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Abstract

The problem of synthesis of missing image parts represents an interesting and challenging area of im-

age processing and computer vision with significant potential. This thesis, focuses on an adaptive

depth-guided image completion method that addresses the image completion problem using information

contained in the rest of the image. The completion process is separated into structure and texture

synthesis. A method is first introduced for completing the respective depth map through the use of a

diffusion-based operation, preserving global image structure within the unknown region. Building upon

the state of the art exemplar based inpainting technique of Barnes et al., we complete the target (un-

known) region by matching to and blending source patches drawn from the rest of the image, using the

reconstructed depth information to guide the completion process. Secondly, for each target patch, we

formulate an adaptive patch size determination as an optimization problem that minimizes an objective

function involving local image gradient magnitude and orientations. An extension to the coherence-

based objective function introduced by Wexler et al. is then introduced, which not only encourages

coherence of the respective target region with respect to the source region in colour but also in depth.

We further consider the variance between patches in the SSD criteria for preventing error accumulation

and propagation. Experimental results show that our method can provide a significant improvement to

patch-based image completion algorithms shown by PSNR and SSIM calculations as well as a qualitative

subjective study.
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Chapter 1

Introduction

1.1 What is Image Completion?

Image completion1 is the process of filling in parts of an image that are considered missing, either due to

damage or removal of unwanted elements. It can be considered part of a wider field of artistic restoration,

the roots of which date back to the Renaissance era2. Modern image processing techniques allow us

analyze and manipulate data of a digitized image in order to improve its overall quality. Our goal is to

perform this artistic restoration on digital images restoring missing parts of an image through algorithm

design on a computer. Fixing these flaws correctly is important in many applications such as removing

scratches and stains from deteriorated digital images, recovering lost data due to image acquisition,

compression and transmission, removal of unwanted objects/markings in photos, etc [2–7]. While the

human eyes can often see the visually plausible solution of the missing image information based upon the

Gestalt principle [8], finding an algorithm capable of real-time performance and requiring no user-given

guidance is the challenging problem at hand. The problem of image completion can be formally stated

as: given an original image and its corresponding hole mask, automatically fill in the images missing

region such that the overall result is coherent and visually plausible with its surrounding information.

Figure 1 emphasises this concept. In Figure 1 (a) the area to be removed and re-synthesized is selected

1Some authors may have used the term ”inpainting” to mean general image completion. We limit our meaning of
completion to mean completion small areas.

2During this era, people started to restore medieval artworks bringing medieval pictures up to date by retouching them
in attempt to revert deterioration, or to add or remove elements. This is done to preserve the paintings and other fine arts
for future generations.
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CHAPTER 1. INTRODUCTION 1.1. WHAT IS IMAGE COMPLETION?

(a) Original Image and unwanted object (red) (b) Hole mask

(c) Unsatifying Completion Result (d) Satifying Completion Result

Figure 1.1: Image Completion

(red). A binary mask is then obtained as shown in Figure 1 (b), with white pixels being fully known

pixels, black pixels being unwanted/unknown information and gray pixels emphasising the boarder of

the image.

In order to recover the image of Figure 1 (a), the operation requires restoring the missing region of

the image with known information by intelligently selecting regions from the known part of the image

and using this information to restore the unknown region. The selection process affects the quality of the

image reconstruction. It will lead to unsatisfying completion results if improperly selected or satisfying

2



CHAPTER 1. INTRODUCTION 1.2. PURPOSE AND SCOPE OF THIS THESIS

completion results if selected properly as seen in Figure 1 (c) and (d), respectively. Figure 1 (c) and (d)

were generated using adobe Photoshops content aware fill tool. During the last decade, much progress

has been made in dealing with the problem of image completion. These modern approaches can be

roughly divided into two groups: diffusion-based techniques and exemplar-based techniques.

1.2 Purpose and Scope of this Thesis

With a long term goal of creating a fully adaptive image completion algorithm used specifically for

real-time 3D video completion, the work described in this thesis focuses on the fundamentals of single

image completion in accordance with it corresponding depth map. Specifically, we extend the current

start-of-the-art exemplar completion algorithm to incorporate additional 3D depth information. We use

this depth information to help constrain the completion process while simultaneously completing the

missing region(s) in both depth and colour images. Our completion results show that our proposed

method could outperform current selected state-of-the-art completion algorithms.

1.3 Contributions

While previous approaches have produced some remarkable results, most have difficulties in completing

images where complex structures exist in the missing region due to unconstrained search spaces, user

inputted parameters that need to be tuned between images and invalid matching resulting in error

accumulation and propagation. Therefore, we propose an adaptive depth guided image completion

method that performs structure and texture synthesis for simultaneous colour and depth completion.

Our approach builds upon [9] in a manner similar to [10] by making the following contributions:

1. We use a morphological diffusion based approach to estimate the missing depth information, en-

suring the recovery of unconnected boundaries (i.e. Structure Information);

2. Building off the foundations of [9], we constrain the search space to the previously diffused depth

information and iteratively optimize the synthesized texture;

3. For each iteration, we determine an optimal patch size for each unknown patch by optimizing a

collection of edge oriented histograms;

3



CHAPTER 1. INTRODUCTION 1.4. OVERVIEW OF THIS THESIS

4. We extend the SSD criteria to incorporate an adaptive variance based weighting;

The algorithms of [9] and [10] are discussed in detail in chapter 3 in order to provide the reader with

relevant background information and to understand these contributions.

1.4 Overview of This Thesis

The remainder of this thesis is organized as follows: Chapter 2 reviews existing work related to single

image completion; Chapter 3 introduces the fundamentals of exemplar based completion; Chapter 4

illustrates our proposed method in detail; Chapter 5 describes our experiments and the results from

both qualitative and quantitative user studies; Chapter 6 draws conclusions and discusses possible future

work.

4



Chapter 2

Related Work

A variety of methods in literature have been proposed for performing image completion. This chapter

provides an overview of these methods, along with examples of the kinds of results that they produce.

This chapter also outlines the key differences between diffusion-based and exemplar-based image com-

pletion.

2.1 Diffusion-Based Methods

Diffusion based inpainting techniques fill in the missing regions through the use of a diffusion process,

i.e. by smoothly propagating information along the boundary in-towards the interior of the missing

region. This diffusion process is typically achieved by solving a high order, non-linear partial differential

equation (PDE). This class of methods was pioneered by Bertalmio et al. [11], who propagated colour

information along isophotes according to a third-order PDE. This approach allows for the image inten-

sities to be extended in the direction of level lines arriving at the hole. This results in solving a discrete

approximation of the PDE

ut = O⊥u · O∆u, (2.1)

It was later extended by Ballester et al. who used the PDE in a variational framework [12]. Their

variational approach leads to a set of two coupled PDEs, one for the gray levels and the other for the

5



CHAPTER 2. RELATED WORK 2.1. DIFFUSION-BASED METHODS

(a) Original Image (b) Damaged Image (small hole) (c) Diffusion Based Completion

(d) Damaged Imaged (large hole) (e) Diffusion Based Completion

Figure 2.1: Diffusion Based Completion Results

gradient orientations which is solved using its steepest decent. Bertalmio et al. used the Navier-Stokes

equations for an incompressible fluid for the completion guidance [13], where the image intensity function

plays the role of the stream function whose level lines (isophotes) define the stream lines of the flow.

