of sport videos aired on television have been col­

lected and key frames have been extracted and manually labelled. This database constitutes the second

application domain presented in this project. Finally, the MNIST character database is used for several

examples [2]. In fact, the first major success of the Restricted Boltzmann Machine was reported on this

database and is used by many researches to demonstrate their extensions. Likewise, this data..,et is used

to evaluate and illustrate the impact of enhancements due to the characteristics of the database, most

notably binary input values and short training times combined with many published results.

2

CHAPTER 1. INTRODUCTION

Contributions of this thesis

As noted before, the emphasis of this thesis is on the GPU based acceleration of Restricted Boltzmann

Machi.l1,es and their application to tasks. Two examples for both directions are presented, so

the major contributions of this thesis are the following aspects:

• Implementation of back-propagation style fine-tuning on a GPU
• Application of the Restricted Boltzmann Machine to network intrusion detection
• [mplementation of Contrastive Divergence learning on a GPU in the scope of a versatile and

comprehensive framework

• Application of the Restricted Boltzmann Machine to View Classification

Herein, the application of a Restricted Boltzmann Machine to network intrusion detection is a novel

contribution. Furthermore, some novel approaches to employ the Restricted Boltzmann Machine to

view classification are developed, too.

Structure of this thesis

The structure of this thesis is as follows: The Restricted Boltzmann Machine is introduced in the second

chapter. The original proposal and extensions to different input data spaces are presented. Another

key issue is the construction of Deep Belief Networks based on Restricted Boltzmann Machines and the

derivation of class decisions.

The current state of GPU computing is presented in the third chapter. The emphasis is on clarifying

the functionality of the underlying hardware and the support tools. In fact, a CPU based implementation

is very sensitive to both, software and hardware design. Thus, an introduction into both aspects is

provided to reason the design presented later on.

The first application of Deep Belief Networks is presented in the forth chapter, namely the in­

trusion detection in networks like the internet. Two major are tackled after an introduction

to the data.base. First, the acceleration with GPU interaction is described. The performance on the

classification task and a comprehensive comparison to other techniques constitutes the second part of

the chapter.

Inspired by the results of the previous chapter, a native framework for Deep Belief Networks is

presented in the fifth chapter. The framework is intended as general framework to solve any appro­

priate task. Hence, the focus resides on the framework itself and a comparison to other GPU based

implementations.

The application of the framework to video view cla..."Sific~tion is presented in the sixth chapter.

Previous work on this matter is outlined first, followed by the results obtained by using Deep Belief

Networks. Thereby, some novel methods to combine Deep Belief Networks with Bag-of-visual-Word­

techniques are introduced.

In the end, a summary of the topics addressed in the master thesis is given. Moreover, a conclusion

is drawn and possible directions for further resea.rch are pointed out.

3

This page is blank intentionally.

Chapter 2

Deep Belief Networks

In machine learning, Deep Belief Networks (DBN) represent a class of stochastic, generative, multi-layer

neural networks. In each layer, they capture correlations from the underlying layers and use a non-linear

mapping to account for those correlations. Therefore, they can be distinguished from deterministic

techniques like Support Vector Machines in terms of depth, as those are usually limited to a shallow

structure with one input and one output layer.

By employing several layers, DBNs are able to detect higher order correlation. However, the learning

of such networks is tricky due to the dependency across the layers. Common learning strategies like back

propagation forego the power of capturing correlations in favour of a more direct path to the learning

goal. Hereby, they are prone to several pitfalls like local minima.

Hinton et al. proposed a new architecture called Restricted Boltzmann Machine (RBM) in con­

junction with a novel greedy layer-wise learning algorithm [22,23]. While an RB~t itself is a shallow

structure, it can be easily extended into a multi-layer DBN. Indeed, the RBM facilitates an efficient

learning algorithm, which can exploit the architectural benefits of parallel hardware. Furthermore, it has

been shown to be an efficient way of extracting key features out of input data in an unsupervised man­

ner. As such, it has been proven useful in many different domains of research, most notably character

recognition [23,24J, texture synthesis [57], semantic hashing [53,55J and object tracking [42].

The remainder of this chapter is organized as follows. First, we outline the binary RBM in detail

because it has been proposed first and therefore, it is the basis for many derivatives explained later on.

Next, we describe how to employ RBMs as building blocks for DBNs. We continue with some extensions

into other input spaces, especia.lly real-valued da.ta. This extension is important because most databases

employ continuous valued elements. The chapter is concluded with a short summary.

5

2.1. RESTRICTED BOLTZMANN MACIIINE CHAPTER 2. DEEP BELIEF NETWORKS

r---------------------F~

v

~---------------------------D----------------------------~

Figure 2.1: Structure of an RBM

2.1 Restricted Boltzmann Machine

The RBM is a particular type of such a probabilistic neural network. The structure can be visualized

as an undirected bipartite graph with one type of nodes forming the visible layer Vi and the other kind

the hidden layer hj as depicted in Figure 2.1. The hidden and visible layer nodes are in binary states

V E {l,O}D and h E {1,OV, where D and F denote the sizes of the visible layer and the hidden layer

respectively. An important aspect resides in the symmetric weights between the layers, allowing the

network to be used for discrimination and reconstruction of data. In fact, the reconstruction property

leads to a new training algorithm called Contrastive Divergence (CD).

The underlying idea roots in an analogy with statistical mechanics, describing the energy of a particle

distribution on the atomic scale. The composition on a large scale is determined by simple rules in the

atomic domain yielding a minimization of the configuration energy. Due to this relationship with the

physicist, the network architecture is called Boltzmann machine, although several other names have been

used as well. Moreover, recent research also suggests similarities with human perception [30].

The essential definition resides in the formulation of the energy function. For a binary RBM as

outlined above, the energy is defined to be

D F D F

E (v, h, 0) L (aivi) - L (bjhj) - E L (vihjwij). (2.1)
i=1 i=1 i=l j=1

In this definition, 0 = {W, b, a} denotes the model parameters of the RBM, namely the connection

weights between hidden and visible layer W, the biases of the visible units a and the biases of the hidden

units b.

6

CHAPTER 2. DEEP BELIEF NETWORKS 2.1. RESTRICTED BOLTZMANN MACIIINE

The joint probability for a certain state is derived from the energy function (2.1) to be the following:

1
P(v,h;O) = z(e) exp(-E(v,h,O» , (2.2)

Z(O) = LLexp(-E(v,h,o».
tI h

The function Z (e) is called partition function and reflects the total energy of all possible states in

the current model. However, it is hardly feasible to compute the partition function exactly except for

examples in the toy domain due to the immense number of states in the hidden and visible units. In

fact, the computational demands grow exponentially with the size of the layers. Even approximations

to the real value emerge as hardly computable [53].

The conditional probabilities given the opposite layer are needed for the learning algorithm, so we

derive the formulas here for the sake of a self-contained presentation. In order to derive the conditional

distribution, we need to outline the probability for a layer configuration first. Here, we exemplify the

visible layer. The probability for a visible layer configuration is the energy ratio between all configurations

containing the visible vector and all possible configurations. Hence, we need to consider the sum of energy

over all possible configurations in the hidden layer

P (v; e)

With those intermediate results, we can derive the conditional distributions

P(hl .e) = p(v,h;e)
v, P(VjO)

zIo) exp(-E(v,h;e»

Z~9) exp (L~l (aivi») ITf=l (1 +exp (bi + L~l (ViWij»))

exp (L~l (aivi)) exp (2:f=1 (bjh j) + 2::=1 hj L~l (V;Wij»)

exp (L~l (atVi») nf=l (1 + exp (b j + 2:~1 (V;Wij»))

fI exp (hj (hj + 2::1 (ViWij»))
j=l 1 +exp (bj + L.=1 (ViWij»)

7

(2.3)

2.1. RESTRICTED BOLTZMANN MACIlINE CHAPTER 2. DEEP BELIEF NETWORKS

The conditional probability P(vlh) can be deduced likewise. Therefore, the probability of a certain layer

configuration is simply the product of the probabilities of all neurons within that layer:

j

P(vlh) = IIp(vilh).
i

This leads to the frequently quoted formulas for the conditional probability of a single neuron

p(hj Ilv) <p (bj + ~ V.Wi j) ,

p(v. ~ 11h) ~ II' (ad ~hjW'j) ,
1

<p(x)
1 + exp(-x)'

Logistic, sigmoid or activation function are common names for <p(x). It is notable that the intractable

partition function is not needed to evaluate the conditional probabilities. Hence, the conditional proba­

bility of a neuron is computable, although the joint probability is intractable.

Equipped with the probabilities with certain states, the way is paved for considering the learning of

an RBM. It is reasonable to use stochastic optimization goals due the stochastic nature of an RBM, so

maximum-likelihood training is employed. However, it is beneficial to simplify using the log-likelihood

instead with regard to the structure of an RBM. Therefore, the probability for a visible state is the

following:

log (P (v; 8» log (~exp (-E (v, h; 0») -log (~ ~ exp (-E (v, h, 8))) , (2.4)

Blog(P (v; 0» Blog (Lh exp (-E (v, h;8») Blog (L" Lh exp (-E (v,h,8»)
BWij

=viP(hj Ilv)-P(vi=llhj =l)

= E (vh)data - E {vh}model'

In analogy to Equation (2.2), the first term reflects the energy of all states with the given visible vector.

The second term describes the total energy, so in a loose sense, it accounts for the predictions made by

the given model. For a parameter update, we need to consider the derivative of Equation (2.4) with

respect to the model parameters. The first term is easy to compute, because in the log-likelihood domain,

it boils down to a sum over all hidden layer probabilities as shown in Equation (2.3). The second term

involves the intractable partition function Z (8) and the derivate is practically infeasible to evaluate as

well. Therefore, a Gibbs sampler is used to estimate the distribution.

8

CIf.4.PTER 2. DEEP BELIEF NETWORKS 2.1. RESTRICTED BOLTZMANN

Gibbs sampling is an iterative Markov Chain Monte Carlo based algorithm to approximate the joint

distribution based on a conditional distribution. It has been introduced for stochastic simulation of

atoms in equilibrium at the beginning of the computer era. The state of each unit is updated using

the Cdnditional probability over all the other units in each iteration. As outlined above, the conditional

probability is easy to compute because the partition function is cancelled out. Furthermore, each iteration

is highly parallel in the light of an RBM, because all units in one layer depend on the other layer only due

to the special bipartite structure. lIence, the states of all units in a layer can be evaluated in parallel.

In fact, there are two major techniques to deploy Gibbs sampling in the RBM. In the first approach,

the Gibbs sampler is initialized with random values. By running the Gibbs chain for several

the distribution should converge towards the real distribution by the given model. This is commonly

known as Persistent Contrastive (PCD) [59]. However, it may need a long time until the

Gibbs sampler approaches the final distribution. Although some tweaks have been proposed to alleviate

the need for a long-running sampler, this technique is used rather seldom in previous work.

The second approach applies another assumption to overcome the nc'€d for a long-running approx­

imation. For each parameter update, the Gibbs sampler is initia.lized with a realization drawn from

hidden layer probabilities given the current visible vector. Then, n iterations of Gibbs sampling are

used to estimate the model distribution. This approach is called Contra.'Stive Divergence (CDn) in the

literature. Due to the fact that the initial values are assumed to be close to the real distribution of the

model, only a few iterations are needed for a satisfactory estimation. However, those estimations may

be correlated, especially for short iterations and low mixing rates of the Gibbs Sampler. Nevertheless,

many research publications successfully employ CD 1 in very different domains. Hence, we used CDn for

our project as well.

Input vector

Input layer

Output layer

\. y J

(n-l) iterations

Figure 2.2: Training procooure for Contrastive Divergence with n iterations

The training procedure for CDn is illustrated in Figure 2.2. First, the visible units are initialized with

the provided input data and the most likely state of the hidden units is calculated using the conditional

probability. The correlation between the visible and hidden units E (vh)da.ta is computed based on the

current state. Second, n iterations of Gibbs sampling are used to estimate the model probabilities. Each

9

Cfli\PTEi? 2. J)f~EP W;UEF NETWORKS 2.1 . l?L'h'TI?lCnW I30LTZl\1A NN MACIffNE

G ibbs s1.lInpling is a.n itera ti ve rvlar kov Cha in ~Ionte Carlo ba.i ed a lgorithm to approxima.t e tlte joint

distri but.ion based on n c:olld iLioli a l d istri bution. It h a.~ been introd uced for stochas tic s irmdat ioll of

atoms in cqu il ibrilllll at the beginning or the computer era. The st.c~te of each ullit is IlpdaLed using

the udrldi iona l probab ilit.y over all th other units in each itera tion. As outlined a bove, the condi t iona l

probability is easy Lo compll te because the pa r t it ion func t ion is ca.ncelled out. Furthermore, each it.erat ioll

is highly pa rallel in the light of an RBM, because all units ill one layer depend on the other laye r only d ue

to t.he special bipa rt iLe st ruct ure , Hence, t.he sta tes of a ll uni ts in a layer ca n be eva lua ted in parallel.

In fact, there are two major techniquE'~ to deploy Gibbs sampling in the RBM. In the fi rs t approach,

t. he G ibbs sampler is ini t ia lized with rando m va lues . By running the Gi bbs chain for several iterations ,

t.he d istributioIl should converge towards the rt'a l distribu t ion by the given model. This is commonly

known as Persistent Contrastive Div'ergence (reD) [59]. However, it may need a long time unt il the

G ibbs sampler approaches the fin a l distribution, Although some tweaks have been proposed to a llev iate

the Ileed for a long-running sampler , th is t.echnique is used rather se ldom in previous wo rk.

The second approach app lies another assumpt.ion to overcome the need for a long-running approx­

imation. For each parameter upda te , t he Gibbs sampler is initialized with a real ization drawn from

hidden layer probabilities g iven t he currell t visible vector. T hen , n itera tions of Gibbs sa mpling are

used to estimate the model dist.ributioll. This ap proach is ca lled Contras tive Divergence (CDn) in t. hc

literature. Du to the fact th a t the initial values a re assllmed to be close to the real dist ribu t ion of the

model , only a few iterations a re needed for a sa,tisfactory estimation, However , those estimations may

be corre lated, especially for short iterat ions and low mixing rates of the Gibbs Sam pler. Ne vert heless ,

rmmy research publica tions successfully employ CDl in very different domains. Hence, we used CDn lor

our project as wel l.

Input vector

Input layer

Output layer
,)

y

(n-1) iterations

Figure 2. 2: Tra ining procedure for Contrastive Divergence wi t h n iterat ions

The training procedure for CDn is illustrated in Figure 2.2. First, the visible units arr ini t ia.lized wi t h

the provided input data a nd the most likely state of the hidden uni ts is calculated using the conditional

probability. The correlation between the visible and hidden units E (vh) da ta is computed based on the

current sta Le. Second, n iterations of Gibbs sampling fire used to estimate the model probabilit ies . Each

2.2. FORMING DBNS BASED ON RBMS CHAPTER 2. DEEP BELIEF NETWORKS

step updates the visible units based on the hidden units, and then the hidden units based on the visible

ones. Finally, the correlation between the updated visible and hidden units is considered as estimate for

E {vh)model'

The main objective of the training procedure is to approximate log-maximum-Iikelihood learning.

Indeed, it approximates the gradient of ML in favour of the absolute value. Most of the research has

been focused on empirical observations due to the partition function. For example, CDn is considered

as biased ML estimator in [16], but the bias turns out to be neglectable and a good approximation of

ML learning is demonstrated using few iterations of Gibbs Sampling. A more theoretical elaboration

with similar results can be found in [12J. Recently, it has been shown that Contrastive Divergence does

not follow the gradient of any specific function and may not converge under some circumstances [58J.

The objective of learning is even less definable taking extensions of the original RBM learning rule into

account.

Despite the lack of an explicit learning goal, RBMs have successfully been applied to many different

domains as outlined in the introduction. Furthermore, recent research indicates similarities with human

perception in the visual cortex [30J. Therefore, the interest and research is increasing.

2.2 Forming DBNs based on RBMs

The training of a single two-layer network has been outlined so far, but deep structures are well-known

to yield better results. For RBMs in particular, the higher layers capture higher order correlations in

the input data. To illustrate the situation, consider an example of character recognition. If only a single

layer is available, typical characters instances must be identified directly. By contrast, a DBN engages

a more sophisticated processing. The characters may be decomposed into typical strokes in lower layers

and recombined to characters in upper layers. Hence, each layer adds another level of abstraction and

generalization to derive more sophisticated models in the top layer. This detour leads to a more robust

DBN

Figure 2.3: Extension of RBMs to DBNs. Most notably, the resulting DBN is directed, although the
building blocks are undirected.

10

CHAPTER 2. DEEP BELIEF NETWORKS 2.3. DBNS AS CLASSIFIERS

and flexible way to form a decision. Thus, a straight-forward way to build a DBN based on RBMs is
demonstrated here.

~~e most common technique is to train a single layer and use the output probabilities of that RBM

as input for the next one. The idea is shown in Figure 2.3. In this way, each additional RBM tries to

extract higher order correlations of the underlying RBM, so the complexity of representable correlations

ascends with each additional RBM. This leads to an iterative, layer-by-Iayer wise training of a DBN.

Quite surprisingly, the resulting DBN is no longer an undirected model, because the upper layers are

trained after freezing the lower layer weights. This way, each RBM depends on the training results of the

predecessors and cannot influence what to extract based on the current level of abstraction. However,

the model is treated like an undirected model for illustrative purposes in several papers [23,42]. This

leads to conceivable demonstrations of learned features if the DBN is trained on image data.

2.3 DBNs as Classifiers

One of the major applications of neural networks is the classification of data. This may be influenced

by back propagation learning, which needs an error signal to tune the weights. Such a signal is easy to

obtain for a deterministic optimization goal like classification. In fact, we need a classifier to derive a

certain view type or attack decision later on, so we outline the most common techniques here.

Most obviously, well-known classifier techniques like back propagation neural networks, support vec­

tor machines or logistic regression may be used to form a decision based on the output layer of the DBN.
Thus, the DBN is used as a non-linear mapping to transform the input data into another presentation

that is more useful for the classification task. Several successful applications with such a structure are

reported in the literature [8,23,28]. However, the success is not guaranteed as the features learned by

the DBN are trained in an unsupervised manner.

Class

I S~M I

I(ttt
DBN

(8)

1000~= 00 ~~
DBN Classes

(b)

Figure 2.4: Different approaches to use DBNs as classifiers. Depicted is the top RBM of the DBN stack

11

2.4. EXTENDING TO OTHER INPUT SPACES CHAPTER 2. DEEP BELIEF NETWORKS

A second approach uses the regenerative property of an RBM to assign a class to a test vector. This

is depicted in Figure 2.4b. The labels are added to the input vector as additional input neurons, so the

network is trained to regenerate the labels based correlations with on the captured features. For each

presented test vector without labels, the network will provide probabilities for the labels as well. In our

own research, we improved the performance of a back propagation based classifier if pre-trained in that

manner.

Another possibility is to train an own DBN on each class and combine the results of the

DBNs, i.e. by picking the most-likely class. Therefore, we want to evaluate argmaxclass (Pclass(V)) =
arg m~lass (E~::::'tI»). The important point resides in the partition function Zclass, which is different
for each DBN and infeasible to compute. Hence, the probability cannot be derived easily. A possible

solution is to train another RBM on the energies of the underlying class specific DBNs [41]. In practice,

this approach is suitable for a very limited number for classes only, because the output of each class­

dependent RBM must be fed into the classification RBM. Thus, the input layer size of the final RBM

grows to infeasible values rather soon.

2.4 Extending to other input spaces

So far, we have considered the Bernoulli case with binary inputs and outputs only. In the light of image

processing, this limits the application areas to preprocessed data like edge images. However, there are

several options to extend the RBM to other input spaces and thereby generalize the eligibility of RBMs.

At first glance, it may seem straight forward to treat the continuous input data as probabilities, so

only a rescaling step is necessary. Experiments unveil that this approach will not yield usable results. We

tackle this experience in more detail in a later section, but continue with other approaches to overcome

this shortage in the current section.

Obviously, quantized values are easy to feed into a binary REM. Each input feature is encoded using

n adjacent binary features. The learning and implementation are same as before, but the number of

parameters is increased by a factor of F(n -1) with F the size of the hidden layer. This straight way is

illustrated in Figure 2.580. It should be noted that this seemingly inefficient representation is needed in

order to preserve the correlation structure. In our experience, a vector with first L n * value J units turned

on yield best results, as illustrated in Table 2.1. Hereby, value denotes the input values normalized to fit

into the range (0,1]. In an illustrative sense, this can be regarded as binary histogram with n bins, with

all the bins up to the current bin are activated. In terms of the idea, it may seem similar to the replicated

softmax-model used for tabbed data [52]. However, only a single bin is activated due to the nature of

the tabbed data. Our coding preserves the true distance in more detail. While quick to implement, the

quantization may lead to infeasible training time in large scale problems. Additionally, the large number

of additional weights can foster overfitting and stability problems.

12

CHAPTER 2. DEEP BELIEF' NETWORJ<S 2.4. EXTENDING TO OTHER INPUT SPACES

Vl'I.lue Re prese nta.t ion
[0 , 0.25) 0 0 0

[0.25, 0.5) • 0 0

[0.5 , 0.75) • • 0

[0.75 I 1) • • •
Table 2. 1: Input feat ure quantiza.tion for a bi nar'y RBl\[

]

(a) (b)

F' igl1[e 2.5 : Diff rent. m thod::; to ~ ed RBt-.1s wit h quant ized values. A straight appr ach is depi ted in
(a) , conlparcd t.o a. more sophi't icated way in (b) . Each coloured block represents one real- valued input
Ii a t. ure.

In order to mitigate those drawbacks, t he appr ach outlined in [52] can b used . ·The input data

can be a ligned in a two d imensional layout as depi ·ted in Figure 2.5b, so t he x dimension re present

the features and t he y d imension t heir quant ized values. T h weight matrix becomes three-d imensiona l,

bu t the top laye r is st ill one-d im nsioll a l as t he sum of a colum n is used a.q activat ion proba.bil ity for a

neuron.

So far the numb r of weights is st ill t he same as bd r . But the three-d imensional we ight mat ri x

an be factorized into two lower-mnk matrices:

C

Wi~ = L A:cBcj .
c=l

T he lE'arn ing of thE' maLrix W can be decompo ed int.o t. wo independent. steps of learning A and B.

BE'ca usc bol.h arc lower- ran king, thc number of par ame ters is il!;n ificantl ' red uced . lIencC:', learning is

fas ter t han in t he st raight C<1.'>e . At the same t illie, there are enough panunetrrs to t une, no enollgh

hidden varia.bles to catch the interest illg pattt'rtls . Howe er, t hi approach is still c 11 , t ra ined by the

coarse binary quant ization lls<'d for tlip input .

T he most frequent approach to handle real-valued data with an R BM emplo, S so calk I ca.u, sian

IIl1 i ts . T hey may be used {'it hcr for th visible or hid I n layer only or eV£' 11 fo r bot h layer, . T he

13

2.4. EXTENDING TO OTHER INPUT SPACES CHAPTER 2. DEEP BELIEF NETWORKS

presentation outlines the usual type, namely Gaussian units for the visible units only. Thus, a mapping

from a continuous input space v E JRD and into a binary output space h E {I,O}F is learned. Such a

structure is needed as first layer of a DBN only, because the output is binary and well-suited for a binary

REM in the next layer as described in the beginning.

In fact, the difference emanates from a change in the energy function:

Thus, the energy function is enhanced with a quadratic term. This parabola has a width controlled by

the parameter CTi. A parabola has a definite maximum, so the network can express an exact preference

value and a confidence with the CT parameter. By contrast, the binary units are constrained to a linear

contribution, so they can present a bias only. A tendency is a meaningful endeavour in the binary case,

but ambiguous for real-valued data. Therefore, feeding linear units with real-valued input yields inferior

results in most cases.

In analogy to the previous case, the conditional probabilities can be derived for the network.

p(h; = Ilv) = <P (b; + L v~ Wi;)
i 0'.

p(", ~ xlh) ~ N (a j + '; ~ hjwij,.?)

