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Abstract

FINITE ELEMENT ANALYSIS OF A SINGLE CONDUCTOR WITH

A STOCKBRIDGE DAMPER UNDER AEOLIAN VIBRATION

© Oumar Barry, 2010

Master of Applied Science

in the Program of

Mechanical Engineering

Ryerson University

A finite element model is developed to predict the vibrational response of a sin-

gle conductor with a Stockbridge damper. The mathematical model accounts for

the two-way coupling between the conductor and the damper. A two-part numerical

analysis using MATLAB is presented to simulate the response of the system. The

first part deals with the vibration of the conductor without a damper. The results

indicate that longer span conductors without dampers are susceptible to fatigue fail-

ure. In the second part, a damper is attached to the conductor and the effects of

the excitation frequency, the damper mass, and the damper location are investigated.

This investigation shows that the presence of a properly positioned damper on the

conductor significantly reduces fatigue failure.
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ẇc Conductor velocity

wdr Right-side damper transverse deformation
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Chapter 1

Introduction

1.1 Background

This thesis focuses on Aeolian vibration of transmission lines, the vibration caused

by a wind force to a single conductor. This type of vibration, also known as wind-

induced vibration, has a high frequency and small-amplitude motion, which arises

from alternating forces caused by vortex shedding. Vortex shedding is associated with

the flow of air across a bluff body. In addition to Aeolian vibration, there are two other

types of conductor motion that are also caused by wind force. The first is galloping

which is characterized by large amplitudes and low frequencies of vibration and the

second is wake-induced oscillation. The latter is restricted to bunddle conductor and

it is distinguished by medium amplitude of vibration and higher natural frequencies,

but its frequencies are usually lower than Aeolian vibration frequencies.

The term Aeolian vibration only refers to cases in which the fluid is air. Trans-

mission lines are not the only structures that experience Aeolian vibration. Other

examples of systems that also experience vortex induced vibration include bridges,

heat exchangers, offshore platforms, and underwater cables. The frequency of Aeolian

vibration ranges from 3 to 50 Hz and the wind speed ranges from 1 to 7 m/s. Usually

the vibration of the conductor is not noticeable to an observer because the diameter

of the conductor ranges from 6 to 50 mm, which in general is greater than the ampli-

tude of vibration [1]. The maximum amplitude of vibration occurs at resonance and
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this arises when some of the natural frequencies of the conductor coincide with the

forcing frequency also known as Strouhal frequency.

Any type of vibration imperils the life of the structure. Aeolian vibration of

transmission lines, if left uncontrolled, can result in serious accidents causing injuries

and death, and/or considerable economical loss.

The vibration of the conductor produces alternating bending stresses and tensile

stresses in the vicinity of the clamps. Eventually, this leads to fatigue damage of the

conductor (Figure 1.1) in the form of broken strands in the outer layer, usually at the

point of contact such as the suspension clamp.

Figure 1.1: Breakage of conductor on Hydro Quebec transmission lines [2].

Past field observations show that Aeolian vibration is most likely to occur in open

fields and bodies of water (such as rivers, lakes, etc.) and usually in late evenings or

early mornings. This is not surprising since light breezes occur during these periods.

Aeolian vibration is sometimes detected when observing the conductor. However, this

is not always the case; most often it is not noticeable until damage occurs. Examples

of damages include breakage of conductor strands, insulator strings, and loosening of

parts (i.e., suspension clamps).

Aeolian vibration can be controlled by dampers. The most popular damping device
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used by transmission lines utilities is the Stockbridge damper. This damper is used to

minimize or eliminate the vibration by reducing the induced strains of the conductor

near the clamps to a safe level of 200 µm/m. Past investigations have proven that a

damper is more effective when it is designed to cover a wide range of frequencies and

when it is appropriately positioned on the conductor [1][3][4].

1.2 Motivation

Power plants are generally located in remote areas, far from cities, and high voltage

transmission lines are used to supply power to the cities. Power is transmitted through

151,848 km of overhead transmission and distribution lines across the province of

Ontario [5]. The cost of installing these lines is very high, but it can be reduced

by increasing the tension in the lines. However, increasing the tension increases

the susceptibility of the conductor to vibration which eventually leads to fatigue

failure. For safety reasons, transmission line engineers have imposed limitations on

the maximum magnitude of the tension. This limitation is 20% and 25% of its rated

tensile strength (RTS) in the summer and winter season, respectively [5].

Aeolian vibration is one of the most important of the many factors which limit the

life of conductors of overhead lines by damaging the conductor through wire fatigue

break usually at the suspension clamp where the maximum stress occurs. This failure

could lead to power interruption, hence economic loss and personal discomfort. For

instance, Hydro One residential and industrial customers in Sarnia experienced a

blackout in 2005 due to the breakage of a conductor on the Sarnia-to-Scott transformer

station. Later in 2008 another failure occurred on the transmission lines of the Cowal

junction to Longwood TS in London. The damages to both lines were attributed to

uncontrolled Aeolian vibration. Investigations concluded that the conductor tension

was quite high (27% RTS) and the dampers on the lines were not effective. Some

of the recommendations include adding more dampers to the transmission lines and

positioning them at suitable locations [6]. Figures 1.2 and 1.3 show a broken conductor

strand of the messenger wire of a Stockbridge damper, and a conductor and torsional
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damper failure on Cowal junction to Longwood TS in London, respectively.

Figure 1.2: Broken conductor strand and slippage of the messenger wire of the
Stockbridge damper [6].

Figure 1.3: Sample of conductor and torsional damper failure on Cowal junction to
Longwood TS in London [7].

Furthermore, earlier in 1996, Manitoba Hydro Company reported wind damage of

about 10 million USD due to the failure of 19 transmission towers [8]. At the CIGRE

meeting in Toronto in 2009, Electricité de France reported the collapse of 45 towers
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in the southern part of France due to Aeolian vibration [9].

In summary, the examples of transmission line and tower failures described in the

previous paragraphs show that the problem with Aeolian vibration is still a challenge

to transmission line engineers. Therefore, it is worthwhile to further study conductor

vibration in order to predict the dynamic of the conductor, which will enable trans-

mission line design engineers to justify increasing the tension in the conductor, and

optimize the selection, number, and location of dampers.

1.3 Objective

As mentioned previously, this thesis is concerned with the Aeolian vibration of trans-

mission lines. The main objective is to provide an alternate mathematical model of

a single conductor vibration with Stockbridge dampers attached to it. Unlike the

mathematical models found in the literature, this new model considers the two-way

coupling between the conductor and the Stockbridge damper. A finite element code

is written in MATLAB programming environment to assess the impact of the location

of the damper and its properties on the system response.

1.4 Thesis Overview

The thesis is arranged in five chapters. The following chapter reviews the literature

on Aeolian vibration of a single conductor. The modeling of the conductor and Stock-

bridge damper with external wind force excitation are presented. Also, the energy

balance method is reviewed.

Chapter three presents the mathematical model of a single conductor with and

without a damper. The equation of motion of a single conductor without a damper

is first derived using Newton’s law and the natural frequency equation was obtained

through the separation of variable method. Furthermore, the kinetic and potential

energies of the conductor and damper are obtained. The finite element method is

employed to obtain the discretized governing equation.
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In chapters four and five, a numerical analysis without and with a damper is

presented, respectively. The validation of the mathematical model is established

using the results in Ref. [10] and the results of the commercial finite element analysis

software ANSYS.

Finally, chapter six contains a summary of the contributions of this research and

suggestions for future work.
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Chapter 2

Literature Review

2.1 Summary of Findings

A lot of research on Aeolian vibration was done in the 70’s and 80’s. Most authors

agree that the location of the damper is crucial to the damper’s effectiveness. In 1985

Nigol and Houston [11] studied the control of Aeolian vibration of a single conductor.

They described the development of a general method for analyzing the combined

response of various single conductor-damper arrangements, presented a summary of

experimental verifications, and used the models to demonstrate optimum damping

concepts.

Feldmann [12] from Electricité de France studied the effects of Stockbridge dampers

using theoretical and experimental approach. He found that the Stockbridge dampers

were remarkably efficient and observed that counterweights do not dissipate energy,

but produce a coupling between the damper and the conductor, which makes them

good disturbers of Aeolian vibration .

In 2000, Leblond and Hardy [13] described a probabilistic model for predicting

Aeolian vibration of single conductors based on the conductor fatigue endurance limit

approach and the linear fatigue damage accumulation. Both models are used to as-

sess safe-design tensions. The endurance limit approach assesses conductor vibration

severity by comparing the maximum bending stress amplitude with the fatigue en-

durance limit of the conductor at the suspension clamp. The cumulative damage
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approach, however, assesses the severity of conductor vibration by calculating the

anticipated lifetime of the conductor. Note that this approach requires S-N curves

(cyclical stress, S, against the logarithmic scale of cycles to failure, N) for the differ-

ent classes of conductors and some wind statistics. The authors determined that the

safe-design tension is 11.1% RTS or (H/w) = 811 m and 13.2% RTS or (H/w) = 961

m for endurance limit and cumulative damage approach, respectively.

Another important paper on Aeolian vibration was published by Braga et al. [14].

The authors compared the values of fatigue endurance limits suggested by the IEEE

(Institute of Electrical and Electronic Engineers), EPRI (Electric Power Research

Institute), and CIGRE (International Council on Large Electric Systems). The IEEE

and EPRI recommendations are based on the endurance limit approach, while the

CIGRE recommendation is based on the cumulative damage approach.

An important finding from IEEE based on mechanical simulation is that the bend-

ing amplitude strain is related to the diameter of the last layer of the cable for a range

of the stress loads from 15 to 30%. The IEEE posits that the value of 200 µm/m can

meet the criteria of mechanical reliability.

EPRI provides a more elaborate formula for relating bending amplitude to the

maximum cable strain and maximum bending stress. Due to the effect of the stiffness,

the bending stress was found to be maximum in the region contiguous to the clamp.

2.2 Conductor

Aeolian vibration is characterized by the interaction of the conductor with the damper

and wind force. The following section focuses on the construction and dynamic mod-

eling of the conductor.
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Figure 2.1: Structure of a conductor [1].

2.2.1 Materials and Construction

The conductor used in transmission lines are made of several layers of individual

round wires packed tightly together in concentric counter-rotating helices (Figure 2.1

and 2.2). The most common conductor used in transmitting power is the aluminum

conductor steel reinforced (ACSR) because of its high tensile-strength-to-weight ratio.

Most of the power is transmitted through the aluminum outer layers. The inner layer

of the ACSR is made of steel to increase the strength of the conductor. ACSR

conductor is available for a wide range of steel alloys. The higher strength conductor

is usually used for river crossing (longer span) since this requires more resistance.

Other types of conductors used in transmission lines include all aluminum conduc-

tor (AAC) and all aluminum alloy conductor (AAAC). AAC consists of a minimum

purity of 99.5% of aluminium and is mostly used in urban areas and AAAC is made

of aluminum-magnesium-silicon alloy and has an excellent corrosion resistance and

strength-to-weight ratio.

2.2.2 General Mathematical Model of The Conductor

Claren and Diana [4] are among the first authors to develop a mathematical model of

a single conductor. They showed that the physical model of the conductor is similar

to an Euler-Bernoulli beam under the action of an axial load (design tension). If a
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Figure 2.2: Cross section of special conductors [1].
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constant flexural rigidity is assumed and damping is ignored, the equation of motion

in the presence of the tension T may be written as:

EI
∂4w

∂x4
− T ∂

2w

∂x2
= −m∂2w

∂t2
(2.1)

where EI denotes the flexural rigidity, m is the mass per unit length, and w is the

transverse displacement.

Using the mathematical model of Claren and Diana [4], a finite difference method

was used by Dhotard and Ganesan [3] to examine the dynamics of a single conductor

vibration with dampers. A close-form expression of the natural frequency of the

conductor was determined for a simply supported end cable, a fixed end cable, and

simply supported cable with flexural rigidity. The difference in the values of natural

frequencies found in the simply supported end cable with and without flexural rigidity

was less than 3%. The author hypothesized that for low frequency excitation (i.e., low

wind speed), the location of the dampers have negligible effect on the strain. However,

its effect is considerable in high frequencies excitation. Further, higher strains result

with increasing length of the cable which calls for the use of more dampers. The

effect of the number of dampers on the strain is negligible in low frequencies.

2.2.3 Conductor Self-Damping

When the conductor flexes the strands of the conductor slip against each other and

frictional force is induced. This relative motion is the main source of conductor

self-damping; a phenomenon when the conductor dissipates energy internally while

vibrating. Conductor self-damping can be a major source of damping, especially for

shorter span and lower tension system. Sometimes dampers are not needed for a short

span with low tension because the conductor self-damping is able to dissipate most of

the energy from the wind. However, when the tension of the conductor is increased,

the strands tend to lock and slippage is reduced, thereby reducing the conductor

self-damping. This explains why the conductor tension is usually kept low.

Past investigations on this topic have led to identification of empirical formulas
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to predict the power dissipation of the conductor due to self-damping (Psd). The

relationship is in the exponential form and contains constants that depend on the

conductor parameters [15]:
Psd
L

=
KsdY

pfu

T ν
(2.2)

where L is the span length, Y the amplitude of vibration corresponding to the natural

frequency f , Ksd is a constant of proportionality, and T is the tension of the conductor.

The parameters p, ν, and u are all exponential factors found experimentally as shown

in Table 2.1.

The table below is a tabulation of the values of the constants obtained by different

authors.

Table 2.1: Experimental conductor self-damping data.

Investigators p u ν L(m)
Tompkins et al.(1956) 2.3-2.6 5.0-6.0 1.9 36
Rawlins(1983) 2.2 5.4 - 36
Kraus and Hagedorn (1991) 2.47 5.38 2.8 30
Noiseux (1991) 2.44 5.63 2.76 63

Based on these values and the empirical formula, equation 2.2, it is obvious that

the conductor dissipates less power when the tension is increased. This observation is

in agreement with the remarks mentioned previously. Power dissipation increases in a

scenario where the tension is constant while the frequency and amplitude of vibration

are increasing.