These PDE-based approaches are less effective in handling large missing regions due to its inability to

synthesize texture. When the unknown region is quite large, PDE-based methods produce very blurry

results. This is shown in Figure 2.1, where the diffusion based completion algorithm of [11] is used for

the restoration.

In an attempt to overcome this issue, Berlatmio et al. separate an image into two components [14]:

structure and texture . The first component is filled using the PDE based approach given in [11] while

the second is filled using a texture synthesis method [14] and the resulting image is a combination of the

two. Chan and Shen [15] handle curve structures by incorporating an elastic equation. While Guo et

al. [16] perform the diffusion process through the use of a morphological erosion operation. A structuring

element is iteratively applied to erode all pixels at the boundary of the hole through structure/texture

matching defined within a search space around the hole. They show their results complete some structure

6



CHAPTER 2. RELATED WORK 2.2. EXEMPLAR BASED METHODS

features and perform better than PDE based approaches. Similarly, Jawas et al. [17] use morphological

dilation to constrain the erosion operation to only consider nearby pixels in the hole filling process.

2.2 Exemplar Based Methods

Exemplar based techniques aim in filling in the missing region by searching for an optimal exemplar

pixel/patch located in the source region for each unknown pixel/patch in the target region. These

methods are known as texture synthesis methods since they complete desired texture information as

shown in Figure 2.2. This class of methods was first introduced by Efros et al. [18], who formulated the

problem as a discrete Markov Random Field (MRF) global optimization problem. Spatial coherence is

then naturally ensured through a global optimization of MRF energy functions over the entire image.

Komodakis et al. [19] optimize the MRF by using belief propagation while Pritch et al. [20] optimize

through the use of graph cuts. The shift-map of [20] computes a vector field described in [21], which

maps each pixel in the hole to a pixel in the known part of the image. An optimal shift map is then

obtained as a graph labelling optimization minimizing a global cost function. He et al. [22] form shifted

versions of the input images based upon dominant offsets, and these shifted images are then combined

by optimizing a global MRF energy function. The combination of the shifted images are directly used

as the patch offsets to fill in the hole. These MRF-based methods can produce visually pleasing and

coherent results when the hole to be filled has homogeneous texture and very few structures around it.

The missing regions, in general, may be composed of complex textures and structures, and it has been

observed that it is important to separate these two components and start by first recovering the desired

structure. Criminsi et al. [23] proposed a patch processing order in which patches on structures are filled

in first. The proposed priority order is to emphasize the propagation of structure information, and the

filling order is incorporated to prefer the ones with high structure information (i.e. data term) and more

available surrounding information (i.e. confidence term). Giving a higher priority to patches which are

on the continuation of strong edges leads to a better recovery of unconnected boundaries. Once the patch

with a maximum priority is determined, the next step is to perform texture filling by searching the known

region for the best matching patch according to a minimum SSD criteria. Huang et al. [24] extends [23]

to include a disparity priority in order to improve the matching criteria. Although [23] and [24] performs

texture and structure synthesis, matching errors may result and propagate throughout the filling process

7



CHAPTER 2. RELATED WORK 2.2. EXEMPLAR BASED METHODS

(a) Original Image (b) Damaged Image (c) He et al. [10] result using patch size
11x11

(d) Criminisi et al. [23] Result using
patch size 11x11

(e) Content aware fill [1] Result using
patch size 11x11

Figure 2.2: Exemplar Based Completion Results

since the correlation between patches is not considered. To overcome this issue, Liu et al. [25] proposed

an improved SSD criteria, by selecting the best fit candidate using an additional variance term between

patches. Komodakis [26] and Wexler et al. [27] proposed a global optimization approach in order to

minimize visual inconsistencies and maximize visual coherence. Simakov et al. [28] propose a gradual

resizing approach where the completion is performed from course-to-fine. At each resizing step, the

global optimization function of [27] is minimized and the colour is updated using an iterative update

rule. Barnes et al. [9] introduced a new fast randomized algorithm for finding good correspondences,

under the assumption that there is a good chance at least one good match can be found in a randomly

assigned approximate nearest neighbor field (ANNF). A combination of [9] and [27] is implemented as

the content aware fill in Adobe Photoshop (CS5) [1], which is arguably known as the current state-of-the-

art region filling algorithm in terms of visual quality and convergence speed. The completion algorithm

implemented by Adobe proceeds in a gradual resizing, similar to [28], however instead of searching every

pixel for a match, they use their PatchMatch algorithm to find the correspondences. With additional

8



CHAPTER 2. RELATED WORK 2.2. EXEMPLAR BASED METHODS

(a) Original Image (b) Damaged Image (c) Result using patch size 3x3

(d) Result using patch size 7x7 (e) Result using patch size 25x25

Figure 2.3: Varying Patch Size Completed using [1]

depth information made available, He et al. [10] further extended [9] to simultaneously in-paint both

colour and depth images for object removal. They constrain the search region to regions farther in

depth than the object being removed. This method performs well for simultaneous colour and depth

texture synthesis but fails in the recovery of linking similar distinct areas across the hole (i.e. structure

information). Hung et al. [29] use a Laplacian pyramid to simultaneously inpaint structural features and

texture features for each level in the pyramid.

In all previously mentioned methods, the patch size is fixed and most often specified by the user [9,10,

23,27]. Criminisi et al. [23] suggests that the patch size be slightly larger than the largest distinguishable

texture element present within the known region. However, it is very difficult to choose a good patch size

without trial and error and it may be inappropriate to let all the patches have the same size because local

feature characteristics change within the image. Figure 2.3 shows results completed using [1] and using

different patch sizes. As can be seen in Figure 2.3 the patch size directly affects the overall completion

accuracy. To address this issue, Drori et al. [30] proposed a fragment-based method which proceeds

in a multi-scale fashion approximating the unknown region with adaptive image fragments (patches).

9



CHAPTER 2. RELATED WORK 2.2. EXEMPLAR BASED METHODS

The patch sizes are chosen to be inversely proportional to the spatial frequency. This method performs

well in many cases, but sometimes introduces blurring artifacts. Zhou et al. [31] introduce an adaptive

patch completion algorithm, based on local image gradient magnitude histograms. They formulate an

optimization problem consisting of gradient magnitude histograms in accordance with a saliency map

computed in [32] to identify which elements in a scene are likely to attract the attention of human

viewers. The optimal patch size for all source patches is then the solution to a minimization problem.