I
<p(x) = I +exp(-x)

The formula for the visible units turns out to be a normal distribution with the mean value ai +

CT, L; hjWi; and the variance CT;. Thus, the visible units are linear with regard to the hidden layer,

but the offset ai conveys the preferred value. The parameter update rule changes to reflect the new

parameter.

As shown above, the variance CT; can be learnt in a manner analogous to the other parameters of the

neural network, or it can be fixed to a certain value [24,41]. Quite frequently, this is accomplished by

preprocessing the data in such a way that each component has zero mean and unit variance and let CTt

be equal to one during training [24,42].

The learning meta-parameters must be tuned a bit to allow successful training of a Gaussian unit

based REM. First, the learning rate needs to be one or two orders of magnitude lower than in the pure

14

CHAPTER 2. DEEP BELIEF NETWORKS 2.5. SUMMARY

binary case. Otherwise, the Gaussian units tend to overshoot and get stuck in wrong areas because

the units are unconstrained and much more sensitive to the absolute value of the descent. However,

the absolute value is not approximated accurately by Contrastive Divergence. The lower learning rate

goes hand in hand with a longer training time until the weights converge to their final values. Moreover,

learning a precise bias is a much more challenging task, so the increased number of epochs can be justified

from this point of view, too.

2.5 Summary

In this chapter, the REM has been introduced. This neural network architecture will be used throughout

the whole thesis, so the basic idea in terms of a binary REM has been highlighted in much detail.

In addition to that, the binary REM provides the theoretical basis for many enhancements, so the

mathematical derivation has been provided as example.

Next, the most common technique to form DBNs with REMs as building blocks has been depicted.

There are a few other techniques with more theoretical background, hut they are not used in practice

due to unsatisfiable constrains.

Finally, extensions into other input spaces have been discussed. However, the output layer of those

enhancements are binary still, so only the first layer of a DBN architecture needs to employ a different

technique. The restriction to binary input features limits the applicableness to very simple examples, so

this section provides the foundation for all applications presented in this work.

Several extensions to the theory outlined in this section are used in practice. Indeed, the introduction

of those techniques has been postponed to a later chapter to enlarge the presentation with practical

experienced and obtained examples.

15

This page is blank intentionally.

Chapter 3

G PU Computing

Techniques to exploit the computational power of graphic card in modern PCs to accelerate the perfor­

mance of software are presented in this chapter. In fact, the quantity of transistors in recent graphic

processing units (GPU) has superseded the amount in their central processing unit (CPU) counterparts.

Due to the programming flexibility introduced in the last generations, the applicability of GPUs could be

extended to many domains besides image rendering. Indeed, the thirst for realistic scenes computed in

real-time has formed an architecture with a straightforward bias to the requirements of typical patterns.

A modern GPU can clearly outperform a CPU for "suitable" tasks. The definition of " suitable" inspired

two kinds of research: The elaboration of efficient algorithms for typical programming patterns on one

hand side and demonstration of accelerated applications on the other hand. In this project, we focus

on the latter as the training of a Restricted Boltzmann Machine as described in the previous chapter is

accelerated by a graphic card.

In fact, the achievable speedup depends remarkably on the mapping of the algorithms onto the

hardware architecture. Thus, the necessary theory is introduced in this chapter. After a short historic

outline, the structure of a graphic card is illustrated. Next, some development tools to integrate the

GPU into software are introduced. The chapter closes with a short summary of the important aspects.

The details presented in the chapter reflect the characteristics of the used hardware. However, new

versions of graphic cards with enhanced features have since been released. Therefore, changes to the

architecture are mentioned if it may contribute to the framework presented later on.

3.1 Historic outline

Moore's Law and the involved performance improvement have shown to hold much truth for many

decades. Historically it has been envisaged in terms of the central processing unit (CPU) for which each

17

3.2. API SUPPORT CHAPTER 3. GPU COMPUTING

new generation could yield a speedup for almost all programs. The benefit was attained by a higher clock

rate and additional functional units and cores. Indeed, most software uses a sequential program flow

scheme. Although a higher clock rate affects such ,kind of software, the additional cores need more efforts.

In fact, many techniques like dynamic scheduling and fast caches permitted most software to benefit at

the cost of additional hardware. Up to 80 % of chip area is spent on the latter kind of enhancement

in modern CPUs. Nevertheless, the tricks have practical limits and diminishing returns are notable for

most of the techniques. For example, heat dissipation and signal propagation delays constrain the clock

rate and· the ability to add further units. A new approach has been employed as recent CPUs ship

with several cores. Sequential programs cannot exploit the additional performance because no hardware

support is provided to distribute the computation automatically. More sophisticated techniques like

threads must be engaged by the developers to utilize the additional cores. However, most algorithms

and programming patterns are oriented to serial code, so an extensive reorganization is necessary.

Meanwhile, Moore's Law had an influence on graphic cards as well. First, new hardware-based

features have been included in each new generation. The demand for more realistic graphic effects

however has entailed a major step from fixed hardware-operations to more flexible, software controlled

shaders. All graphic devices with DirectX 10 support offer this new kind of adaptability. Thus, a CPU

has turned into a conglomeration of processors with high flexibility. Hardware design must be heavily

optimized to the typical characteristics of video processing in order that complex jobs may be handled

by the CPU in real time.

The new flexibility of CPUs also meant that applications in fields other than image processing became

possible. At first, the technical obstacles were very high, because no dedicated interface was available.

Hence, the data had to be handled using the image rendering oriented API, limiting the scope and

advantages of general purpose GPU computing (CPCPU) at the same time. Several CPU development

languages emerged, starting with CUDA in 2007. Those technologies allowed a tight integration between

CPU and GPU, an important aspect because the GPU is beneficial to a small subset of tasks only.

With those new technologies, outstanding improvements in many computational intensive domains

of application have been reported in the literature. Examples range from databases [10], military and

medical signal processing [34,48] to molecular simulations [61]. In addition to that, the GPU has found

its way into supercomputing, too, as some of the fastest number crunchers available exploit the power

of CPU clusters in favour of CPU clusters.

3.2 API support

As noted above, a tight integration between CPU and CPU is essential in attaining a remarkable speedup.

A prominent role played by straight software support archiving the computations, especially with regard

to synchronization and parallelism. Nowadays, three APIa for CPCPU computing have been established:

18

CHAPTER 3. GPU COMPUTING 3.2. API SUPPORT

CUDA This is the oldest and therefore most mature API proposed by NVidia. The name is an acronym

for Compute Unified Device Architecture. Several support libraries, especially for FFT and BLASt,

are included and relieve developers from the need to write their own code for very common oper­

ations. Those operations are heavily optimized by NVidia, sv most own implementations should

yield worse results. Due to library support and the leading role in early GPCPU computing,

CUDA has been employed by many researchers and companies. The most notable drawback is the

requirement of an NVidia graphic card, because no other CPU manufacturers or processor targets

are supported. However, the close dependency opens out into the best match between hardware

architecture and software features. In addition to that, this is the only API with mature double

precision floating point support at the time of writing this thesis.

DirectCompute Starting with DirectX 11 in October 2009, Microsoft included a CPCPU API called

DirectCompute. Although supported by different graphic cards, the Windows operation system

Vista or 7 is necessary. Thus, the API has not reached the same level of popularity as CUDA yet.

OpenCL Initiated by Apple, another API has emerged recently called Open Compute Language or

OpenCL. Unlike the previous APls, it is based on an open royalty-free standard by the Khronos

group, the committee behind OpenCL as well. All major operation systems like Windows, Linux

and Mac OS X are supported, as well as heterogeneous pla.tforms, consisting of CPUs, GPUs

and other processors. A remarkable feature is the flexibility to adapt to different processors at

run-time, so OpenCL code may be executed on the CPU if no CPU is available. By contrast,

the code generation may be less optimized due to the broad spectrum of platforms. Nevertheless,

support and popularity of OpenCL is increasing fast, especially due to the flexibility. Although

the basic interface is standardized, different implementations may provide additional features to

exploit benefits of particular hardware or additional libraries (e.g. libraries for common matrix

operations). Obviously, the usage of those enhancements restricts portability to other hardware or

platforms.

CUDA has been employed as CPU API in the scope of this thesis. The decision was influenced by

the lack of mature alternatives and double precision support at the beginning of the thesis. In fact,

OpenCL has caught up with CUDA meanwhile. As OpenCL matures, it may become the platform

of choice for developers, as it will enable comparisons between architectures, e.g. CPU ang CPU, at

minimal additional programming efforts.

In fact, both are C/C++-style dialects, allowing a subset of the original standard on the one hand

side, but including some extensions for specific features on the other hand. Examples for the latter case

are the intrinsics for synchronization or detailed memory assignment. The focus in this thesis will be on

CUDA and the NVidia processor architecture, wherein the general conditions of a balanced design will

be presented. Due to the historic development from a graphic card to a general purpose processor, we

first deal with the hardware architecture and then outline its realization in software.

1 Basic Linear Algebra Subprograms (BLAS) is a set of basic linear algebra functions. It was proposed 1979 in the
Fortran programming language and has developed to a de facto API for matrix and vector operations.

19

3.3. HARDWARE CHAPTER 3. GPU COMPUTING

3.3 Hardware

An NVidia Quadro FX 5800 with 4GB of RAM.has been us~d as graphic card. Hence, the emphasis

during the hardware description will be on this generation of GPUs. A more recent revision, called Femi,

overcomes some of the restrictions outlined in this section. Notable changes relevant to the presented

work are mentioned, but could not be employed as no appropriate hardware was available. Beforehand,

it should be noted that the detailed architecture of graphic card processors is intellectual key knowledge

of the manufactures and therefore subject to a strict non-disclosure policy. More details about the

structure have been unveiled recently due to the close dependency between performance and hardware

in GPGPU, but several aspects remain subject to speculation.

The GPU is designed as a throughput-iJriented SIMD2 processing unit. Thus, the architecture roots

on two main components, namely the processors and the memory to deliver the data. As for most

high-performance architectures, either instruction execution or data delivery constrain the maximum

throughput. Therefore, kernels are usually classified to be either instruction or memory limited, with

each one requiring different optimization strategies. Indeed, the division is not that clear, as the limiting

factor of a kernel may change frequently during optimization.

I I) I
Texture Processor Cluster

TPC

I Cache

I 1 ~ TPC I SM •••
--...

I TPC I ~ • \
• I Instruction FetchIDecode I
• [}D@]@]@] •

! I
@]@]@]@]

TPC
1 SFU 11 SFU II Double Pn:ciBion I

Figure 3.1: Hardware architecture of a NVidia GPU

With regard to the structure, the processor design is different from typical CPUs. Several perfor­

mance improving facilities like branch prediction and out-of-order execution have been omitted in favour

of higher clock speeds and additional cores. Thus, the performance of code segments is much closer de­

pendent on the architecture than for the CPU counterparts. Furthermore, the hierarchy of processors is

2single instruction, multiple data

20

CHAPTER 3. GPU COMPUTING 3.3. HARDWARE

different from the usual SIMD configuration. The smallest building block, called Stream Multiprocessor

(8M), is outlined in Figure 3.1. Each 8M in turn is based on different functional units, namely:

Stream Processors (SP) [x8] are the flexible programming units to perform most of the computa,.­

tional work like integer arithmetic, branching and load/store operations. Floating point arithmetic
is limited to single precision only.

Special Function Units (SFU) [x2} provide hardware accelerated special functions, mainly tran­

scendental and trigonometric functions common in image processing. However, those implemen­

tations favour speed over accuracy, as the human eye is more sensitive to frame rates than small

colour errors. A per-case examination is necessary with regard to GPGPU to balance required
precision with maximum speed.

double precision unit [xl] offers double precision floating point operations. Especially older hard­

ware revision ship without such a hardware support and need slow software emulation. Indeed,

the double precision speed is about eight times lower than for single precision, due to the ratio of

the units. In practice, the penalty is slightly lower as it depends on the ratio of double precision
computations and SP jSFU instructions.

All those units share one instruction decode unit, so they cannot be addressed with different tasks in one
instruction cycle, but form a fixed entity. Thus, a Stream Multiprocessor is the basic parallel building

block, being replicated several times to constitute the processing power of modern graphic cards. Each

8M is less powerful than a CPU core, but the sheer majority induces the performance benefit. Having

said that, the most outstanding demand for a GPU-suitable algorithm is obvious: the algorithm must

be able to be distributed among all processors equally to exploit the advantage. For example, there are
30 SMs and therefore 240 SPa in the graphic card used for this thesis.

Another key properly arises due to the shared instruction decode unit per 8M in the light of branches.
Each SP can opt out from any command independently, so the flexibility is enhanced compared to usual

SIMD implementations. In this case, the computational performance degenerates with the ratio of
working processors. In fact, the situation is worse for diverging code paths, e.g. jf {} ... else {} in

C/C++. If a single SP needs to go along the other path, both code segments need to be delivered to all

processors. This may cause a significant performance penalty for instruction limited kernels.

The second focus is on the memory architecture to supply the processors with data. The available

types of memory are listed in Table 3.1. Indeed, constant and texture cache are not independent
memories, but used to hide latencies of constant and global memory respectively. Nevertheless, they

are listed twice to outline the difference in access cycles and limited size. Except for those two buffers,

the whole architecture does not use any caches3
t so the memory access pattern may easily influence the

runtime of a code segment by one or two orders of magnitude. A good understanding of the benefits and

drawbacks of the different memories is essential to optimize an application. Therefore, the differences

need to be outlined in more detail:
lIGlobal memory access is partly cached in the Femi architecture, so some aspects of coalesced memory access pa.tterns

are alleviated

21

3.3. HARDWARE CHAPTER 3. GPU COMPUTING

Memory Location Size Latency Notes

Register on-chip 64KB / SM instant Independent for each SP

Shared on-chip 16KB / SM', instant. Shared among all threads of a SM

Global off-chip up to 4GB 400-600 cycles

Constant Memory off-chip 64 KB / device 400-600 cycles

Constant Cache on-chip 8KB / 8M instant only if cached

Texture Cache on-chip 8KB / 8M ~ 100 cycles

Table 3.1: Available memory types on a GPU with typical characteristics

Global memory With up to 4GB in size4 , the global memory is the largest of all available memory

locations. It is read/write-accessible by all kernels and the CPU, so global memory serves as

memory for computation inputs and results. The latency for access is about 400 to 600 cycles, so

it is the slowest of all memories, too. The connection between global memory and processors is a

wide bus, 512bit in the case of our card, so each request needs to transfer all bits. Unused data

within a request are discarded due to the lack of cache, but the whole block needs to be transferred.

Thus, a major concern for memory throughput-limited kernels is how to optimize the utilization

ratio. Thereby, a full utilization of a data transfer is called coalesced memory access. This matter

is revisited in section 3.4 with regard to the programming model.

Shared memory Shared memory is accessible by all threads running on particular SM, but it is not

coherent between different SMs. Usual use-cases are software-managed global memory caches and

data exchange between SPs of a SM. The memory is clustered into 16 banks. There are two

favoured access modes: Either each SP accesses memory locations in different banks or all SPs

read the same memory location (broadcast). The data will be available instantaneously in both

cases. On the other hand, the access will be serialized by hardware if none of the patterns are

fulfilled.

Constant memory Constant memory is a small region in global memory, but access is cached for

each 8M independently. The data is available at register speed in case of a cache hit and incurs

global memory latency otherwise. The access is read-only to avoid any cache-coherency problems.

Typically, data commonly used by different SM and/or frequent kernel invocations is stored here.

Contrary to shared memory, access will be serialized if SPs request different memory locations at

the same time.

Registers Registers have the lowest latency, but are very limited. Currently, 32 registers per thread

are available only. The compiler will spill data to global memory if more registers are needed for

computations, so the kernel will be able to execute at the expense of high latency global memory

access. An optimized kernel should avoid this kind of issue by all means.

4The Femi architecture is not constrained to 32 bit pointers, 80 more memory is supported.

22

CHAPTER~ GPUCOMPUTING 3.4. CUDA PROGRAMMING MODEL

Texture cache The texture cache is a small cache per 8M to alleviate the dependency on access

patterns for global memory. Interpolation and normalization of data is available additionally.

No cache-coherency is guaranteed, so the global memory is read-only using the texture reference.

A predictive cache algorithm determines the data to store, so the performance may improve if a
proper access pattern cannot be assured otherwise.

Thus, global memory is frequently used to transfer data between CPU and GPU. The transfer speed

is about SGB/s for PCI-Express in our case, compared to a maximum of 74GB/s within the GPU,

e.g. coalesced memory reads in kernels. Hence, the transfer between CPU and GPU may consume any

computational benefit. It will frequently turn out to be of advantage to implement some functions on a

less suited architecture in favour of an additional data transfer.

A way to ease the impact is offered by the CUDA API with pinned memory. This special kind of

memory is non-pageable memory (therefore pinned), so transfers can start immediately and can employ

asynchronous DMA transfers. In fact, the transfer is asynchronous regarding CPU and GPU on recent

hardware architectures, so functions may be executed while data is transferred. However, the greedy

allocation of pinned memory may decrease the performance of the CPU part, as frequent paging for

other data is enforced due to the reduced amount of movable memory. Thus, pinned memory should

only be used wisely and sparsely for those buffers that will boost the application.

Different hardware revisions with enhanced features are available. A number scheme called compute

capability is employed to distinguish the supported abilities. All compute capabilities are backward­

compatible, so a device with compute capability 1.3 can execute code compiled for any previous revision

as well. This is not the case the other way round, so the hardware revision needs to be provided at

compile time. In practice, up to three different revisions may be set and most appropriate one is selected

at runtime. With regard to our project, compute capability 1.3 is the most important as double precision

support has been added.

3.4 eUDA Programming model

As outlined before, the GPU is essentially a 8IMD processor with enhanced flexibility. The model is

called single instruction multiple threads (SIMT) by NVidia to reflect the additional adaptability and

describe the underlying philosophy. In fact, the hardware design is abstracted by means of thousands

of independent lightweight threads, scheduled by hardware to execute on the SMs. The program flow

is controlled by a CPU thread, issuing asynchronous GPU functions, memory transfers and other CPU

code. Nevertheless, the scheduling properties of the GPU are very important to tune the design to the

hardware.

In the context of GPU scheduling, the most important buzzword is the wrap, the smallest number

of threads being executed concurrently on a SM. Against all odds, the wrap size is 32, but subject to

23

3.4. CUDA PROGRXMMING MODEL CHAPTER 3. GPU COMPUTING

changes in future hardware revisions according to the documentation. As a consequence, a SM needs

at least 4 cycles to complete a single instruction for all wraps. It is further separated into half-wraps,

namely the upper and lower 16 consecutive threfl;ds of a wra~.

A wrap plays an important role regarding most of the structural implications mentioned before.

First, all threads of a wrap must access contiguous memory locations for coalesced global memory trans­

fers5 • Next, all threads of a half-wrap must access different shared memory banks to avoid serialization.

Moreover, divergent code paths are bound to wraps, too. Therefore, if one thread in a wrap needs to

follow another code path, both code paths will be fed to all wraps as outlined before. By contrast, no

penalty occurs if threads in distinct wraps pursue divergent paths.

The wrap leads to the matter of issuing threads. Two parameters provided for each kernel launch

to control the number of threads, called block and grid. All kernels of a block are executed on a single

8M and can synchronize and share data using shared memory. Although threads of different grid blocks

may run on the same 8M, they are treated as independent and cannot interact. In general, there is

no synchronization mechanism in between 8Ms, so the tasks need to be completely independent6 • The

synchronization available in CUDA is limited to threads of a block and kernel launches, avoiding any

expensive large-scale synchronization hardware.

The definition of a CUDA thread is significantly different from a CPU thread. There is hardly any

generation or destruction overhead and switching between threads works instantaneously, because no

stack is allocated. In fact, each 8M can handle up to 512 threads at the same time. Beside hardware,

the maximum number of threads per 8M is constrained by shared memory and registers. Reducing the

limiting factor will cause more threads to be scheduled for each SM.

The threads are scheduled to hide latencies, especially for global memory access, so one wrap may

compute while another one is waiting for data. This leads to occupancy, the ratio of used thread slots

of the 8Ms, as next key factor for memory access limited kernels. However, a higher occupancy does

not imply a higher performance. A lower number may be sufficient for compute bound kernels to hide

latencies completely.

The different philosophy of threads is clearly evident in vector addition for example. A typical

GPU implementation uses an own thread for the addition of each vector component, while a CPU

implementation favours a loop. The special variables blockIdx and gridIdx are available in kernels to

split the workload to threads.

The trade-off between more kernels and additional workload per kernel must be based on experience

and experiments with different setups. A fine-grained kernel approach may easily be limited by the

memory transfer rate. By contrast, a heavy workload partitioning tends to less occupancy and therefore

speed limitations due to memory latencies and register spilling.

IlFurther restrictions apply for the access pattern with respect to the compute capability
6Recent revisioll!! support atomic opera.tioll!! on global memory, 80 synchroniza.tion may be implemented, a.lthough very

inefficient due to the high latency of global memory.

24

CHAPTER 3. CPU COMPUTING 3.5. DEVELOPMENT TOOLS

We want to limit the scope of this presentation to a. fundamental basis to understand the djfferences

between CPU and GPU software development. In fact, there are much more aspects to consider, partly

due to the gra.phic processing background. For example, the na.tive integer size is 24 bit instead of 32 hit,

as colour graphics tend to use 8 bits per colour only. Therefore, a 32 bit multiplication needs multiple
cycles, whereas a 24 bit one can be accomplished in a cyele1•

Even more influence has the chosen algorithm. Severa.l high-performance CPU a.lgorithms do not

map well onto the new architecture and lead to letlB impretlBive improvements. The research for more

effective alterna.tives is the most time-ciemanding and unpredictable part, but often necessary to yield

the superior speedups reported in litera.ture.

3.5 Development tools

As outlined before, the CUDA API has been used for GPGPU in this work. In fact, two similar ways are

offered for programming the GPU, namely through the runtime or driver API. While the latter allows

direct access to functions, the former uses a more abstracted interface and generates implicit stubs at

compile time, so the code is more concise. An example to illustrate the difference is given in Listings 3.1

and 3.2. Error handling has been stripped in both cases for the sake of clarity. Both APIs a.re equal in

terms of features and may be blended as welL However, any file using runtime API extensions must be

processed by the NVidia nvcc compiler.

In general, the N-Vidia compiler is a. pre-processor to separate host and device code, feed both to

different compilers and merge the results into one single executable. The compile How is outlined in

Figure 3.2. The source code is scanned by the nvcc compiler and GPU relevant code is forwarded to

the PTX compiler. The compiler generates GPU suitable code in a binary intermediate format and

embeds the code as character resources in a format called fat binary. In practice, this code will be

processed by the graphic card driver to run on the GPU, especially due to backward-compatibility

support. The enriched code is forwarded to the host compiler to generate a platform specific executable.

GCC is supported on Linux and Mac Os X and Microsoft Visual Studio 2008 on Windows platforms.

Although the native Mircosoft compiler is used, some features are not available due to the preprocessing,

most notable the edit and resume-options. The lack of this feature is unfortunate due to the limited

monitoring possibilities within the GPU and long simulation times.

As the development was conducted on the Windows platform, the emphasis here is on the development

support on this platform. As mentioned before, the Microsoft C compiler is the only supported compiler

for the Windows platform. The compiler in the free edition of Microsoft Visual Studio Express 2008 is

fine for this purpose.

7Indeed, NVidia notes this may change in future hardware revisions.
'Edit and resume allows to modify the code during the runtime of the program without restarting the program. Thus,

it is a convenient method to enhance source code with monitoring commands or fix errors during debugging.

25

3.5. DEVELOPMENT TOOLS CHAPTER 3. GPU COMPUTING

1 !ILoad PTX source

2 cuModuleLoadDataEx(lcuModule. ptx_source.c_str(). jitNumOpt1ons.