2.3 Damper

The objective of vibration dampers is to eliminate or reduce Aeolian vibration by

absorbing the energy from the wind in order to stabilize the motion of the conductor.

Damping of the conductor is controlled by dampers that reduce the strain level to

the safe strain limit of 200 µm/m [14].

The effectiveness of a damper depends on its response within its frequency band.
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Based on a rule of thumb, it was thought that dampers’ locations will not coincide

with a node provided the location is less than the loop length corresponding to the

highest expected vibration frequency. This conclusion is realistic since conductor loop

length increases with decreasing frequency.

2.3.1 Types of Dampers

There are various types of dampers, but the commonly used types in North America

are the Stockbridge, torsional, and Hydro Quebec dampers.

2.3.1.1 Stockbridge Dampers:

Stockbridge damper, invented by George H. Stockbridge in 1925, is a dumbbell-shaped

device with a mass at the ends of a short flexible cable or rod called the messenger

cable. The damping mechanism is observed as vibrations of the conductor are trans-

ferred through the clamp to the messenger cable. The flexuring of the messenger

causes slipping between its strands and consequently induces the weights at their

ends to oscillate. By carefully choosing the parameters of the damper (such as the

mass of the blocks, the length and the stiffness of the messenger), the impedance of

the damper would coincide with that of the conductor. Thus, the energy imparted to

the conductor from the wind is then greatly dissipated by the Stockbridge damper.

It is claimed in the Stockbridge damper patent that a shorter (i.e., 30 in or 75

cm) and very flexible messenger increases damping effectiveness. Furthermore, the

use of concrete or similar material for the weights in lieu of metallic weight was

recommended since no charging current is absorbed by concrete material [16]. This

idea was quickly rejected because of the poor mechanical performance of concrete.

There are many types of Stockbridge dampers. The first Stockbridge damper as

patented by George Stockbridge had a concrete block at each end of the messenger

and it is shown in Figure 2.3.
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Figure 2.3: Stockbridge’s original concrete block design [16].

Modern dampers use metal bell-shaped weights as shown in Figure 2.4. The bell

is hollow and the damper cable is fixed internally to the distal end, which permits

relative motion between the cable and damping weights. The modern Stockbridge

damper has two types of dampers, the 2R damper and 4R damper. The former,

2R damper, is also known as the symmetric Stockbridge damper and it has identical

weights and messengers at both ends. Given that this damper consists of two identical

weights, the moment exerted by one is neutralized by the other. The 2R damper

is characterized to possess two natural modes of vibration when the motion of the

clamp is restricted to the vertical plane. The second type, 4R damper, also called the

asymmetric Stockbridge damper, has weights and cable lengths that are different on

both sides. Consequently, a resultant moment is induced by the unbalanced weights

at the ends, which results in a wider range of frequencies that include four resonant

frequencies.

The messenger of the Stockbridge damper as shown in Figure 2.5 is generally made

of galvanized steel, but stainless steel is used in more polluted areas. Both materials

result in the same damping capacity; however, stainless steel provides better fatigue

resistance. The clamp is made of aluminum alloy in order to ensure that the weight is

small enough to restrict its motion to the vertical plane for higher conductor vibration
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frequencies. In the past, damper counterweights were made of zinc alloy, but due to

the rise in cost of this material, forged steel weights or extruded steel rods are used

instead.

Figure 2.4: Stockbridge damper [1].

Figure 2.5: Stockbridge damper cable [1].

2.3.1.2 Torsional Dampers:

Based on the patent of Buchanan and Tebo [17], a torsional damper consists of a

sleeve carrying two weights and each weight is located at one end (Figure 2.6). The

torsional damper is connected to the conductor through a rubber bushing. Each

weight produces a moment since its center of gravity is eccentric to the axis of the
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conductor and the combination of these two moments result in a torsional force at the

end of the conductor. This torsional force being applied on the conductor converts

the energy of the vibrating conductor into inter-strand frictional losses.

Figure 2.6: Torsional damper [17].

2.3.1.3 Hydro Quebec Dampers:

This type of damper is similar to the asymmetric Stockbridge damper except that the

Hydro Quebec damper is devoid of a messenger and is not hollow in its counterweights

(Figure 2.7). In this damper, the messenger wire is replaced by a dissipating and

flexible element, which consists of an elastomeric cylinder.
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Figure 2.7: Hydro Quebec damper [2].

2.3.2 Dynamics of the Stockbridge Damper

Wagner et al. [18] studied the dynamic response of a Stockbridge damper. The

authors assumed that the Stockbridge damper has a massless messenger and a rigid

mass attached at the tip. Their assumption of a massless messenger is reasonable

since the mass of the damper is much larger than the mass of the messenger. Only

one mass was studied because the two masses of the damper were equal, so symmetry

was used for simplification and the clamp motion was modeled as a base motion.

This paper presented the equation of motion of the Stockbridge damper (equation

2.3) and its response. Then, it validated the theoretical analysis through experiment.

Both results were in agreement since their assumption of the Stockbridge damper

being a two degree of freedom was justified experimentally by the existence of two

distinct modes.
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The equation of motion was given as:

Mẍ+Kẋ+ Cx = Kẏ + Cy (2.3)

where M is the mass matrix, K is the damper coefficient matrix, C is the stiffness

matrix, x is the vertical displacement of the messenger, and y is the displacement

vector at the clamp.

Another investigation on the assessment of the dynamics of Stockbridge damper

was conducted by Markiewicz [19]. In his paper, a method and a computational model

were presented for the evaluation of the optimum dynamic characteristics of Stock-

bridge dampers to be mounted near tension insulator assemblies (dead end span). He

suggested that Stockbridge dampers be designed so that their mechanical impedance

matches as closely as possible to the determined optimum damper impedance for the

cable to be protected. However, the optimum design is evaluated assuming that the

cable is clamped at both ends. Therefore, the Stockbridge damper is only efficient

for suspension span.

Futhermore, Krispin [20] outlined the advantage of a Stockbridge-type vibration

damper with low mass clamp over a conventional Stockbridge vibration damper with

bolted clamp. Using theoretical and experimental analysis, it was shown that the

conventional Stockbridge has a shortcoming in damping high frequency vibrations of

small diameter optical ground wires (OPGW) due to their high clamp mass. There-

fore, low clamp mass dampers, compared to conventional bolted clamp dampers, im-

prove power dissipation (damping performance) in the upper range frequencies.

Vecchiarelli [21] showed experimentally that the energy dissipated by a Stock-

bridge damper varies highly with the vibration frequency and the displacement am-

plitude of the damper clamp. The displacement of the damper clamp depends on

the location of the damper. Therefore, the energy dissipated by the damper can be

significantly affected by the positioning of the damper.
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2.3.3 Damper Location

As mentioned earlier, the efficiency of the damper depends significantly on its posi-

tioning. A rule of thumb is used to determine this location and the most important

point is to avoid positioning the damper at a node where the vibration amplitude is

zero. Hence, the damper would not be efficient. This rule considers the location of

the damper at a distance P (equation 2.4) between 70 and 80% of the loop length

(equation 2.5), corresponding to the highest wind speed of 7 m/s [1].

P = 0.31d

√
H

w
(2.4)

where H and w are the conductor tension and mass per unit length, respectively.

And d denotes the diameter of the conductor.

l =
2.703

Vw
d

√
H

w
(2.5)

where l = loop length (m), Vw= wind velocity (m/s), d = conductor diameter (m),

w = conductor mass per meter (kg/m)

Nigol and Houston [11] established optimum locations of dampers and made rec-

ommendations to never place dampers at any point of symmetry along the conductor

(i.e, 1/4, 1/3, 1/2, etc.). Otherwise the dampers fail to provide vibration protection

at every 4th, 3rd, and 2nd harmonic [11]. One damper can be placed at a distance x1

(1.2 to 1.8 m) for frequencies of 40-50 Hz and for normal design tensions. For longer

span and/or higher tension, two dampers shall be used at distances x1 (2.4 to 3.6 m)

and x2 (1.0 to 2.2 m) from the two terminals. When more than one damper is used

the ratio x2/x1 shall be 0.4 or 0.6.

Dhotard, and Ganesan [3] showed that the amplitude of vibration does not depend

on the cable length, but only on the location of the damper. An increase in the number

of dampers leads to an increase in the displacement in the major frequency range.

The authors also compared asymmetric and symmetric dampers. They concluded

that unlike symmetric dampers, asymmetric dampers create a resultant moment due

to the inequality or unbalance of its two masses, but this moment has negligible effect
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on vibration of the cable.

2.3.4 Wind Modeling

Strouhal and Von Karman1 are the first authors to investigate uniform flow of air

across a rigid cylinder. The nature of the flow depends on the Reynolds number,

which is defined as the ratio of inertial forces to viscous forces (equation 2.6). With

respect to Aeolian vibration, Reynolds number varies between 2700 and 14000 [22].

Re =
V D

v
(2.6)

where V is the wind velocity, D is the diameter of the conductor and v is the kinematic

viscosity of the fluid.

Aeolian vibration is caused by alternating vortices. As the vortices are shed from

the surface of the conductor normal to the wind, they cause a resultant force that

acts in the transverse direction. This force is periodic with a frequency fs, which is

related to the diameter of the conductor and the wind velocity as follows:

fs =
sV

D
(2.7)

where s is the Strouhal number and it varies from 0.15 to 0.25. In general the average

Strouhal value is taken as 0.2. It is noted that the conductor becomes very excited as

the Strouhal frequency approaches some of its natural frequencies and this phenomena

is called resonance.

While studying the lift force that acts on a rigid cylinder during vibration, Diana

and Falco [23] found that this force behaves similarly to the vibration response since

they are both harmonic at steady state . This conclusion was verified by Bishop and

Hassan [24] and by Bearman and Currie [25]. All the authors agreed that during

resonance the lift force leads the displacement by a phase angle ranging from 0-180

1Strouhal V. Strouhal. 1878. Uber Eine besondere Art der Tonerregung. Ann. Phys. und
Chemie, New Senes, Vol. 5, pp. 216-251.
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degrees. Both the lift force and the cylinder response are represented as follows:

F (t) = Fl sin(ωt+ θ) (2.8)

X(t) = Acsin(ωt) (2.9)

where Fl is the lift force and ω is the forcing frequency in rad/s. θ is the phase angle

between the response x(t) and wind force F (t). It should be noted that the forcing

frequency is the Strouhal frequency.

The lift force is defined as follows:

Fl =
1

2
ρClDLV

2 (2.10)

where D and L are the diameter and length of the cylinder, respectively. V and ρ is

the velocity and density of the fluid, respectively. Cl is the lift coefficient.

Griffin and Koopmann [26] showed experimentally that this lift coefficient de-

pends on the ratio of the maximum amplitude of vibration to the diameter of a rigid

cylinder (Ac/Dcyl). Their conclusion was that a maximum lift of 0.55 experienced

a maximum vibration amplitude of 0.55 diameters, peak-to-peak. And any cylinder

with a maximum amplitude above or below this value experienced lift coefficient Cl

of 0.28-0.33.

2.4 Energy Balance Method

The energy balance method is the most popular concept used to predict the vibration

of transmission lines. This method states that the energy transfered by the wind to

the conductor is dissipated by the conductor self-damping and the dampers. The

mathematical interpretation is given below:

Pw = Pd + Pc (2.11)
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where Pw is the wind power, Pd is power dissipated in the damper, and Pc is power

dissipated in the conductor.

Most researches on Aeolian vibration used the power method to solve for the

amplitude of vibration. Kraus and Hagedorn [27] studied the level of vibration using

the energy balance method and compared the results to those obtained from a wind

tunnel experiment. It should be noted that the energy balance method is only valid

when the conductor is vibrating at resonance. Therefore, the amplitude of vibration

is maximum and it is determined when the forcing frequency is equal to the natural

frequency of the conductor. Furthermore, this method ignores the flexural rigidity

of the conductor and determines the wind power input and the power dissiapated by

the damper in terms of the antinodal displacement amplitude.

The power dissipated in the conductor is given as:

Pc = K2f
(n+m)

[
A

D

]m
L (2.12)

where K2, n, m are constants that are determined through experiment. A, D, and

L, are the maximum amplitude of vibration, diameter of the conductor, and the span

length, respectively.

From laboratory measurements on a rigid cylinder, the wind input is given by:

Pw = Lf 3D4F

(
A

D

)
(2.13)

where F (A/D) depends on the maximum amplitude of vibration and the diameter of

the conductor.

The power dissipated by the damper is given in Ref. [3] as:

Pd =
1

2
FaUaΩsin(φ) (2.14)

where Fa is the force transmitted to the cable by the damper. Ua is the maximum

amplitude, so it is the same as Ac in equation 2.9. φ denotes the phase angle and Ω

represents the driving frequency.
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A well established energy balance method was implemented by Verma and Hage-

dorn [28] to optimize the position of Stockbridge dampers along the span. It was

analytically determined that two successive dampers should be placed apart at a

maximum distance of 1 m. This ensures that both dampers will not be simulta-

neously located on nodes for any natural frequency of the system under 50 Hz. It

was also observed that the maximum strain and the amplitude of vibration are kept

within the permissible limits when dampers are kept in the range of 0.22l to 0.25l%

of the loop length.

Agamenon et al. [29] also developed a dynamic model of Aeolian vibration to

predict the amplitude of steady-state motion of the conductor based on the energy

balance principle and a direct method for solving the resulting time-dependent Navier-

Stokes equation. They showed that numerical simulation will be more realistic if a

correlation between the tension and equivalent damping of the conductor can be

obtained.

The energy balance method is a very easy concept to implement with little com-

putation once the combination of the dynamics of the conductor, damper, and wind

is determined. However this method may lead to significant erroneous results because

of its assumptions. One of the weaknesses of the energy method is the assumption

of negligible flexural rigidity . This implies that the conductor is modeled as a string

instead of a tensile beam. Consequently, it can considerably influence the amplitude

of vibration for larger conductors which affects the bending stress at the clamps.