The filling of source pixels is then achieved using the method of [23]. This method requires the use of

a visual saliency map to emphasize distinct and homogeneous features located within the image and is

used in accordance with each local gradient magnitude histogram calculation. This method performs

well in limited cases, when the object being removed is salient (i.e. stands out from its neighbors) but

may produce unsatisfying completion results when the object being considered is non-salient.
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Chapter 3

Exemplar-Based Completion

The core of our proposed method builds directly on the single image PatchMatch-based completion of

Barnes et al. [9] and in a fashion similar to He et al. [10]. This chapter describes the foundations of

exemplar-based completion as well as the efficient PatchMatch searching algorithm used to optimize

the search. In the last section we explain how the PatchMatch algorithm is used in accordance with

the exemplar selection to perform image completion. This algorithm is the backbone to our improved

method.

3.1 Exemplar Selection

Given a colour image I and its corresponding depth map D, which can be obtained by active sensing,

calculated using a stereo correspondence algorithm [33] or generated using user provided labelling [34,35].

Let HI ⊆ I be a user-specified hole region within the original colour image and let HD ⊆ D be the same

hole region located within the depth map. Therefore, HI and HD denote all unknown points(the target

region) within I and D respectively, and HI = HD = Ω denotes all unknown pixels. Furthermore, let

Ψ = Hc
I = Hc

D be the known remaining pixels (the source region) located outside the hole and separated

by some boundary ∂Ω between the known and unknown regions.

Given both Ψ and Ω, our goal is to complete the missing region Ω with some new information Ω∗,

ensuring that the resulting image will have as much global visual coherence with its surroundings Ψ.

We say that, Ω has global visual coherence with Ψ if every local patch in Ω can be found somewhere in

11
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Ψ and if every patch found is the best matching patch. Therefore, we seek new information Ω∗ which

minimizes the following objective function:

Coherence(Ψ,Ω∗) =
∑
p⊂Ω

min
q⊂Ψ

d(ψp, ψq), (3.1)

where Ω is the target/missing region, Ψ is the source/known region, ψp is a square patch centered

at pixel p with coordinates (x, y) and with p ∈ Ω, ψq is an exemplar selection patch centered at pixel q

with coordinates (x, y) and with q ∈ Ψ and d(ψp, ψq) is a measure of the difference between patches ψp

and ψq.

To ensure maximum visual coherence in equation (3.1) we need Coherence(Ψ,Ω∗) to be a minimum.

Therefore, we need to ensure that every patch located with the missing region is filled with its best

matching patch located within the known region, thus penalizing any unwanted artifacts. The optimal

exemplar we are searching for must satisfy

ψq = arg min
ψq⊂Ψ

d(ψp, ψq), (3.2)

for each p ∈ Ω. Figure 3.1 (a) shows a Notation Diagram for exemplar-based completion. Figure 3.1

(b),(c),(d) are used to explain the selection process. Starting with Figure 3.1 (b), we first select a target

pixel and its corresponding patch ψp with p ∈ Ω, our goal is to fill in the unknown information inside

the red patch. In the red patch, there contains known and unknown information and the comparison

(i.e. d(ψp, ψq) ) is only done between known pixels. Figure 3.1 (c) shows two selection patches labelled

ψq1 and ψq2. If we select ψq2 as our match then the yellow information will be propagated into the

unknown region and the result will be non-coherent with respect to the source region as shown in Figure

3.1 (d). This is because when performing a distance measurement between patches ( d(ψp, ψq2)) the

result is very large indicating non-similarity. 1 If we select ψq1 as our match the green information will

be propagated into the unknown region resulting in a coherent result as shown in Figure 3.1 (e). This

is due to very similar matching between ψp and ψq1. For this reason, if equation (3.2) is satisfied for

every p ∈ Ω then we ensure maximum visual coherence with the surrounding information. It is also

important to note that some algorithms do not simply perform direct copying and pasting of pixels into

the unknown region but perform colour updating based upon a weighting function [1, 27].

1In most algorithms [1, 23] this distance measurement is the sum of squared difference in the RGB colour space.
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(a) Notation Diagram (b) Target Pixel to fill

(c) Exemplar searching (d) Invalid Selection

(e) Valid Selection

Figure 3.1: Exemplar-Based Completion
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3.2 PatchMatch Searching

Matching patches between two images ( or in our case the source and target region), is also known

as computing the nearest-neighbour field which has been proven as a useful technique in the exemplar

selection. This nearest-neighbour field contains the offsets to the matching patches. PatchMatch, in-

troduced in [9], represents an approach to search the image space in attempt to find optimal exemplars

for each unknown pixel, which implies an optimal nearest neighbour field. In contrary to exhaustive

searching, PatchMatch is based on random sampling and propagation of good guesses. The main idea

behind PatchMatch is the approximate nearest neighbour (ANNF) algorithm. Even though it does not

guarantee to find an exact nearest neighbour, it converges very fast and the found ANNF corresponds

to the nearest neighbour field found by exhaustive searching after several iterations [9]. In real-world

digital images, single pixels are rarely a feature on their own and are usually apart of a larger coherent

region. Therefore, neighbouring pixels will most likely have their nearest neighbours placed alongside.

Taking this into consideration, the key insights driving the algorithm are that good patches can be

found via random sampling and due to the natural coherence of images, these matches can propagate

quickly to the surrounding area. Figure 3.2 demonstrates this idea. In Figure 3.2 (b) we have the hole

region marked in gray. Further, in Figure 3.2 (b) we perform random sampling in attempt to find good

matches for the four target patches. While these random guesses are likely to be incorrect most of the

time, Barnes et al. [9] state that in a sufficiently large region, a few lucky guess will be almost the correct

matching. Figure 3.2 (c) shows a good guess for a patch is found. It is likely that many nearby patches

have similar matching patches as shown in Figure 3.2 (d) and offsets are propagated.

14
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(a) Input Image (b) Input Image with hole and random sampling

(c) Good Guess is found from random sampling (d) Nearby patches are similar correspondances

Figure 3.2: PatchMatch Algorithm

3.2.1 Computing the Approximate Nearest Neighbour Field

The algorithm has three main components in determining the ANNF.
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Initialization

The nearest-neighbour field can be initialized by randomly assigning random values to the field or by

using prior information. In this step we randomly guess where good matches may be found.