3 jitOptions. (void **)jitOptVals);

4 cuModuleLoad(lcuModule. module_path.c_~tr(»;

5 cuModuleGetFunction(lcuFunction. cuModule. "matrixXul");

6

7 !!setup parameters

8 cuParamSetv(matrixMul. offset. lptr. sizeof(ptr»:

9 cuParamSetv(matrixMul. offset. tptr. size of (ptr»;

10 cuParamSetv(matrixMul. offset. tptr. sizeof (ptr»;

11 cuParamSeti(matr1xMul. offset. Matr1x_W1dth_A) ;

12 cuParamSet1(matr1xMul. offset. Matr1x_W1dth_B) ;

13

14 !!configure launch options

15 cuParamSetS1ze(matr1xMul. offset);

16 cuFuncSetBlockShape(matrixMul, BLOCK_SIZE, BLOCK_SIZE, 1);

17 cuFuncSetSharedS1ze(matr1xHul, 2*BLOCK_SIZE*BLOCK_SIZE*sizeof(float));

18

19 !!launch kernel

20 cuLaunchGrid(matr1xHul. WC I BLOCK_SIZE. HC ! BLOCK_SIZE);

Listing 3.1: Example of kernel invocation using CUDA driver API. Some code has been stripped for the

clarity of presentation, most notably error handling.

1 matrixMul«< gr1d, threads »>(d_C, d_1. d_B, uiWA, uiWB)j

Listing 3.2: Example of same kernel invocation as above using CUDA runtime API.

Host
code

Falbin
structure

Figure 3.2: Dataflow in the CUDA compile process

By default, the compilation is a command-line driven process. A Visual Studio integration, called

Parallel Nsight, has been released recently [7J. Debugging and monitoring are major improvements

beside the integrated project maintenance. The free edition covers debugging only, but the professional

edition offers monitoring and contains a profiling and comprehensive timeline presentation including

CPU and CPU execution.

Nevertheless, the debugging gives rise to several issues and restrictions outlined next. First, break

26

CHAPTER 3. CPU COMPUTING 3.5. DEVELOPMENT TOOLS

points are accomplished in a straight way during debugging, so the whole graphic card will be stalled

including all video operations as well. Therefore, a single graphic card cannot be used for development

and debugging at the same time, as the display would freeze. NVidia suggests dedicated development

and debugging machines connected with TCP lIP. The code and results are transferred transparently by

an additional debugging client on the debugging machine.

GPU debugging is available this way, but CPU debugging is not possible meanwhile. In fact, it is

impossible to debug both, CPU and GPU simultaneously with only a single instance of Visual

Studi09
• This situation frequently limits the debugging insight, because intermediate results cannot be

judged with respect to the whole program state. Furthermore, the benefit of GPU debugging covers

error correction mainly, because hundreds of threads cannot be examined at the same time. Hence, a
test driven development is suggested by the limitations and the fact, that several optimizations may be

necessary to yield good performance.

Tests to ensure the proper operation of the code are written before the actual code in this devel­

opment style. In the light of GPU development, a working CPU implementation serves as a reference

implementation, usually called gold code. In a loose sense, this kind of development can be regarded

as black box development, as different implementations are compared by their results only. Automatic

tests on different scales of granularity, ranging from functions to whole segments, are defined. Most

development systems ship with built-in support for such tests using the buzzword unit testing. In fact,

the development is slowed down first due to the additional work for the CPU implementation a.nd the

tests, but will payoff in the long term view as regressions and flaws can be traced down to certain

functions automatically.

The actua.l GPU code can be assessed using different methods. A free standalone profiler is provided

beside the comprehensive and expensive Parallel Nsight monitoring tools. Moreover, the CUDA runtime

supports events to capture the timestamp at specific points in the asynchronous GPU processing queue.

The timestamp is independent from any CPU based timer, so no correlation of CPU and GPU execution

can be deduced. CPU profiling techniques on the other hand may yield less meaningful figures due to

the asynchronous nature of the CUDA API. In fact, deep understanding is needed to put the different

perspectives together into an informative overall picture.

The estimation of speedups due to parallelism of code has been in the focus of interest as soon as

multi-core CPUs became popular. Amdal's Law, shown in Equation 3.1, offers a. rough idea about the

maximum speedup possible by separa.ting the runtime of a program into serial and parallel sections. In

this sense, parallel sections can take advantage of multiple processors, whereas serial sections cannot

benefit and the runtime remains constant. It is assumed that the task can be distributed among all

processors equally and neglects any synchronization overhead for the sake of simplicity.

Speedupmax = . I Cod Parallel Coden
Sena. e% + Number of proCl!llSOI1I

1
(3.1)

lilt is possible to debug both using different instances of Visual Studio on th~ de~lopment and ?ebugginr; PC at the
same time, but this configuration is prone to freezes, most likely due to assumptIOns In the debug cbent.

27

3.6. SUMMARY CHAPTER 3. GPU COMPUTING

20

18

16

Co 14
=
I 12

e 10
= e 8 .;;;
III e 6

4

2
~~==~~---~---~---~---+---~---~---~---~

0

2 4 8 16 32 64 128 256 512 1024

-+--75% •• .. ··50% -.-25% -5% Dumber of process on

Figure 3.3: Estimation of speedup with Amdal's Law based on percentage of serial code

The trend for various percentages of serial code is depicted in Figure 3.3. The key observation resides

in the very limited benefit of multi-processor architectures for algorithms with serial code segments. For

example, if only 5 % of time are spent on serial code segments, the speedup is limited to a maximum

of 20 times. Typical serial code portions are allocation, initialization and evaluation, so 5 % may be

achieved easily.

By contrast, there is no way to predict the actual speedup a GPU implementation will provide over

a CPU counterpart due to the dependency on multiple factors. Amdal's Law cannot be applied literally

as the GPU cores are different from CPU cores and therefore violate a key assumption. Indeed, it can be

used to estimate the upper limit of benefit due to changing minor aspects, e.g. functions. Therefore, it is

assumed that the function may be distributed perfectly among an infinite set of processors, so the time

spent in the function is avoided. The estimation is reasonable for small portions only, as the assumption

to neglect a major part yields pointless conclusions. Furthermore, major modifications like different

algorithms cannot be assessed.

3.6 Summary

In this chapter, the hardware and API to facilitate GPGPU computing has been introduced. After

a short historic outline, common APIs have been presented. In so, it becomes obvious that GPU

computing is a very recent matter with a fast-moving evolution. At the same time, information is

spread by means of new technologies like web tutorials and conference presentations to allay the thirst of

additional knowledge of the research community. Hence, this chapter provides a comprehensive summary

of information gathered during the thesis.

28

CHAPTER 3. GPU COMPUTING 3.6. SUMMARY

The processor and memory design of the used graphic card have been outlined in detail first, fol­

lowed by the realization in software. The instruction should provide a comprehensive understanding of

limitations and prospects, although the aspects are covered at a high level only.

Finally, the current development support provided by NVidia. has been presented. However, the

situation is subject to rapid changes because GPU computing is a rather new topic with a fast growing

community. Amdal's Law has been presented to outline the importance of a suitable algorithm and

assess the impact of code sections.

29

This page is blank intentionally.

Chapter 4

KDD 99 Cup Evaluation

In this chapter, the performance of a Restricted Boltzmann Machine on the KDD 99 Cup data is

examined. In a chronological context, this work has been done first and the promising results and

limitations of the presented approach encouraged the development of the framework introduced later

on. The organization of the chapter is as follows: First, the dataset and the task is introduced. Second,

we present our approach to employ an RBM on the problem and outline the possible speedup through

a GPU implementation. The section is concluded with an evaluation of classification results achieved
with the suggested technique.

4.1 KDD 99 Cup Dataset

The KDD Cup dataset was compiled using tcpdump data of the 1998 Defense Advanced Research

Projects Agency (DARPA) Intrusion Detection System (IDS) Evaluation dataset. The original data was

gathered by simulating a network using traffic generators and hand-injected attacks, so the type of each

package, either benign or malicious, can be assured [36]. The network was simulated for seven weeks,

producing four gigabytes of compressed binary TCP dump data. An example of the dump data is shown

in Figure 4.1.

This data was proCE'.ssed by RDD and around 5 million connection records were extracted. A con­

nection is a sequence of packets starting and ending at some well defined times, between which data.

flows to and from a source IP address to 8. target IP address under some well defined protocol. Each

connection is labeled as either normal, or as an attack, with exactly one specific attack type. Each

connection record consists of about 100 bytes. An example of such an connection record is shown in

Figure 4.2. As we can see from Figure 4.2, each connection is described by 41 features. A complete list

about aU fea.tures can be found in [3]. In general, the features can he distinguished into three types:

31

4.1. KDD 99 CUP DATASET CHAPTER 4. KDD 99 CUP EVALUATION

Attack type
Training Testing

[#] [%] [#] [%]
Attack type

Training Testing

[#] [%] [#] [%]
normal 972781 19,86 60591 19,48 warezmaster 20 0,00 1602 0,52

buffer overflow 30 0,00 22 0,01 warezclient 1020 0,02 a 0,00

loadmodule 9 0,00 2 0,00 spy 2 0,00 ° 0,00

perl 3 0,00 2 0,00 rootkit 10 0,00 13 0,00

neptune 1072017 21,88 58001 18,65 snmpgetattack ° 0,00 7741 2,49

smurf 2807886 57,32 164091 52,76 named ° 0,00 17 0,01

guess passwd 53 0,00 4367 1,40 xlock a 0,00 9 0,00

pod 264 0,oI 87 0,03 xsnoop ° 0,00 4 0,00

teardrop 979 0,02 12 0,00 send mail ° 0,00 17 0,01

portsweep 10413 0,21 354 0,11 saint ° 0,00 736 0,24

ipsweep 12481 0,25 306 0,10 apache2 ° 0,00 794 0,26

land 21 0,00 9 0,00 udpstorm ° 0,00 2 0,00

ftp write 8 0,00 3 0,00 xterm ° 0,00 13 0,00

back 2203 0,04 1098 0,35 mscan ° 0,00 1053 0,34

imap 12 0,00 1 0,00 processtable 0 0,00 759 0,24

satan 15892 0,32 1633 0,53 ps a 0,00 16 0,01

phf 4 0,00 2 0,00 httptunnel ° 0,00 158 0,05

nmap 2316 0,05 84 0,03 worm ° 0,00 2 0,00

multihop 7 0,00 18 0,01 mailbomb ° 0,00 5000 1,61

snmpguess ° 0,00 2406 0,77 sqlattack ° 0,00 2 0,00

Table 4.1: Distribution of attack types in training and testing database

1. Basic features of individual TCP connections:

• duration - length (number of seconds) of the connection

• protocoLtype - type of the protocol, e.g. tcp, udp, etc.

• service - network service on the destination, e.g., http, telnet, etc.

• src_bytes - number of data bytes from source to destination

• dst_bytes - number of data bytes from destination to source

• flag - normal or error status of the connection

2. Content features within a connection suggested by domain knowledge:

• logged.Jn - 1 if successfully logged in; ° otherwise

• num..failed...logins - number of failed login attempts

• num...shells - number of shell prompts

32

CHAPTER 4. KDD 99 CUP EVALUATION 4.2. RBM CLASSIFICATION

• num...root - number of "root" accesses

3. Traffic features computed using a two-second time window:

• count - number of connections to the same host as the current connection in the past two
seconds

• srv.count - number of connections to the same service as the current connection in the past
two seconds

• serror...rate - % of connections that have "SYN" errors

As stated in [3J, the whole dataset is heavily peppered with attacks. In total there are 38 different types
of attacks that can be grouped into four categories: •

1. DoS (Denial of Service): an attacker tries to prevent legitimate users from using a service
(e.g. syn flood)

2. Probe: an attacker tries to gather information about the target host (e.g. port scanning)

3. U2R (User to Root): an attacker has local access to a host and tries to get root privileges

4. R2L (Remote to local): an attacker tries to get local access on a host

A training set as well as a test set are provided by KDD. Because of the huge size of each dataset, 10%

subsets of both have been provided. Regarding both sets it has to be noted that:

• the test data is not from the same probability distribution as the training set.

• the training dataset includes only 24 different types of attacks

• the test dataset includes all 38 attack forms

The distribution of attacks in both datasets is shown in Table 4.1.

The KDD Cup 99 dataset has become widely discredited [40J and it is recommended by the publishers

to stop using this dataset to evaluate real world IDSs [15J. The main criticisms are, that the underlYing

DARPA dataset does not represent real world traffic and that some irregularities within this dataset have

been discovered. Thus, the feature extraction done by KDD might have failed in a few cases. However.

we do not intend to develop a real IDS system, but want to compare the performance of Deep Belief

Networks with results by other researches. In addition to that, the UIL..'lOOn attacks are very interesting

because we can analyze the generalization capability of a. DBN. A3 noted before, the decomposition into

general features sbould to more robust definitions of attack patterns, so one of tbe major advantages of

the novel training algorithm can be assessed.

33

4.2. REM CLASSIF1CATION CHAPTER 4. KDD 99 CUP EVALUATION

<CUI "1.~1" ~~~·.P1't'I1'f"'W/ur>
411_ .. ~ - h .. ,"_,,_,~,"_~UMM:l." Ii, 2. i, 0}--30
<t.4 "'ldLI:I.-JO·)<~ • __ ,,......ai _-"na.~/M<.-_'0IiD.1ll1r id.4~O M

<tA -.lftW'".to" .u..~.x. 1II"'t-'·'0III1 ... 1.I ltl/lJuQ.'i1~)~R
.l~~ "VWOM ... -""OV_~l .. _bt~~"Jlf n.). 1 .. Oi~~.
('U "'1 20 .. ~1aI .ra-/~/_rct1II~tA4rf~u'_I.~.91,.
.. l.4t1l_20 _~'t~o- .l~~~· 1Io,. .. .-c1ooC/I:Cboe~ "IIIl<nbO'O'''''

-.!.l ... ·-c:urtI. .. ><:. lonfII·'"1-blA/.w:-MaI«11G):UtJIU(IM4nn0T0101lOC~Oltt&t
oolOJ-·'ooooeo-"VUI-U, ~l~ Dl~</r ... t.,"",''I.cI.p.c/~1II wt.::lUl·-S· 1II9OO10r­

>(1- ft)WM. nrelu_ltIdeoOr1 _ .. ralAb_u..q: "f J, 1,'0,,,·,
<ul 'lt1fth-*'~"~UIoII .. 11' ' .. 4'-_ _ '-.To 1 __ ;-., ...

,~ ... · t_-=r-~-'.J
1Ildt.b"'.JO Ml.,.C.""i'/l 1W.:t •• ~" ,.-O)oC/;.G)o(t(l ~0t.JlII. .. " •
• J.1.~CI.II'l'U")« ".. .. 'Of¥.-.... 'V..s-1na/.l' .. 1:lSDIOl!1M"'.tsl.rtl101.tOC}(I()tloOfilO.
oalo,... .. tOGOOGO-Ho-' .tt .. l .. ~N ~ at: __ .~IJ_~I.W'r.G»
n4 1I1 • .,....L· ~Q ,.".,.,...>Ute

<1- iII)"ftI'N • _toG._~I."_~II4U6f II. J, 1. 01--)'

Figure 4.1: TCP Dump data as provided in the 98 DARPA IDS Evaluation dataset

Q.ladII.PI'1V."~Sr~lO!l.1411.0. o. O. G, C. D. 0,0, O. 0, Q. D. O. 0.0, 0.1 .. 1.
0.00. O. 00. 0.00, O.CKI, \.00.0.00.0.0.0. 211.~a4.1.OO.0.01. 0.00,

0.00,0.00, o. 00, 0.00. flo. 00, nc..-l ..

Figure 4.2: Data provided in the KDD Cup 99 dataset

4.2 RBM Classification

Although we use the RBM as for classification throughout the thesis, the focus in this section and the rest

of the work is quite different. First, the RBM is implemented with MATLAB as high-level framework,

and some parts are accelerated by the graphic card using MEX-files. Second, Contrastive Divergence

is used to pr~learn a network and back propagation learning to trim the weights more precisely to

the demanded classification task. In the other sections, back propagation is abandoned in favour of

a. better generalization performance. A flow chart of the training is depicted in Figure 4.3. The part

accelerated by CUDA is highlighted in blue. The proposed network structure is depicted in Figure 4.4.

The implementation is based on a publication of G. Hinton [24].

The test setup has been enhanced using a tight integration of different software products. A MySQL

database delivers the test datasets, controlled through the MATLAB Database Toolbox to compile

the training data adaptable to specific needs. An additional benefit of the database solution is the

normalization of the benchmark data. A textual description is used for some categorical features like

attack or connection type. Neither MATLAB, nor a Boltzmann network can handle character data

efficiently, so each feature must be replaced with a unique integer representation. This task is called

database normalization in computer science and can be achieved efficiently using a SQL database, even

for huge data pools like the whole KDD Cup data.

An additional quantization is needed as integer values and real-valued ratios are not suitable for the

binary RBM used in this experiment. This conversion has been implemented using user defined functions

(UDF) in MySQL. UDFs are native machine code functions, loaded from shared libraries at runtime.

Thus, UDFs are comparable to MEX-files for MATLAB. They are an intermediate step between fast

native functions, which are time consuming to implement, and complex SQL statements, which are slow

regarding execution time. The two different kinds of types of continuous data, namely classes and ratios,

need to be represented slightly differently. Therefore, two user defined functions have been implemented .

• Binarize: Based on the value m of the feature, m bits are one.

34

CHAPTER 4. KDD 99 CUP EVALUATION

Contrastive
Divergence

Back­
propagation

Layer training

Class weight learning

Weight tuning

4.2. RBM CLASSIFICATION

Conjugate gradient

Evaluate Network

Update parameters

Figure 4.3: Learning stages of the DBN architecture to solve the KDD Cup 99 task. The part accelerated
with CUDA is highlighted in blue

• Classifier: Based on the class m of the feature, the mth bit is one

In fact, Binarize implements the idea depicted in Table 2.1, but classes are treated differently because

there is no reasonable distance metric to mimic. The binary data is returned as character array of ASCII

zeros, ones and spaces because MySQL allows each UDF call to return a single value only. A practical

disadvantage is the slow string handling in MATLAB, so the data was written into an intermediate file

to moderate the drawback.

A notable issue is the memory consumption. The network grows quite large and requires big matrices

to hold the weights. Thereby, only 64 bit machines are capable of running the simulation as there is not

enough contiguous memory available otherwise. MATLAB's demand for memory cannot be satisfied

with the 3G parameter either. The memory demands are partly due to representation of the input

features, but restriction to small scale problems is evident.

The implementation itself has been enhanced in several aspects, too. First, the classification weights

have been pre-learned with Contrastive Divergence using the classification idea in Figure 2.4b. Those

weights were trained using back propagation only in the original proposal. Furthermore, the most time­

consuming part of the back propagation learning has been implemented in CUDA. There are several

reasons to pick this small portion in favour of other parts:

• The section is used up to 20 times for each gradient search, so an efficient implementation pays of

well .

• It is called with the same batch data repeatedly, so data structures can be transferred once and

used several times. This is a major advantage as the data transfer is a well-known limiting factor

with regard to the maximum speed improvement.

35

4.2. RBlt.f CLASSIFICATION CHAPTER 4. KDD 99 CUP EVALUATION ---

2000 neurons

500 neurons

500 neurons

KDD Cup Dataset

Figure 4.4: Deep Belief Network setup to solve the KDD Cup 99 task .

• It uses mainly forward operations like matrix multiplication and hardly any control code. Hence,

the code section can easily be mapped into the parallel paradigm of a graphic card .

• Unlike most parts of the implementation, it is already separated as independent function.

The CDDA implementation uses own kernels for several per element tasks and the CUBLAS library

for matrix operation. Profile results of the CUDA part are shown in Table 4.2. The own kernels could

Method
CPU time

[usee] [%]
dgemm.JllainJIw..na..nb 64494.90 25.74

dgemm.JllainJIw..na_tb 58549.00 23.37

dgemm..mainJIw _ta..nb 64964.40 25.93

kernell 19195.30 7.66

kerneLexpsum 28.35 0.01

kerneLix 28744.59 11.47

kernel..normJog 4218.82 1.68

kerneLset ValueMatrix 41.50 0.01

memcpyDtoH 4501.57 1.79

memcpyHtoD 5763.14 2.30

Table 4.2: Summary table of CUDA profiling results

36

CHAPTER 4. KDD 99 CUP EVALUATION 4.2. RBM CLASSIFICATION

be further optimized, but this work has been postponed in favour of network simulations first. Because

more than 80 % of the time are spent on CUB LAS or memory transfer functions, the possible effect of

further optimization, namely a speedup of O~8 = 1.25, is minor compared to the required development

time demands for optimization. The kernels kernell, kerneLexpsum, kerneUx, kerneLnormlog and

kernel..setValueMatrix are own kernels. The other functions belong to CUBLAS.

In its current state, the CUDA implementation is about two times faster than the MATLAB imple­

mentation on an eight core 2.66 GHz PC. The effect is more obvious on less powerful host CPUs, but

even on this PC, the back propagation time for 100 epochs decreases form approximately 6 hours to less

than 3 hours. Additionally, the CUDA time is hardly dependent on the data size. The parallel power of

the GPU is only partially used by the current matrix sizes though.

In a later state, the CUDA functions have been revised based on new experiences with the best

practices gained in the development of the framework presented in later sections. The time spent in

self-developed kernels could be reduced to 4.5 % by updating the access pattern. The results are shown in

Table 4.3. Additionally, the speed-up could be enhanced by using a bigger batch size, even so the batch

size was constrained by MATLAB's memory demands. Once more, the benefits of CUDA have been

restricted by MATLAB. Nevertheless, a three times speed-up for double precision and a roughly nine

times speed-up for single precision could be observed with those adoptions. Indeed, the single precision

implementation yields infinite values for the weights, so the back propagation training fails. A single

infinite value will spread through the whole weight matrix very soon due to the matrix multiplication, so

they should be avoided by any means. Most of the speedup may be preserved by using a mixed, precision

implementation, e.g. limit the use of double precision to the critical sections only.

Beside the computation, most time is spent on memory transfer. In fact, the situation is worse than

suggested by the profiling results because the data transfers between CPU and GPU are not considered

CPU time
Method

[usee] [%]

dgemmJllainJiw..:na..:nb 64489.80 31.09

dgemm..lllainJiw ..:na..t b 58460.30 28.18

dgemm..lllainJiw _ta..:nb 65121.80 31.39

kernel! 3371.33 1.62

kerneLexpsum 28.54 0.01

kernelJx 1692.83 0.81

kerneLnormlog 4223.23 2.03

kernel..set ValueMatrix 44.10 0.02

memcpyDtoH 5417.76 2.61

memcpyHtoD 4549.89 2.19

Table 4.3: Summary table of CUDA profiling results with revised kernels

37

4.3. SIMULATION RESULTS CHAPTER 4. KDD 99 CUP EVALUATION

completely. The numbers include the time to setup the transfer only, instead of the complete transfer

time.

A straight way to reduce the transfer time by a factor of five is pinned memory. By contrast, this

cannot be used in conjunction with MEX-files because the MATLAB memory manager is incompatible

with the other allocation and will force MATLAB to crash. Moreover, the allocated memory is not

released properly and restrains the overall system performance.

furthermore, the actual speedup due to the CUDA implementation is higher, but the gradient descent

algorithm uses more iterations compared to the pure MATLAB implementation. The reason is the

high dynamic range due to the exponential and logarithm functions used. The current hardware does

not support fully IEEE-compatible floating points natively, but maps to functions with up to 2 ulpt

difference. This causes an additional noise component to interfere with the gradient descent optimization.

No degeneration of the final result can be observed, so the descent is still stable. This effect may be

magnified by mixed precision code, so this is another issue to consider.

4.3 Simulation results

The first difficulty in practise was the distribution of samples within the different classes as shown in

Table 4.1. A challenge of the KDD Cup was that the distribution of training and testing attacks are

different. Another difficulty is the unequal distribution of attack types within the training set as there

were less than ten samples of an attack for several classes only. Because the training goal is to capture

common patterns in the data, those attack patterns will get lost in favour of more frequent ones. The

amount of samples from each class has been limited to a maximum number of 1500 instances to ease

the impact during training. However, a more sophisticated technique may improve the classification

performance.