Also, the maximum amplitude of vibration is always overestimated because of the

negligible stiffness.

Another weakness is that the energy balance method can only be implemented at

resonance. While the amplitude of vibration is maximum at resonance, it is desirable

to know how non-resonant frequencies influence the conductor vibration. Further,

modeling the Stockbridge damper as a lump mass imparts a vertical inertia force at

the attachment of the damper. In reality, however, this force is not always vertical,

but remains normal to the messenger cable. As it can be inferred from equation 2.14,

the flexural rigidity of the messenger is neglected even though its inclusion can alter
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the overall natural frequencies and mode shapes of the system. Hence, the scope

for assessing the mechanical behaviour of the damper is beyond the capability of the

energy balance method.
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Chapter 3

Mathematical Formulation

3.1 Modeling of the Conductor Without Damper

3.1.1 Conductor Equation of Motion

The conductor is modeled as a simply supported beam with tension. The wind force

per unit length f(x, t) is assumed to be perpendicular to the conductor (Figure 3.1).

Figure 3.1: Simply supported conductor.

The following assumptions are employed in deriving the equation of motion of the

conductor (equation 3.6):

1. Euler-Bernoulli beam theory is applicable since the ratio of the conductor length

to its diameter is very small (L/D is greater than 20).
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2. The mass per unit length, m, is uniform across the conductor span since its

diameter is constant throughout the span.

3. The tension, T , is assumed to be uniform across the span for simplicity. It is

known in practice that the tension varies from a maximum at the clamp ends

to a minimum in the middle of the conductor. However, the variation is usually

negligible for smaller and moderate span lengths.

4. The slope, θ, is very small since the amplitude of vibration is less than the

conductor diameter. Hence the theory of small deformation is applicable.

5. The flexural rigidity, EI, is constant. This assumption is for mathematical sim-

plicity because the flexural rigidity varies with the distance along the conductor.

However, for most conductors the flexural rigidity is very small. Therefore, it

does not have a significant effect on the conductor and hence the assumption

of uniformity of the flexural rigidity is reasonable.

Figure 3.2 depicts the free-body diagram of a differential element of the conduc-

tor with original length dx, where w(x, t) denote the transverse deflection. V (x, t),

M(x, t), and T (x, t) denote the shear force, bending moment, and the tension at

the left-end of the conductor element, respectively. V (x + dx, t), M(x + dx, t), and

T (x+ dx, t) are the shear force, bending moment, and tension of the element on the

right-end of the element, respectively.

Figure 3.2: A cut in the beam.

Since the Euler-Bernoulli beam theory is applicable, the shear force, moment, and
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slope are given by:

V (x, t) = −EI ∂
3w

∂x3
M(x, t) = EI

∂2w

∂x2
θ =

∂w

∂x
(3.1)

Applying Newton’s law of motion,
∑
F = ma leads to the following:

V (x+ dx, t) +T (x+ dx, t) sin(θ+ dθ)−V (x, t)−T (x, t) sin θ+ f(x, t)dx = ρAdx
∂2w

∂t2

(3.2)

Recall Taylor Series:

g(x+ dx) = g(x) + (dx)g′(x) + (dx)2g′′(x)...

where g′ =
dg

dx
and g′′ =

d2g

dx2
.

Using the Taylor series expression, equation 3.2 can be written as:

dV (x, t)

dx
+
d(T (x, t) sin θ)

dx
+ f(x, t) = ρA

∂2w

∂t2
(3.3)

Observe that ρA = m, the mass per unit length, where A is the cross-sectional

area and ρ is the density of the conductor.

Since θ is small ⇒ sin θ ∼= θ. Substituting this into equation 3.3 leads to:

dV (x, t)

dx
+
d(T (x, t)θ)

dx
+ f(x, t) = m

∂2w

∂t2
(3.4)

For a constant tension in the beam, equation 3.4 becomes:

dV (x, t)

dx
+ T

dθ

dx
+ f(x, t) = m

∂2w

∂t2
(3.5)

Substituting (3.1) into (3.5) and multiplying (3.5) by (-1) leads to the fourth order

differential equation below:

⇒ EI
∂4w

∂x4
− T ∂

2w

∂x2
− f(x, t) = −m∂2w

∂t2
(3.6)
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Equation 3.6 is the equation of motion of the conductor without dampers under

Aeolian vibration.

3.1.2 Theoretical Natural Frequency

The natural frequency of the conductor is determined from a free vibration analysis.

Assume that the transverse deformation w(x, t) can be written as:

w(x, t) = y(t)g(x) (3.7)

where

y(t) = A1 sin(ωt+ φ) (3.8)

and

g(x) = φezx (3.9)

Substituting (3.8) and (3.9) into (3.7) yields:

y(t)EI
d4g(x)

dx4
+mg(x)

d2y(t)

dt2
− Ty(t)

d2g(x)

dx2
= 0

⇒ 1

mg(x)

[
EI

d4g(x)

dx4
− T d

2g(x)

dx2

]
= − 1

y(t)

d2y(t)

dt2
(3.10)

Since the term on the right and the left side depend on t and x, respectively, both

must equal a constant. Let the constant be ω2.

1

y(t)

d2y(t)

dt2
= ω2

⇒ d2y(t)

dt2
= −y(t)ω2
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y(t) = A1 sinωt+B1 sinωt

y(0) = 0→ B1 = 0

y(t) = A1 sin(ωt)

Also:
1

mg(x)

[
EI

d4g(x)

dx4
− T d

2g(x)

dx2

]
= ω2

Assuming g(x) = φezx: The above equation can be written as:

EIφz4ezx − Tφz2ezx − ω2mφezx = 0

⇒ EIz4 − Tz2 − ω2m = 0

Hence.

z21,2 =
T ±
√
T 2 + 4ω4mEI

2EI

The above equation leads to four roots (two real z1,2 and two imaginary z3,4)

z1,2 = ±

√
−T ±

√
T 2 + 4ω4mEI

2EI
(3.11)

z3,4 = ±i

√
T ±
√
T 2 + 4ω4mEI

2EI
(3.12)

Alternatively, g(x) can be written as follows:

g(x) = φezx = d1 sinh zx+ d2 sin zx+ d3 cosh zx+ d4 cos zx

g′(x) = d1z cosh zx+ d2z cos zx+ d3z sinh zx− d4z sin zx

g′′(x) = d1z
2 sinh zx− d2z2 sin zx+ d3z

2 cosh zx− d4z2 cos zx

The pin-pin boundary conditions are that, there are no displacements and no moments

at both ends, hence g(0) = 0, g(L) = 0, g′′(0) = 0, and g′′(L) = 0
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Applying the boundary conditions yield:
0 0 1 1

sinh zL sin zL cosh zL cos zL

0 0 z2 z2

z2 sinh zL −z2 sin zL z2 cosh zL −z2 cos zL




d1

d2

d3

d4

 =


0

0

0

0


Since d1, d2, d3, and d4 are nonzero, hence the matrix must be singular and therefore

its determinant is zero. The determinant of this matrix is called the characteristic

equation and the roots of the equation are the natural frequencies, which correspond

to the eigenvalues. Equating the determinant to zero implies that

⇒ 2z2 sin zL sinh zL = 0

Hence the characteristic equation is sin zL sinh zL = 0.

For sin zL = 0 ⇒ z =
nπ

L
(3.13)

Equating equation 3.13 to equation 3.11 yields:

nπ

L
=

√
T ±
√
T 2 + 4ω2mEI

2EI

Squaring both sides and rearranging leads to:

(nπ
L

)2
=
T ±
√
−T 2 + 4ω2mEI

2EI

⇒
(nπ
L

)4
+

T 2

4(EI)2
+ T

(nπ
L

)2 T

EI
=

T 2

2(EI)2
+

4ω2mEI

4(EI)2

⇒
(nπ
L

)4
+
(nπ
L

)2 T

EI
=
ω2m

EI

and

ωn =
nπ

L

√
T

m
+
(nπ
L

)2 EI
m

(3.14)
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Equation 3.14 is the theoretical natural frequency of a conductor without a damper.

3.2 Modeling the Conductor with a Stockbridge

Damper

All the assumptions made in section 3.1 are also applicable in this section. The

cable of the damper (messenger) is assumed to behave as an Euler-Bernoulli beam.

The clamp is assumed to be rigid and fixed to the conductor, which means that the

height, h (length of the clamp plate) is always perpendicular to the conductor at its

point of attachment. Figures 3.3 and 3.4 show the positioning of all the points of

interest for the derivation of kinetic energy and potential energy. The positioning of

the counterweight of the damper on the right side is shown in Figure 3.4. That for

the weight on the left-end is omitted for brevity, but both are similar except that the

subscript r which denotes the right-side is replaced by l to denote the left-side.

Figure 3.3: Conductor with damper diagram.
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Figure 3.4: Close-up of damper.

3.2.1 Position Vectors

The position vectors of the conductor, the location of the damper, the mass of the

damper, and the messenger are described below: The position vector of a deformed

differential element of the conductor is written as:

~rc(x, t) = xî0 + w(x, t)ĵ0 (3.15)

If the point of attachment of the damper is x = Ld, then

~r∗c = Ldî0 + w(Ld, t)ĵ0 (3.16)

The position vector of the right-end counterweight with respect to the reference frame

F0 is described as:

~rmr(0) = ~rmr(1) + ~r∗c (3.17)
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where

~rmr(1) = ~rgr + ~rgmr

~rgr = ~rh + ~rlr

~rlr = Lgr î1 + w∗dr ĵ1

~rll = −Lglî1 + w∗dlĵ1

Note that ~rmr(1) represents the position of the right-end counterweight with respect

to frame 1, F1. Also, from Figure 3.4 it can be seen that ~rlr is the distance from frame

1, F1, to frame 2, F2, along î1 and that similarly ~rll is from frame 1, F1, to frame 2,

F2. The position vector ~rmr(0) becomes:

~rmr(0) = ~rgr + ~rgmr + ~r∗c (3.18)

Similarly, the position vector of the counterweight on the left-side is as follows:

~rml(0) = ~rgl + ~rgmr + ~r∗c (3.19)

The position vectors of the messenger on the right and left sides are:

~rmmr = ~r∗c + ~rh + xmmî1 + wdr(xmm, t)ĵ1 (3.20)

~rmml = ~r∗c + ~rh + xmmî1 + wdl(xmm, t)ĵ1 (3.21)

3.2.2 Velocity Vectors

The velocity vectors are found by taking the derivative of the position vectors with

respect to time.

~̇rc = ẇc(x, t)ĵ0 (3.22)

~̇r∗c = ẇ∗c (x, t)ĵ0 (3.23)
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Note that ~̇rh is the relative velocity vector of the clamp and it is defined as:

~̇rh = θ̇1k̂ × hĵ1 = θ̇1hî1

where θ1 is the rotation angle of frame 1, F1, with respect to F0. Hence the velocity

vectors are expressed as:

~̇rlr = Lgrθ̇1ĵ1 + ẇ∗dr ĵ1 + w∗drθ̇1

~̇rll = −Lglθ̇1ĵ1 + ẇ∗dlĵ1 + w∗dlθ̇1

~̇rgmr = ~ωr × ~rgmr

~̇rgml = ~ωl × ~rgml

Using the equations above, the velocity vectors of the right and left side of the

counterweights are as follows:

~̇rmr(1) = θ̇1hî1 + Lgrθ̇1ĵ1 + ẇ∗dr ĵ1 + w∗drθ̇1 + ~ωr × ~rgmr (3.24)

~̇rml(1) = θ̇1hî1 − Lglθ̇1ĵ1 + ẇ∗dlĵ1 + w∗dlθ̇1 + ~ωl × ~rgml (3.25)

where ~ωr = (θ̇1 + θ̇2)k̂

and ~ωl = (θ̇1 + θ̇3)k̂

Note that θ2 and θ3 are the rotation angles of frames F2 and F3 with respect to F0,

respectively.

3.2.3 Kinetic Energy

The kinetic energy (KE) of the cable is expressed as follows:

Tc =
1

2

∫
m

~̇ cr · ~̇ cr dm (3.26)
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Note that the velocity of the conductor is expressed with respect to the reference

frame, F0. Therefore, the KE of the conductor becomes:

Tc =
(ρA)c

2

Lc∫
0

ẇc · ẇc dx (3.27)

The KE of the right-end mass is defined as:

Tmr =
1

2

∫
m

~̇rmr(o) · ~̇rmr(o)dm (3.28)

where ~̇rmr(o) · ~̇rmr(o).

~̇rmr(o) · ~̇rmr(o) = (~̇r∗c + ~̇rmr(1)) · (~̇r∗c + ~̇rmr(1))

= ~̇r∗c · ~̇r∗c + 2~̇r∗c · ~̇rmr(1) + ~̇rmr(1) · ~̇rmr(1)

where ~̇r∗c · ~̇r∗c = ẇ∗2c and

~̇rmr(1) · ~̇rmr(1) = (θ̇1h)
2

+ (Lgrθ̇1)
2

+ ẇ∗2dr + (w∗drθ̇1)
2 + ( ~ωr × ~rgmr) · ( ~ωr × ~rgmr)

+ 2θ̇21w
∗
drh+ 2(θ̇1h)̂i1 · ( ~ωr × ~rgmr) + 2Lgrθ̇1 ˙w∗dr

+ 2(Lgrθ̇1)ĵ1 · ( ~ωr × ~rgmr) + 2(w∗drθ̇1)̂i1 · ( ~ωr × ~rgmr)

where wc is the displacement of the conductor at xc = Ld, w
∗
dr is the vertical displace-

ment of the messenger at xr = Lgr (Lgr is the length of the messenger on the right),

and w∗dl is the vertical displacement of the messenger at xl = Lgl (Lgl is the length of

the messenger on the left).