Propagation

If we denote the coordinate of p as (x, y) and the offset between p and its exemplar q as v(x, y) we

attempt to reduce D(v(x, y)), where D is a distance function between two patches, by exploiting the

spatial coherence with its surrounding neighbours. On odd iterations, we attempt to improve v(x, y)

using the known offsets of v(x− 1, y) and v(x, y − 1) and taking the new value of v(x, y) to be

argmin
(x,y)

(D(v(x, y)), D(v(x− 1, y)), D(v(x, y − 1))). (3.3)

On even iteration we search in the alternate directions and attempt to improve v(x, y) using the

known offsets of v(x+ 1, y) and v(x, y + 1) taking the new value of v(x, y) to be

argmin
(x,y)

(D(v(x, y)), D(v(x+ 1, y)), D(v(x, y + 1))). (3.4)

This means that we compare each patch in the offset map with its left and upper patches on even

iterations and right and bottom patches on odd iteration. The patch which is more similar to the

according target patch is the one which replaces the offset values at the belonging position in the offset

map.

Random Searching

After the propagation step we preform random searching in which we search for good patches from offsets

around a certain region around the current pixel. If there is a better match than the offset map gets

overwritten at this position. Therefore, we improve v(x, y) by testing a sequence of candidate offsets

at an exponentially decreasing distance from v(x, y). Letting V0 = v(x, y), we search inside the radius

dedicated by the formula:

Ui = V0 +WαiRi (3.5)

16



CHAPTER 3. EXEMPLAR-BASED COMPLETION 3.3. ADOBE CONTENT AWARE FILL

Where W is the search window, i is the iteration, α exponential factor which decrease the size of the

search area every iteration, Ri random value between [1,-1] and V0 is the center of the radius. A a value

of α = 0.5 is proposed by [9].

Halting Criteria

As shown in [9], a fixed number of iterations had been found to work well. Barnes et al. show that after

approximately 5 iterations that NNF had almost always converged.

3.3 Adobe Content Aware Fill

As briefly mentioned in Chapter 2, the image completion algorithm of Adobe photo-shop is considered

the current state-of-the-art method and its algorithm proceeds as follows.

1. Using a coarse-to-fine gradual resizing process to further enforce global consistency and to speed up

the convergence, they perform an iterative process in multiple scales using spatio-pyramids2.Each

pyramid level contains half the resolution in spatial dimensions and the optimization starts at the

coarsest pyramid level with the solution being propagated to finer levels for further refinement. At

the coarsest level, all missing pixels now contain diffused colour information. During the resizing

process, the original image and hole mask are down sampled to the current resolution.

2. It uses PatchMatch to search for matches between the missing pixels and the known region:

2a. PatchMatch initializes its pixels randomly, that is the ANNF contains a random sample of offsets

from the source region of the original image.

2b. It updates the nearest neighbour field using propagation and random search. In the comparisons

between patches, it uses the sum of squared differences in the RGB colour space to determine

optimal exemplars and to ensure equation (3.1) is minimized.

2c. Steps 2a and 2b may be iterated multiple times for better results. Barnes et al. [9] show it converges

in 4-5 iterations.

2The authors do not provide detail as to which downscaling method was used.
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3. Once the NNF converges, the algorithm then updates the colour information, using a voting

algorithm. Let c be the colour value of a target pixel p ∈ Ω. After running several iterations of

PatchMatch which ensures proper convergence, the colour value of pixel p is then updated using

a weighted blending of values of the sources patches ψq matched to each target patch ψp that

overlaps pixel p. The colour of pixel p is then given by

c =

∑
wici∑
wi

, (3.6)

where ci is the colour value of pixel p given by a source patch ψiq and wi is a per-pixel weighting.

This same distance transform weighting function as in [27], defined as

wi = γ−dist(p,T ), (3.7)

As proposed by Wexler et al. [27] we use γ = 1.3 and dist(p, T ) is the spatial distance from p to

the boundary of the target region T .

4. When the results are converged at a given resolution, they are then up-scaled and we start over

again at step 2. This repeats until the image is up-scaled to its original size.

Figure 3.33 shows a result produced using this method. Due to the randomization of offsets in each

level of the pyramid, this algorithm suffers from unconstrained search spaces. In order to ensure proper

structure propagation in the completed image, user provided constraints must be manually drawn on

the image as shown in red and green of Figure 3.3 (b). Without these constraints, the fence in Figure

3.3 (c) would not be completed properly. Further, in the matching of patches, the size of the patch is

also a user inputted parameter, the user must manually input a desired patch size and using trail and

error visually determine which patch size produces the best completion result.

3Result taken from [9]
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(a) Input Image (b) Input Image with hole(blue) and constraints(red and
green)

(c) Completed image using [1]

Figure 3.3: Content Aware Fill Result
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Chapter 4

Methodology

We first allow to user to select an unwanted region (or multiple regions) located within a colour image.

In the filling process, we modify the conventional exemplar based completion methods by extending to

a RGBD framework similar to [10]. We first fill in the depth map in the unknown region and constrain

the PatchMatch-based search space to only consider pre-filled depth information in the texture synthesis

of the colour image. In this chapter we provide further detail of the depth guided image completion

approach, by separating the completion process into depth completion and colour texture synthesis.

4.1 Depth Completion

A depth map is stored as grey scale image, where the intensity values represent the depth, or distance,

of a pixel from a camera. When working with depth information, it is important to note that a depth

map has very different characteristics from an ordinary RGB image. Unlike colour images, which contain

rich texture information, a depth map generally contains smooth regions with strong edges that coincide

with distinct object boundaries. Unless the user chooses to retain the existing depth that information,

we then first fill in the depth maps in the respective target region using a diffusion filling algorithm that

ensures any structure information is properly propagated across the target region.
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4.1.1 Pre-processing of the depth map

Some form of pre-processing is necessary when working with depth maps as they often have missing

pixels due to occlusions or spurious depth estimates due to limitations of the sensor acquisition tools [33].

Therefore, prior to use, we first fill any missing regions in the depth map using the hole filling method

of [36] and [10]. For each missing depth pixel we consider its 8-connected neighbours as candidates for

the filling process. Since missing depth information is often a result of when a foreground object partly

occludes a background object, we assume that the missing depth information is to be propagated from

its adjacent background [10].We define the foreground object as the pixel with the largest intensity value

and the background object as the pixel with the smallest intensity value contained in the 8-connected

neighbourhood. We then replace the unknown pixel with the smallest value, and repeat for all unknown

points. That is, for every p ∈ Ω ( Where Ω in this case are missing pixels due to occlusions), there are

eight candidate depth values considered for filling, which is denoted as N8(p) . Using our assumption,

we select min(N8(p)) as the depth value for pixel p. Figure 4.1 (b) and (c) shows the before and after

pre-processing of the depth map.