As a first attempt, the binary RBM has been fed with the data using the ratios as probabilities of

an underlying layer. All data was either classified as attack or normal, depending on the result of the

pretraining. Therefore, we could yield a 50 % correct classification ratio regarding the selected training

and validation datasets. This result did not depend on parameters like training epochs or network size.

Hence, this approach did not lead to a usable classifier and has been abandoned.

Next, the quantized input representation has been analyzed. Based on a small subset, the best

parameter settings haven been explored. In our experience, 25 neurons per ratio feature yield a good

trade-off between feasibility and classification performance. Thereby, the 41 features of the KDD Cup

dataset are converted into a 772 bit input vector. Using classes one to five only, it was possible to observe

1 Unit in the last place (ulp) is a measure of floating point precision in computer science. A maximum of 0.5 ulp is
necessary to exploit the full representational power of floating point numbers. Indeed, the most recent GPU architecture
by NVidia called Femi supports floating points at full precision.

38

CHAPTER 4. KDD 99 CUP EVALUATION 4.3. SIMULATION RESULTS

Class Non Attack # of datasets # of datasets Misclassified
Attack used for in final test

[%] [%] training classification dataset
normal 0.95 0.05 2000 60591 3030

buffer overflow 0.05 0.95 30 22 1
loadmodule 0.00 1.00 9 2 0

perl 0.50 0.50 3 2 1

neptune 0.00 1.00 2000 58001 0
guess passwd 0.58 0.42 53 4367 2533

portsweep 0.00 1.00 2000 354 0

land 0.11 0.89 21 9 1

ftp write 0.33 0.67 8 3 1

back 0.00 1.00 2000 1098 0

imap 0.00 1.00 12 1 0

satan 0.00 1.00 2000 1633 0

phf 0.00 1.00 4 2 0

nmap 0.00 1.00 2000 84 0

multihop 0.22 0.78 7 18 4

warezmaster 0.11 0.89 20 1602 176

rootkit 0.15 0.85 10 13 2

named 0.29 0.71 0 17 5

xlock 0.00 1.00 0 9 0

xsnoop 0.00 1.00 0 4 0

sendmail 0.41 0.59 0 17 7

saint 0.01 0.99 0 736 7

apache2 0.00 1.00 0 794 0

xterm 0.08 0.92 0 13 1

mscan 0.00 1.00 0 1053 0

processtable 0.00 1.00 0 759 0

ps 0.19 0.81 0 16 3

httptunnel 0.02 0.98 0 158 3

worm 1.00 0.00 0 2 2

mailbomb 0.24 0.76 0 5000 1200

sqlattack 0.00 1.00 0 2 0

Table 4.4: Identification mistakes for all classes

39

4.4. COMPARISON TO OTHER APPROACHES CHAPTER 4. KDD 99 CUP EVALUATION

Class

Normal Pretrained attacks Unseen attacks

I Non Attack 95% 13% 16%

Attack 5% 87% 84%

of datasets in final training 2000 10177 0

of datasets test classification 60591 67211 8580

Misclassified datasets 3030 8611 1373

Table 4.5: Confusion table trained vs. untrained classes

a misclassification of 2 out of 3000 (0.67%) in the training dataset and 94 out of 3000 (3.13%) in the

validation dataset.

The research regarding the optimal layer sizes has been limited due to the required training time of

the MATLAB implementation. Tests suggested that a 500-500-2000 neurons configuration yields good

results. This is the same configuration used for the MNIST character classification in [24].

The confusion diagram of the final run against the whole test set is provided in Table 4.4. The

training goal was set to classify attack or no attack only to handle the unseen attacks properly. A

comprehensive comparison with other techniques is outlined in the next section, but we continue with a

short discussion of further improvements based on those results.

Obviously, all previously truncated classes were classified 100 % correctly, so the results may be

improved by using a more sophisticated equalization technique like repetition. The performance is

impressive, even for many attack types not present in the training at all. Within the trained classes,

most errors occur in classes with a significant higher incidence in the test data than in the training data,

for example class 1, 7 and 20. Overall, a 5.1 % misclassification rate is achieved.

We summarized the recognition rate for trained and untrained connection classes in Table 4.5. The

classification rate is similar for both kinds of attack, so the Boltzmann network seems to provide a good

generalization of the underling attack schemes.

4.4 Comparison to other approaches

First, the detection results are compared with an Artificial Immune System (AIS) approach. This

technique tries to mimic the characteristics of the human immune systems by generating detectors to

distinguish between own and foreign cells. Key characteristics are the robustness and flexibility in

terms of classification and parallelism in terms of operation. Especially the first aspect and the obvious

similarity between the domains of origin and application motivated the choice. The AIS techniques

try to find instances of examples, which are sensitive to malicious pattern. Those instances are called

40

CIIAPTER 4. KDD 99 CUP EVALUATION

I Non-Attack
I

I Attack

4.4. COMPARlSON TO OTIIER APPROACHES

correct classified [%] I
AIS 1 AIS 2 REM.

50.6 70.7 95.0

99.9 90.8 86.8

Table 4.6: Correct classification for different AIS approaches compared to REM technique

antibodies in analogy with the medical jargon. Sensitivity is defined by some similarity m~asure like

Hamming Distance or r-Continuous Bits. Two attributes of the immune systems are used to generate

antibodies in general, namely Negative and Clonal Selection. The former technique starts with a random

population and retains only antibodies with a low sensitivity to the benign samples. Thus, any unknown

pattern, which is most likely malicious, is identified. The idea is adequate for tasks where the target can

be expressed as complement of a. know subset only. The other technique, Clonal Selection, proliferates

antibodies with a high sensitivity to attacks during training. Thereby, each cloned antibody is mutated

to extend the scope to similar, but unseen patters so far.

Different variations have been analyzed and the final results are outlined in Table 4.6. For the first

kind, labelled as AlS 1, an initial set of antibodies was generated using several iterations of Negative

Selection and matured by Clonal Selection afterwards. Floating thresholds have been employed to

allow widespread features in the beginning, but accentuate the more mature ones during training. The
I

approach yields a good detection of malicious connections, but classifies almost every second normal

connection as attack. In a detailed analysis, it was revealed that many antibodies classified everything as

attack. Those antibodies could proliferate due to the over-proportional amount of malicious connections

in the training dataset.

To overcome the limitations, the training procedure has been alt.ered for AlS 2. First, antibodies for

normal and malicious connections are trained. Moreover, the cloning and mutation rate in the Clonal

Selection stage is proportional to the misclassification rate of each antibody, so bad antibodies will ei­

ther be rejected or heavily altered. Thereby, ideas from function optimization are imitated. Negative

Selection is discarded due to the fact that it did not improve the classification rate. Hence, the attacks

cannot be considered as complementary to normal connections. This may be due to the feature ex­

tracted presentation, because results on the raw datasets suggest an improvement [201. As a result, the

classification proficiency for normal connections has been improved at the expense of a slightly worse

performance for malicious samples.

The AIS performs inferior compared with the Deep Belief Network in the last column. Although the

detection of malicious samples is significantly higher in the AlS 1-case, the normal classification ratio

disqualifies the attempt. The enhancements in AlS 2 alleviate the drawback, but the performance of the

RBM for normal connections is still significantly better. At the same time, the classification ratio for

attacks is almost identical. Therefore, research on immune system inspired algorithms has been limited

in favour of the Restricted Boltzmann Machine.

41

4.4. COMPARlSON TO OTHER APPROACHES CHAPTER 4. KDD 99 CUP EVALUATION

correct classified [%]
DBN Bagged Boosting Kernel Miner

normal 95.00 99.45 99.42

probe 99.75 87.73 89.01

labeled DOS 97.95 97.72 97.57

U2R 93.90 26.32 22.37

R2L 42.38 10.27 7.38

Table 4.7; Correct classification on simplified KDD Cup 99 task

predicted predicted

normal probe DOS U2R R2L correlty [%]
normal 52855 5012 775 1135 816 87.23

probe 480 3402 214 24 46 81.66

labeled DOS 2673 2724 165494 55494 3468 72.00

U2R 41 65 27 58 37 25.44

R2L 13347 578 181 194 1889 11.67

recongnized correlty [%J 76.16 28.88 99.28 0.10 30.20

Table 4.8: Confusion matrix of DBN on KDD Cup 99 dataset

predicted predicted

normal probe DOS U2R R2L correlty [%1
normal 60262 243 78 4 6 99.50

probe 511 3471 184 0 0 83.30

labeled DOS 5299 1328 223226 0 0 97.10

U2R 168 20 0 30 10 13.20

R2L 14527 294 0 8 1360 8.40

recongnized correlty [%1 74.60 64.80 99.90 71.40 98.80

Table 4.9; Confusion matrix of classification by the winning entry [491

42

CHAPTER 4. KDD 99 CUP EVALUATION 4.4. COMPARlSON TO OTHER APPROACHES

predicted predicted
normal probe DOS U2R R2L correlty [%]

normal 60244 239 85 9 16 99.42
probe 458 3521 187 0 0 84.52

labeled DOS 5595 227 224029 2 0 97.47
U2R 177 18 4 27 2 11.84
R2L 14994 4 0 6 1185 7.32

recongnized correlty [%] 73,95 87.83 99.88 61.36 98.50 l

Table 4.10: Confusion matrix of the commercial tool Kernel Miner, scoring the 2nd place [32J

The classification task has been eased fOf the comparison with artificial immune system. Indeed, only

a subtask of the original challenge has been tackled so far by distinguishing between benign or malicious

connections. Four different attack types as explained in the introduction must be identified to solve the

competition. In addition, the misclassification between classes is not accounted for equal1y, but penalizes

some confusions harder than others. Due to that, the winning entry in the original contest was the best

in terms of the scoring, but not the best classifier. The second one was a bit more accurate, except for

the most important class. However, the confusion is considered in favour of the score in this section,

because the aim of this work is to judge the cIassification performance of a Deep Belief Network instead

of its suitability for real-world intrusion detection systems.

The top two results of the original KDD Cup are considered as reference. Both entries use automatic

feature extraction techniques to form their decisions. Other teams used expert knowledge, but yield

inferior results. Those approaches haven't been taken into account as no result tables are provided.

The winning entry used C5 decision trees for classification [49]. C5 is a tree construction technique

successfully used in many different areas. A commercial implementation is available with SeeS. Although

available for such a long time, it is still used today. The algorithm is tuned for fast learning with low

memory consumption, but retains a good classification performance. Those aspects are important for

processing such a huge data basis, especially v ... ith the hardware available in 1999. Boosting has been

used to improve the performance of the trees. In addition to that, several trees have been trained on

different subsets of the database. Finally, the decisions have been combined by minimizing the conditional

risk. The database for each tree has been pre-processed to moderate the dominance of attack' types and

reduce the training data to a feasible amount. The way used is identical to our selection scheme, although

more examples per class have been picked, leading to a more unequal distribution. Moreover, duplicate

datasets have been removed before. The classification results are shown in Table 4.9.

The other submission employed the self-developed commercial tool Kernel Miner. Again, decision

trees are constructed as in the previous approach. By contrast, the data has not been cut down in a

special way, but the provided 10% database has been used for training. Deepening on the class, the data

is divided into many partitions and every partition leads to a decision tree. The best trees are selected

43

4.4. COMPARISON TO OTHER APPROACHES CHAPTER 4. KDD 99 CUP EVALUATION

in a final stage. The great amount of partitions is necessary because there is no obvious relationship

between a partitioning and the prediction quality of the derived tree. Thus, the selection is postponed to

a phase when the performance can be taken into account. Reliability and stability of trees are involved

in the selection to compensate the unequal distributions and avoid overfitting. Unlike all other attempts,

classifiers for each specific attack have been trained. Furthermore, the final cost of each type is embedded

into the training goal. The results obtained by Kernel Miner are provided in Table 4.10.

The results by using a Deep Belief Network are shown in Table 4.8 and differ significant from the

decision tree based results. Furthermore, the results for identifying attacks only are provided in Table

4.7. The data is aggregated into the same attack schemes as for the other tables.

First, consider the correctly predicted labels in the full task as depicted in Table 4.8 . Obviously, the

performance for the classes normal, probe and DOS is worse, but the remaining classes are classified

much more accurately. The distribution of the classes needs to be' taken into account to explain those

results, because the first classes are over-represented during training. Thus, the number of instances is

truncated to a small fraction of the available data. Thereby, not all the typical patterns of those classes

are present, so the DBN cannot extract the adequate characteristics.

By contrast, if the classification task is eased to tell benign and malicious connections apart only, the

DBN network outperforms the tree-based approaches in all classes except for the normal connections.

Especially this exception undermines the truncation based explanation. For sure, the patterns of normal

traffic vary a lot, but this is not sufficiently described by such a small subset. Nevertheless, increasing

the number of normal connections has been analyzed, but did not lead to significant improved results

for the first class, but slightly impaired the performance on the other classes.

Another observation is the distribution of predictions within an attack class. The tree based tech­

niques can eliminate some predictions completely, but the DBN assigns at least a few samples to every

class. Therefore, the percentage of correctly recognized samples drops to very low values for the seldom

classes. The most impressive example is the U2R attack type with only 58 instances in the testing set,

leading to a correct recognition ratio of 0.1 %.

Finally, all classifiers fail to identify the categories U2R and R2L with an acceptable level. This issue

has been further analyzed in [51J. They detect that 80% of U2R and 60% of R2L connections in the

testing set belong to new attack types. They demonstrate significant differences in the connections by

examining rules generated by C4.5 decision trees trained on the training and testing data. Indeed, both

classifiers share only 6 out of 24 selected features. In the light of a Deep Belief Network, it seems to

be possible to distinguish the U2R attacks from normal connections with a good ratio, but the labels

are equally distributed in the more difficult task. The allotment may be fostered by the lack of training

samples, but the DBN outperforms decision trees notably. A remarkable preference for the correct

prediction is obvious especially in the R2L section.

Moreover, there is another remarkable issue to note for comparing the results. Because the data is

extracted from an isolated network with artificial traffic generators, both, normal traffic and the attacks,

44

_C_H_A_P_TE_R __ 4. __ K~D~D~9~9~C~U~P~E~V,~~=L~U~A~TI~O~N~ ______ ~ ____________ ~4.5. SUM~fARY

are uniform in their characteristics [9,35J. Thereby, specific values for features are very strong indicators

of certain attacks. Those indicators can easily he exploited by decision trees, but lead to overfitting as

the characteristics of the artificial traffic generators are extracted. Hence, the adaptation may reason
the weak performance on unseen attacks.

On the other hand, the Deep Belief Network can hardly benefit from such structure due to the

coarse-grained data quantization. This may justify the fact that our approach performs better on t.he

new aUacks, but worse on the known types. However, the database needs to be examined in more detail
to prove this theory.

4.5 Summary

Two major aspects have been presented in this chapter. First, the application of a Deep Belief Network

as described in the previous chapters has heen presented. Moreover, this is the first time that a DBN
has been used the domain of network anomaly detection.

The results have been contrasted with winning entries of the competition regarding benign/malicious

...-detection and attack type classification. The DBN outperformed the other techniques in the first task,

but stood behind in the latter one. Based on the results, the DBN is sensitive to the unequal distribution

of the samples for different attack types. Additionally, the input feature quantization may he a practical

disadvantage. Nevertheless, the DBN technique yields encouraging results and outperformed other

techniques like artificial immune systems.

The other major aspect has heen the implementation. Several aspects like the data handling, memory

consumption and execution speed have demonstrated the practical limitations of MATLAB in the domain

of larger scale neural networks. Especially the runtime has been tackled with a GPU based acceleration

component, because many simulation settings need to he analyzed to tune the setup.

It has been demonstrated that the training of a Restricted Boltzmann Machine is well-suited for

GPU architectures. More than 90% of time has been spent on matrix multiplication, one of the key

applications for GPU computing. Unfortunately, the GPU component was hindered by constraints due

to MATLAB again, e.g. pinned memory and data layout. Those facts suggest a native implementation

to render a more detailed research and evaluation of real-world datasets possible.

45

This page is blank intentionally.

Chapter 5

Native GPU RBM Implementation

The developed framework for training RBMs with GPU support is presented in this cha.pter. The

framework is written in C++ using the CUDA runtime API for GPU computing. In general, the

development flow can be divided into severa.! phases. First, interesting ideas were identified by literature

reviews throughout the work. The building blocks of those ideas have been implemented in MATLAB

as gold reference, so the following GPU implementation could be tested against a. working example.

Using MATLAB as prototype development tool for the gold implantation leads to a. faster development

time, because many components for the implementation and tools to examine the results are provided.

Finally, the GPU code is embedded in the framework.

In terms of this chapter, the structure of and observations based on the final implementation are

outlined. This is a framework developed in Visual Studio 2008 using C++ and CUDA. The most recent

CUDA revisions, namely 2.3, 3.0 and 3.1, have been used during development. An NVidia Quadro FX

5800 is used as graphic card, featuring 240 stream processors, 4 GB GDDR3 Ram at a. 800 MHz clock

rate and 512 bit memory interface. A PCI Express x16 Gen2 port connects the gra.phic card to the rest

of the system. Windows 1 x64 is used as operating system, so the framework is compiled for a. x64

target.

The chapter is organized as follows. First, a review of related work is presented. Then, the general

structure of our framework is presented, starting with the coarse grained partitioning between CPU and

GPU. Next, the building blocks are visited in more details. The performance of the framework is assessed

and compared in the following section. Fina.!ly, implemented extensions of the objective function for

training a.nd their practica.l implica.tions are illustra.ted. The chapter is concluded by a. short conclusion.

5.1 Related work

G. Hinton proposed Contrastive Divergenee as new learning technique for the Restricted Boltzmann

Machine in 2002. With this technique, the learning became feasible even for todays computers. He

41

5.1. RELATED WORK CHAPTER 5. GPU RBM FRAMEWORK

published the source code to reproduce his results on the MNIST digits and Olivetti face data [23]. For

a long time, this was the only public available RBM implementation.

In 2007, the machine learning group of the University of Toronto joined the NetFlix competition [52J.

This was a competition based on a large-scale real-world database of movie ratings by users of an online­

rental service [4J. The task was to recommend other movies to users based on their previous ratings.

Although the machine learning group participated in the first year of the competition only, they couid

yield the best results up to that time. It is noteworthy that most groups which finally exceeded the

RBM results used a blend of mUltiple classifiers. Thus, the performance of the RBM is still outstanding.

Another interesting point is the technique used to feed data into the RBM, because the input rating

is given as integer value between one and five. However, no Gaussian style RBM was used in favour

of a binary one with a five neurons per rating. The technique called Replicated Softmax bears major

similarity with the quantization used in many sections of this work.

The results encouraged many other tearns to implement their own RBMs, too. In fact, the MAT LAB

implementation previously published leads to an infeasible execution time, so each team had to develop

its own native code. The struggles during this task are illustrated by the endless number of questions on

implementation and training parameters of an RBM in the NetFlix forums. Hence, some teams disclosed

parts of their working RBM implementations after the competition ended in 2008.

Many researchers found interest in RBM techniques, but had to face long running simulations. Hence,

several ways to speed up the training time have been examined. One approach uses reconfigurable

hardware like FPGAs to yield an up to 140 times improvement [27,29]. FPGA can exploit the inherent

parallelism of the training algorithm due to its great connection flexibility. On the other hand, the

fine-grained adaptability may hinder the speedup due to floating point operations. Although several

platforms have dedicated hardware resources to implement the core functionality, a major amount of

wiring is used to implement the task.

Another novel way of accelerating the learning is GPU computing. As the GPU hardware is not as

flexible as a FPGA, the algorithm must map properly onto the architecture. Indeed, this is the case

as shown before. To highlight the differences in the platforms, recap that a CPU looses 80% of area

on general purpose improvement techniques like dynamic scheduling and cache. On the other hand, a

FPGA devotes 80% of area on wiring to provide such fine granularity. By contrast, a GPU spends most

of the silicon on computational resources. Furthermore, a GPU is available in every PC, so it seems

natural to analyze the speedup of a DBN on such a platform.

First results have been announced recently. In 2009, the source code of a CUDA implementation

of a binary RBM called Leonard has been published [5]. There is hardly any information available,

neither documentation nor comments in the sources. Regarding information given on the webpage, it

originated in a research project to evaluate the performance advantage of the RBM on a GPU. It is

stated, that a huge performance advantage has been observed, but no real comparison is provided. The

author mentions that he yields a training rate of more than 1000 images per second on the MNIST

48

CHAPTER 5. GPU RBM FRAMEWORK
5.2. OVERVIEW

task with the same network sizes as Hinton used for his MATLAB implementa.tion. Hence, he needs

about 1 minute training time per epoch including all transfer times. Based on this spare information,

it is conjectured that he compared his implementation to the MATLAB implementation only. This

is reinforced by the fact that only features used in the MNIST example are implemented. Moreover,

the development seems to have stopped at the end of 2009. Although the framework presented here

is developed independently from this work, the results seem encouraging to yield good results with an
optimized implementation.

A more scientific research has been done in [50J. They evaluate the prospects of evolving neural

networks from the toy size domain to real-world applications using the power of GPU computing. As

reference, they consider an RBM neural network and sparse coding. They claim a 13 and 72 times speed

up over their fastest 3.16 GHz dual-core CPU implementation for an RBM. The performance advantage

increases with the layer size and observe memory transfer time as a primary limitation. Five major
factors justify those outcomes:

• Transferring greater amounts of data is more efficient as a constant setup-time is needed.

• The main operations of an RBM are more efficient on a GPU than a CPU. The amount of com­

putations per transfer grows as the problem size increases.

• The full power of the GPU is exploited as all stream processors are used.

• Every stream processor has enough threads to execute, which is necessary for global memory

latency hiding.

A convolution style RBM has been used, 80 the impact is moderated due to the increased ratio of

computation to transfers. Indeed, the sources are not available unlike announced in the report.

During the time of writing, another GPU based convolution implementation has been published

by [8,28J. It is a Python based framework with the training as runtime-shared library with the CUDA

extension. The speedup is mentioned to be close to 140 times, but is not discussed in further detail.

Indeed, the training time for the most complex networks is stated to be 45 hours, 80 for sure, the GPU

renders this research possible. The training would require approximately 262 days otherwise.

To summarize the literature review, several implementations have been proposed. Some more recent

ones employ the GPU and demonstrate a major impact to render the RBM-based research feasible.

Indeed, a GPU implementation seems reasonable to work with this new technique, because many pa­

rameters need to he tuned for good performance. In the next sections, the main contribution of this

work is presented, namely the development of an own framework in C++.

49

5.2. OVERVIEW CllAPTER 5. GPU RBlvf FRAMEWORK

Figure 5.1: First layout of software partitioning between CPU and GPU

Figure 5.2: Revised layout of software partitioning between CPU and GPU

5.2 Overview

The first desigu decision is the partitioning of the computation between CPU and GPU. At the same

time, this the most important with regard to the final performance. On a commercial scale, several

months may be spent comparing the performance of several different partitioning and algorithms to
solve the problem at hand. Moreover, the partitioning provides a. coarse grained introduction into the

structure of the framework, so the partitioning is presented first in the following sections.

There are three major independent components in the framework for learning: file reading, random

number generation and REM training. Those parts are encapsulated into own classes to employ deriva­

tives like different readers or different RaM types easily. Most of the partitioning is predefined: The

training should be on the GPU and depends on data from the other components. The data handling

has to be on the CPU to read from the hard drive, so the random number genera.tor is the only degree
of freedom. The computation in the reader and random number generator class are implemented in own

50

CHAPTER 5. GPU RBM FRAMEWORK 5.3. GPU RANDOM NUMBER GENERATORS

threads to exploit the parallelism of the multi-core CPU. Synchronization is achieved with a multi-buffer
strategy.