Expressing unit vectors of frame 1, F1, with respect to those of frame 2, F2, leads to:

î1 = cosθ1î0 − sinθ1ĵ0

ĵ1 = sinθ1î0 + cosθ1ĵ0

35



Using these equations, ~̇rmr(1) can be expressed with respect to the fixed frame F0 and

~̇r∗c · ~̇rmr(1) = ẇ∗c ĵo · [θ̇1h(cosθ1îo + sinθ1ĵo)− Lgrθ̇1(−sinθ1îo + cosθ1ĵo)

+ ẇ∗dr(−sinθ1îo + cosθ1ĵo) + w∗drθ̇1(cosθ1îo + sinθ1ĵo) + (~ω × ~rgmr)]

Hence the coupling between the conductor and the right-end mass becomes:

~̇r∗c · ~̇rmr(1) = ẇ∗c θ̇1hsinθ1 + ẇ∗cLgrθ̇1cosθ1 + ẇ ∗c ẇ∗drcosθ1 + ẇ∗cw
∗
drθ̇1sinθ1

+ ẇ∗c ĵo~ω × ~rgmr

Now, substituting the equations above into ~̇rmr(o) · ~̇rmr(o) and taking the integration

of the resultant equation yields the KE of the right-end mass which may be written

as:

Tmr =
1

2

∫
m

~̇r∗c · ~̇r∗cdm+

∫
m

~̇r∗c · ~̇rmr(1)dm+
1

2

∫
m

~̇rmr(1) · ~̇rmr(1)dm (3.29)

Note that
∫
m

~rgmdm = 0 since this is the first moment about the centre of mass. Also,∫
m

(~ωr × ~rgmr) · (~ωr × ~rgmr)dm = Iω2
r . Where I is the moment of inertia

The next step is to evaluate each term in equation 3.29.∫
m

1

2
~̇r∗c · ~̇r∗cdm =

1

2
mc(ẇ

∗
c )

2

∫
m

(~̇r∗c · ~̇rmr(1))dm = mdrẇ
∗
c [θ̇1(hsinθ1 + Lgrcosθ1 + w∗drsinθ1) + ẇ∗drcosθ1]

1

2

∫
m

~̇rmr(1)dm =
1

2
mdr[θ̇1

2
(h2 + L2

gr + w∗dr
2 + 2hw∗dr) + 2θ̇1Lgrẇ

∗
dr + ẇ∗2dr ]

+
1

2
Idr(θ̇1 + θ̇2)

2
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Hence equation 3.29 becomes:

Tmr =
1

2
mmr(ẇ

∗2
c + (θ̇1h)2 + 2ẇ∗c θ̇1h) +

1

2
(ρA)mr

Lgr∫
0

{2ẇ∗c [θ̇1(xmrcosθ1

+ wdrsinθ1) + ẇdrcosθ1] + θ̇1
2
(xmr

2 + wdr
2 + 2hwdr) + 2xmrẇdrθ̇1 + ẇ2

dr}dxmr
(3.30)

Assuming small deformation and rotation, sinθ ≈ θ and cosθ ≈ 1 and dropping

higher order terms (≥3), equation 3.30 becomes:

Tmr =
1

2
mdr{ẇ∗2c + 2ẇ∗c (θ̇1Lgr + ẇ∗dr) + θ̇1

2
(h2 + L2

gr) + 2Lgrẇ
∗
drθ̇1 + ẇ∗2dr}

+
1

2
Idr(θ̇1 + θ̇2)

2 (3.31)

Similarly,the KE of the left-end is given as:

Tml =
1

2
mdl{ẇ∗2c + 2ẇ∗c (−θ̇1Lgl + ẇ∗dl) + θ̇1

2
(h2 + L2

gl)− 2Lglẇ
∗
dlθ̇1 + ẇ∗2dl }

+
1

2
Idl(θ̇1 + θ̇3)

2 (3.32)

The KE of the cable on the right-side is given as:

Tmmr =
1

2
mmr(ẇ

∗2
c + (θ̇1h)2) +

1

2
(ρA)mr

Lgr∫
0

{2ẇ∗c ẇdr + 2xmrθ̇1ẇdr + ẇ2
dr}dx

+
1

2
(ρA)mr(ẇ

∗
c θ̇1L

2
gr +

2

3
θ̇1

2
L3
gr) (3.33)

Similarly, the KE of the cable on the left-side is:

Tmml =
1

2
mml(ẇ

∗2
c + (θ̇1h)2) +

1

2
(ρA)ml

Lgl∫
0

{2ẇ∗c ẇdl − 2xmlθ̇1ẇdl + ẇ2
dl}dx

− 1

2
(ρA)ml(ẇ

∗
c θ̇1L

2
gl +

2

3
θ̇1

2
L3
gl) (3.34)
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The total KE is then obtained as:

T = Tc + Tmr + Tml + Tmmr + Tmml

T =
(ρA)c

2

Lc∫
0

ẇc · ẇcdx+
1

2
mdr{ẇ∗2c + 2ẇ∗c (θ̇1Lgr + ẇ∗dr) + θ̇1

2
(h2 + L2

gr)

+ 2Lgrẇ
∗
drθ̇1 + ẇ∗2dr}+

1

2
Idr(θ̇1 + θ̇2)

2 +
1

2
mdl{ẇ∗2c + 2ẇ∗c (−θ̇1Lgl + ẇ∗dl)

+ θ̇1
2
(h2 + L2

gl)− 2Lglẇ
∗
dlθ̇1 + ẇ∗2dl }+

1

2
Idl(θ̇1 + θ̇3)

2

+
1

2
mmr(ẇ

∗2
c + (θ̇1h)2) +

1

2
(ρA)mr

Lgr∫
0

{2ẇ∗c ẇdr + 2xmrθ̇1ẇdr + ẇ2
dr}dx

+
1

2
(ρA)mr(ẇ

∗
c θ̇1L

2
gr +

2

3
θ̇1

2
L3
gr) +

1

2
mml(ẇ

∗2
c + (θ̇1h)2)

+
1

2
(ρA)ml

Lgl∫
0

{2ẇ∗c ẇdl − 2xmlθ̇1ẇdl + ẇ2
dl}dx−

1

2
(ρA)ml(ẇ

∗
c θ̇1L

2
gl +

2

3
θ̇1

2
L3
gl)

(3.35)

3.2.4 Potential Energy

The strain energy is defined as follows:

U =
1

2

∫
V

σεdV (3.36)

where ε is strain, σ the stress, and dV the differential volume. The strain is given as:

ε =
du

dx
(3.37)

From the assumption of using Euler-Bernoulli beam ( Length
Thickness

> 20), the displacement

in the x direction is:

u = −zdw
dx

(3.38)
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where w denotes the transverse displacement and z represents the coordinate in the

transverse direction. Substituting the constitutive relation

σ = Eε (3.39)

and equations 3.37-3.38 into 3.36 yields:

U =
1

2

∫
A

L∫
0

z2
(
d2w

dx2

)2

EdxdA (3.40)

⇒ U =
1

2
EI

L∫
0

(w′′)2dx (3.41)

where I =
∫
A

z2dA is the moment of inertia. The tension length of the deformed

differential element of the conductor is related to the undeformed length as:

ds = (dx2 + dw2)1/2 = dx

[
1 +

1

2

(
dw

dx

)2
]

where dw is the displacement along y-axis, see Figure 3.2. Hence the differential

stretch in the conductor is:

ds− dx =
1

2

(
dw

dx

)2

dx (3.42)

Therefore, the work done by the tension is:

W =
1

2
T

L∫
0

(
dw

dx

)2

dx (3.43)

Using equations 3.41 and 3.43, the potential energy (PE) of the conductor can be

expresses as:

Vc =
1

2
(EI)c

Lc∫
0

(
∂2wc
∂x2

)2

dx− 1

2
T

Lc∫
0

(
∂wc
∂x

)2

dx (3.44)
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The PE of the right-end mass is:

Vmr = −mdrgĵo[w
∗
c ĵo + hcosθ1ĵo − sinθ1îo + Lgr(cosθ1îo + sinθ1ĵo)

+ w∗dr(cosθ1ĵo + sinθ1îo)] (3.45)

where g denotes gravity (g = 9.814 m/s2). Using the assumption of small deformation

where sinθ1 ≈ θ1 and cosθ1 ≈ 1, the PE of the right-end mass becomes:

Vmr = −mdrg(w∗c + h+ Lgrθ1 + w∗dr) (3.46)

Similarly, the PE of the left-end mass is:

Vml = −mdlg(w∗c + h− Lglθ1 + w∗dl) (3.47)

Also, the PE of the right and left side of the messenger are expressed as:

Vmmr =
1

2
(EI)mr

Lgr∫
0

∂2wmr
∂x2

2

dx (3.48)

Vmml =
1

2
(EI)ml

Lgl∫
0

∂2wml
∂x2

2

dx (3.49)

The total PE is: V = Vc + Vmr + Vml + Vmmr + Vmml and after algebraic work, it is

written as:

V =
1

2
{(EI)c

Lc∫
0

∂2wc
∂x2

2

dx− 1

2
T

Lc∫
0

∂wc
∂x

2

dx−mdrg(w∗c + h+ Lgrθ1 + w∗dr)

−mdlg(w∗c + h− Lglθ1 + w∗dl) +
1

2
(EI)mr

Lgr∫
0

∂2wmr
∂x2

2

dx+
1

2
(EI)ml

Lgl∫
0

∂2wml
∂x2

2

dx}

(3.50)

where EIc the flexural rigidity of the conductor. EImr, EIml, mdr, and mdl, are
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the flexural rigidity and the mass of the counterweight on the right and left, respec-

tively. Lgr and Lgl are the length of the messenger on the right-side and the left-side,

respectively.

3.3 Finite Element Modeling

This section consists of two subsections. The first subsection deals with the finite

element modeling of the conductor without a damper and the second includes the

damper.

The field variable is interpolated along the span of the structure using cubic La-

grange interpolation shape functions [30]. These cubic shape functions, φ, are also

known as Hermite shape functions and are defined as:

φ1 = 1− 3
ξ2

L2
+ 2

ξ3

L3
φ2 = ξ − 2

ξ2

L
+
ξ3

L2

φ3 = 3
ξ2

L2
− 2

ξ3

L3
φ4 = −ξ

2

L
+
ξ3

L2
(3.51)

3.3.1 Finite Element Modeling of the Conductor Without

Damper

The representation of the finite element model of the conductor without damper is

depicted in Figure 3.5. The element consists of two nodes and each node consists of

two degrees of freedom to match with the hermit shape functions described previously.

Figure 3.5: Schematic of finite element of the conductor without damper.

The equation of motion of a conductor without a damper was derived in section
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3.1 and it is reproduced here as:

EI
∂4w

∂x4
− T ∂

2w

∂x2
+m

∂2w

∂t2
= 0 (3.52)

Using Galerkin method with Wi denoting the weight factor leads to:

L∫
0

(
EI

∂4w

∂x4
− T ∂

2w

∂x2
+m

∂2w

∂t2

)
Widx = 0 (3.53)

Discretization of the beam into a number of finite elements and integrating equa-

tion 3.53 by parts gives:

L∫
0

EI
∂4w

∂x4
Widx−

L∫
0

T
∂2w

∂x2
Widx+

L∫
0

m
∂2w

∂t2
Widx = 0 (3.54)

Integrating the first term of equation 3.54 twice gives:

L∫
0

EI
∂4w

∂x4
Widx = [WiV −Wi′M ]L0 +

L∫
0

EI
∂2w

∂x2
· ∂

2Wi

∂x2
dx (3.55)

where V and M are the shear and the bending moment, respectively and they are

given as follows:

V = −EI ∂
3w

∂x3
and M = EI

∂2w

∂x2

Integrating the second term of equation 3.54 once yields:

L∫
0

T
∂2w

∂x2
Widx =

[
TWi

∂w

∂x

]L
0

−
L∫

0

Wi′T
∂w

∂x
(3.56)

Substitute equations (3.55) and (3.56) into equation (3.54) yields:

[VWi −MWi]
L
0 +

L∫
0

EI
∂2w

∂x2
·∂

2Wi

∂x2
−
[
TWi

∂w

∂x

]L
0

+T

L∫
0

∂w

∂x
·∂Wi

∂x
dx+

L∫
0

m
∂2w

∂t2
Widx = 0

(3.57)
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Wi can be written as:

Wi =
∂w̃

∂qi
where w̃ = bφc {q} as well w̃xx = bφcxx {q} and ¨̃w = bφc {q̈}

where

φ =
⌊
φ1 φ2 φ3 φ4

⌋
,

q =


q1

q2

q3

q4


,

q and q̈ represent the nodal displacement and acceleration, respectively.

Note that

Wi = φj

Applying boundary conditions:

For x = 0; Wi(0) = 0

x = L; Wi(L) = 0

Since there is no deflection at both ends:

[VWi −MWi]
L
0 = 0 and

[
TWi

∂w

∂x

]L
0

= 0

Hence equation 3.57 gives:

L∫
0

(
bφcTxxEIbφcxx

)
dx {q}+

L∫
0

(
bφcTxT bφcx

)
dx {q}+

L∫
0

(
bφcTmbφc

)
dx {q̈} = 0

(3.58)

Equation 3.58 can be written as:

[M ] {q̈}+ ([KB] + [KT ]) {q} = 0 (3.59)
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where the mass matrix, M is expressed as:

[M ] =

L∫
0

(
bφcTmbφc

)
dx

The above equation yields:

[M ] =
ρAL

420


156 22L 54 −13L

22L 4L2 13L −3L2

54 13L 156 −22L

−13L −3L2 −22L 4L2

 (3.60)

The stiffness matrix due to bending, KB is :

[KB] =

L∫
0

(
bφcTxxEIbφcxx

)
dx

The above equation yields:

[KB] =
EI

L3


12 6L −12L 6L

6L 4L2 −6L 2L2

−12L −6L 12 −6L

6L 2L2 −6L 4L2

 (3.61)

Also, the stiffness matrix due to tension, KT can be written as follows:

[KT ] =

L∫
0

(
bφcTxT bφcx

)
dx
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The above equation becomes:

[KT ] =
T

5


6
L

0.5 − 6
L

0.5

0.5 0.667L −0.5 − L
15

− 6
L
−0.5 6

L
−0.5

0.5 − L
15

−0.5 0.667L

 (3.62)

3.3.2 Finite Element Modeling of the Conductor With the

Damper

In this section, the kinetic and potential energies derived in section 3.2 are used in

conjunction with the Hamilton’s principle to derive the stiffness and mass matrices

of the element of the conductor with a damper. The finite element of the conductor

with the damper is delineated in Figure 3.6. This element consists of fives nodes, two

for the conductor and three for the messenger. Initially, the messenger consisted of

four nodes, two each on the left-side and right-side. However, a node on both sides

coincide at the point of contact of the messenger with the clamp. Hence, these two

nodes were merged, resulting in three nodes for the messenger. Overall, the size of

the element matrices of the conductor with a damper resulted in a 10x10 matrix since

each node consists of two degrees of freedom.