4.1.2 Depth Map Completion Via Diffusion

After the depth map pre-processing step, we use a method similar to [17] and [16]. For each patch ψp

centered on p ∈ Ω, we iteratively erode and restore all the pixels on the current boundary of Ω through a

feature matching algorithm propagating known pixels smoothly into the unknown region. The algorithm

proceeds as follows: First, within a search scope ΨD = Ω⊕B, where ⊕ denotes the morphological dilation

operation, and B is a 7x7 structuring element, each known patch ψq with q ∈ ΨD is compared to ψp

with p ∈ Ω using the distance measurement.

d(ψp, ψq) = ddepth =
∑

(i,j)∈N8(p,q)

|ψp(i, j)− ψq(x+ i, y + j)| , (4.1)

where ψp is a square patch with grey level intensities ψp(i, j) at location (i, j), ψq is an exemplar square

patch with grey level intensities ψq(i, j) at location (i, j), N8(p, q) is an 8-connected neighbourhood

centered at p and q and ddepth is the sum of absolute differences between ψp and ψq in depth. It is

important to note that only valid pixels contained in Ψ are used in the computation of ddepth and we
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(a) Original Image (b) Before Pre-Processing

(c) After Pre-Processing

Figure 4.1: Depth Map Pre-Processing

normalize ddepth by dividing by number of valid pixels. Once the patch ψq is found within the search

scope and satisfies equation (2.3), the values of the known pixels within ψq are then copied into the

unknown patch ψp and this process repeats for all p ∈ Ω. After each iteration, we repeat until each

unknown pixel is flagged as known. Assuming distinct image areas are spatially continuous and are only

separated by the hole, this algorithm provides diffusion from nearby pixels around the hole to be diffused

into the hole propagating both structure and texture.

Figure 4.2 (a) and (b) show the original image and its corresponding pre-processed depth map, (c)

and (d) show a user selected region marked in red (i.e. Removal of a foreground object) for the colour
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image and depth map, respectively. For each unknown patch ψp centered with p ∈ Ω (the red region in

this case), we constrain the search of candidates exemplars to only look within black region shown in

Figure 4.2 (e). This not only speeds up the completion process (i.e. As opposed to searching trough the

entire image) but ensures structure is properly propagated across the target region as shown in Figure

4.2 (f).
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(a) Original Image (b) Corresponding Pre-Processed depth map

(c) Colour Image with hole(Red) (d) Corresponding Depth Map with hole(Red)

(e) Constrained Search Space (black) (f) Diffused Depth Information

Figure 4.2: Diffused Depth Information
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4.2 Colour Image Texture Synthesis

After the depth completion, we use the PatchMatch-based algorithm described in chapter 3 to find

optimal exemplars within the source region. We use the filled depth information as a constraint narrowing

down the search field. Different from [9] we do not proceed in a multi-scale fashion but preform the

PatchMatch steps directly on the image containing the missing information.

4.2.1 Initialization

Before we start the ANNF for the first time, it is necessary to initialize the offset map with random

values. We differ from [9] in that we do not allow the initialization to be completely random and we

differ from [10] since we do not initialize to only farther depth values. We use the completed depth

information to constrain the initialization of the ANNF allowing for a better initialization.

After completing the desired depth map, each unknown pixel in depth now contains a new depth

value satisfying equation (4.1). As opposed to [9] and [10] we use this completed depth information

to constrain and initialize our ANNF for all pixels within Ω by randomly selecting colour information

corresponding to its filled depth information. In other words, for each unknown pixel p ∈ Ω we randomly

select

p = {qR|qR ∈ Ψ ∩ qR ∈ dp}. (4.2)

where qR is a randomly selected exemplar, and dp is the completed depth information for pixel p If

two objects have the same depth information but have very different colour characteristics (i.e. colour

or texture), we can further constrain the search space and avoid invalid random selection by adding an

additional closeness constraint. We allow the offsets to only be selected in an area around the hole. This

allows only searching within the region under consideration, and avoids searching within other regions

at the same depth information. Figure 4.3 (c) and (d) shows He et al. [10] initialization in comparison

to our depth constrained initialization, respectively. Using the depth map from Figure 4.2 (f) as our

depth constraint values, it can be seen in Figure 4.3 (c) that our randomly initialized colour values and

offsets (i.e. ANNF) enhance the correctness of the randomly selected pixels. The more accurate the

Initialization the better the prorogation of offsets in the subsequent steps, allowing for a more coherent

and visually plausible completion result.

25



CHAPTER 4. METHODOLOGY 4.2. COLOUR IMAGE TEXTURE SYNTHESIS

(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Initialization (d) Depth Constrained Initialization

Figure 4.3: Colour Image Initialization
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4.2.2 Optimization

In the process of selecting the best matching patch, many algorithms take the sum of squared differences

(SSD) in the RGB colour space between the target patch(ψp) and the exemplar selection patch (ψq)

as their matching criteria [1, 23]. He et al. [10] extend to consider the SSD in both colour and depth.

They choose the patch that results in a minimum SSD value and satisfying equation (2.3) [1, 10, 23].

However, within each patch ψp with p ∈ Ω there are reliable/known pixels that fall within Ψ and

unreliable/unknown pixels that fall within Ω as shown in Figure 4.4 where the red pixels correspond to

Ω and everything outside Ω corresponds to Ψ.

Figure 4.4: Target Patch ψp

In previous approaches, this SSD criterion only considers the similarity between the known pixels in

the target patch (i.e. pixels that fall within Ψ) and the corresponding pixels in the exemplar selection

patch thus, a minimum SSD value corresponds to only a good match of known pixel values [1, 10, 23]

as shown in Figure 4.5 where the known pixels in ψp and corresponding pixels in ψq results in an exact

match.
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Figure 4.5: Invalid SSD Comparision

Directly replacing (or even using) the blue pixels of patch ψq to fill the red pixels in patch ψp

in Figure 4.5 , results in false local minima and error accumulation and propagation throughout the

unknown region since structure not properly completed. This is due to insufficient information being

used in the matching criteria and it does not consider the variance between the known target pixels

and the pixels that are candidates for replacing the unknown target pixels. Therefore, to overcome this

issue, we further improve the SSD objective function of [1,10,23] by incorporating a variance dependant

weighting, defined as:

d(ψp, ψq) = (1− T (σ2))dcolour + T (σ2)ddepth, (4.3)

where dcolour and ddepth are the sum of absolute differences between ψp and ψq in the RGB colour space

and depth respectively, σ2 is the variance of the known target pixels and the candidate pixels and T (σ2)

is a membership function used to penalize colour mismatch. Variance is a measure that determines how

far points are spread out relative to their mean value. A small variance indicates that the data points are

very close to their mean, while a high variance indicates that the data points are very spread out from

the mean. While the randomly selected offsets provide a good idea of where a potential match could

be found, its colour may not be coherent with its surroundings which may produce false SSD colour
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Figure 4.6: Variance Patch

matching and error accumulation. To avoid this, we take the known pixels in the target patch ψp and

the candidates that will be replacing the unknown target pixels ψq and determine the local variance.