In the first approach depicted in Figure 5.1, both, file reading ar.d random number generation (RNG)

are handled by the CPU, while the RBM training is performed on the GPU. Although the training

depends on those components, the transfers can be overlapped by CPU code execution, so another level

of parallelism offered by the hardware is exploited. In addition to that, CUDA supports pinned memory,

so transfers can be performed by the DMA controller without any CPU or GPU interaction. But there

are other aspects as well. First, most random number generators are serial structures like shift-registers,

which do not map properly on the CPU architecture. Second, several well-analyzed CPU algorithms for

RNCs have been proposed and published. In the light of an RBM, this may be important to avoid any

influence on the training due to false correlations. Finally, there is no use in shifting all the computation

onto the CPU so the CPU cores idle meanwhile.

By examining the performance results of the first implementation, the random number generator

turned out to cause a bottleneck. The GPU had to wait until new data has been delivered, so most

of the CPU computing benefit was diminished. Several causes contributed to that situation: First, the

computation itself on the GPU is much faster than expected based on previous experience. In anticipation

of later results, an RBM with an input layer size of 12800 and an output layer size of 6144 neurons could

be processed in approximately 7 IDS. At the same time, at least 12800 * 6144 * sizeof(float) = 300 MB of

random numbers are needed for training. The transfer requires 37 IDS assuming the theoretical maximum

transfer speed of 8 GB/s. Second, the transfer rate was below our expectations. For the partitioning, we

expected transfer rates as reported by the benchmark tool included in the SDK. The results are shown in

Table 5.1. The transfer time increases to 52ms with those rates. Transfer times of approximatly 130ms

could be observed in practice. Moreover, the transfer time for the input data should not be neglected

as that data needs to transferred for each batch, too. The precise numbers are unknown due to the lack

of a profiling tool at that time, but have been analyzed in more detail as it became possible. Finally,

although most time is spent in BLAS functions, the provided library does not support parallel execution

and transfersl. Those results lead obviously to a design change with the random number generator

implemented on the GPU and thus the topic of the next section, the analysis of GPU based random

number generators.

5.3 GPU random number generators

The majority of random number generators in use for the CPU are shift register based and don't map

properly onto the architecture of the GPU. Some implementations have been proposed in the literature,

but their suitability for Monte Carlo simulations is often obscure. Many papers focus on the possible

speedup instead of the quality and suitability of their output. For comparison purposes, several GPU

lStarting with CUDA 3.1, CUBLAS supports streams for the BLAS operations. However, the partitioning design was
changed by that time, so we didn't analyze the effects introduced by that release.

51

5.3. GPU RANDOM NUMBER GENERATORS

Device to Device 74GB/s

paged
Host to Device 3.3GB/s

Device to Host 2.9GB/s

pinned
Host to Device 5.6GB/8

Device to Host 4.9GB/s

write-combined
Host to Device 5.7GB/s

Device to Host 4.9GB/s

Table 5.1: Memory transfer speed for the used NVidia Quadro FX 5800. The values are obtained using
the benchmark program included in the SDK.

based random number generators have been picked with regard to their applicability and performance.

The three most appropriate ones have been implemented as derivations of a random number generator

base class. Thus, all random number generators presented here can be used by creating instances of

different classes. As all the code depends on the base class interface only, no other code changes are

necessary.

CUDPP

CUDPP is a library with several data parallel primitives implemented [1J. It is not used in the

rest of tbe work in favour of more specifically tailored functions to avoid additional actions like

memory allocation or movement. For us, it is interesting in terms of the random number generator

shipped with it. This is an implementation of the algorithm presented in [60], which is intended for

Monte Carlo style simulations with a proven high quality of random numbers. The RNG reveals

to be rather slow during profiling. This is partly due to the way some flexibility is accomplished.

Each step of the underlying algorithms produces four random numbers at a time. To provide any

arbitrary amount of random values, a temporary storage is allocated, filled and the demanded part

copied to the destination buffer. Then, another transfer is initiated by the framework to ensure

the proper padding of the data. This causes a performance penalty of 2 * ~i ~~~ = 4 ms in a best
case estimation based on the internal transfer speed measured in Table 5.1.

rand48

The second random number generator is based on the publication by Meela [61]. The authors

focus on different simulations of molecular dynamics on the GPU. A random number generator is

presented as necessary part of their work. The source code is available and easy to adapt into the

framework structure. Although the generator is intended and used for Monte Carlo simulations

in the publication, the quality of the random numbers is not analyzed. Indeed, the molecular

dynamics and the statistical mechanics of an RBM suggest similar requirements, so the generator

has been taken into account.

52

CHAPTER 5. GPU REM FRAMEWORK 5.3. CPU RANDOM NUMBER GENERATORS

Mersenne Twister

The Mersenne Twister random number generator is a rather new random number generator with

excellent statistical properties proven with statistical tests [39]. Most notable are the very long
period of 219937 -1 elements, the good distribution property and the fact that it has been designed

with Monte Carlo simulations in mind2• Maybe one of the most sophisticated approaches to map

random number generators onto the GPU is employed. A theory is derived to find initial condi­

tions for uncorrelated generators [38]. Thus, each thread advances a random number generator

independent from all the others, following the same operations on its current state. This procedure
maps perfectly onto the structure of a GPU.

Indeed, this approach comes with some minor drawbacks. First, the algorithm builds on the

assumption that random number sequences are independent if the generator polynomials are prime

to each other. This is not proven in a strict sense, although there is strong evidence upon practical

observations. Second, it takes a long time to find generator polynomials with such properties, and

the time demand is increasingly non-linear with the required number of generators. The search

process may take weeks, even on modern computers. Finally, the algorithm recovers only slowly

from bad initialization, but this is no disadvantage in the light of this implementation, as the

initial conditions are carefully picked. Thus, the initial conditions are usually found once offline

and saved to a file. The random number generators need to be initialized with those conditions

before first use.

For the framework, an implementation included in the NVidia GPU Computing SDK has been

used. Admittedly, the code is rather proof-of-concept style, i.e. it is limited to a single call because

the generator states are not saved at the end. Hence, the code had to be enhanced to fully

implement the random number generator and comply with the padding scheme used throughout

the application.

All the introduced random number generators seem to work without any problems in the framework,

so the decision is mainly based on the speed of the algorithm. The benchmark results are shown in Table

5.3. As setup, all generators had to produce 100 times 150 MB of random numbers and the average time

per call was used. Mersenne Twister turns out to be the fastest, so this one was used for all experiments

demonstrated in the scope of this work.

The bad performance of CUDPP is surprising as it claims to be a high performance library, but could

be confirmed in several tests. The additional transfers mentioned above are a partial explanation only.

Another unexpected effect has been revealed by analysing the performance data. Memory allocations

took much longer than expected. Accurate profiling results are shown in Table 5.2 and demonstrates up

to 6 ms for allocation and 21 ms for deallocation. Further research suggested no direct correla.tion with

the size of allocated da.ta. However, this experience motivated the preallocation of memory for learning

as the next design choice, because the additional time is significant compared to the learning time of

several ms only. The memory requirements are discussed in more detail in a later section. At last, the

:lIt is the defa.ult random number genera.tor used in many software products, including MATLAR

53

5.4. DATA LAYOUT CHAPTER 5. CPU RBM FRAMEWORK

Name
Time (fts)

Min Avg Max

cuMemAllocPitch 3.6 1419.8 6105.6

cuMemF'ree 40.8 1850.0 21831.9

Table 5.2: Profiling results for the CUDA runtime API functions cuMemAllocPitch and cuMemFree .
Those functions are used to allocate and free memory.

exact factors for the unexpected performance of the CUDPP random number generator have not been

further investigated due to the promising alternatives.

Finally, the upcoming CUDA SDK 3.2 release includes an additional random number generation

library. Perhaps, those routines are more efficient. However, the library is not available at the time of

writing yet, so no appraisal is possible. In anticipation of later results, any other generator won't yield

significant performance improvements. The more examined suitability for Monte Carlo simulations is

the major argument for using another random number library instead.

5.4 Data layout

Besides the partitioning of the components between CPU and GPU, the data layout has a major influence

on the performance. All data structures have been transposed based on experience with the KDD Cup

dataset. This leads to a significant performance improvement, because the lead dimension is the batch

data. At the same time, training of an RBM is composed of three major actions, namely matrix

multiplication, element--wise operations and batch-wise operations. Examples for the latter one are

sums for each component over all samples in a batch to derive the learning signals. Those sums can be

implemented very efficiently if the data is contiguous in memory using parallel reductions. The execution

speed of the former operations hardly depends on the orientation of the data. Indeed, the CUB LAS

library provided by NVidia follows the Fortran convention and expects the data in column major order3•

Indeed, this is no reason, as the relationship C = A * B == CT = BT * AT allows to use the same matrix

operations. However, the code is more easily readable, because a possible source of confusion between

mathematical formulation and implementation is cleared away.

At the same time, the CUBLAS library introduces another change to memory layout throughout

the application. Due to the fact that the memory is partitioned across several memory banks, the

performance of the matrix operations depends heavily on the way the data is divided into those banks.

The library has been optimized for the case that each row of data begins at the same memory bank.

Padding the data may be necessary to satisfy this property, so CUB LAS provides wrappers around the

3BLAS is a standardized set of functions for matrix and vector operations. It was developed in Fortran, which used
column-major matrices. However, row-major matrices are common in C/C++, but mOISt BLAS implementations follow
the original data layout.

54

CHAPTER 5. GPU RBM FRAMEWORK

Random number generator

Mersenne Twister

I ra.nd48
. CUDPP

o execution time

O.52ms

2.79rns

29.l1ms

5.5. KERNEL DESIGN

Table 5.3: Benchmark of different pseudorandom number generators on the GPU. Execution time is
averaged over 100 iterations.

standard CUDA memory management functions to ensure a proper layout. There is a notable issue with

the padding though. The padding data is included in the computation as well, so it must be initialized

to be zero to yield correct results. Hence, there are two possibilities to guarantee the padding area to

be zero. Either it is reset to zero before each CUB LAS ca.ll or it set once and never touched by any

other kernel. The former approach includes another kernel call and degrades performance. In fact, the

latter approach has been taken at the cost that each own written kernel has to obey the exact size of
the matrix unlike the CUBLAS functions.

5.5 Kernel design

~ ... ~

{
r : , .. :::::: '. :'" · · . . . · ..
[: :::.:: :.

• •
3D

..-_~.J t)
Y --y-

\

batch size padding

Figure 5.3: Employed data processing pattern within kernels. Each row corresponding to an input
component is handled by an own thread block. Each row is processed by a. loop fetching a n contiguous
elements until all elements are handled.

There are several possibilities to obey the matrix size. Most examples provided by the SDK don't

care about the memory layout and assign a certain contiguous pool of data to each thread block. Since

such element-wise operations would affect the padding data, this pattern could not be used. Instead, a

rather straight but powerful template has been used to ensure the correct data. access throughout the

framework: each thread block processes one row of the input data. The processing pattern is depicted

in Figure 5.3. This design implies some assumptions for good performance as outlined in the next

paragraphs.

First, each thread block should be busy, 80 the height of the matrix should be greater tha.n the

number of available thread blocks. The number of thread blocks is 30 blocks, but the actual number

55

5.5. KERNEL DESIGN CHAPTER 5. GPU RBM FRAMEWORK

varies for each graphic card model. Second, each wrap within a block should be busy, so the width of

the matrix should be a multiple of 32 to fully utilize all wraps.

Typically, the width of a processed matrix is either the input layer, output layer or batch size and

the height one of the remaining values. Usually, the smallest number is the batch size with 100-500

samples. At first glance, this has a major performance impact with regard to the number of threads

used to process each row, because big static values will initialize lots of unused threads for small batch

sizes and small values won't yield to effective global memory latency hiding. Beyond fixed thread sizes,

the number of threads could be chosen dynamically for each processed matrix size. By contrast, the

thread size turned out to have negligible effect in experiments. This is due to the fact that one block

may process several rows at once if the core can hold further threads. Moreover, the assignment can be

done better if the number of threads per block is rather small. However, this holds true if the height

of the matrix is significantly larger than the number of available thread blocks only. This should be

fulfilled for all realistic configurations of an RBM on the provided hardware.

The row-wise processing per blocks leads to three phases in each kernel. At first, the row-offset

and eventual row-wise parameters are fetched from global RAM. In the second phase, the data is being

processed, either element-wise or by summing up the values for each row. In the later case, a final step

to save the sum of the current row to global RAM is needed. All the stages in this process have been

examined for further speedup, because any structural benefit will payoff in all the kernels. It would

have been interesting to examine the produced GPU assembly code to gain experience with the produced

code, but such an option was not provided by the toolkit. Thus, profiling was the only way to measure

the impact of changes.

In the first phase, row-offsets are calculated and parameters are fetched from global RAM. Those

parameters can be shared among all threads within a block, so one alternative is to use shared memory

to store the value. This way, one thread initializes the values and all threads will access this single value.

A thread barrier must be included after the initialization to ensure a proper initialization before usage.

This barrier, namely the function -syncthreoos(), adds a penalty of about 8 computation cycles to all

threads. By contrast, only a single register in shared memory is used to store the value. Another option

is to define the values using the CONST keyword. The compiler seems to exhibit quite flexible behaviour

when doing so. The value will be stored in a register for each thread if there is no register pressure and

spill into shared memory otherwise. However, each thread will have its own instance of that value in

the shared memory, so the shared memory usage is increased. This may limit the maximum number of

threads per block if the amount of shared memory is critical for a kernel. In fact, most kernels didn't

suffer from a lack of shared memory, so there is no penalty for using the CONST approach. Additionally,

there is no synchronization penalty, so this approach has been used for most kernels. By contrast, older

architectures have less shared memory per core, the best decision may be the other way round for those

architectures.

In the second phase, either element-wise operations or sums are performed. For both operations, the

memory access pattern has been designed to fulfill the demands of coalescing; e.g. each thread within

56

CHAPTER 5. GPU RBM FRAMEWORK 5.5. KERNEL DESIGN

a wrap loads a contiguous block of memory. This block is shifted by the thread block size for the

next loop iteration, until all threads in a wrap are beyond the width of the matrix. Indeed, there is

another optimization for sums called parallel reduction. To put it into a nutshell, the summing operation

is divided into a tree-like structure to distribute the task among the stream processors. Each stream

processor computes one sum at each tree level and the size of the tree is halved. In the implementation,

the threads use the scheme above to sum up the values in a shared memory buffer and this buffer is
handled using the parallel reduction algorithm.

Obviously, a bigger number of threads is beneficia.l as there are more independent levels of the tree

available. However, the impact of increa.">ed block sizes seems to be minor as row parallelism is exploited

otherwise. Therefore, reductions are used with 128 or 256 threads only. By contrast, the reduction

scheme improves the computation speed by one order of magnitude. The scheme has been implemented

as a template function, taking the data type and the thread block size as parameters into account. In

this way, an optimized version is available whenever needed. The synchronizations are included wherever

needed only due to the fact that all operations within a '.\'Iap are synchronous by hardware design. So

no synchronization is needed for tree sizes smaller than 32 on current GPUs. This is fulfilled most times

because such a small thread size is chosen as initial size. Moreover, the employed GPU generation does

not support calling functions from within kernels, so the reduction function is inlined by the compiler.

Thus, any unnecessary synchronization command is removed by the optimizer.

The final step, writing the results back to the global memory, can hardly be optimized due to the

fact that they are either identical to the loading scheme used in phase two for element-wise kernels, or

there is no way to use coalescing, e.g. for sum operations. In fact, another template function is used

to write results to global memory to support different store operations like decrement or increment

throughout the code base. Resulting kernels are thns quite flexible at the expense of an additional

parameter, but the kernel code remains compact. Moreover, some specialized kernels became obsolete

by the increased flexibility, enhancing the readability and mainta.inability of the code. A minor speed

penalty is introduced, but negligible due to the fact that all threads share the same code path. The

penalty is offset by the fact that the return of investment in development time for optimizations is

increased.

As mentioned before, the whole GPU code is realized as template functions to support single and

double precision for all functions. In terms of GPU code, there is one notable point in the C++ standard

which may hurt performance. Single precision constants need to end with f, e.g. l.Of. It will be treated

as double precision value otherwise. In fact, the precision of computations is affected, because the

computation is done in a higher precision in the later case. The CUDA compiler obeys the standard

and generates proper code4• However, a. significant amount of time will be spent on converting between

the precision values if used within loops with levity. Due to the fact that the same code may be used

for both, single and double precision, there is no straight way to add the proper suffix to constants. In

4 All data is converted to single precision for hardware without double precision support, e.g. ha.:rdwa:re revision 1.2 and
below. The target hardware revision must be provided at compile time.

57

5.5. KERNEL DESIGN CHAPTER 5. CPU RBM FRAMEWORK

early stages, the precision had to be set using define at compile time, so the conversion was done using

C++-preprocessor macros. But this is not possible for the template based implementation. Instead,

values have been declared as CONST variables as they are converted only once, usually by the compiler

at compile time5 •

Another optimization examined was the usage of constant memory to reduce the number of param­

eters passed to a function call. In fact, many functions use the same values which are set once for

training a Restricted Boltzmann Machine. Indeed, those parameters are transferred every time a kernel

needs that value. As transfer time turned out to be a major bottleneck, reducing the number of needed

parameters seems quite reasonable. Constant memory is a promising alternative, because it is cached,

so frequently used values can be fetched at a high speed. In fact, a cache hit is equivalent to a shared

memory access. By contrast, there is no measureable effect on the performance of the program. A time

demand of 0.7 p.s per parameter could be observed using the Parallel Nsight profiler at a later stage.

Therefore, the impact is not measureable and the optimization has not been deployed to the kernels

Profiling results of the kernels are presented later in the scope of a complete examination of the

final framework. Memory consumption as another design issue is highlighted before. As stated before,

memory allocation and deallocation turned out to consume several milliseconds, independent from the

size of the memory pool. Example figures obtained by a single allocation are depicted in Table 5.4. Thus,

all memory arrays required during training are allocated at the beginning, to eliminate any additional

dependency of the execution time on the simulation setting.

At the same time, this greedy allocation pattern may limit the suitability for large scale problems

as a GPU does not support paging to extend the memory available. The issue is intensified by some

simulation options like cross-validation, where several Restricted Boltzmann Machines are trained in

parallel to observe effects like over-learning. The used graphic card was equipped with 4 GB of RAM,

so memory was a minor concern except for very memory consuming settings. Some values are shown

in Table 5.5 to provide an example. Those values represent a configuration where a whole image with

128 pixel x 100 pixel is fed into an RBM. Cross-validation is not enabled for the sake of simplicity, but

a huge output layer size of 9600 neurons is used. The total amount of memory needed is 1875.52 MB for

such a configuration. To be more precise, the table is split into three sections. The top section represents

the connection weights and is essential for the training of an RBM. In addition to that, storage for the

momentum parameters is added, as a momentum is necessary for effective learning. This fact is discussed

in more detail in section 5.7, but twice the amount of memory is needed to store the previous gradients.

The second section contains variables for monitoring purpose. Those are not necessary, but have been

proven very useful. The last section contains buffers necessary for training again. Unlike the first section,

those buffers may be shared by multiple RBMs during cross-validation.

A design decision to render the sharing of the last section of Table 5.5 possible is the division of the

training database. For n-fold validation, the database is divided into n equally sized chunks, and each

contiguous part belongs to one RBM. Thus, the RBMs are trained one after another for each epoch,

liThe exact behaviour is uncertain because the GPU code cannot be ex&mined

58

CHAPTER 5. CPU RBM FRAMEWORK 5.6. PERFORMANCE EVALUATION

so the intermediate learning buffers can be reused. More than one third of memory is saved this way.

On the other hand, an opportunity for an additional speedup is forgone. First, there a completely

independent computations if several RBMs are trained simultaneously. Those computations may be run

in different streams, so the next operation can be setup while the previous operation is still running.

Thereby, initiation times are minimized. Moreover, bigger chunks of data can be transferred at a time,

so transfers are minimized. Another aspect encouraged the design choice besides the ability to run large

scale simulations. The CULBAS library version available at the time of development did not support

streams, but executed all computations on stream zero. Due to the fact that most time is spent on

BLAS operations, the benefit tc spre.ari the remaining own kernels onto different streams turned out to
be negligible.

To conclude the memory design pattern, a greedy approach has been chosen to mitigate the influence

of memory allocations and render large scale simulations possible. Currently, the GPU is hardly used

by other applications, so almost all the GPU memory can be consumed by the RBM simulation. Other

applications using GPU accelerated routines, e.g. Windows Aero, may interfere with the greedy allocation

in future though. Indeed, such concerns mainly arise in the light of raw image processing without weight

sharing. Closer inspection reveals that the main cause of memory usage in all three sections is the weights

between visible and hidden layer. The size of those matrices may be reduced by using weight-sharing

flavours like convolution style RBMs [31,42,50]. Especially in the domain of raw image processing,

this leads to the advantageous feature of shift invariance. However, convolutional RBMs have not been

implemented in the scope of this project, but excel as one option for future work.

5.6 Performance evaluation

In this section, the performance of the RBM GPU implementation is examined. As measurement, the

runtime of kernels obtained by profiling and the runtime of the whole program is used and compared.

Due to the design process of going from MATLAB components to a GPU implementation directly, there

is no intermediate CPU implementation to compare the speedup with. Therefore, the performance is

compared to the MATLAB implementation.

The MNIST digit recognition task has been used as reference in Table 5.1. This is a three-layer Deep

Belief Network with a 784-500-500-2000 configuration. The MATLAB code has been executed on an

Intel Core i7 926 CPU with four cores at 2.66 GHz and 4 GB RAM. The 64 bit versions of both, the

operating system Windows 7 and MATLAB 2010a, have been used. The results are compared to the

presented framework on an NVidia Quadro FX 5800. Overall, the CPU implementation is roughly 38

times faster than the MATLAB version. Indeed, it is obvious that the speedup is dependent on the size

of the trained RBM. A closer analysis reveals the transfer time of the training data as major reason. By

contrast, the computation time is proportional to the size of input and output layer. In fact, the speedup

is inferior compared to gains reported in literature, so the components of the proposed framework are

59

5.6. PERFORMANCE EVALUATION CHAPTER 5. CPU RBM FRAMEWORK

Memory size allocate free

200MB 5.353ms 2.121ms

150MB 12.348ms 12.348ms

100MB 3.057ms 1.214ms

50MB 4.924ms 33.027ms

Table 5.4: Benchmark of memory allocation and de allocation on CPU

Variable Width Height
Size Sum

[MB] [MB]

VisHid 12800 9600 468.75

VisHidlnc 12800 9600 468.75

VisBias 12800 1 0.05
937.68

VisBiaslnc 12800 1 0.05

HidBias 12800 1 0.05

HidBiaslnc 9600 1 0.04

VisHidlnc'frace 12800 9600 468.75

SumError 12800 1 0.05

Sum'frace 9600 1 0.04 468.92

SumThreshold 1 12800 1 0.05

SumThreshold2 9600 1 0.04
I

PosNegProbs 12800 9600 468.75

PosHidProbs 512 9600 18.75

NegHidProbs 512 12800 25.00

InputBatch 512 12800 25.00

OutputDump 9600 512 18.75

PosVisAct 12800 1 0.05 468.92

NegVisAct 12800 1 0.05

PosHidAct 9600 1 0.04

NegHidAct 9600 1 0.04

RandomDatal 512 12800 25.00

RandomData2 512 12800 25.00

Table 5.5: Example of CPU memory allocation for a binary RBM. The input layer has 12800 neurons,
the output layer 9600 neurons and the batch size is 512 samples at single precision.

60

CHAPTER 5. CPU RBM FRAMEWORK 5.6. PERFORMANCE EVALUATION

Batchsize

64 128 512
gen..sgemmNN 50.21 44.04 38.10
sgemmNT2 25.71 27.30 27.27
sgemIlLIllain..gldllw _ta..nb 13.62 18.87 25.68

kerneLUpdate Weight 2.62 1.94 0.57
kerneLSum...x 2.54 1.97 0.80

kerneLProb 2.51 2.44 3.31

RNG...1'and48..get.Jnt 1.07 1.30 1.08

memcpyHtoD 0.78 LIO 1.23

kerneLRandomFlip 0.77 0.90 1.87

kerneLUpdate Weight-Bias 0.10 0.07 0.02

BoxMullerGPURows 0.00 0.00 0.00

kerneL.Shift..Rescale 0.00 0.00 0.00

memcpyDtoH 0.00 0.01 0.01

Table 5.6: Profiling results of GPU functions using a binary REM without any monitoring. The size of
the input and output layer was 728 and 500 respectively. 6000 instances were trained in total, split into
batches of different sizes. All values are percentages of the total GPU runtime

run time [s]
Speedup

MATLAB GPU

Layer 1 784 x 500 1924.8 49.8 38.65

Layer 2 500 x 500 1282.4 43.2 29.68

Layer 3 500 x 2000 4947.0 125.4 39.44

Table 5.7: Comparison of execution time between MATLAB and the presented GPU framework. The
time for the GPU framework includes all transfer and initialization times. It has been configured for
single precision arithmetic.