Figure 3.6: Schematic of finite element of the conductor with damper.

The displacement of the conductor, the right-side damper, and the left-side damper
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are written as follows:

wc = φc
T qc

wdr = φdr
T qdr

wdl = φdl
T qdl (3.63)

where the φs represent the elemental mode shape vectors and the qs represent the

elemental displacement vectors. The subscripts c, dr, and dl denote the conductor,

the damper on the right, and the damper on the left, respectively. Note that the

superscript T denotes matrix transpose.

The slopes are defined as

θ1 =
∂wc

∗

∂x
= φc

∗T ′qc

θ2 =
∂wdr

∗

∂x
= φdr

∗T ′qdr

θ3 =
∂wdl

∗

∂x
= φdl

∗T ′qdl (3.64)

where φ∗c represents the elemental mode shapes vector at x = Ld, φ
∗
dr and φ∗dl repre-

sents the elemental mode shapes vectors at xr = Lgr and xl = Lgl, respectively.
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Substituting equation 3.63 and 3.64 into the kinetic energy equation 3.35, yields:

T =
(ρA)c

2

Lc∫
0

(q̇Tc φcφc
T q̇c)dx+

1

2
mdr{q̇Tc φc∗φc∗T q̇c + 2q̇Tc φc

∗(q̇Tc φc
∗′Lgr

+ q̇Tdrφdr
∗) + (q̇Tc φ

∗′
c φc

∗′T q̇c)(h
2 + L2

gr) + 2Lgrq̇
T
drφ
∗
drφc

∗′T q̇c + q̇Tdrφ
∗
drφ

T∗
dr q̇dr}

+
1

2
Idr((q̇

T
c φ
∗′
c φc

∗′T q̇c) + (q̇Tdrφ
∗′
drφdr

∗′T q̇dr) + 2q̇Tc φ
∗′
c φdr

∗′T q̇dr)

+
1

2
mdl{q̇Tc φc∗φc∗T q̇c + 2q̇Tc φc

∗(−q̇Tc φc∗
′
Lgl + q̇Tdlφdl

∗)

+ (q̇Tc φ
∗′
c φc

∗′T q̇c)(h
2 + L2

gl)− 2Lglq̇
T
dlφ
∗
dlφc

∗′T q̇c + q̇Tdlφ
∗
dlφ

T∗
dl q̇dl}

+
1

2
Idl((q̇

T
c φ
∗′
c φc

∗′T q̇c) + (q̇Tdlφ
∗′
dlφdl

∗′T q̇dl) + 2q̇Tc φ
∗′
c φdl

∗′T q̇dl)

+
1

2
mmr((q̇

T
c φc

∗φc
∗T q̇c) + (q̇Tc φc

∗′φc
∗′T q̇c)h

2) (3.65)

+
1

2
(ρA)mr

Lgr∫
0

{2q̇Tc φ∗cφdrT q̇dr + 2xmrq̇
T
c φc

∗′φdr
T q̇dr

+ q̇Tdrφdrφdr
T q̇dr}dx+

1

2
(ρA)mr(q̇

T
c φc

∗φc
∗′ q̇cL

2
gr +

2

3
q̇Tc φc

∗′φc
∗′T q̇cL

3
gr)

+
1

2
mml((q̇

T
c φc

∗φc
∗T q̇c) + (q̇Tc φc

∗′φc
∗′T q̇c)h

2)

+
1

2
(ρA)ml

Lgl∫
0

{2q̇Tc φ∗cφdlT q̇dl − 2xmlq̇
T
c φ
∗′
c φdl

T q̇dl + q̇Tdlφdlφdl
T q̇dl}dx

− 1

2
(ρA)ml(q̇

T
c φc

∗φc
∗′ q̇cL

2
gl +

2

3
q̇Tc φc

∗′φc
∗′T q̇cL

3
gl)
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Now, substituting equations 3.63 and 3.64 into the potential energy equation 3.50,

yields:

V =
1

2
EI

Lc∫
0

(qc
Tφ
′′

cφc
′′T qc)dx−

1

2
T

Lc∫
0

(qc
Tφ
′

cφ
′T

c qc)dx−mdrg(qc
Tφ∗c + h

+ Lgrqc
Tφc

∗ + qdr
Tφ∗dr)−mdlg(qc

Tφ∗c + h− LglqcTφc∗ + qdl
Tφdl

∗) (3.66)

+
1

2
(EI)mr

Lgr∫
0

(qdr
Tφ
′′

drφ
′′T
dr qdr)dx+

1

2
(EI)ml

Lgl∫
0

(qdl
Tφ
′′

dlφ
′′T
dl qdl)dx

Hamilton’s principle is used to derive the equation of motion:

t2∫
t1

(δT − δV + δWnc)dt = 0

where δT is the variational of the kinetic energy, δV the variational of the potential

energy, and δWnc is the virtual work of the applied forces. And the variational of the

position vector is: δri = 0, i = 1, 2, ..., φ : T = t1 + t2
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Taking the variation of the kinetic energy:

δT = (ρA)c

Lc∫
0

(δq̇Tc φcφc
T q̇c)dx+

1

2
mdr{2δq̇Tc φc∗φc∗T q̇c + 2δq̇Tc φc

∗φc
∗′T q̇cLgr

+ 2δq̇Tc φc
∗′φc

∗T q̇cLgr + 2δq̇Tc φ
∗
cφ
∗T
dr q̇dr + 2δq̇Tdrφ

∗
drφ
∗T
c q̇c + 2(δq̇Tc φ

∗′
c φ
∗′T
c q̇c)(h

2 + L2
gr)

+ 2Lgrδq̇
T
drφ
∗
drφc

∗′T q̇c + 2Lgrδq̇
T
c φ
∗′
c φdr

∗T q̇dr + 2δq̇Tdrφ
∗
drφ

T
dr ∗ q̇dr}

+ Idr((δq̇
T
c φ
∗′
c φc

∗′T q̇c) + (δq̇Tdrφ
∗′
drφdr

∗′T q̇dr) + δq̇Tc φ
∗′
c φdr

∗′T q̇dr + δq̇Tdrφ
∗′
drφc

∗′T q̇c)

+
1

2
mdl{2δq̇Tc φc∗φc∗T q̇c − 2δq̇Tc φc

∗φc
∗′T q̇cLgl − 2δq̇Tc φc

∗′φc
∗T q̇cLgl + 2δq̇Tc φ

∗
cφ
∗T
dl q̇dl

+ 2δq̇Tdlφ
∗
dlφ
∗T
c q̇c + 2(δq̇Tc φ

∗′
c φ
∗′T
c q̇c)(h

2 + L2
gl)− 2Lglδq̇

T
dlφ
∗
dlφc

∗′T q̇c

− 2Lglδq̇
T
c φ
∗′
c φdl

∗T q̇dl + 2δq̇Tdlφ
∗
dlφ

T
dl ∗ q̇dl}+ Idl((δq̇

T
c φ
∗′
c φc

∗′T q̇c) + (δq̇Tdlφ
∗′
dlφdl

∗′T q̇dl)

+ δq̇Tc φ
∗′
c φdl

∗′T q̇dl + δq̇Tdlφ
∗′
dlφc

∗′T q̇c) +mmr((δq̇
T
c φc

∗φc
∗T q̇c) (3.67)

+ (δq̇Tc φc
∗′φc

∗′T q̇c)h
2) +

1

2
(ρA)mr

Lgr∫
0

{2(δq̇Tc φ
∗
cφdr

T q̇dr + δq̇Tdrφ
∗
drφc

T q̇c)

+ 2xmr(δq̇
T
c φ
∗′
c φdr

T q̇dr + δq̇Tdrφ
∗′
drφc

T q̇c) + 2δq̇Tdrφdrφdr
T q̇dr}dx

+
1

2
(ρA)mr((δq̇

T
c φc

∗φc
∗′T q̇c + δq̇Tc φc

∗′φc
∗T q̇c)L

2
gr +

4

3
δq̇Tc φc

∗′φc
∗′T q̇cL

3
gr)

+mml((δq̇
T
c φc

∗φc
∗T q̇c) + (δq̇Tc φc

∗′φc
∗′T q̇c)h

2) +
1

2
(ρA)ml

Lgl∫
0

{2(δq̇Tc φ
∗
cφdl

T q̇dl

+ δq̇Tdlφ
∗
dlφc

T q̇c)− 2xml(δq̇
T
c φ
∗′
c φdl

T q̇dl + δq̇Tdlφ
∗′
dlφc

T q̇c) + 2δq̇Tdlφdlφdl
T q̇dl}dx

− 1

2
(ρA)ml((δq̇

T
c φc

∗φc
∗′T q̇c + δq̇Tc φc

∗′φc
∗T q̇c)L

2
gl +

4

3
δq̇Tc φc

∗′φc
∗′T q̇cL

3
gl)
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The variation in the potential energy is:

δV = δqc
T (EI

Lc∫
0

φ
′′

cφc
′′T qcdx− T

Lc∫
0

φ
′

cφc
′T qcdx)− δqcTg[mdr(φ

∗
c + Lgrφc

∗)

−mdl(φ
∗
c − Lglφc∗)]− δqTdrmdrgφdr

∗ − δqdlTmdlgφdl
∗ (3.68)

+ δqdr
T ((EI)mr

Lgr∫
0

φ
′′

drφdr
′′T qdr)dx+ δqdl

T ((EI)ml

Lgl∫
0

φ
′′

dlφdl
′′T qdl)dx

The variation of Wg, δWg is defined as:

δWg = −δqcTg[mdr(φ
∗
c + Lgrφc

∗)−mdl(φ
∗
c − Lglφc∗)]− δqTdrmdrgφdr

∗ − δqdlTmdlgφdl
∗

(3.69)

Note that δWg is the work due to gravity. Hence, the variation of the potential energy

becomes:

δV = δqc
T (EI

Lc∫
0

φ
′′

cφc
′′T qcdx− T

Lc∫
0

φ
′

cφc
′T qcdx) + δqdr

T ((EI)mr

Lgr∫
0

φ
′′

drφdr
′′T qdr)dx

+ δqdl
T ((EI)ml

Lgl∫
0

φ
′′

dlφdl
′′T qdl)dx+ δWg (3.70)

Observe that the potential energy and the work by the weight involve only the

virtual displacement whereas, the kinetic energy involves both virtual displacement

and virtual velocity. Therefore, in order to derive the equation of motion, the virtual

velocity must be transformed to virtual displacement through integration by parts of

the kinetic energy.

Recall integration by parts:
∫
udv = uv|−

∫
vdu. Whereupon, in this case, the uv

term equals zero because of the auxiliary condition that states t1 and t2 are known.

To this end, carrying out the integration by parts of the variation of the kinetic

energy and rearranging and factorizing by δqc, δqdr, and δqdl, respectively, leads to
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the equation below:

t2∫
t1

δTdt = −(

t2∫
t1

(δqc
T [{(ρA)c

Lc∫
0

φcφc
Tdx+mdr[φc

∗φc
∗T + Lgr(φc

∗φc
∗′T

+ φc
′
φc
∗T + φc

∗′φc
∗′T )(h2 + L2

gr)] + Idrφc
∗′φc

∗′T +mdl[φc
∗φc
∗T − Lgl(φc∗φc∗

′T

+ φc
′
φc
∗T + φc

∗′φc
∗′T )(h2 + L2

gl)] + Idlφc
∗′φc

∗′T +mmr[φc
∗φc
∗T + φc

′∗φc
′∗Th2]

+
1

2
(ρA)mr[L

2
gr(φc

∗φc
∗′T + φc

∗′φc
∗T ) +

2

3
L3
grφc

∗′φc
∗′T ] +mml[φc

∗φc
∗T

+ φc
′∗φc

′∗Th2] +
1

2
(ρA)ml[−L2

gl(φc
∗φc
∗′T + φc

∗′φc
∗T ) +

2

3
L3
glφc

∗′φc
∗′T ]dx}q̈c

+ {mdr(φc
∗φdr

∗T + Lgrφc
∗′φdr

∗T ) + Idrφc
∗′φdr

∗′T + (ρA)mr

Lgr∫
0

(φc
∗φdr

T

+ xmrφc
∗′φdr

T )dxmr}q̈dr + {mdl(φc
∗φdl

∗T − Lglφc∗
′
φdl
∗T ) + Idlφc

∗′φdl
∗′T

+ (ρA)ml

Lgl∫
0

(φc
∗φdl

T − xmlφc∗
′
φdl

T )dxml}q̈dl]− δqdrT [{mdr(φdr
∗φc
∗T

+ Lgrφdr
∗φc
∗′T ) + Idrφdr

∗′φc
∗′T + (ρA)mr

Lgr∫
0

(φdrφc
∗T + xmrφdrφc

∗′T )]dxmr}q̈c

+ {mdrφdr
∗φdr

∗T + Idrφdr
∗′φdr

∗′T + (ρA)mr

Lgr∫
0

φdrφdr
Tdxmr}q̈dr

− δqdlT [{mdl(φdl
∗φc
∗T − Lglφdl∗φc∗

′T ) + Idlφdl
∗′φc

∗′T + (ρA)ml

Lgl∫
0

(φdlφc
∗T

− xmlφdlφc∗
′T )]dxml}q̈c + {mdl[φdl

∗φdl
∗T + Idlφdl

∗′φdl
∗′T

+ (ρA)ml

Lgl∫
0

φdlφdl
T ]dxml}q̈dl)dt) (3.71)
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Hence, equation 3.71 can be written in a matrix form as follows:

⌊
δqc

T δqdr
T δqdl

T
⌋

Mcc Mcr Mcl

Mrc Mrr 0

Mlc 0 Mll




q̈c

q̈dr

q̈dl

 (3.72)

where

Mcc = (ρA)c

Lc∫
0

φcφc
Tdx+mdr[φc

∗φc
∗T + Lgr(φc

∗φc
∗′T + φc

′
φc
∗T

+ φc
∗′φc

∗′T (h2 + L2
gr))] + Idrφc

∗′φc
∗′T +mdl[φc

∗φc
∗T − Lgl(φc∗φc∗

′T

+ φc
′
φc
∗T + φc

∗′φc
∗′T (h2 + L2

gl))] + Idlφc
∗′φc

∗′T +mmr[φc
∗φc
∗T

+ φc
′∗φc

′∗Th2] +
1

2
(ρA)mr[L

2
gr(φc

∗φc
∗′T + φc

∗′φc
∗T ) +

2

3
L3
grφc

∗′φc
∗′T ]

+mml[φc
∗φc
∗T + φc

′∗φc
′∗Th2] +

1

2
(ρA)ml[−Lgl2(φc∗φc∗

′Tφc
∗′φc

∗T )

+
2

3
L3
glφc

∗′φc
∗′T ]dx

Mcr = mdr(φc
∗φdr

∗T + Lgrφc
∗′φdr

∗T ) + Idrφc
∗′φdr

∗′T

+ (ρA)mr

Lgr∫
0

(φc
∗φdr

T + xmrφc
∗′φdr

T )dxmr

Mrc = mdr(φdr
∗φc
∗T + Lgrφdr

∗φc
∗′T ) + Idrφdr

∗′φc
∗′T

+ (ρA)mr

Lgr∫
0

(φdrφc
∗T + xmrφdrφc

∗′T )dxmr
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Mcl = mdl(φc
∗φdl

∗T − Lglφc∗
′
φdl
∗T ) + Idlφc

∗′φdl
∗′T

+ (ρA)ml

Lgl∫
0

(φc
∗φdl

T − xmlφc∗
′
φdl

T )dxml

Mlc = mdl(φdl
∗φc
∗T − Lglφdl∗φc∗

′T ) + Idlφdl
∗′φc

∗′T

+ (ρA)ml

Lgl∫
0

(φdlφc
∗T − xmlφdlφc∗

′T )dxml

Mrr = mdrφdr
∗φdr

∗T + Idrφdr
∗′φdr

∗′T + (ρA)mr

Lgr∫
0

φdrφdr
Tdxmr

Mll = mdlφdl
∗φdl

∗T + Idlφdl
∗′φdl

∗′T + (ρA)ml

Lgl∫
0

φdlφdl
Tdxml

Thus, the mass matrix MD can be expressed as:

MD =


Mcc Mcr Mcl

Mrc Mrr 0

Mlc 0 Mll

 (3.73)

The stiffness matrix is obtained from subtracting equation 3.70 from equation 3.69

(δV − δWg). Note that the resulting equation can be written as:

⌊
δqc

T δqdr
T δqdl

T
⌋

Kcc 0 0

0 Krr 0

0 0 Kll




qc

qdr

qdl

 (3.74)

53



Hence, the stiffness matrix can be written as:

KD =


Kcc 0 0

0 Krr 0

0 0 Kll

 (3.75)

where

Kcc = δqc
T (EI

Lc∫
0

φ
′′

cφc
′′T qcdx− T

Lc∫
0

φ
′

cφc
′T qcdx)

Krr = (EI)mr

Lgr∫
0

φ
′′

drφdr
′′T qdr)dx

Kll = (EI)ml

Lgl∫
0

φ
′′

dlφdl
′′T qdl)dx

The virtual work of the wind force is defined as:

δWnc =

Lc∫
0

F (t)δwcdx (3.76)

Discretizing equation 3.76 and taking its variation yields:

δWnc = δqc
T

Lc∫
0

F (t)φcdx (3.77)

where F (t) is the uniform wind force across the conductor.
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Equation 3.69 can be written as:

⌊
δqc

T δqdr
T δqdl

T
⌋

Wcc

Wrr

Wll

 (3.78)

where

Wcc = g[mdr(φ
∗
c + Lgrφc

∗)−mdl(φ
∗
c − Lglφc∗)]

Wrr = g mdrφdr
∗

Wll = g mdlφdl
∗

Finally, using equation 3.72, 3.74, 3.76 and 3.78, the equation of motion is expressed

as follows:
Mcc Mcr Mcl

Mrc Mrr 0

Mlc 0 Mll




q̈c

q̈dr

q̈dl

+


Kcc 0 0

0 Krr 0

0 0 Kll




qc

qdr

qdl

 =


Wcc

Wrr

Wll

+

Lc∫
0

F (t)φcdx

(3.79)
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Chapter 4

Dynamic of Single Conductor

Without Damper

4.1 Description of the Matlab Codes

This section describes the MATLAB codes (Appendix B.1). The overall codes consists

of 5 subroutines, a main function for the free vibration, and a main function for the

simulation. The subroutines and the main functions are described as follows:

1. Matrix KM is the subroutine where the mass and the stiffness matrices are

computed. It consists of the mass and stiffness matrices of the element damper

(MD and KD) and the mass and stiffness matrix of the element without damper

(M , K).

2. Assemble KM this subroutine assembles the element mass and stiffness matrices.

The output is a global mass and stiffness matrices and the size of these matrices

depends on the number of element considered.

3. Apply BC is the subroutine used for applying boundary conditions.

4. Free vibration calls all the subroutines described above and then computes the

natural frequencies.
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5. Linearize: This subroutine is used as a state space equation to convert the

second order ODE (ordinary differential equation) to the first order ODE so

that the function ode45 can be used in the subroutine Mainsimulation.

6. Mainsimulation: This subroutine determines the response of the system.

4.1.1 Modal Analysis

4.1.1.1 Description of the Conductor Characteristics

The parameters used for the purpose of the modal analysis are taken from Ref. [10] in

order to allow the comparison of the obtained simulation results to the corresponding

experimental results. The conductor has the following characteristics:

1. Mass per unit length, m = 0.8127 kg/m.

2. Flexural rigidity EImin = 11.07 N.m2.

3. Mechanical load (tension) in the cable, T = 15860 N and 10700 N .

4. Three span lengths were considered, L = 13.385 m, 32.3 m, and 65.355 m.

It should be noted that the minimum flexural rigidity is used in all computations for

the sake of safety since the worst case scenario of having a failure would result for

EImin.

4.1.1.2 Methodology and Results

With respect to the finite element results, the mass and stiffness matrices derived in

chapter 3 are incorporated in the MATLAB codes. For the purpose of validating the

model, the simply supported boundary condition is employed. The first five natural

frequencies are tabulated in Table 4.1. The exact or theoretical natural frequencies are

obtained using equation 3.14. As it can be seen, the natural frequencies found from

the finite element method are identical to those established from the exact solution.

The percentage of error for the 13.385 m span length is 1% and the remaining two

span lengths resulted in no error.
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Table 4.1: Finite element (FE) and theoretical (exact) natural frequencies.

Mode

Natural frequency (Hz)
L = 13.385m L = 32.3m L = 65.355m
T = 15860N T = 10700N T = 15860N
FE Exact FE Exact FE Exact

1 5.21850 5.2185 1.7762 1.7762 1.0688 1.0688
2 10.4380 10.4376 3.5525 3.5525 2.1375 2.1375
3 15.6580 15.6579 5.3289 5.3289 3.2063 3.2063
4 20.0881 20.8801 7.1054 7.1054 4.2751 4.2751
5 26.1080 26.1046 8.8822 8.8821 5.3439 5.3439

In Ref. [10], a prototype of the overhead transmission lines testing was performed.

The experimental data were obtained using five accelerometers placed along the cable

at L/2, 3L/8, L/4, L/8, and L/16 with a system excitation from an impact hammer.

The first five natural frequencies of the three span lengths found experimentally are

tabulated in the table below.

Table 4.2: Experimental natural frequencies.

Mode
Natural frequency (Hz)

L = 13.385m L = 32.3m L = 65.355m
T = 15860N T = 10700N T = 15860N

1 5.2200 1.7760 1.1159
2 10.4603 3.5179 2.1234
3 15.6638 5.2539 3.1829
4 20.9681 7.0183 4.2509
5 26.1545 8.7359 5.3081

The comparison of the experimental and the finite element results is illustrated

in Figure 4.1. From this figure, it is evident that both results are very close. The

percentage error for 13.385 m, 32.3 m, and 65.335 m span lengths is found to be

1.21%, 1.3%, and 0.32%, respectively. The discrepancies in the results are due to the

fact that the non-linearity effect and the conductor torsion were not accounted in the

mathematical formulation.
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Figure 4.1: Comparison of the analytical and experimental results.

4.2 Forced Vibration Analysis

4.2.1 Conductors Selection and Transmission Lines Condi-

tion

Two common conductors used for transmission lines with very different characteristics

are selected. The conductor 240/40 sq.mm ACSR (26/7) and 1840 Kcmil drake ACSR

(72/7) are choosen from the EPRI handbook [1]. The first conductor would be used in

both parts of the analysis since its diameter falls within the range of the Stockbridge

damper requirements. The second conductor is only used in the first part to verify

the dynamics of the conductor with higher flexural rigidity.

With respect to the applied force, it was indicated in chapter two that the wind

force applied on the conductor can be approximated by equation 2.8 since past in-

vestigations have shown that the conductor behaves as a rigid cylinder. Hence, the

force by unit span length is calculated for each conductor using this equation and

taking the average value of the lift coefficient to be 0.3 and the density of air to be

approximately 1.2 kg/m3 at 200 C. Should this lift coefficient of 0.3 be used, the
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maximum amplitude of vibration cannot exceed the diameter of the conductor. It is

important to note that the expression of the wind force Fl is in terms of the wind

speed and it is the amplitude of the sinusoidal wind force in equation 2.8.

The span length for a typical transmission line can vary from 100-1000 m, and a

span length of 372 m is used in this analysis.

Conductor 240/40 sq.mm ACSR (26/7) consists of 26 strands of aluminum with a

diameter of 3.439 mm/strand and 7 strands of steel with a diameter of 2.675 mm/s-

trand. This conductor has the following characteristics:

1. Mass per unit length, m = 0.987 kg/m.

2. Overall diameter, D = 21.9 mm.

3. Rated tensile strength, RTS = 86, 400 N (20% RTS = 17280 N ; 25% RTS =

21600 N).

4. Minimum flexural rigidity, EImin = 16 Nm2.

5. Maximum safe bending amplitude at 25% RTS, and 20% RTS with Ybsafe =

0.310 mm, and 0.3 mm, respectively.

6. Applied lift force per unit length, Fl = 0.00378v2 (N/m) (where v is the wind

speed in m/s) for v = 7 m/s , Fl = 0.18522 N/m.

Conductor 1840 Kcmil drake ACSR (72/7) is one of the conductors that possesses

the highest flexural rigidity and mass per unit length. It consists of 72 strands of

aluminum with a diameter of 4.407 mm/strand and 7 strands of steel with a diameter

of 2.068 mm/strand. The remaining characteristics of this conductor are:

1. Mass per unit length, m = 2.91 kg/m.

2. Overall diameter, D = 44.069 mm.

3. Rated tensile strength, RTS = 200, 600 N (20% RTS = 40120 N ; 25% RTS =

50150 N).
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4. Minimum flexural rigidity, EImin = 97.11 Nm2.

5. Maximum safe bending amplitude at 25% RTS, Ybsafe = 0.170 mm.

6. Applied lift force per unit length, Fl = 0.007932v2 (N/m), for v = 7 m/s,

Fl = 0.3886 N/m.

4.2.2 Simulation Results

Both conductors are only excited for higher modes since the Strouhal frequencies (for

a wind speed varying 1 to 7 m/s) obtained for 240/40 sq.mm ACSR and 1840 Kcmil

conductors varies from 9.52 to 66.666 Hz, and 4.53 to 31.75 Hz, respectively. The first

mode of the 240/40 sq.mm ACSR (26/7) that fell within the range of the Strouhal

frequency is found to be the 52nd mode with a frequency of 9.46 Hz. While the first

excitation mode for the second conductor is the 29th mode with a frequency of 4.609

Hz. The wind velocity responsible for the first resonant frequency is, indeed, 1 m/s

for both conductors.

For the purpose of determining the wind force, the velocity of the wind is taken

to be 7 m/s. The highest uniform wind pressure is the worst case scenario since this

resulted in the highest displacement. Hence the applied wind pressure is fixed for

both conductors and it is determined to be 0.18522 N/m and 0.3886 N/m for the

240/40 sq.mm and 1840 Kcmil conductors, respectively.

The 240/40 sq.mm is considered first. Using the 20% rated tensile strength (RTS)

condition, the maximum peak-to-peak amplitude is found to be 8.498 mm, 3.626

mm, and 1.175 mm for a frequency of 9.46 Hz, 21.979 Hz, and 66.66 Hz, respectively.