Since determining the local variance of a RGB image does not result in a single value, we average the

three colour channel and determine the local variance in grey scale this is shown in Figure 4.6. If the

variance is small we have a good indication that the candidate pixels are a good match and equation

(4.3) will prefer dcolour over ddepth. However, if the variance is high, equation (4.3) then prefers ddepth

over dcolour. We use a membership function T (σ2) which is similar to the soft threshold function of [37]

as our weighting which controls the error term in equation (4.4). We define our membership function as:

T (σ2) =
1 + tanh(φ(σ2 − ε))

2
, (4.4)

where ε is the threshold value and φ controls the sharpness of the transition. Figure 4.7 shows our

membership function for different values of φ and ε. In our experiments we use φ = 7 and ε = 0.5 which

corresponds to the yellow curve in Figure 4.7. The yellow curve was chosen based upon experimental

results, it was concluded that a patch with a variance value of σ2 = 0.75 contained a non-coherent match

when used to repair the unknown region. Therefore, if σ2 ≥ 0.75, we use the yellow curve to prefer ddepth
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over dcolour ( i.e. T (σ2) = 1). It was further concluded that a patch with a variance value σ2 ≤ 0.2

contained a coherent match when used to repair the unknown region. Therefore, we use the yellow curve

to prefer dcolour over ddepth ( i.e. T (σ2) = 0).

Figure 4.7: Variance Membership Function

For further emphasis of this concept and using the patches from Figure 4.5, we formulate a new

patch for the variance calculation as shown in Figure 4.6. Although the SSD calculation may result in

a mimima it is clear that the variance of this new patch is very large, implying a false local minima

was found. Therefore, we penalize the SSD in colour (i.e. dcolour) and avoid error accumulation and

propagation into the target region.
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4.2.3 Adaptive Patch Size Determination

As previously mentioned in Chapter 2 and 3, the size of the patch directly affects the final completion

accuracy since local image characteristics change through-out the image. Therefore, having a fixed patch

size may result in poor completion results as shown in Figure 4.8 (b), where we use the method of [1] to

complete the image using a fixed patch of size of 11x11. Intuitively, we should have small patch sizes in

areas that cover many distinct objects and larger patch sizes in areas with few distinct objects as shown

in Figure 4.8 (c), the completion result is shown in Figure 4.8 (d). Building upon [38] and in a manner

similar to [31], we formulate the problem as an optimization problem, minimizing an objective function

of local edge orientated histograms. We proceed in the following steps in the patch size determination.

(a) Image and hole (blue) (b) Result using patch size 11x11

(c) Adaptive Patch Sizes (d) Adaptive Patch Result

Figure 4.8: Patch Size Determination

1) Gradient Computation

Since local object appearance and shape can be characterized well by the distribution of local intensity

gradients and edge directions [38], the first step of calculation is the computation of the gradient values.
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We apply the 1D centered point discrete derivative mask in both the horizontal (Dx) and vertical (Dy)

directions, filtering each colour channel with the following filter kernels:

Dx =

[
−1 0 1

]
and Dy =


1

0

−1

. (4.5)

Given a colour image I we then obtain the x and y derivatives for each RGB channel using the

convolution operation:

Ix = I ∗Dx and Iy = I ∗Dy, (4.6)

and further obtain the magnitude(|G|) and orientation(θ) of the gradients for each RGB channel calcu-

lated as

|G| =
√
I2
x + I2

y and θ = arctan
Iy
Ix
. (4.7)

Figure 4.9 shows the magnitude and orientation for each RGB channel of a colour image.
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Figure 4.9: Magitude and Orientation of RGB Image

2) Orientation Binning

The second step of the calculation involves creating the edge orientated histograms. Within a square

patch (ψsq(k, p)) of size kxk and centered at p with p ∈ Ω, each pixel within ψsq(k, p) casts a weighted

vote for the histogram itself. We use 9 orientation bins that are evenly spread over 0 to 360 degrees,

and each weighted vote is a function of the gradient magnitude itself at that pixel. For each pixel within

ψsq(k, p), we use the colour channel with the highest gradient magnitude for that pixel. Figure 4.10

shows the histograms for a subsection of an image. In Figure 4.10, it can be seen that in areas that

contain a lot of edges (i.e. the wooden arch) have a corresponding histogram which contains a lot more

information as opposed to areas containing no edges, this is due to gradient calculation in detecting this

edges at all different angles. In Figure 4.10 we use a constant patch size of 9x9. We use the idea that these

local features can be detected through the use of a histogram and develop a patch size determination in

the following step.
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Figure 4.10: Histogram of Image Subsection

3) Determining Patch Sizes

Now for each p ∈ Ω, we construct a sequence of edge orientated histograms over ψsq(k, p) for different

sizes of k and perform a similarity measure between histograms. The more differences two histograms

have, the less similar the corresponding patches are, and our goal is to find an optimal patch size with

the smallest structure changes inside. Let Hist(k, p) be a edge orientated histogram for a square patch of

size kxk and centered on pixel p, with p ∈ Ω. Further let, Hist(k+2, p) be an edge orientated histogram

for a square patch of size (k + 2)x(k + 2) and centered on pixel p, with p ∈ Ω. For each histogram, let

P = (p1, p2, ..., p9) be the 9 orientation bins corresponding to Hist(k, p) and let Q = (q1, q2, ..., q9) be

the 9 orientation bins corresponding to Hist(k + 2, p). We suggest that the optimal patch size for all

p ∈ Ω be the solution to the following problem:

min(
∑
p∈Ω

(sim(Hist(k, p), Hist(k + 2, p))), (4.8)
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Figure 4.11: Patch Size Determination

where sim(Hist(k, p), Hist(k + 2, p) is the cosine similarity between the two histograms defined as:

sim(Hist(k, p), Hist(k + 2, p)) =
p1q1 + p1q1 + ...+ p9q9√

p2
1 + p2

2 + ...+ p2
9 ·
√
q2
1 + q2

2 + ...+ q2
9

(4.9)

The minimum value of k used in our experiments is k = 7 to ensure a large distribution of pixels

in our histogram calculation, and we set no limit on the maximum value that patch size could obtain.

Figure 4.11 demonstrates this patch size determination. The smallest blue patch is our initial 7x7 patch

and we grow to 9x9 patch shown by the second slightly larger blue patch. Since texture information is

the same for both patches, performing a similarity measure between there corresponding edge orientated

histograms results in a large similarity value. Growing to a patch size of 11x11 shown as the green patch,

we again perform a similarity measure between the 9x9 and the 11x11 patch. Since texture information

is the same the resulting similarity value is high. Growing once again to a 13x13 patch shown as the

red patch we perform a similarity measure better the 11x11 and the 13x13 patch. However, in the red

patch, new edge information is now introduced which affects the edge oriented histogram. Performing

a similarity measure between the 13x13 and the 11x11 patches results in a low similarity. Therefore

we found a minimum value and we would use the green patch as our determined patch. The minimum
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in equation (4.8) searches for the first occurrence of this dissimilarity between patches. The patch size

starts at a size of 7x7 and will continue to grow until a dissimilarity is found between edge oriented

histograms.