61

5.6. PERFORMANCE EVALUATION CHAPTER 5. GPU RBM FRAMEWORK

400000O

3500000 r-

3000000

~ 2500000 ..
IC

~ 2000000
C

\ t:
IC
0

1500000 ~ .~

1000000

SOOOOO

0

·0 SO 100 150 200

--single Precision -+-double Precision

250 300 350
epoch

Figure 5.4: Reconstruction error obtained by single and double precision computations. Identical initial
conditions have been chosen to account for the statistical nature of the network. Thus, the weights have
been initialized with the same data and the random number generator with the same seed value. Indeed,
only a single curve is visible in the plot because both overlay precisely.

examined in more detail in the following paragraphs. A special emphasis is on factors with influence on

the execution time.

As noted before, the performance of a GPU implementation is very sensitive to a lot of parameters.

The most important regarding the architecture of a GPU is the required floating point precision. To

analyse the impact, the MNIST digit dataset has been processed for 300 epochs with both options. There

is no handicap visible as the reconstruction error depicted in Figure 5.4 underlines. Both curves show

exactly the same behaviour. This is a significant discrepancy to the observations for back propagation

training. The difference can be explained by examining the training procedures in more detail. First,

back propagation is much more sensitive due to the gradient computation. Moreover, quantization noise

is amplified by the inverse exponential and logarithm functions employed during training. By contrast,

the contrastive divergence learning remains in the log-likelihood domain. Additionally, the error does

not accumulate because only a single layer is considered for an RBM. The error does not aggregate

for multiple contrastive divergence iterations either, because deterministic states are picked based on

the probabilities in each iteration. This feature prevails the quantization noise by orders of magnitude.

Thus, a single precision arithmetic yields adequate accuracy for contrastive divergence training. The

speedup for single over double precision is 4.41 times for the computation and 4.22 times including all

memory transfer. Hence, all figures shown in this thesis are obtained with single precision arithmetic.

Besides the precision, the sizes of the input and output layer have a great impact on the execution
time, but those are constrained by the problem at hand. A higher input or output dimension will pay

62

CHAPTER 5. GPU REM FRAMEWORK 5.6. PERFORMANCE EVALUATION

I Dimension
quantity of training parameters per
parameters time [s] second [8-1J

782 x 2000 1564000 138.4 11300.57
2000 x 2500 5000000 428.6 11665.88
2500 x 3000 7500000 647.6 11581.22

Table 5.8: Comparison of execution time for different layer sizes. The considered quantity of parameters
equals the number of elements in the weight matrix. Any transfer times have been neglected. It can be
seen that the execution time is proportional with regard to the parameter count.

off compared to a CPU counterpart as a better utilization of the parallel GPU resources is achieved.

However, the effect yields saturation rather soon as all processors on the GPU are fully occupied.

From that point on, the time demand will grow with O(D * F * B) with D the input layer size, F

the output layer size and B the batch size for both platforms due to matrix multiplication as main

complexity contribution. An example is shown in Table 5.8. Indeed, this reasonable relationship is

clearly demonstrated by the results in [50}, but an improvement with regard to the native implementation

is claimed. Evaluating their results in the same way as in Table 5.8, we can see a major penalty for the

CPU version starting at a 2304 x 16000 configuration. Because the authors don't annotate the effect,

the reasons remain subject to specula.tions. Most likely, the CPU system is slowed down due to paging

as not all network parameters can be stored in main memory.

By contrast, an important degree of freedom is the size of a bat,ch processed at once, because fixed

initiation times are alleviat,ed with less kernel launches and memory transfers as most important factors.

Therefore, the profiling results for a binary RBM implementation for different batch sizes are shown in

Table 5.6. The most notable result resides in the ratio of time spent in own functions and CUB LAS

routines for matrix multiplication. The top three functions are CUBLAS functions and are separated

from own kernels with a line. In fact, more than 90% of time is used for the CUDA functions and can be

decreased by switching to another BLAS implementation only. Using Amdahl's Law to approximate the

maximum achievable speedup by tweaking the self-written functions, we receive SpeeduPmax = O~9 =

1.11. Therefore, hardly any remarkahle speedup can be expected by further optimizing the GPU code.

Although research indicates that some of the CUBLAS functions may be further optimized [11], this

may hardly change the ratio significantly6.

Profiling results as shown in Table 5.6 are very common for CPU implementations, but they are not

suitable to judge the quality of a GPU implementation due to the fact that several important components

like t.ransfer and initiation time are not taken into account properly. In general, CPU profiling results

comparable to the ones shown in Table 5.6 are very useful to examine the bottlenecks in the CPU

implementa.tion part and judge the partitioning between CPU and GPU. Indeed, profiling is supported

6First, the comparison is based on an older CUBLAS library, ~ most li~ely, any sig~~cant performance improvemen:s
are included in newer rele~. In addition to that, the upcommg versIOns are optimIzed for the most-recent Ferml­
architecture, so the performance on our CPU model may decrease by updating CUBLAS releases.

63

5.6. PERFORMANCE EVALUATION CHAPTER 5. GPU RBM FRAMEWORK

in the used Visual Studio 2008 Professional Edition, but the evaluation of the results is reserved to the

Team Suite Editions7 •

Another issue arises from the way CUDA is designed. The whole program is controlled by the host

thread by initiating transfers and computations, but the execution of the CPU code is asynchronous

with the CPU. Moreover, several aspects are not covered accurately, most notable the transfer times.

The times shown in the profiling results convey the initiation time only, e.g. the time to set up the actual

transfer. Due to the fact that pinned memory is used and the data is fixed in memory in this way, the

transfers do not need much setup time. If pageable memory is used, the time may increase if the data

has to be read from the swap file first. Nevertheless, the CPU program continues as soon as the transfer

is initiated, so even CPU profiling may be limited to evaluate the expensive parts of the code.

In fact, there are two options to gather useful information. First, Parallel Nsight, a Visual Studio

extension provided by NVidia, may be used to monitor CPU and CPU code. The results can be

visualized in a timeline by the professional version of the tool. However, asynchronous transfers cannot

be evaluated. The only way to yield accurate results is the usage of events provided by the CUDA

toolkit. Those events are enqueued in the processing sequence and capture the time at their execution.

Indeed, separated CPU timers are used, so time differences between events can be retrieved only. Hence,

the cross-correlation between CPU and CPU processing cannot be examined.

In summary, the CPU introduces major degrees of parallelism to a program. The effects of this

parallelism are hard to grasp with a single tool, thus require a combination of several different techniques.

Moreover, this setup is very sensitive to Heisenberg effects, so any changes to examine performance may

lead to completely different runtimes. For example, synchronization events may cause significant stalls

of the host code and hinder latency hiding of following operations, since kernel parameters of the next

calls cannot be copied to the CPU. Thus, expertise is needed to gather the information adequately and

draw the right conclusion.

A first starting point is the total runtime of the program subject to different parameters. The most

interesting results are depicted in Table 5.9. The total runtime of the program subject to the batch

size and number of Contrastive Divergence iterations n is shown in Table 5.9a.. As highlighted before,

the runtime is anti-proportional to the size of a batch. The other dimension, the number of CDn-steps,

rearranges the calling frequency of the functions and provides a rough idea. about the percentage of

time spent in different phases of the computation. Therefore, the total time must be divided into a

constant and linear component as shown in Table 5.9b. For sure, the linear component represents the

time necessary for a single contrastive divergence iteration. The constant time conveys the transfer time,

computation of correlations and the final parameter update. This result is interesting for two reasons;

First, it is based on examination of the total runtime, so any kind of Heisenberg effect can be excluded.

Second, the constant time is about twice as long as a single iteration. Although it is hard to detail the

profiler results into the sections precisely, this result contradicts the suggestion based on the previous

tables.

"The Professional Editions can collect profile data, but the UBe is limited to automatic program optimizations.

64

CHAPTER 5. CPU RBM FRAMEWORK 5.7. EXTENSIONS OF THE OBJECTIVE FUNCTION

Upon deeper analysis, the transfer time turns out to cause the major bottleneck. Roughly one third is

spent on transfer, correlation estimation and contrastive divergence. As outlines above, the transfer time

can only be captured using either eUDA events or synchronisation At the Same time, the transfer time

cannot be optimized any further as it is determined by the hardware. All possible steps to alleviate the

bottleneck, namely the implementation of the RNG on the GPU and the usage of pinned memory, have

been employed. Therefore, it is natural to analyse how other researchers tackled the issue. Indeed, most

papers focus on the results and not on the benefits of their GPU implementation. Some performance

are provided in [50] and a roughly 140 times speedup is claimed in [28]. However, both implementations

use a convolutional RBM, so the ratio of computation to transfers is shifted to yield better speedups.

5.7 Extensions of the objective function

Depending on the problem at hand, the RBM training algorithm may be extended to yield a better

performance. AU the published results use at least a few tweaks. The most interesting enhancements

with regard to classification and image processing have been integrated in the presented framework. In

this section, those additions are described and the effects are outlined.

State quantisation

According to the theory of Gibbs Sampling, a binary realization must be drawn based on the probabilities

of the units. However, using the probabilities for the visible units turns out to be beneficial due to less

noise in the estimation. On the other hand, the hidden units should be flipped in one particular state

during learning, because this causes an information bottleneck in the representation of the input. This

bottleneck enforces the learning process to tune the weights to reproduce the input data distribution as

closely as possible. For the expectation estimation, either binary states or probabilities may be used in

both layers. Again, the latter introduces less noise, but there is no guarantee for a positive effect.

Momentum

A momentum is added to the learning in most RBMs as it leads to much superior results. The benefit

roots in the sensitivity of the estimation, especially due to the approximation and the usually small

batch sizes. Hence, the estimated gradient on each batch may vary a lot and result in oscillations in

the updates. By contrast, a momentum distributes the change over several parameter estimations and

stabilizes the direction of the descent. Any overshoot may be corrected by the next iterations before the

arguable update is in full effect. Additionally, the effective weight update is much higher, so the training

time is reduced, without the above-mentioned problems.

Typically, the momentum is chosen around 0.5 for the first integrations to compensate for the unstable

updates. It is increased to 0.9 after a few iterations to increase the learning speed. In addition to that, the

65

5.7. I<XTENSIONS OF T HE ()I!.JI~CT[VL' F UNCTION ClIAYTt:U 5. CPUlWAI FW\ MEWOHE\

CD Ite rat ions

CD Iteratioll::> to :20

I 10 :20 o!f:;et CD ofTs('t CD

c.> 1:28 G . :l 8~ :2:3fi:2s !J:2.7S ~ c.> 128 ·1. 47 ~i U)! S !J.47 s 1.9:2 s
" " 'Ui 2.')6 5.63s 2:2.36 s ,10.94 s ..c

'en 256 :3 .77 s 1.86 s :U7s 1.86 s ..c
v
~ 512 5.,19 s 22.0 I s 40.36s ~ 5 J2 :3.G5 s 1.84 s :3. 65 s 1.84 5 ro
c::\ c::\

1 :20,1 5.36 :0 21.78 S 40.03 s 1204 :3.535 lXls 3. 53 s 1.83 s

(a) Tota l t raining time (b) Training time seperated

Table S.!:: Huuti n l(' requi rel1lC'nts per epoch flgaills t batci l o; izt' a nd itera t ions. The t.ime spent for t ra ining
io; shown in 'J :lble :'. T he t raining timt' h<ili been divided into a. fixed offset. t ilne and a va rying Li me for
C[) lcaming ill Table b. Resul ts a rC' showll fo r a binary HBr-:1 without any monitoring wi th iLl I input
layer s ize of 12800 a nd a n output laye r s iz E' of G 144. T he used database conta ined 200 I samples in tot al.

coa rse direc tion of the we ights corning ou t of comple te randomness is det ermined in the first ite ra tions.

Once t hi~ direction is set , the high momentum encourages t he WEi ghts to cont inue along tha.t pat h. Thb

may be a s igni ficant difference to other learning techniques with much lower momentu m values .

Weight decay

~ '\'\"
,~ ..

,-'0
;~

e- .. , , .
\ ..

.... " I~

'l ; ..
(a) I'l'o norm (b) Ll norm (c) L2 norm

Figure 5.5: E xamples of perceptive fields learnt on the MNIST dataset. T he same s~ttings have been
used to produce the filters except for the weight decay.

Another extension with major impact is the weight decay. h penalizes la rge values in the weight

m atrix by adding- an extra term to the update rule . Constraining large weights achieves several benefits .

• The input of hidden units is usually more localized by further shrinking small weights . Hence,

in t he case of raw image data as inpu t , the characteristic feature of a hidden unit is much more

66

CHAPTER 5. GPU RBAI FRAMEWORK 5.7. EXTENSIONS OF THE OBJECTIVE FUNCTION

obvious. Additionally, the network is less prone to over fitting due to the fact that those small
weights are usually caused by the selected training instances.

• It helps to recover weights being stuck in either the on or off state during the early stages of

training. Usually, several epochs are needed to make those neurons useful again.

• Smaller weights lead to an increased mixing rate ofthe Gibbs Sampler. Because large weights cause

strong correlations between single components in input and reconstruction, the approximation of

the true model probability after a few Gibbs Sampling iterations is much worse. Thus, the learning
signal to capture other correlations is weakened.

The update function is extended with another term, namely the derivate of a penalty function scaled

with a factor. So far, L2 and L1 norm penalty functions have been implemented. The L2 norm is

~ Ei,j wt,j and leads to the easiest penalty term Wi,j' On the other hand, the L1 norm is defined as

Ei,j IWi,j/' In general, the L1 norm encourages even more localized features, so most of the weights are
exactly zero while others grow rather large.

The influence of varying penalties is shown in Figure 5.5. The perceptive fields look very noise

and unordered if no norm function is used. By contrast, the L1 norm causes very sharp and localized

structures as sensitive areas. The L2 norm is in between both extremes and yields a mixture of sprawling

and confined filters. However, there is more noise compared to the Ll filters.

Sparsity Target

So far, the activation probability of neurons is not controlled at all. The neurons capture frequently

occurring common patterns if operated in this way. This can be justified by the learning goal of an

RBM: to strengthen correlations between frequently seen patterns in the positive phase and reduce the

weights for other samples in the negative phase. However, several advantages brought a great deal

of attention to sparsity. First, sparsity tends to suppress over fitting if used properly. Second, rare

activation probabilities are advantageous to classification, as each neuron conveys much more unique

information. Indeed, the sparsity goal for the last layer should be relaxed. Additionally, RUMs tend

to learu Gabor-like filters when trained with a sparsity goaL Especially multi-layer DBNs benefit

from sparse activations and those Gabor-like filters in the lower layers. In addition, research indicates

similarities with human perception for such networks [30].

Again, different researchers describe different techniques to achieve the sparsity goal. The easiest

way is to decrease the bias of the hidden units by an offset 6, so they need a stronger input from the

data in order to be triggered, In some implementations, a fixed value for {, was used [42], in others,

the value was tuned according to a general sparsity goal 130]. Indeed, both ideas lead to large negative

biases and large positive weights, because the training algorithm tries to compensate the negative offset

by increasing the weights.

67

5.7. EXTENSIONS OF THE OBJECTIVE FUNCTION CHAPTER 5. GPU RBM FRAMEWORK

Instead, we implemented a sparsity goal penalizing biases and weights according to the difference

between measured and desired activation probabilities as proposed by [25]. To achieve the goal, two steps

are necessary. First, the activation probabilities need to be m~mitored. Similar to the weight update,

a momentum is beneficial to make up for any dependency on the composition of the current training

batch.

Two possibilities to tune the activation probability have been implemented. The first one is the

following:

Penalty = fisp sgn(~) log (I~!) (5.1)

~ = (sparsity goal PA) (5.2)

r~
x>O

sgn(x) x=O (5.3)

-1 x<O

with PA as averaged activation probability and €sp as sparsity cost parameter. This function forces

almost all neurons to strictly obey the desired probability. By contrast, this strict goal may hamper the

practical contribution of the neurons as some useful vectors may be more frequent as others. Thus, the

neurons cannot employ their full power of representation.

The second penalty is inspired by [8,28J. In fact, it takes both, the average PA and the current

activation probability PA of each output neuron into account. It is defined to be the following:

Penalty (8p (FA - sparsity goal) PA (1 - PA) (5.4)

This function relaxes the penalty for minor violations, but the desired activation goal was sometimes

hard to achieve depending on the dataset.

For both penalty implementations, the same penalty value is applied to the hidden bias and weights

during the update. However, a reduced cost value for the bias turned out to be beneficial. Apparently,

the bias is less sensitive if the general weight matrix is penalized with the sparsity cost, because this

observation contradicts the other methods focusing solely on the bias term.

Figure 5.6: Examples of perceptive fields of an RBM trained with a very low sparsity target of 1 %. The
RBM is no longer sensitive to common features, but rather typical instances of a whole digit within the
training data.

68

CHAPTER 5. GPU RBM FRAMEWORK
5.8. SUMMARY

Neverthelf'$s, care should be taken for specifying the sparsity target. Obviously, if the number of

hidden units times the activation target is smaller than the number of training instances, the goal

becomes infeasible. However, the network will focus on instances of training data if the goal is close to

this border, so the network is forced into over fitting. An example of such perceptive fields trained on the

MNIST digit dataset is given in Figure 5.6. Thus, the number of output neurons should be significantly

higher to render a representation in terms of small characteristic features possible. Indeed, it should
mimic feature extraction techniques like SIFT if used in this way.

5.8 Summary

The proposed framework has been described from different perspective..'> in this chapter. First, related

work has been outlined. Although some GPU implementations emerged recently, the power of a graphic

processor is rather seldom used to enhance the performance of a Restricted Boltzmann Machine. The

benefit of other implementations is not examined in much detail as other papers do not stre..'lS the

implementation itself. Nevertheless, but the few numbers provided seem quite promising. Moreover,

an efficient implementation is necessary to apply a Deep Belief Network in the domain of multimedia
applications.

The presented framework has been examined from different perspectives. Starting with the coarse..

gained distribution of components, the need for a GPU based random number generator has been

highlighted. Several different generators have been examined and the best suited has been outlined.

Based on the surprising performance of one of the generators, the memory allocation has been outlined

as one of the factors which may hinder the speedup by the graphic card.

Next, the data layout has been described. Most notable, the transposed storage of the data allows

an efficient implementation of many batch-wise functions. Furthermore, padding is necessary to achieve

best performance with the provided BLAS implementation. The data layout leads quite naturally to the

design of the kernels to process the data. A general pattern to yield good results has been highlighted and

several attempts to optimize the layout are highlighted. As shown later in the scope of comprehensive

performance evaluation, less than 10% of GPU time are spent in own kernels, so the design efforts seem

to payoff well. Moreover, the memory allocation has been tackled. A greedy allocation scheme has been

used to overcome the time demands. The limitations and the design choice to moderate the memory

consumption have been described.

Finally, the performance of the framework has been analyzed. A 40 times speedup compared with a

CPU implementation has been demonstrated. This speedup is lower than the figures reported by other

researchers, so the distribution of runtime has been examined in more detail. It has been revealed that

transfer time consumes about one third of computation time, but all means to alleviate the impact have

been employed. Thus, all GPU architectures presented in literature use convolutional RBM architectures.

69

5.S. SUMMARY CHAPTER 5. GPU RBM FRAMEWORK

Those structures naturally require more computation on given data and ease the influence of transfer

times.

More than 90 % of time in the presented framework is spent on matrix operations provided by NVidia.

Those functions are heavily optimized, so most of those remaining two thirds of computation time cannot

be optimized any further. The remaining own kernels have been tuned for good performance given the

available time. They may be further modified, but this work has been postponed due to the limited

return of investment in terms of the overall performance. Instead, time has been spent on further options

and flexibility to render the application in the next chapter possible.

70

Chapter 6

DBN for view classification

An application of Deep Belief Networks to view and genre classification is presented in this chapter.

The thesis carries on the work presented in [33,65]. View type and genre classification aims to fill the

semantic gap between low level statistics and high level semantics in automatic video processing. The

main contribution of the current work is to replace the k-nearest-neighbour algorithm used in previous

research with an RBM, due to well-known limitations of the clustering technique, especially in terms of

reliability and run-time.

There are several different ways to employ the RBM for this goal. First, approaches using raw

image data are highlighted. Although rather expensive in terms of computation, Decp Belief Networks

have demonstrated a great ability to extract meaningful features out of images. At the same time,

inappropriate general features have unveiled limitations in the classification performance for similar

sports. Thus, the Deep Belief Network should be able to fill the gap and lead to superior results for

those sports.

Second, approaches using SIFT features are outlined, as the previous work did. That approach is

tempting to limit the computation size and yield invariance to several properties, most notable shift,

scale and illumination. However, the feature extraction process is time-consuming as well, and the

suitability of SIFT features for a Deep Belief Network has to be analyzed.

The research outlined in this section reflects an early stage and several improvements as presented

in the end may enhance the performance significantly. Therefore, the research has been limited to three

different kinds of sports, namely speed-skating, snooker and swimming. Indeed, the benefits, drawbacks

and future work directions can be directly derived from results with the modified database.

The organization of the chapter is as follows: First, a short summary of previous work is provided.

Before presenting results, a novel method to generate code books using Deep Belief Networks is high­

lighted, as this technique is used for both, raw images and SIFT features. The results on both types

of input features are shown in the next sections. Finally, a conclusion about the performance of the

proposed techniques in the light of view classification is drawn.

71

6.1. PREVIOUS WOR.K CHAPTER 6. DBN FOR VIEW CLASSIFICATION

!SIFT ·
~ctionl

SIFT i Feature CSIFT
Extraction Extraction· Extraction

_ ... ---'+'-----

SIFT

I
I
I

[1 st Level i

I K-means of G_1 '

~.~.------ ---------------~-------~
~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~d Level

II 1- - - -f - - - - - - -J K-~eans of all
II I I iGenres Combined,
II I1Sf Level [I ''-----~T----~
II ' K-means of II _i ___ ~

I
I
I
I
I

Codebook:
11 • G I Generic
II Lnew .. enre 11 Codebook Generation:
IL ____________ ~---L---------- -------------
I I I
I I ~ Bag-of-visualwords I
I I key-frames I I .
I Codebook i SIFTofnew I: genre earntng
I \ Genre \J
I Update L.. .. _.. -

I I

Genre

......
1 (New L_ssr~l
:LYi9~ '~~~~J:
- - - - - - - - - - - - - - - - - J L.....-__________ ~ tBL::=====~

ra:Uery I SIFT W Distribution I.,

.• ----., • : (Generic CodebOQk . • ! Video I Extraction I I Mapping) I Classifier

Genre Categorization

Figure 6.1: Outline of genre classification in previous work [33]. A multi-stage approach based on
k-means clustering and SIFT features is employed.

72

CHAPTER 6. DBN FOR VIEW CLASSIFICATION 6.1. PREVIOUS WORK

6.1 Previous work

In the domain of video processing are mainly two types of features: Low-level descriptors like edges and

colour and high level events like goals in Soccer. Although a human can easily identify a genre or label

events, this task has proven to be tough for automatic processing. At the same time, the amount of

data available online grows each year at an increasing rate. This data is usually unlabeled or roughly

annotated, e.g. on YouThbe, indexing is nece..'lSary to keep track of the available information. Manual

processing is infeasible due to the immense amount of data. View and genre classification are intended

as intermediate features to fill the semantic gap and aid the level processing tasks. For example,

a score event in different games like soccer and table tennis are completely different. Hence, they can be

detected with more adapted techniques if the type of sport is known. Thereby, new application domains

like the automatic audience-oriented compilation of information are rendered possible in the long term
view.