The 25% RTS condition is also evaluted and it is determined that the first resonant

frequency results in a peak-to-peak amplitude of 7.91 mm and the last resonant

frequency produces a value of 1.056 mm. Figures 4.2 and 4.3 show the normalized

amplitude of vibration with respect to the diameter (Ymax/D). From Figure 4.2

it is apparent that the normalized displacemnt is less than 0.2, implying that the

amplitude of vibration is less than the diameter of the conductor by almost an order

of magnitude, which is in agreement with the conclusion found in the literature.
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With respect to 1840 Kcmil conductor at 20% RTS, the maximum peak-to-peak

displacement across the conductor is determined to be 14.43 mm and 2.01 mm for

the first and last resonant frequencies, respectively. Also, the conductor displays a

peak-to-peak amplitude of 4.92 mm when it is excited at a resonant frequency of

13.017 Hz. Using the 25% RTS condition, the peak-to-peak amplitude is found to be

12.68 mm, 4.411 mm, and 1.80 mm with respect to the three natural frequencies listed

previously. Figure 4.3 shows that the maximum normalized amplitude of vibration is

less than 0.3.

An investigation is done on the 1840 Kcmil conductor to determine how the am-

plitude of vibration changes with respect to the span length. Three lengths are

considered 300 m, 200 m, and 100 m. The peak-to-peak amplitude of vibration, ymax,

corresponding to these three span lengths are determined to be 11.718 mm, 8.455

mm, and 4.418 mm, respectively. It is evident from Figure 4.4 that the normalized

displacement decreases with decreasing span length. This fact is intuitive and in

agreement with the literature. Thus, a shorter span is less susceptible to Aeolian

Vibration than a longer span.

Furthermore, the effect of the tension was examined on the 240/40 sq.mm conduc-

tor. This is done by inspecting the amplitude of vibration at the midpoint for 10%,

20%, and 35% RTS while keeping the span length of the conductor and the forcing

frequency fixed. The 10% RTS condition results in the highest amplitude of vibration

and this value is less than one-half of the diameter of the conductor.

As shown in Figures 4.5 and 4.6, the maximum amplitude of vibration increases

with decreasing tension for both high and low forcing frequencies. This is not sur-

prising since the stiffness of the cable increases with increasing tension.
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Figure 4.2: Effect of the frequency on the vibration amplitude of 240/40 sq.mm
conductor (20% RTS).

Figure 4.3: Effect of the frequency on the vibration amplitude of the 1840 kcmil
conductor (20% RTS).
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Figure 4.4: Normalized maximum displacement response of the 1840 Kcmil conductor
for different span lengths.

Figure 4.5: Effect of the tension on the vibration amplitude at low forcing frequency.
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Figure 4.6: Effect of tension on the amplitude of vibration at higher forcing frequency.

4.2.3 Bending Amplitude

Recall that the bending stress is proportional to the bending amplitude. Hence in

order to predict whether the conductor is safe, it suffices to determine the conductor

bending amplitude and compare it to the specified limit. This bending amplitude is

usually measured at a distance of 89 mm from the suspension clamp and it is given as

Yb = Ymaxsin(0.089nπ/L) [21] where n is the mode number and L is the span (L/n

is the loop length).

For the 240/40 sq.mm conductor, the bending amplitude is determined to be

0.319 mm for 20% RTS. Note that this value corresponds approximately to the 52nd

mode (9.46 Hz) which resulted in the highest maximum amplitude. The bending

amplitude of the 1840 kcmil conductor is found to be 0.496 mm corresponding to the

29th mode for 25% RTS. The safe bending amplitudes are given as Ybsafe = 0.316

mm at 20% RTS for 240/40 sq.mm conductor, and Ybsafe = 0.17 mm at 25% RTS

for 1840 Kcmil conductor. Comparing the calculated bending amplitudes to the safe

bending amplitude, it is concluded that neither conductor is safe when dampers are

not attached. Overall, the bending stress (bending amplitude) would exceed the

endurance limit (safe bending) resulting in fatigue damage.
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Chapter 5

Numerical Analysis of a Single

Conductor Plus Dampers

5.1 Free Vibration Analysis

This section examines the validation of the mathematical model by comparing the

natural frequencies obtained from MATLAB to those obtained using the commercial

finite element analysis software, ANSYS.

5.1.1 Validation of the Model

A free vibration analysis is performed in ANSYS to validate the finite element model

of the conductor with a damper. For the purpose of validating the model, the same

parameters for the conductor used in section 4.1.1 are employed both in MATLAB

and ANSYS. The damper has the following characteristics: EI = 3.19 N/m2; mdr =

4 kg and mdl = 2.75 kg (mass of damper on right and left) ; ρAdr = ρAdl = 0.2 kg/m

(messenger mass per unit length on right and left); Ldr = Ldl = 0.2 m; h = 0.05 m

(height of clamp). The damper was placed at distance of 4.1 m from the left end of

the conductor.
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5.1.1.1 Simulation in ANSYS

Both the conductor and the messenger are modeled using BEAM3 element, which

is a two dimensional elastic beam element. The two counterweights at the ends are

modeled as mass21 elements, which is a two dimensional mass with rotational inertia.

The clamp is modeled as BEAM3, but it is assumed that its mass per unit length is

negligible compared to that of the conductor and the messenger. The span length is

13.375 m and the damper is placed at a distance of 4.1 m from the first node. The

tension is considered to be zero so that the effect of the damper properties on the

natural frequency can be isolated. Fixed boundary conditions are applied at the first

and last finite element nodes of the conductor span by restricting the displacements

along the x and y axis and the rotation about the z axis .

The first three modes are shown in Figures 5.1 to 5.3, the 10th and 15th mode

are illustrated in Figure 5.5 and 5.6, and the 5th mode with a closer look at the

damper motion is delineated in Figure 5.4. The remaining modes of interest are

shown in Appendix A. Unlike in chapter 4, it is evident from the figures below that

the existence of symmetry has been disturbed by the presence of the damper in the

system. This implies that the maximum amplitude does not occur at mid-span with

respect to the first mode; also the displacement of the mid-span is not zero for the

second mode. Furthermore, Figure 5.2 indicates that the antinode on the right of the

vibration node is greater than the one on the left.

It is observed that the damper response starts occurring in the 5th mode as il-

lustrated in Figure 5.4. Taking the results of Figures 5.5 and 5.6 into consideration,

it is evident that the damper dissipates all the energy of the conductor on the left

and right side of the damper, respectively. Hence, it can be concluded that the 5th

and the 10th mode of the system are, indeed, two of the resonant frequencies of the

damper.
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Figure 5.1: First mode of vibration of the conductor plus a damper.

Figure 5.2: Second mode of vibration of the conductor plus a damper.
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Figure 5.3: Third mode of vibration of the conductor plus a damper.

Figure 5.4: Fifth mode with a closer look at the damper.
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Figure 5.5: Tenth mode of vibration of the conductor plus a damper.

Figure 5.6: Fifteenth mode of vibration of the conductor plus a damper.
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5.1.1.2 Numerical Analysis in MATLAB

The same procedure described in subsection 4.1.1 is performed in this section except

that a damper is attached to the conductor. Table 5.1 compares the natural fre-

quencies of the same conductor used in Ref. [10] with and without a damper. The

addition of the damper in the span decreases the natural frequencies of the system.

This is not surprising as it is known that natural frequency is inversely proportional

to the mass.

Table 5.1: Comparison of MATLAB natural frequencies of the conductor with and
without damper for L = 13.375 m and T = 0 N.

Mode
Natural frequency (Hz)

Without damper With damper
1 0.07335 0.0531
2 0.202 0.1501
3 0.397 0.365
4 0.657 0.629
5 0.984 0.845
6 1.381 1.247
10 3.98 2.84

Table 5.2 shows the results of the first six natural frequencies and the 10th natural

frequency obtained through both simulation methods. The first 20 natural frequencies

versus the mode numbers of both MATLAB and ANSYS are plotted in Figure 5.7. It

is apparent from this figure that the results are very similar. The average percentage

error is found to be 1.02%. The discrepancy associated with the results is due in

part to the assumption that the clamp has negligible mass and stiffness. Both mass

and stiffness are taken into consideration in ANSYS finite element analysis. However,

since the length of the clamp is very small (0.05 m) compared to the length of the

messenger (0.35 m) and to the conductor (13.375 m), the error is insignificant.
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Table 5.2: Comparison of ANSYS and MATLAB natural frequencies of the conductor
with damper for L = 13.375 m and T = 0 N.

Mode
Natural frequency (Hz)
ANSYS MATLAB

1 0.0531 0.0531
2 0.153 0.1501
3 0.373 0.365
4 0.621 0.629
5 0.845 0.845
6 1.247 1.247
10 2.84 2.84

Figure 5.7: ANSYS and MATLAB natural frequencies comparison.

5.1.2 Effect of the Mass and the Location of the Damper on

the Natural Frequency

The conductor 240/40 sq.mm from section 4.2.1 is employed hereafter. The charac-

teristics of the damper are as follows [31]:

1. The minimum flexural rigidity EImin = 3.19 N/m2

2. Messenger mass per unit length, m = 0.498 kg
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3. Length of the messenger on one side l = 0.15− 0.2 m

4. Mass of the counterweight, mdr or mdl varies from 0.856 to 4 kg

5. Counterweight mass moment of inertia, Idr or Idl varies

from 0.001814 to 0.00741 kgm2

The natural frequencies are determined for four different cases as illustrated in Figure

5.8. It is plausible that the natural frequencies are not considerably affected when

one damper is attached to the conductor because the tension is very large compared

to the damper parameters. However, when two dampers are attached, the natural

frequencies above 50 Hz tend to diminish considerably.

Figure 5.8: Effect of damper properties on the natural frequencies.

5.2 Force Vibration Analysis

The force vibration analysis is presented in two subsections. The first subsection deals

with the response of the conductor with one damper attached and the second deals

with the conductor response when two dampers are positioned on the conductor.

73



5.2.1 Response of the Conductor With One Damper

As mentioned above, the 240/40 sq.mm was selected for the purpose of the numerical

analysis, so the applied wind force is the same as that calculated in section 4.2.1 (Fl

= 0.18522 N/m). In the first part of this subsection, the effect of the damper mass on

the response is established. The second part deals with the impact of the vibration

frequency on the response. Finally, the effect of the damper location is examined in

the last section.

It is important to note that the figures in this section also show the peak-to-peak

displacement normalized with respect to the diameter, Y . The normalized peak-to-

peak amplitudes at the finite element nodes of interest are describes as:

1. Y2 denotes the normalized peak-to-peak amplitude evaluated at the second finite

element node.

2. Yf represents the normalized peak-to-peak amplitude evaluated at the penulti-

mate finite element node.

3. Ymax is the finite element node corresponding to the maximum normalized vi-

bration amplitude along the conductor.

4. Ymid corresponds to the normalized peak-to-peak amplitude at the mid-span.

5. Yd is the normalized peak-to-peak amplitude of the damper clamp.

6. Ydr denotes the normalized peak-to-peak amplitude of the right side counter-

weight.

7. Ydl is the normalized peak-to-peak amplitude of the left side counterweight.

5.2.1.1 Effect of the Damper Mass

In this section, the damper is positioned at a distance Ld = 1.1 m. The response

along the conductor was determined by varying the mass of the damper from 0.856

to 4 kg.

74



The peak-to-peak amplitude at various points along the conductor versus the total

damper mass is shown in Figure 5.9. This figure shows that the conductor maximum

vibration amplitude slightly increases as the damper mass becomes larger, but the

mid-span displacement amplitude, Ymid, is almost constant. Further, Y2 increases

linearly with the damper mass, whereas Yf decreases.

Figure 5.10 shows that the peak-to-peak vibration amplitude of both counter-

weights also increases with increasing damper mass and the damper with the lowest

mass results in the largest peak-to-peak amplitude.

The peak-to-peak response along the conductor is illustrated in Figure 5.11. This

figure shows that the amplitude of vibration peaks to a maximum at a point on

the conductor and then decreases. Note that this point is the finite element node

associated with the resonant mode. Furthermore, when the two counterweight masses

are balanced, the amplitude of vibration is larger. This implies that a symmetric

damper dissipates less energy than an asymmetric damper.

Most importantly, Figure 5.11 shows that having the larger mass to either face the

tower or the mid-span can slightly influence the vibration amplitude. The magnitude

of the maximum displacement slightly increases when the larger counterweight is

placed on the right side facing the mid-span. Thus, it is preferable to face the larger

counterweight to the tower albeit doing so does not significantly reduce the maximum

vibration amplitude.
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Figure 5.9: Effect of the total mass on the conductor response for f = 9.53Hz and Ld
= 1.1 m.

Figure 5.10: Effect of the total damper mass on the damper response for f = 9.53
Hz and Ld = 1.1 m.
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Figure 5.11: Normalized peak-to-peak displacement, as function of distance xc along
the conductor, for f = 9.53 Hz and Ld = 1.1 m.

5.2.1.2 Effect of the Forcing Frequency on the Response

This section describes the effect of the vibration frequency on the conductor response

when a damper is attached at Ld = 0.898 and 5 m. The mass of the damper on

the right and left side are taken to be 0.856 and 1.5 kg, respectively. The remaining

properties are the same as those in section 5.1.2.

Figures 5.12 and 5.14 show that the amplitudes of vibration, Ymax and Ymid,

decrease with increasing vibration frequency. On the other hand, the displacement

amplitudes, Y2 and Yf , can increase, decrease, or remain constant as the vibration

frequency is increased.

The amplitude of vibration of the damper is shown in Figures 5.13 and 5.15

for Ld = 0.898 and 5 m, respectively. The plots in these figures display the same

trends. The damper vibration amplitude increases with the forcing frequency. This

can be explained by noting that Stockbridge dampers dissipate the most energy at

higher vibration frequencies. Overall, it can be concluded that vibration amplitude

throughout the conductor span length decreases as the excitation frequency increases.
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Figure 5.12: Conductor peak-to-peak displacement, as function vibration frequency
for Ld = 0.898 m.