4.2.4 Propagation

After the initialization step and once the patch size is determined, then for each overlapping patch ψp

for every p ∈ Ω we compute the offset to the nearest neighbour patch ψq with q ∈ Ψ. We perform the

same propagation steps as discussed in section 3.2.1 by checking neighbouring offsets on odd and even

iterations.

4.2.5 Random Search

As depth control reduces the search space in the initialization step, the first 3 iterations we do not

perform random searching. This is to avoid falling in suboptimal local minima. In subsequent iterations,

we perform random searching as explained in section 3.2.1.

4.3 Colour and Depth Updating

For each unknown pixel, we update our colour and depth information using the weighting proposed in

section 3.2.1 and used by [1]. Figure 4.12 and 4.13 (a) (b) (c) shows our results after Initial, third and

fifth iterations for both the colour and depth completion, respectively. Figure 4.12 and 4.13 (d) (e) (f)

shows both the colour and depth completion completion results for [1], [23] and [10], respectively.
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(a) Initial Result (b) 3rd Iteration

(c) 5th Iteration(Our Result) (d) Result from [1]

(e) Result from [23] (f) Result from [10]

Figure 4.12: Colour Image Completion Results



(a) Initial Depth Result (b) 3rd Iteration

(c) 5th Iteration(Our Result) (d) Result from [1]

(e) Result from [23] (f) Result from [10]

Figure 4.13: Corresponding Depth Completion Results



Chapter 5

Results and Comparsions

We test our algorithm on Middlebury datasets [39,40] and datasets provided by [41,42] where the colour

images and corresponding depth maps are obtained through video sequences. Figures 5.1-5.4 and Figures

5.9-5.11 show test results produced by no-depth guiding [1, 23], depth-guided inpainting [10] and our

filling scheme discussed, i.e. Random initialization, adaptive patch determination, iterative propagation

and random search. On the images inpainted without depth constraints, textural content is drawn from

inappropriate background exemplars resulting in undesired structural completion as shown in figures

5.1-5.4 c,d,e. Such errors are avoided in our results with our algorithm since we depth constrain our

exemplar search to only consider exemplars constrained to the completed depth information. We further

show that our method produces overall improved results for object removal as shown in figures 5.9-

5.11. Specifically, if we examine figure 5.10, the results of figure 5.10 c,d,e produce unwanted artifacts,

failure of linking similar regions across the hole and error propagation, respectively. Our result in figure

5.10 (f) avoids these unsatisfying results by using depth information to correctly link similar regions

across the hole and an improved SSD criteria to avoid unwanted artifacts and error propagation.Since

methods [1, 23] do not perform depth map completion, we only compare our colour image results. Our

depth completion results we directly compare with the method of [10] since they perform simultaneous

colour image and depth completion. The results of He et al. [10] constrain the search space to only

consider farther depth values, which leads to unsatisfying results when the hole contains structural

information as shown in figures 5.1-5.4 since it is only appropriate to search behind the object only for

object removal.
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To further conduct comparisons, we take the images in figure 5.1-5.4 (a) as groundtruth, and randomly

remove some region in these images as shown in red in figure 5.1-5.4 (b). We then run the completion

algorithms of [1,10,23] and our proposed method to complete the randomly removed region. For objective

evaluation, we use the peak signal-to-noise ratio (PSNR) to measure the completion quality given as:

PSNR = 10log10(
255

1
M

∑
p∈T |Io(p)− Ic(p)|

), (5.1)

Where Io(p) and Ic(p) are the values at pixel p in the original and completed images respectively,|Io(p)−

Ic(p)| is the absolute differences in the RGB colour space, T is the target region and M is the number

of pixels in the target region. Table 5.1 shows results produced by our approach and other algorithms.

It can been seen in table 5.1 that our approach produces better or comparable results then the previous

methods. However, since the PSNR objective measure only attempts to quantify the visibility of errors

between the inpainted image and the original image, any colour mismatch between images will result in

a lower PSNR which implies a less satisfying completion result. Image completion aims in producing

a coherent and visually plausible result and the optimal solution may differ from the original image

resulting in poor signal-to-noise ratio (PSNR) but having high visual quality. Therefore, we further use

a structural similarity index measurement (SSIM) introduced in [43] for assessing the image quality. Since

human visual perception is highly adapted for extracting structural information, the quality assessment

is based on the degradation of this structural information with 0 being poor quality assessment and

1 being the highest. Table 5.2 shows the results for our method and previous approaches.Examining

the results of table 5.2 we see that the SSIM may indicate that the results are of similar quality, e.g.,

Figure 5.1, we see 0.9888, 0.9884, 0.9857 and 0.9896, since the quality assessment for each method

contains minor differences. Also, Figure 5.2 has a higher SSIM value for previous methods than the

proposed method indicating previous approaches outperform our proposed method.Therefore, to further

demonstrate the effectiveness of our approach, we conducted a perceptual survey in which 100 randomly

selected human volunteers were asked to select which image produced the most satisfying result and our

findings are tabulated in table 5.3. As can be seen in table 5.3, our results had the highest percentage of

human selection and it was clearly the preferred result from among the 100 human volunteers. While the

SSIM indicates that many results may be of equal image quality and in some cases fail to demonstrate

the effectiveness of our proposed method. Examining the human perceptual results we see that this is
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not the case but that our proposed method is the preferred result for each case. While figure 5.2 has

a higher SSIM value for Criminisis method than the proposed method, human perceptual results show

that our method exhibits much higher perceptual quality as it was selected 79.6% while the Criminisi

only 12.6%. In all cases, the perceptual survey shows the effectiveness of our adaptive depth guided

approach as opposed to non-depth guided results.

5.1 Qualitative Results

5.1.1 Colour Image Completion Results for Random Removal

In the followings figures, we randomly remove a section of the image and complete the missing parts.

We compare our method to [1, 10,23].
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(a) Original Image (b) Image with hole (red)

(c) Criminisi et al. [23] Result (d) Content Aware Fill [1] Result

(e) He et al. [10] Result (f) Our Result

Figure 5.1: Colour Image Completion Results - Ryerson Pathway
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(a) Original Image (b) Image with hole (red)

(c) Criminisi et al. [23] Result (d) Content Aware Fill [1] Result

(e) He et al. [10] Result (f) Our Result

Figure 5.2: Colour Image Completion Results - Ryerson Yard
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(a) Original Image (b) Image with hole (red)

(c) Criminisi et al. [23] Result (d) Content Aware Fill [1] Result

(e) He et al. [10] Result (f) Our Result

Figure 5.3: Colour Image Completion Results - Monopoly
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(a) Original Image (b) Image with hole (red)

(c) Criminisi et al. [23] Result (d) Content Aware Fill [1] Result

(e) He et al. [10] Result (f) Our Result

Figure 5.4: Colour Image Completion Results - Ryerson Campus
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5.1.2 Corresponding Depth Completion for Random Removal

The following figures are the corresponding depth completion for figures 5.1,5.2,5.3,5.4, respectively. As

previously noted, we only compare our depth completion results to He. et al [10], since they preform

simultaneous colour and depth completion.