Many approaches in literature employ domain-knowledge based feature detectors to distinguish be­

tweeu the different classes. For example, a green colour detector is used as indicator in soccer games.

Obviously, the detector is sensitive to any kind of game played on a grass field, so the suitability roots in

the limited selection of alternative sports to differentiate. Thereby, the application is limited to domains

in the re...;;earch environment with controlled conditions. A major contribution of our previous work on

genre classification was the proposal of a completely domain-knowledge independent framework. Like­

wise, an RBM offers the promise of an efficient, domain-independent framework, and it is towards this

good that we evaluate RBMs in this chapter.

Previously, to achieve the goal of a domain-knowledge independent classifier, a bag-of-visual-words

approach has been examined as outlined in Figure 6.1. First, the video is decomposed into key frames

and SIFT features are extracted for each frame. SIFT is a technique to detect key points in an image

and summarize the characteristics of each point in a histogram based descriptor [37J. Those key points

reprcsent shift, and illumination invariant features of the greyscale input image, most notable edges.

The actual number of key points depends on the image. They have been selected for their invariance

properties and domain-knowledge independence. In order to derive a meaningful classifier, a multi-stage

approach outlined in Figure 6.1 has been employed 011 top of the SIFT features. Ultimately, the SIFT

features are general descriptors and are not tailored to distinguish anything, so the discriminative points

have to be discovered. Therefore, k-means clustering is used to reduce the 128 dimensional SIFT space

to a limited set of representative patterns for each genre independently. The genre results are combined

in a second round of k-means clustering to derive a final codebook. The features of each genre are

projected onto that codebook, so a characteristic frequency distribution for each genre is genera.ted. In

order to classify an unknown video, the SIFT features of key frames are computed and the frequency

distribution wit.h regard to the codebook is evaluated. A k-nearest neighbour classifier based on the

Kullback-Leibler divergence is employed to search for the most similar distribution among the trained

genres. Roughly 80 % of testing data can be classified correctly by this framework, depending on the

codebook sizes.

73

6.2. CODE BOOK GENERATION CHAPTER 6. DBN FOR VIEW CLASSIFICATION --
The bottom-up two-way k-means clustering may seem surprising at first glance, but renders this

framework feasible in several aspects. First, the complexity of k-means clustering increases non-linearly

with the problem size, especially taking convergence into account. Furthermore, the process is more

robust and flexible to new genres because only a new class and final clustering needs to be recomputed.

In general, the time demand decreases from almost a month to several weeks, in conjunction with a 10 %
improvement in accuracy. Nevertheless, the computation time is rather high and the approach suffers

from general drawbacks of the k-means algorithm.

The most notable disadvantage is the susceptibility to local minima and therefore the initial con­

ditions. Several iterations with different starting points need to be cross-validated to guarantee global

convergence. The practical limitation is obvious in the scope of week-lasting simulations. In addition to

that, more iterations are needed for convergence if the amount of data is increased. This aspect partly

reasons the performance benefit of a multi-stage approach.

Thus, the ultimate goal of this chapter is analyze ways to replace the k-means clustering with a

more stable Deep Belief Network as core component. A key characteristic is shared by both, namely the

application domain independence and unsupervised training. Those properties encouraged the k-means

clustering approach in first place.

6.2 Code book generation

One approach to classify the view types sticks close to the outlined k-means approach, but replaces

the error-prone clustering with the RBM training. The fundamental idea resides in the observation

that the output of an RBM is often notably clustered with regard to final task, although the training

has been completely unsupervised. An example of this observation is shown in Figure 6.2 by using the

hlNIST digit dataset with a completely unsupervised training. The output layer has been reduced to

two dimensions using peA to plot the data, but only 16 % of the data variation could be captured this

way. All classes can be distinguished by taking further dimensions into account.

The idea can be illustrated as follows: The RBM is trained to retrieve the input data properly

using a distribution of binary latent variables in the hidden layer. Thereby, those latent variables

represent a basis to embody the significant characteristics of the trained data. The output layer forms

a unique fingerprint to recreate the shown input, and samples of one class lead to similar fingerprints

as demonstrated in the example above. The fingerprint of a new sample is compared to the average

fingerprints for all available classes and the most similar one is picked. The Kullback-Leibler divergence

is used as distance measurement between the probability distributions of the output layer.

Additionally, this renders a convenient way to feed SIFT features into an RB':\1. A key problem is

the varying number of SIFT features derived from a single image, as a neural network needs a fixed

number of input features. This gap can be closed by creating the fingerprint, because each SIFT feature

74

CHAPTER 6. DBN FOR VIEW CLASSIFICATION 6.3. RAW IlvfAGE BASED APPROACHES

r
l
I

}
t
.1
I

-l-

I .. -+-

F igure 6.2: Example of data spreadi ng achieved by an RB~1. Depicted is the output laYE'r of a 784-
500-300 cO ll figurat ion on t he MNIST character data set, trained complet ly unsupervised . The ou tput
i red u d to two d imensions usi ng PCA . Each olour reprel;e ll ts one class. SOIll E' dassC' overla p while
others are clearly dist inct. Inde d only 16 % of the variclllce can be captured in the' two d iOlen' ions.
Most classes can be told apart taking other d im liS ions int ac ount.

contributes to the final shape. T hus, the correla.t ion of features is preserved. T he pre \'iou ap proach

ach ieved t hat by mapping each SIFT feature onto t he closest codebook vector. Ithough very similar,

it has a signi ficant di ffer nce in t he fac t t hat only a s ingle vector is cons ider d in t he pr vious cas ,

whereas t he contribution to each output is taken into ac·col.lnt in the proposed arch itectu re. This may

I ad to classifica tion improvements comparab le to hard and soft decision in coding t heory.

T he clusterillg property has been successfully used ill other domai ns li ke semantic hashing [55] and

8..') pre-stage t.o k- m · ans clustering [54]. To our knowledge, Deep Belief Networks have proven to be

useful for all the und rlying tasks in t he proc s, but. have never been used in this way bd [T . Tv

summarize t he id a, it is a bag of words approach, but the words to de cribe t he data are found by

the unsuperv ised training of an RBt>.-1. T hereby, each n uron of the outpu t. lay r corresponds to a. word.

Fina lly, th imilarity of t he word count is evaluated li ke in other bag of word models, e.g. by II ing

the K ullback- L ib ler d ivergence of the n uron activat i n fr quency in the output layer. T herefore , the

unsupervised generation of cod book vectors is a novel idea to view class ification.

6.3 Raw image based approaches

First, we 'ol1sider subsampl d inpu t images as features for tilE' Restricted Boltzmann ~Iachine . t first

glance it may seem unpractical to use raw image data for classificat ion. T his limi t. t he application

75

6.3. RAW IMAGE BASED APPROACIIES CHAPTER 6. DBN POR V IEW CL ASSIFICATION

domain to !"(?search , as t rain ing t ime is not COllst ra ined 'mel expellsive hardware is 11 E'C'ded. Indeed , at

least two notable ulterior motives are beh ind th is d cision. First, t he RB M has proven its power to

ext ract sensible features from images in several appli ·aLions . In, tead o l" u~ing predefIned SIFT feat ures,

adequa te features to tell t he views apart ar learnt. T here fo re, we can analyse if SIFT feat ures are useful

3..<; inpu t for 1-1II R 13 t>.1 by comparing t hose re ults. Secolld , t raining resul t can be visually inspected .

Percep t. ive fie lds of output neuron have been shown previously for image ba.sed input . T here by, a ll

weights cOll llecti ng to a singlc hidden nE' uron can be interprE'ted as a. fi lte r defi ning L1tf' sC'w;it ivity to

input featu res . Addit iona lly, t he reconstru -Lion of an image can be compared to the origina l image.

This aspect takes on greater s iglli fican ·e as no previous experience with RBMs are available at Ryerson

and any implementat i n and knowledge lIeeds 1,0 be build up from scratch. Hence, the performance of

ttlE' lleLwork can b est imated in terms of figures of merit and mean ingfu l images.

be
.§

E
. ~
Ul

View type

close up mid view long view outer view

F igure 6.3: Examples of images for t he view classificat ion task.

Example imag s fo r d ifferent views in t he sport ,renres are depicteo ill F igu re 6.3. G llerally speaking,

t he div ision inLo th view type is the fo llowi ng. A ingle person is shown in t he close up views and

the whole sett ing in t he long view shots. The mid view fo cuses on par ts of the setti ng only, but may

be qui te d ifferent according to the sport . T he ou ter view i cont poscd by result oispiays and aud ience

images. T he ~port genr may 1)(-' hard to ident ify for close ups and audience shots, even for humans.

Wit h rega rd to t he view classificat ion t.a..'3k, t h defin ition of mid view is very dependent on t he sport

type, so ;~ general model is hard to derive due to t he manifold characteristics.

Th · videos are captured from a limited s t of televis ion stat ions. T herefore , many pictures exhibi t

76

Cll!\PT1~R 6. J)BN FOR VIC W CLASSIFICATION 6.3. HAW IMAGE HASED APPROACfll,,'.c;

lll!twork logo:,; cmel si mila,r r('~" ul t t.ables itnd camera angles, especia lly for long view shots . l\ toreoy(' l',

seVP J'a l statio ll s have s triking cha.racteristics like hlack bars , e.g. in swimming. lIowever, t hose feat ures a re

i<k nt. ical fo r ,111 examples of a par t.icular st. a.tion , so they do no t cont ribute to t he view ty pe clas ::; ificatioll.

First, a ch .ssillca tion a.<; suggested in section 2.3 is analyzed, so t.he reg nerati ve properLy of n, Deep

l1e li e f Network is user! to (l,nnotatc ei1.ch image v, .. it.h probabilities for each class . Logis t.ic regression is

IIsed for it comparison as prov ided by LibLinear [191. The non-linear mapping of a DI1 N and the la rge

out put layer si ze rea.'io tls the cho icf' of a linear classifier over other well-established techniques, !lIost

noLa!>I .,.! buppor!. vector machines. [n addition, the non-lin a r extraction of a DBN cannot be examined

if a non- lineM clas sifier is applied in the end. ['v[oreover, logistic regress ion has been used success fu lly ill

simi la.r work [281·

(a) (b) (c)

(d) (e)

Pigure 6.4: SOlni' percrptive fields for a binary RBM trained on graysca le image da ta are s~yown as
eX;Jmples. The network focuses on static parts of the scenery, e.g. b lack borders, network 10b

os and

snooker t a bles .

To work on the raw image data , some suitable representation must be fo und. For a ll our work ,

b I d
· I' ~ ges w'lth a resolution of 128x lOOpixr l were us d. Out of curiosity, the per-su samp e graysc.a. e ImcH

f f b
· RB~ K on the D'reysc.a le ima.ge data has been evaluated. T hus, the greyscale va lues ormance 0 a Inary IVI ~ , . .

a.re treated like proba bilities of an underlying layer as explained in section 2.4. Somp of the percept ive
. h . F 'gurE' 6 i The Deep Belief Networks performs well to ext ract

fi elds of the hldd p.n neurons are s own In I . .

Ti

6.3. RAW IMAGE BASED APPROACHES CHAPTER 6. DBN FOR VIEW CLASSIFICATION

frequent static features like network logos and result displays. Even typical sceneries like snooker tables

can be clearly recognized. At the same time, the construction of such features works quite well, too. On

the other hand, dynamic content is not captured at all. Dynamic and local features are out ruled by

global features. This is demonstrated by Figure 6.4e, where only the outer black borders are visible, but

no features in between. The situation remained the same with regard to the size of the output layer, so

issues due to overrepresentation can be foreclosed.

The same analysis has been done using a Gaussian flavour Restricted Boltzmann Machine as outlined

as appropriate way to handle real-valued input data in section 2.4. Indeed, the situation remained exactly

the same as described before in the binary case. Most neurons capture the static features in favour of

any dynamic ones. The focus on this kind of features is demonstrated by the sheer amount of filters for a

particular sport bar in Figure 6.7. This behaviour could not be altered by any means highlighted before,

e.g. different weight norms or sparseness targets. Coherent results could be obtained by evaluating the

reconstructions. Static features could be restored properly, but dynamic scenes are blurry at best. Thus,

the classification performance is affected accordingly.

Results obtained by a Gaussian RBM and logistic regression are outlined in Table 6.1 and 6.2 re­

spectively. The results in Table 6.1 are split into the different genres to outline the dependency of

classification on the image features. The best performance with 94.5 % is achieved for far views in

snooker. The whole snooker table is shown in those shots, as illustrated by Figure 6.3 or the perceptive

field in Figure 6.4d. This kind of feature is reflected by many neurons, so the classification performance

can be justified easily. Furthermore, comparatively good results are demonstrated for outer view scenes.

Two major kind of shots constitute the outer shots view, namely the audience and result displays. The

result displays for each sport are very characteristic for a certain sport due to the fact that examples

for each genre have been selected from a limited number of channels. Thereby, speed-skating receives an

inferior ratio among all genres due to the semi-transparent overlay of result tables. Hence, other filters

specialized on the underlying long and mid views, are triggered as well and influence the decision.

The results yielded by logistic regression are shown in Table 6.2 as the baseline technique. Different

parameter settings have been used to analyze the dependency on the output layer size and contrastive

divergence. Two settings have been used for the later aspect, namely an approximation with one iteration

of Gibbs Sampling and another one with an increasing number of iterations every 20th epoch. The results

are comparable with for the above technique in general, but are hardly dependent on any parameter

setting. Apparently, the focus on global scale features limits the merit of logistic regression as welL

The previous section has highlighted the drawbacks due to a global scale feature extraction. Several

papers solve this issue by using a convolutional RBl\1. The general structure of a convolutional network

is depicted in Figure 6.6. The difference resides in the smaller weight matrix in conjunction with

a convolutional filtering of the input image with the weights. Thereby, the filters are applied to all
displacements to achieve shift invariance. An additional step is necessary to aggregate the responses

of the filters in all locations. Max-pooling is the most common way to go for RBMs, so the highest

78

CHAPTER 6. DBN FOR VIEW CLASSIFICATION 6.3. RAW IMAGE BASED APPROACHES

I close up
View type

mid view far view outer view
snooker 24.4% 41.8% 94.5% 31.6%

speed-skating 26.7% 32.4% 36.9% 19.4%
swimming 23.8% 27.5% 42.7% 22.8%

Table 6.1: Results of view classification using label regeneration on raw images. The results are separated
into genre and view type, but only the correct classification percentage for the view classification task
is shown. The results are obtained using a single layer DBN with an output layer size of 3072.

without labels with labels

CD1 CD1 + 1 CDl CD1 + 1

Output size
2024 27.5% 29.3% 29.3% 29.3%

3072 29.2% 29.3% 29.3% 29.2%

Table 6.2: Results of view classification using logistic regression on raw images. The results are shown
for training with and without labels and different iteration counts of Contrastive Divergence. CD1 + 1
denotes, that the training has been started with a single iteration of Gibbs Sampling and extended with
another iteration every 20th epoch. Logistic regression has been used to form a decision based on the
output layer of the RBM.

View type

close up mid view far view outer view

snooker 19.4% 23.8% 17.4% 20.3%

speed-skating 21.8% 23.2% 22.7% 19.2%

swimming 18.7% 25.4% 19.9% 21.1 %

Table 6.3: Results of view classification using codebook generation on raw images. The results are sep­
arated into genre and view type, but only the correct classification percentage for the view classification
task is shown as before. The results are obtained using a single layer DBN with an output layer size of
3072.

Figure 6.5: Features learned by a Gaussian RBM on sub-patches. of the tr~ning database .. Each patch
had a size of 32 x 20 pixel and was randomly picked out of whole Image. ThIS way~ the pOSSIble benefits
of a weight-sharing approach can be swiftly assessed. The filters are not Gabor-like as noted by other
publications for convolutional architectures, but demonstrate a preference for localized features.

79

6.3. RAW IMAGE BASED APPROACHES CHAPTER 6. DBN FOR VIEW CLASSIFICATION

Figure 6.6: A two-layer convolutional neural network is depicted here. Different locations of origin in the
lower layers to trigger one particular neuron in the output layer are exemplified. This is accomplished
by a convolution between the layer and the weight matrix in mathematical terms. The required pooling
step to aggregate the activity for each neuron is omitted for the clarity of presentation.

probability is picked for each neuron. Hence, the output layer size is the size of the reduced weight

matrix.

To assess the suitability of a convolutional REM, we considered an intermediate step by training on

patches out of the whole image. Those patches were extracted from random locations all over the image,

so the trained features should be shift invariant as well. Examples of such features are shown in Figure

6.S. Unlike other research, the features are not Gabor-like, but exhibit a strong localization like for the

MNIST digit data. Therefore, we conclude that the type of extracted feature is related to the size of

the perceptive window used for training. This raises the question about the optimal size of the filters,

especially because Gabor-like filters are considered as natural building blocks and are highly appreciated

in similar research. Nevertheless, those matters can be addressed with a proper convolutional RBM

implementation only and have been postponed to future work therefore.

Nevertheless, indications for directed local features are detectable in the globally trained perceptive

fields as well. Examples are shown in Figure 6.7 with result displays for swimming. The according

input images look like the example provided in Figure 6.3 for the outer view in swimming. Besides

the outstanding network logo, directed structures are visible. Those structures emerge especially in

areas with small changes, e.g. text in the displays. Apparently, the REM reflects those differences with

directive features, although out ruled by the composition of features in the global scale so far. Hence, a

convolutional feature should favour this kind of feature significantly.

As mentioned before, a code book approach has been examined, too. The results are depicted in Table

6.3. In fact, the results are a bit worse than the results before, but coincide with previous outcomes.

However, the strong affinity to snooker tables does not payoff any more, but yields the worst results

among all. The bag-of-words approach needs to be reconsidered for a potential explanation. The idea

80

CHAPTER 6. DBN FOR VIEW CLASSIFICATION 6.4. SIFT BASED APPROACHES

Figure 6.7: Features learned by a Gaussian RBM on edges of a swimming result display as shown
before in Figure 6.3. The corner around the network logo is magnified. Structures steering in different
directions are noticeable at the borders. Thus, an RBM seems to be able to extract local directed
features if trained properly. '

was to derive a characteristic fingerprint in the frequency of words domain. Indeed, there are lots of

similar words to describe the same thing, namely a snooker table, because a lot of filters represent a

typical snooker table in different channels and positions. In this context, it has to be noted that the

current implementation is not invariant to shift or scale, so any variation will encourage another neuron

to the new variation of a pool table. But because so many possibilities exist to describe

the same view of a pool table, no average feature vector can be specified. Thus, the performance is

deteriorated by the variety of representations for the same view.

The benefit of several layers has been highlighted several times, and also proven practical advantages

in network intrusion detection. Hence, it seems reasonable to expect similar benefits for view classification

as well. By contrast, the opposite effect could be observed in our experiments. Our analysis unveils

the preference for static objects as reason once more. Several distinct neurons capture identical objects

due to the shift variance, but they are actually uncorrelated in the sense of an REM training as they

are never triggered in common. Thereby, the discriminative features become increasingly indistinct with

each additional layer as the few desired and conclusive neurons mingle with neurons of other classes

instead.

6.4 SIFT based approaches

The presented raw image based approaches suffer from a. focus on global scale scenery instead of mean­

ingful local features. Hence, the decomposition is transferred to a pre-processing stage. SIFT descriptors

have heen used in the previous work to extract useful domain-knowledge free local features from the

frames. Thus, the qualification of SIFT descriptors for Deep Belief Networks is assessed in this section.

First, the characteristics of SIFT descriptors have heen analyzed. Typical distributions of SIFT

descriptor components are outlined in Figure 6.8. The distribution of the training database is shown

left and the testing database right hand side of each feature display. Most notable, the distributions in

the training and testing database are very similar, so any model derived from the training data should

be acceptable for the testing data, too. Except (or about six features, the pattern shown in Figure 6.8a

81

6.4 . SIFT BASED APPROACHES CHAPTER 6. DBN FOR VIEW CLASSIFICATION

1
• ,0' S"o' SlFTV_' S }(10· "II: 10·

SlFTV...,...1

U ,&

t »

\
3.5 .,& I

U

2.5 :.&

U ,&

O ••• ~
o,s.

'-'1

0 1 • 0 ·0 0 &0 100 160 200 2&0 • 60 100 , .. 200 2&0 &0 ,OO , .. 200 2&0 • &0 ,OO '50 200 2&0

(a) Feature 1 (b) Feature 41

" ,0' 7
x 10· SIFT V""".

.' .0' .' .0'
SlFT_13

. .11
3.'

'.5

U

,,&

, ..
.5

0 .•
' ..

•• to '00 1&0 200 250 •• ., ,OO 1&0 200 250 • • 50 •• &0 I .. I., 200 2&0

(c) Feature 56 (d) Feature 73

Figure 6.8: Distribution of some SIFT features in the database, on the left hand side the training set
and on the right hand side the testing set. Although some exceptions are shown, most of the features
are distributed like in (a). Furthermore, the distribution within each feature of the tra.ining and test set
is almost identical as in the depicted examples.

is the most common. Thereby, a strong dominance for small values is obvious. However, some features

have a different shape, but usually with a dominating peak as depicted in the remaining examples. The

representation with a multi-bit approach as outlined before as intermediate step can hardly represent

the unequal distribution detailed enough. Therefore, the slightly better results achieved by a Gaussian

RBM are presented here.

However, SIFT descriptors cannot be used easily with regard to neural networks. Each key frame

of the video is described by a composition of SIFT key points, with 128 elements per point. Indeed, a

neural network expects a fixed size for the input features. If 128 is picked as input layer size, each SIFT

82

CHAPTER 6. DBN FOR VIEW CLASSIFICATION 6.4. SIFT BASED APPROACIIES

View type
close up mid view far view outer view

snooker 37.4 32.4 28.7 35.9
speed-skating 31.2 25.6 39.5 38.1

swimming 37.6 34.9 36.2 29.7

Table 6.4: Results of view classification using codebook generation on SIFT features of key frames. The
resul~s ar~ separa~ into genre and view type, but only the correct classification percentage for the view
classIficatIOn task IS shown as before. The results are obtained using a. layer DBN with an output
layer size of 512.

descriptor is trea.ted independent from all the others; But 8. single edge is hardly enough evidence for

any decision, so a. way to combine the descriptors needs to be found. Again, the code book approach

outlined in the beginning suits the need perfectly. Thus, a.ll SIFT features are fed as independent input

vectors to acbieve a separa.te output layer activation pattern for each. Finally, the activation frequency

for the output layer considering all SIFT points of a key image is computed and used in same way as
before.

Nevertheless, the results presented in Ta.ble 6.4 cannot catch up with the previous work. Although

the best results obtained so far, the correct classification percentage is between 25 % and 40 % only.

Indeed, a significant drift in performance for the snooker long view shots is no longer detectable, so the

SIFT extraction seems to lead to a more homogenous feature extraction among all different genres.

A typical fingerprint for the different views is depicted in Figure 6.9. All plots seem very similar, so a

test sample seems hard to classify to one particular view. The shape cannot attributed to a definite reason

due to the abstract nature and sheer amount of SIFT descriptors. Analysis suggests the regenerative

property to cause most neurous to behave alike. Because several SIFT descriptors of different views

share common properties, those characteristics are captured by neurons. Hence, the generalization into

common traits drives a high activation rate for most neurons independent of the view. On the other

hand, characteristic descriptors get repressed by the focus on frequent patterns. As before, the results

obtained with additional layers yield a slightly inferior classification performance.

In the light of local scale SIFT features, another enhancement has been considered as well. Training

with a ridiculously low sparseness target yields extracted features to mimic typical instances instead of

common patterns, as previously outlined in section 5.1. Thereby, the result should imitate a. clustering,

but hopefully without the typical instability drawbacks of the k-means technique. By contrast, the

results of classification are not affected by the new settings. The effect may either root in the suitability

of SIFT descriptors for Deep Belief Networks or the focus on frequent patterns, alike the previous

approach. For sure, the extracted typical instances are most frequent SIFT descriptors, and therefore

the least discriminative representatives.

83

6.5. SUMMARY CHAPTER 6. DBN FOR VIEW CLASSIFICATION

50 100 150 200 250 300 350 400 450 500

0.5

0.5

50 100 150 200 250 300 350 400 450 500

Figure 6.9: Examples of the mean distributions for class centers code book approach. The typical finger­
prints for close up, mid, long and outer view are shown from top to bottom. Apparently, the distributions
are very similar.

6.5 Summary

The application of Deep Belief Networks to View Classification has been presented in this chapter. First,

the previous approach has been presented as baseline technique. A practicailimitation of this framework

was the k-means clustering, which is prone to inferior results on the one hand side and required immense

computation time on the other hand. The restrictions of the framework should be overcome by using a

Deep Belief Network in favour of k-means clustering.

On a large scale, two use cases have been examined. On the one hand side, SIFT descriptors have

been used as input, so the focus was on the clustering performance to derive an adopted codebook. By

contrast, raw pictures have been used in the second case. Thereby, we tried to live up with previous

success with regard to proper feature extraction from large-scale input [8,24,28,55].

Indeed, the results for raw images fall short of expectations due to the fact, that global scale features

are extracted only and the sensitivity to variances, most notable shift, rotation and pan. Obviously,

this was no issue in other research as variances have been excluded by the design of their database [24].

Nevertheless, convolutional style Deep Belief Networks have proven to tackle such variances successfully

by focusing on more local features [8,28]. Precursors of convolutional networks validate the expectation

as demonstrated. Thus, such techniques should be examined in more detail to proceed with the raw

image based approaches. They should surpass the SIFT based frameworks due to the adapted selection

84

CHAPTER 6. DBN FOR VIEW CLASSIFICATION 6.5. SUMMARY
------~~----------------~~~==~

of appropriate features. The benefits of domain-knowledge independent learning are retained at the
same time.

A more straight-forward kind of application haa been demonstrated by using SIFT descriptors di­

rectly. The codebook approach has been used to fuse the independent descriptors in the end. To our best

knowledge, this kind of technique to combine the advantages of Deep Belief Networks with the flexibility

of a. bag of words representation has not been analyzed before. The outcome supersedes the image based

attempts, but stands behind the classification performance of the previous work. The exact reason is

hard to analyze due to the abstract nature of the data, but the frequency distribution of different classes

seemed to be similar. Thus, the KL-divergence measurement can hardly derive a distinguishable finger­

print. Maybe, enhancements similar to the ideas presented in [54] can mitigate the issue. Thereby, the

difference between learning to reconstruct and classify data is highlighted. In the case of characters, the

shape and width of the stroke needs to be captured to reconstruct the da.ta. properly. By contrast, the

width of the stroke does not contribute to the meaning of the character, but distorts the decision. The

bag of words technique seems to be very sensitive to this kind of inappropriate frequency components,

because a.ll basis vectors contribute equally to the KL-divergence. The analysis of ways to separate both

kinds of features may be a. direction for future work to improve the outcome of code books using both

input features, ra.w images and SIFT features.

85

This page is blank intentionally.

Chapter 7

Conclusion

The thesis involved four major aspects, namely CPU Computing, Deep Belief Networks, the framework

to combine both, and the application of the framework to view classification. The structure of the work
has been chosen accordingly.

First, a comprehensive introduction into Deep Belief Networks based on Restricted Boltzmann Ma­

chines has been provided. Besides the original proposal, ways to employ those neural networks in practice

have been outlined. Thereby, fundamental questions like the constitution of multi-layer networks based

on the layer-wise learning algorithm and the application as classifier have been tackled. Finally, exten­

sions to different input spaces to enhance the suitability to great variety of domains have been presented.

Next, GPU computing has been introduced, as all further chapters deal with CPU computing to
a greater or lesser extent. Priority was given to the software too1s, but also the underlying hardware

architecture, because the software needs to be tuned to the hardware design choices to exploit any

benefit. A cardinal understanding is required to reason many software design aspects presented later OD.

Equipped with this foundation, Network Intrusion Detection has been presented as first use case

for the Restricted Boltzmann Machine. Thereby, two aspects have been highlighted. On the one hand

side, the dassification results have been shown and compared to other techniques like decision trees

and artificial immune systems. Our approach could outperform AIS clearly, but stood back compared

to other participants in the contest. Indeed, our results exceed the other ones in a few cases, though.

However, the results point out that the overall constraints of our machine learning technique resides in

the unequal distribution of training examples for the different attack patterns.

The other aspect was the acceleration with a GPU implementation. A key of the MATLAB

program has been rewritten using eUDA, leading to a three times speedup. Drawbacks and limitations

with regard to the embedding into MATLAB have been addressed as they lead over to the next chapter,

the development of a standard framework to overcome the restrictions.

87

7.1. CONTRIBUTIONS OF TIlE THESIS CHAPTER 7. CONCLUSION

The structure of the framework has been explained, starting from the coarse-grained partitioning

between GPU and CPU to the fine-grained tuning of the GPU kernels. The time requirements of

the program components have been examined next by considering GPU profiling and runtime of the

program. More than 90 % of GPU time is spent in matrix operations provided by NVidia, so the

employed optimization strategies payoff well. Indeed, the general runtime analysis reveals that about

one third of total time is spent on memory transfer to the GPU. This cannot be detected by most

tools because the asynchronous memory transfers are not handled properly by most profiling techniques.

Nevertheless, the transfer time and matrix operations cannot be reduced any more in the scope of this

thesis, so the best solution with regard to the given hardware has been presented. Finally, the speedup

is compared to other implementations. A 40 times speedup can be measured compared to a MATLAB

implementation, but the benefit is implicitly limited by the toy size of the problem enforced by the

MATLAB memory management. By contrast, other GPU implementations report a speedup between

12 and 140 times, but all of them employ a convolutional style RBM with more computational demands

per transfer. Thus, the impact of the inevitable bottleneck is less significant.

Finally, the presented framework is applied to another application domain, namely the classification

of view types. The foundation was provided by the presentation of previous work. We tried to live

up to that with a Deep Belief Network as core component to overcome limitations imposed by k-means

clustering. Therefore, a novel technique to utilize Deep Belief Networks for code book generation has been

presented. The outcome of this attempt has been compared to other Deep Belief Network classification

techniques in the following sections of the chapter. The DBN could not match up with the previous

results, but solutions to overcome some difficulties are outlined.

7.1 Contributions of the Thesis

Implementation of back-propagation style fine-tuning on a GPU

We accelerated the learning of a discriminative Deep Belief Network to render research on Network

Intrusion Detection feasible. The emphasis was on the most time-consuming part of learning,

namely the gradient computation during back propagation fine tuning. Although the task itself is

well-suited to a GPU, the MATLAB framework imposed some restrictions. Nevertheless, a three­

times speedup has been achieved. Thereby, the tra.ining time for a Network could be reduced from

days to several hours.

Application of the Restricted Boltzmann Machine to network intrusion detection

Based on the extended MATLAB implementation outlined before, the task of Network Intrusion

Detection has been tackled. To our best knowledge, this was the first time that Deep Belief

Networks have been used in this applica.tion domain. We could outperform an artificial immune

system on the training database significantly. By contrast, the original winning entries yield a

less uniform comparison. The classification ratio of the Deep Belief Network is more equal than

with the other techniques. Thus, the classification performance is significantly better at the weak

88

CHAPTER 7. CONCLUSION 7.2. FUTURE WORK

spots of the other approaches at the expense of other attack patterns. Overall, the outcome of the

experiment demonstrates the superb generalization capabilities of the chosen technique.

Implementation of a framework for learning Restricted Boltzmann Machines on GPUs

The speedup achieved with CUDA above pointed out the potential and suitability of a GPU for

the training of Deep Belief Networks. However, the acceleration was limited by MATLAB due to

softwa.re restrictions in terms of supported features and network sizes. Thus, we implemented a

native framework with flexibility and in mind. The maximum speedup is roughly about 40

times and renders research on raw possible in this way. The most frequently used kinds

of REM layers, binary and Gaussia.n, have been implemented and extended with many extensions

viable for multimedia processing as well. Thus, a comprehensive foundation for further simulations
and research has been created.

Application of the Restricted Boltzmann Machine to view classification

Finally, the proposed framework has been applied to view classification. Again, this is a novel

domain of application for Deep Belief Networks. Therefore, a novel technique to generate code

books with Deep Belief Networks has been developed and compared to traditional classification

setups. The novel technique performed best among the considered Deep Belief Network based

approaches. So far, the k-means based technique performs better than Deep Belief Networks in

this task. Nevertheless, we presented conclusive reasons and highlighted the way to overcome the

restrictions. We undermined our assessment of future directions with results of precursors as well.

7.2 Future work

In the scope of this thesis, we caught up with the last ten years of research with Deep Belief Networks

and extend research to new application doma.ins by accelerating the training with a GPU. Nevertheless,

the REM is a versatile core component with lots of possible applications. The improved training time

renders new research in other fields of multimedia-processing feasible.

In addition to that, there are some possible directions for future work with regard to the presented

framework and its applications. Most outstanding is the convolutional Restricted Boltzmann Machine

for several aspects. In terms of learning, it will lead to local features derived from raw images, as we

demonstrated. Additionally, convolutional RBMs seem to be a promising enhancement to cope with

shift variance, because most recent work on raw ima.ges employs this kind of architecture successfully.

Furthermore, the maximum speedup is raised as the transfer time as major bottleneck is alleviated.

A more comprehensive analysis should be conducted for code book generation to overcome the

current restrictions. The feature extraction focuses on regenerating the input by design. Ba..'ied on

current results, the extracted properties do not necessarily contribute to the demanded classification.

At the same time, the KL-divergence seems to be quite sensitive to those Thus, one

89

7.2. FUTURE WORK CIIAPTER 7. CONCLUSION

possible direction for future work are different distance measurements, assessing each component with a

confidence. By contrast, extending the training function of a RBM to separate between discriminative

and regenerative kind of features can be examined, akin to ideas in [54J. Both approaches aim at the

same goal, but modify different stages in the code book generation.

Moreover, the appropriate input data format should be examined in more detail. We started to

contrast SIFT descriptors with raw images in the scope of this work, but the extension highlighted

above may lead to completely different results. In general, we expect better results by exploiting the

adopted features extracted by a RBM. At the same time, the RBM imposes a computational expensive

way to generate features. Thus, a comparison between different feature extraction techniques with regard

to performance and time demands is another direction for future work.

Furthermore, CUDA has been used to employ the GPU into the program. Although this decision

was reasonable because it was the most mature way to integrate GPUs into CPU programs, OpenCL has

been established as standard meanwhile. Promising benefits are the inherit flexibility to run on GPUs by

different manufacturers, but also on CPUs. Thus, the comparison between CPU and GPU performance

does not require a dedicated CPU development. Upcoming products by AMD are of particular interest,

as they are based on a single-die combination of CPU and GPU, and may mitigate the transfer time

penalty. In fact, CUDA is not able to run on those new architectures, so a refactoring of the code to

OpenCL is necessary.

Finally, the Restricted Boltzmann Machine is a core component. With the power of GPU computing

and the versatility of the presented framework, the foundation is laid to exploit the performance is new

application domains. By design, the framework does not depend on any particular data presumptions,

so it may be applied to a broad range of input features, from images to abstract feature descriptors. The

investigation of advantages, but also limitations and solutions to facilitate Deep Belief Networks may be

one of the most exciting and futurC--Qriellted issues to follow this fundamental work.

90

Bibliography

[1] CUDPP CUDA Data Parallel Primitives Library.
http://code.google.com/p/cudpp/

[Online]. Available:

[2] The MNIST data set. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[3] (1999) KDD Cup 1999 - Task description and database. [Online]. Available:
http://www.sigkdd.org/kddcup/index.php?section=1999

[4] (2006) Netflix Prize - Rules and information. [Online]. Available: http://www.netfiixprize.com/

[5J (2009) Leonard a CUDA RBM implementation. [Online]. Available:
http://github.com/lanCalfleonard/wiki

[6] (2009) Supercomputing 2009 CUDA Tutorial. [Online]. Available:
http://www.nvidia.com/object/SC09_Tutorial.html

[7] (2010) Parallel NSight - Visua.l Studio integration fur CUDA development. [Online]. Available:

http://developer.nvidia.com/object/nsight.html

[8] Alex Krizhevsky, "Convolutional Deep Belief Networks on CIFAR-lO," Department of

Computer Science, University of Toronto, Tech. Rep., Aug 2010. [Online]. Available:

http://www.cs.toronto.edu/ kriz/conv-cifarlO-aug2010.pdf

[9] N. Athanasiades, R. Abler, J. Levine, H. Owen, and G. Riley, "Intrusion detection testing and

benchmarking methodologies," in Information Assurance, 2003. IWIAS 2003. Proceedings. First

IEEE International Worksbop on. IEEE, 2003, pp. 63-72.

[10] P. Bakkum and K. Skadron, "Accelerating SQL database operations on a GPU with CUDA," in

Proceedings of tbe 3rd Worksbop on General-Purpose Computation on Graphics Processing Units.

ACM, 2010, pp. 94-103.

[11] S. Barrachina, M. Castillo, F. 19ual, R. Mayo, and E. Quintana-Ortl, "Evaluation and tuning of

the level 3 CUBLAS for graphics processors,» in 9tb IEEE International Workshop on Parallel and

Distributed Scientific and Engineering Computing-PDSEC'08, 2008.

91

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Y. Bengio and O. Delalleau, "Justifying and generalizing contrastive divergence," Departement

d'Informatique et Recherche Operationnelle, Universite de Montreal, Tech. Rep. 1311,2007.

[13] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of deep

networks," in Advances in Neural Information Processing Systems 19 (NIPS '06), 2007, pp.

153-160. [Online]. Available: http://www.iro.umontreal.ca/lisa/pointeurs/BengioNips2006AILpdf

[14] M. Browne and S. Ghidary, "Convolutional neural networks for image processing: an application

in robot vision," AI 2003: Advances in Artificial Intelligence, pp. 641--652, 2003.

[15] S. Brugger, "KDD Cup'99 dataset (Network Intrusion) considered harmful," KDnuggets newsletter,

vol. 7, no. 18, p. 15, 2007.

[16] M. A. Carreira-Perpignan and G. E. Hinton, "On contrastive divergence learning," in Artificial

Intelligence and Statistics, 2005.

[17] Z. Chen, S. Haykin, J. J. Eggermont, and S. Becker, Correlative Learning: A Basis for Brain and

Adaptive Systems (Adaptive and Learning Systems for Signal Processing, Communications and

Control Series). Wiley-Interscience, 2007.

[18] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, "Why does unsu­

pervised pre-training help deep learning?" J. Mach. Learn. Res., vol. 11, pp. 625--660, 2010.

[19] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, "LIB LINEAR: A library for large

linear classification," Journal of Machine Learning Research, vol. 9, pp. 1871-1874, 2008.

[20] C. Haag, G. Lamont, P. WiJliams, and G. Peterson, "An artificial immune system-inspired mul­

tiobjective evolutionary algorithm with application to the detection of distributed computer net­

work intrusions," in Proceedings of the 6th international conference on Artificial immune systems.

Springer-Verlag, 2007, pp. 420-435.

[21] S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ: Prentice

Hall, 1999, 2nd edition.

[22] G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Com­

putation, vol. 14, p. 1711-1800, 2002.

[23] G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural

Computation, vol. 18, pp. 1527-1554,2006.

[24] G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks,"

Science, vol. 313, no. 5786, p. 504, 2006.

[25] G. Hinton, "A practical guide to training restricted boltzmann machines," Department of Computer

Science, King's College Rd, Toronto, University of Toronto M5S 3G4, Canada, Tech. Rep. UTML

TR 2010-003, Aug 2010.

92

BIBLIOGRAPHY BIBLIOGRAPHY

[26] M. Houston and N. Govindaraju. (2007) SIGGRAPH 2007 GPGPU Course. [Online]. Available:
http://gpgpu.org!s2oo7

[27} S. Kim, L. McAfee, P. McMahon, and K. Olukotun, "A highly scalable Restricted Boltzmann

Machine FPGA implementation," in Field Programmable Logic and Applications, 2009. FPL 2009.

International Conference on. IEEE, 2009, pp. 367-372.

[28] A. Krizhevsky, "Learning multiple layers of features from tiny images," MSc. the­

sis, Dept. of Computer Science, University of Toronto, April 2009. [Online]. Available:

http://www.cs.toronto.edu/ krizjlearning-features-2009-TR.pdf

[29] D. Le Ly, "A High-Performance, Reconfigurable Architecture for Restricted Boltzmann Machines,"

Ph.D. dissertation, University of Toronto, 2009.

[30l H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area V2," Advances in

neural information processing systems, vol. 20, 2007.

[31] H. Lee, R. Grosse, R. Ranganath, and A. Ng, "Collvolutional deep belief networks for scalable unsu­

pervised learning of hierarchical representations," in Proceedings of the 26th Annual International

Conference on Machine Learning. ACM, 2009, pp. 609-616.

[32] 1. Levin, "KDD-99 classifier learning contest LLSoft's results overview," ACM SIGKDD Explo­

rations Newsletter, vol. 1, no. 2, pp. 67-75, 2000.

[33J L. Li, N. Zhang, L. Duan, Q. Huang, J. Du, and L. Guan, "Automatic sports genre categoriza­

tion and view-type classification over large-scale dataset," in Proceedings of the seventeen ACM

international conference on Multimedia.. ACM, 2009, pp. 653--656.

[34] F. Lionetti, "GPU accelerated cardiac electrophysiology," MSc. thesis, Dept. Computer Science,

University of California, San Diego, 2010.

[35] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, "The 1999 DARPA off-line intrusion

detection evaluation," Computer Networks, vol. 34, no. 4, pp. 579-595, 2000.

[36] R. Lippmann, D. Fried, I. Grar, J. Haines, K. Kendall, D. McClung, D. Weber, S. Webster,

D. Wyscbogrod, R. Cunningham, at al., "Evaluating intrusion detection syst.ems: The 1998 DARPA

off-line intrusion detection evaluation," in Proceedings of the 2000 DARPA Information Survivabil­

ity Conference and Exposition, vol. 2. Citeseer, 2000, pp. 12-26.

[37] D. Lowe, "Distinctive image features from scale-invariant keypoints," International journal of com­

puter vision, vol. 60, no. 2, pp. 91-110, 2004.

[38] M. Matsumoto and T. Nishimura, "Dynamic creation of pseudorandom number generators," Monte

Carlo and Quasi-Monte Carlo Methods, pp. 56-69,1998.

93

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Matsumoto, M. and Nishimura, T., "Mersenne twister: a 623-dimensionally equidistributed uniform

pseudo-random number generator," ACM 'Ii-ansactions on Modeling and Computer Simulation

(TOMACS), vol. 8, no. 1, pp. 3-30, 1998.

[40] J. McHugh, "Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA in­

trusion detection system evaluations as performed by Lincoln Laboratory," ACM 'Ii-ansactions on

Information and System Security (TISSEC), vol. 3, no. 4, pp. 262-294, 2000.

[41] V. Nair and G. Hinton, "Implicit mixtures of restricted Boltzmann machines," Advances in neural

information processing systems, vol. 21, 2008.

[42] M. Norouzi, M. Ranjbar, and G. Mori, "Stacks of convolutional restricted boltzmann machines for

shift-invariant feature learning," in Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, jun. 2009, pp. 2735 -2742.

[43] CUDA CUBLAS Library 3.1, NVidia, May 2010.

[44] NVIDIA CUDA 3.1, NVidia, June 2010.

[45] NVIDIA CUDA C - Best Practices Guide 3.1, NVidia, May 2010.

[46] C. Oei, G. Friedland, and A. Janin, "Parallel training of a multi-layer perceptron on a gpu,"

Department of Computer Science, International Computer Science Institute, Tech. Rep. TR-09-

008, Oct 2009.

[47] S. J. Patel. (2010) ECE 498 AL : Applied Parallel Programming. [Online]. Available:

http://courses.engr.illinois.edu/ece498/al/

[48] J. Pettersson and I. Wainwright, "Radar Signal Processing with Graphics Processors (GPUs),"

MSc. thesis, Dept. of Computational Science, Uppsala University, January 2010. [Onlinej.

Available: http://www.hpcsweden.se/files/RadarSignalProcessingwithGraphicsProcessors.pdf

[49] B. Pfahringer, "Winning the KDD99 classification cup: bagged boosting," ACM SIGKDD Explo­

rations Newsletter, vol. 1, no. 2, p. 66, 2000.

[50] R. Raina, A. Madhavan, and A. Y. Ng, "Large-scale deep unsupervised learning using graphics

processors," in IGML '09: Proceedings of the 26th Annual International Conference on Machine

Learning. New York, NY, USA: ACM, 2009, pp. 873-880.

[51] M. Sabhnani and G. Serpen, "Why machine learning algorithms fail in misuse detection on KDD

intrusion detection data set," Intelligent Data Analysis, vol. 8, no. 4, pp. 403-415, 2004.

[52] R. Salakhutdinov, A. Mnih, and G. Hinton, "Restricted Boltzmann machines for collaborative

filtering," in Proceedings of the 24th international conference on Machine learning. ACM,2oo7,

p.798.

94

BIBLIOGRAPHY

[53] R. Salakhutdinov, "Learning deep generative models," Ph.D. dissertation, Dept. of Computer Sci­
ence, University of Toronto, Sep 2009.

[54] Salakhutdinov, R. and Hinton, G., "Learning a. nonlinear embedding by preserving class neighbour­

hood structure," in AI and Statistics, voL 3, no. 5. Citeseer, 2007.

[551 Salakhutdinov, R. and Hinton, G., "Semantic hashing," International Journal of Approximate Rea­
soning, vol. 50, no. 1, pp. 969-978, 2009.

[56J M. Shyu, S. Chen, K. Sarinnapakorn, and L. Chang, "A novel anomaly detection scheme based on

principal component classifier," in Proceedings of the IEEE foundations and new directions of data

mining workshop. Citeseer, 2003.

[57] J. Susskind, G. Hinton, J. Movellan, and A. Anderson, "Generating facial expressions with deep

belief nets," Affective Computing, Emotion Modelling, Synthesis and Recognition, pp. 421-440,

2008.

[58] Sutskever, I. and Tieleman, T., "On the convergence properties of contrastive divergence," in Proc.

Conference on AI and Statistics (AI-Stats), 2010.

[59] T. Tieleman, "Training restricted Boltzmann machines using a.pproxima.tions to the likelihood gra,­

dient," in Proceedings of the 25th international conference on Machine learning. ACM, 2008, pp.

1064-1071.

[60] S. Tzeng and L.-Y. Wei, "Parallel white noise generation on a gpu via cryptographic hash,"

in Symposium on Interactive 3D Graphics and Games, 2008, p. 79-87. [Online]. Available:

http://research.microsoft.com/apps/pubs/default.aspx?id=70502

[61] J. van Meela., A. Arnolda, D. Frenkelb, S. Zwartc, and R. Bellemand, "Harvesting graphics power

for MD simulations," Molecular Simulation, voL 34, no. 3, pp. 259-266, 2008.

[62] M. Vladimir, V. Alexei, and S. Ivan, "The MP13 approach to the KDD'99 classifier learning contest,"

ACM SIGKDD Explorations Newsletter, va!. I, no. 2, pp. 76-77,2000.

[63] M. Welling, M. Rosen-Zvi, and G. E. Hinton, "Exponential family harmoniums with an application

to information retrieval," Advances in Neural Information Processing Systems, vol. 17, 2005.

[64] M. Zechner and M. Granitzer, "Accelerating K-Means on the Graphics Processor via CUDA,"

in Intensive Applications and Services, 2009. INTENSNE'09. First International Conference on.

IEEE, 2009, pp. 7-15.

[65] N. Zhang and L. Guan, "An efficient framework on large-scale video genre classification," in Proe.

IEEE Worksbop on Multimedia Signal Processing, Saint Malo, France, 2010, pp. 505--510.

95

This page is blank intentionally.