(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Result (d) Our Result

Figure 5.5: Depth Completion Results - Ryerson Pathway
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(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Result (d) Our Result

Figure 5.6: Depth Completion Results - Ryerson Yard
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(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Result (d) Our Result

Figure 5.7: Depth Completion Results - Monopoly
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(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Result (d) Our Result

Figure 5.8: Depth Completion Results - Ryerson Campus
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5.1.3 Colour Image Completion Results for Object Removal

In the followings figures, we randomly remove an object in the image and complete the missing parts.

We again compare our method to [1, 10,23].

(a) Original Image (b) Image with hole (red)

(c) Criminisi et al. [23] Result (d) Content Aware Fill [1] Result

(e) He et al. [10] Result (f) Our Result

Figure 5.9: Object Removal Completion Results - Lawn
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(a) Original Image (b) Image with hole (red)

(c) Criminisi et al. [23] Result (d) Content Aware Fill [1] Result

(e) He et al. [10] Result (f) Our Result

Figure 5.10: Object Removal Completion Results - Golf
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(a) Original Image (b) Image with hole (red)

(c) Criminisi et al. [23] Result (d) Content Aware Fill [1] Result

(e) He et al. [10] Result (f) Our Result

Figure 5.11: Object Removal Completion Results - Road
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5.1.4 Corresponding Depth Completion for Object Removal

The following figures are the corresponding depth completion for figures 5.9,5.10,5.11, respectively. As

previously noted, we only compare our depth completion results to He. et al [10], since they preform

simultaneous colour and depth completion.

(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Result (d) Our Result

Figure 5.12: Object Removal Depth Completion Results - Lawn
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(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Result (d) Our Result

Figure 5.13: Object Removal Depth Completion Results - Golf
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(a) Original Image (b) Image with hole (red)

(c) He et al. [10] Result (d) Our Result

Figure 5.14: Object Removal Depth Completion Results - Road
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5.2 Quantitative Results

Image PSNR (dB)
Criminsi et al. Content Aware Fill He et al. Method Proposed Method

Figure 5.1 - Pathway 30.0585 31.1074 29.0667 31.1442
Figure 5.2 - Ryerson Yard 27.5789 27.7083 27.3805 28.5336
Figure 5.3 - Monopoly 29.6622 30.0281 29.6762 31.6055
Figure 5.4 - Ryerson Campus 27.3945 27.0454 27.8492 29.2307

Table 5.1: PSNR Calculations

Image SSIM Index
Criminsi et al. Content Aware Fill He et al. Method Proposed Method

Figure 5.1 - Pathway 0.9888 0.9884 0.9857 0.9896
Figure 5.2 - Ryerson Yard 0.9892 0.9890 0.9883 0.9654
Figure 5.3 - Monopoly 0.9139 0.9590 0.9253 0.9854
Figure 5.4 - Ryerson Campus 0.9639 0.9590 0.9653 0.9654

Table 5.2: SSIM Index Calculations

Image Selected Image (/100)
Criminsi et al. Content Aware Fill He et al. Method Proposed Method

Figure 5.1 - Pathway 10.7% 3.9% 2.9% 82.5%
Figure 5.2 - Ryerson Yard 4.9% 7.8% 3.9% 83.5%
Figure 5.3 - Monopoly 12.6% 6.8% 1% 79.6%
Figure 5.4 - Ryerson Campus 4.9% 6.8% 1% 87.4%
Figure 5.10 - Golf 18.4% 2.9% 18.4% 77.7%
Figure 5.11 - Road 5.8% 28.2% 6.8% 59.2%

Table 5.3: Subjective Survey Results

5.3 Limitation of Proposed Method

For the colour image results shown in Figures 5.1-5.4 and 5.9-5.11, the proposed method performs well

when the objects are fronto-parallel to the camera (i.e. have defined depth) as shown in Figures 5.5-5.8

and 5.12-5.14. However, for cases when objects contain varying depth information ( i.e. going into

the page) the proposed method fails when a hole falls within this region. This is because in the depth

completion, directly copying and pasting pixels is inappropriate since depth in this case is slowly varying.
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Chapter 6

Conclusion and Future Work

In this thesis project, we have presented a method that fills in a hole left by the removal of an unwanted

or undesired area in an image. In contrast to other single image completion methods, our approach

considers the structure propagation in allowing similar regions separated by the hole to be linked in the

resulting depth map. Our method first creates this structure by completing its corresponding depth map

through the use of a diffusion based completion process. This completed depth information is then used as

a constraint to guide structure and texture synthesis which is achieved using an exemplar-based method

of [9] for the corresponding colour image completion. We extend the objective function of the exemplar-

based method by incorporating a variance weighting, avoiding error accumulation and propagation during

the exemplar searching. Further, to avoid the ambiguity of the patch size determination, we adaptively

determine an optimal patch size based upon local image characterises. This requires no user input in the

completion of both the colour and depth images. This method can create structure that is realistic at

all scales and texture that shares visual coherence with its surrounding information as shown in Figures

5.1-5.4 and Figures 5.9-5.11. To further conduct comparisons, we calculate the PSNR and SSIM index

used to demonstrate how our method compares quantitatively to previous approaches as shown table 4.1

and 4.2 respectively. While the PSNR and SSIM index values may not show our methods superiority,

we conduct a subject survey shown in table 4.3, which clearly shows the effectiveness of our approach

in comparison to previous approaches.
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6.1 Future Work

Firstly, one possible extension would be to allow completion of objects that contain varying depth

information (i.e. the limitation). This could be achieved by using another domain that is sensitive to

small changes in information such as a gradient domain.

Future projects may also consist of extending the ideas from this thesis project from images to

videos. With 3D video devices being made widely available, a future project may consist of using

this stereoscopic information for real-time video completion. Devices such as the Xbox connect, oculus

rift and stereoscopic cameras are just some the devices that could potentially be used. However, before

considering extending this idea for video completion, some improvements need to be made in the existing

algorithm. Since 3D information comes in pairs ( i.e. Right and Left view), the first step for video

completion would be to allow for stereoscopic consistency in the completion process. This means allowing

the existing right view information to be used to complete the left view and vice versa. Also, since video

contains additional information (i.e. Frames ), an extension to the optimization equation needs to be

employed to consider the consistency between frames. The end idea should be an algorithm that allows

for real-time completion in 3D video.
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