Figure 5.13: Damper peak-to-peak displacement, as function of vibration frequency
for Ld = 0.898 m.
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Figure 5.14: Conductor peak-to-peak displacement, as function of vibration fre-
quency for Ld = 5 m.

Figure 5.15: Damper counterweights peak-to-peak displacement, as function of vi-
bration frequency Ld = 5 m.
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5.2.1.3 Effect of the Damper Location on the Response

The vibration response is determined for various damper locations Ld for three fixed

frequencies f = 9.53, 14.0, and 41.45 Hz. The same damper properties from the

previous section are used in this case.

For a constant forcing frequency, f = 9.53 Hz, the results in Figure 5.16 indicates

that Ymax is minimum as the location of the damper Ld is increased from 0.1 to 7 m,

but it increases as Ld is greater than 7 m. The maximum normalized amplitude at

the mid-span Ymid is also a minimum as the damper is moved from 0.1 to 7 m and

increases monotonically when Ld is greater than 7 m.

Furthermore, Figure 5.16 shows that the maximum normalized displacement of

the second node and the penultimate node on the conductor are approximately the

same for Ld = 5 to 7 m. Note that this range is within the range corresponding to

the minimum Ymax value. When the conductor is excited at 9.53 Hz, it is evident

that positioning the damper between 5 to 7 m reduces the maximum amplitude of

vibration and stabilize the vibration along the conductor. It is important to note that

this damper location range corresponds to 70 to 95% of the loop length with respect

to the 9.53 Hz forcing frequency.

Figure 5.17 shows that the maximum normalized displacement value is reduced

for a constant vibration frequency of 14.0 Hz compared to Figure 5.16. However,

the optimum damper location range is within the optimum range in Figure 5.16,

Ld = 2.5 to 6.6 m. Figure 5.17 also shows that the mid-span amplitude remains

relatively constant compared to the maximum amplitude. It was also apparent that

the normalized displacements Y2 and Yf , approaches the same value for Ld = 6.6 m

as illustrated in Figure 5.18. The optimum range corresponds to 51 to 133% of the

loop length associated with this forcing frequency.

For a constant forcing frequency of 41.45 Hz, Figure 5.19 shows a considerable

drop in the normalized maximum displacement of the conductor. This figure also

shows that the range of the optimum damper location corresponding to f = 41.45 Hz

is within the optimum range determined in Figure 5.16 (Ld = 2.1 to 4.2 m). This

range corresponds to 125 to 264% of the loop length associated with 41.45 Hz. With
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respect to the mid-span amplitude and the amplitude near the ends, the observations

from Figure 5.16 are in agreement with those from Figures 5.17, 5.18, 5.19, and 5.20.

In Figures 5.21, 5.22, and 5.23, the normalized displacement of both counter-

weights for the three aforementioned forcing frequencies are illustrated. The results

indicate that the normalized amplitude of both counterweights is maximal in the

vicinity of the optimum damper location range. This is intuitive as it is evident that

the dissipation energy of the damper increases with the displacement of the damper.

Hence, this confirms that the efficiency of the damper is considerably dependent on

the damper location.

It should be noted that when the damper was positioned beyond 7 m, Ymax started

increasing monotonically as illustrated in Figures 5.16, 5.17, and 5.19. This is because

the damper is approaching the vibration node of the loop length (L52 = 7.15 m)

corresponding to the dominant mode (f = 9.53 Hz); its efficiency diminishes and

the maximum amplitude increases. Irrefutably, the optimum location of the damper

varies with the forcing frequency. However, each vibration frequency considered in

this section shows that the vibration amplitude reduces considerably when the damper

is located within Ld = 2.5 to 4.2 m.

To further improve our understanding of the effect of the damper location on the

conductor motion, Figure 5.24 and Figure 5.25 depict the conductor and damper

counterweight displacement, respectively, when the location of the damper is varied

over the whole span length. Based on these plots, it is concluded that a damper is

only efficient when it is located in the immediate vicinity of the span ends closer to

the tower.

The largest peak-to-peak vibration amplitude corresponding to the range Ld =

2.5 to 4.2 m is ymax = 6.338 mm. Hence, the corresponding bending amplitude is

approximately yb = 0.248 mm. Note that this bending amplitude is less than the safe

bending amplitude ysafe = 0.332 mm. Therefore, the conductor would be certainly

safer from fatigue damage by locating the damper within Ld = 2.5 to 4.2m.
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Figure 5.16: Conductor peak-to-peak displacement as function of the damper location
for f = 9.53 Hz.

Figure 5.17: Conductor peak-to-peak displacement as function of the damper location
for f = 14.0 Hz.
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Figure 5.18: Conductor peak-to-peak displacement near span ends as function of the
damper location, for f = 14.0 Hz.

Figure 5.19: Conductor peak-to-peak displacement as function of the damper location
for f = 41.45 Hz.
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Figure 5.20: Conductor peak-to-peak displacement near span ends as function of the
damper location for f = 41.45 Hz.

Figure 5.21: Damper peak-to-peak displacement as function of the damper location
for f = 9.53 Hz.
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Figure 5.22: Damper peak-to-peak displacement as function of the damper location
for f = 14.0 Hz.

Figure 5.23: Damper peak-to-peak displacement as function of the damper location
for f = 41.45 Hz.
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Figure 5.24: Conductor peak-to-peak displacement vs. damper location throughout
the span length, for f = 10.10 Hz.

Figure 5.25: Damper peak-to-peak displacement vs. damper location throughout
the span length, for f = 10.10 Hz.
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5.3 Response of a Conductor with Two Dampers

The same damper properties from the previous section are also employed in this

section. Further, the vibration frequency f = 9.53 Hz is selected and there is no need

to examine the other two vibration frequencies employed in the previous section. Two

dampers are always positioned symmetrically about the mid-span of the conductor.

As illustrated in Figure 5.26, the normalized maximum displacement on the con-

ductor dropped significantly as a result of attaching two dampers to the conductor.

It is evident that Ymax follows a parabolic-like variation with Ld. It decreases mono-

tonically as the location of the damper varies from Ld = 0 to 2.5 m and remains

relatively constant for Ld = 2.5 to 5.5 m. Finally, it increases as the damper is placed

beyond 5.5 m.

Further, Figure 5.27 shows that the maximum displacement near both ends are

minimum when the damper is approximately positioned at Ld = 5.5 m. Here, the

damper tends to stabilize the vibration throughout the conductor.

In Figure 5.28, the normalized counterweights vibration amplitudes of both dampers

are delineated. It indicates that the normalized amplitudes of the two dampers are

not always the same. Instead, the vibration amplitude of either damper can be greater

or less than that of the other damper, depending on the location of the dampers.

The lowest peak-to-peak conductor vibration amplitude, ymax, is 1.657 mm when

the dampers are positioned at Ld1 = 2.6 m and Ld2 = 369.4 m. Whereas, the lowest

ymax for one damper is determined to be 6.31 mm when the damper was positioned

at 1.1 m. Comparing the two, it is evident that the use of two dampers, positioned at

the best possible locations, would notably reduce the maximum vibration amplitude.

Moreover, the conductor bending amplitude with respect to the two damper is found

to be yb = 0.06225 mm, which is overly less than that when only one damper is used

(yb = 0.247 mm). Most importantly, it is substantially less than the safe bending

amplitude, ysafe = 0.332 mm. Conclusively, the conductor would be much safer from

fatigue failure when two dampers, with the best conductor-damper combination, are

employed.
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Figure 5.26: Conductor peak-to-peak displacement vs. damper location for f = 9.53
Hz (2 Dampers).

Figure 5.27: Conductor peak-to-peak displacement vs. damper location for f = 9.53
Hz (2 Dampers).
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Figure 5.28: Damper peak-to-peak displacement vs. damper location for f = 9.53
Hz (2 Dampers).
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Chapter 6

Conclusion and Recommendation

6.1 Summary

This thesis is motivated by the past failures of the transmission lines due to Aeolian

vibration. The elimination of these failures is part of the challenges line engineers

encounter in controlling Aeolian vibration. Currently, the best method to control

wind induced vibration is to attach Stockbridge dampers to the conductor. However,

the effectiveness of the damper depends on both the damping properties and its

location on the conductor. As such, this thesis dealt with the Aeolian vibration of a

single conductor with dampers, specifically, the effect of the damper location and the

damping properties.

Aeolian vibration of a single conductor has been studied using the energy balance

method, which states that the energy imparted by wind on the conductor is dissi-

pated by the conductor self-damping and the damper. This method provides a good

approximation of the maximum amplitude of vibration. However, it does not account

for the two-way coupling between the conductor and the damper, the flexural rigidity

of the conductor and damper, and the mass per unit length of the messenger. The

proposed model takes these into consideration.

The mathematical model was presented in chapter 3 where the potential and

kinetic energy equations of the system were derived. These equations were then

discretized using the finite element method to determine the equations of motion. In
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the process of the formulation the following assumptions were made:

1. The conductor behaves as an Euler-Bernoulli beam with an axial force.

2. The displacement of the conductor is very small (less than the conductor diam-

eter).

3. The tension, flexural rigidity, and mass per unit length are constant.

4. The system is linear.

5. Torsion in the conductor is negligible.

6. The messenger is modeled as an Euler-Bernoulli beam.

7. The damper counterweights are represented as lumped masses.

These assumptions were justified in the mathematical formulation chapter. The

overall formulation for the conductor with and without a damper was validated using

the commercial finite element software ANSYS and the results in Ref. [10], respec-

tively. Overall, both models were found to be valid with approximately 1% error.

Once the mathematical formulation was validated, the response of the conductor

was predicted and the effect of the damper on the conductor was studied. In the first

part of the numerical analysis, the natural frequencies of two conductors, 240/40 sq.

mm and 1840 kcmil, without damper were examined for different span lengths and

tensions. Also, the effect of the forcing frequency, tension, and span length on the

conductor response were studied. The important observations are:

1. The conductor flexural rigidity and mass per unit length can significantly alter

the mode shapes. The natural frequency of the conductor increases with its

flexural rigidity and decreases with its mass per unit length.

2. The natural frequency increases with tension and decreases as the span length

increases. Consequently, higher span lengths can be excited with very low

Strouhal frequency.
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3. The maximum amplitude of a conductor without damper decreases monotoni-

cally as the span length decreases. Hence, longer spans are more susceptible to

vibration.

4. The conductor becomes stiffer with increasing tension; as a result, the maximum

amplitude decreases. But, this does not mean the conductor is safer from fatigue

damage. Note that higher tension results in lower safe bending amplitude. So,

by increasing the tension, the conductor bending amplitude can be much greater

than the safe bending amplitude. Consequently, the conductor would be more

vulnerable to fatigue failure.

5. The maximum relative vibration amplitude of a conductor with higher flexural

rigidity is less than that with a lower flexural rigidity.

6. The location of the maximum displacement varies with the excitation frequency.

When the conductor is excited with the first mode, the maximum displacement

occurs in the mid-span. However, with respect to the second mode of excitation,

the midpoint results in a minimal displacement. Also, symmetrical displacement

about the mid-span is observed for the conductor without a damper. Hence,

multiple maximum amplitudes of vibration can be obtained in this case.

7. With respect to the line conditions established in chapter 5, the bending ampli-

tude of a conductor without a damper is less than the safe bending amplitude.

Thus, a conductor without a damper would not be safer from fatigue failure.

The second part of the simulation dealt with the response of the combination of

the conductor with dampers. The effect of the damper mass, the forcing frequency,

and the location of the damper were examined. The following observations were

made:

1. Attaching a damper to the conductor, reduces the natural frequency. This

reduction is insignificant when only one damper is used. However, the addition

of another damper, considerably diminishes the higher natural frequencies.
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2. Facing the larger counterweight mass toward the suspension clamp and the

smaller mass toward the mid-span slightly reduces the amplitude of vibration.

3. A damper with two unbalanced counterweight masses resulted in smaller vibra-

tion amplitude. This is in agreement with the observation in the literature that

asymmetric dampers are more efficient than the symmetric dampers.

4. The maximum vibration displacement of a conductor with dampers decreases

with increasing vibration frequency. Whereas, the amplitude of the damper

increases as the system is excited with higher frequency. Irrefutably, the damper

is most efficient at higher vibration frequencies.

5. The presence of a damper does not necessarily reduce the vibration amplitude.

When a damper is placed at a vibration node, it would be ineffective. As the

damper is moved away from the vibration node, its efficiency increases.

6. The optimum damper positioning depends on the forcing frequency. This range

tends to increase or decrease with increasing forcing frequency.

7. For lower vibration frequencies, the optimum range is approximately 70 to 95%

of the loop length corresponding to the subject forcing frequency. Higher vi-

bration frequencies can pertain to a percentage of loop length much higher

than 100%. The vibration amplitude of the conductor notably reduces whereas

the amplitude of the damper increases as the system is excited with higher fre-

quency. Irrefutably, the damper is most efficient at higher vibration frequencies.

8. The maximum vibration amplitude of the conductor reduces as the damper is

positioned within the optimum range, whereas the displacement of the damper

increases. Hence, dampers are also very efficient within their optimum location

range.

9. Attaching two dampers within their optimum damper location range reduces

the amplitude of vibration by approximately ten times.
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The presence of a damper on the conductor can be advantageous or disadvan-

tageous. When the combination of the mass and the location of the damper are

astutely chosen, the vibration amplitude would significantly reduce and the conduc-

tor vibration would stabilize. This would reduce the chance of the conductor from

fatigue failure since the conductor bending amplitude would be much lower than the

safe bending amplitude. On the other hand, when the location of the damper or

the properties of the damper are not carefully chosen, the conductor may be more

susceptible to fatigue failure.

6.1.1 Conclusion

The following conclusions are inferred:

• It is important to include the flexural rigidity of the conductor, as well as

the mass and flexural rigidity of the damper in the mathematical formulation.

Note that these properties can significantly affect the maximum amplitude of

vibration.

• The mass of the counterweight should be carefully determined so that the

damper is capable of dissipating the most energy imparted by the wind to

the conductor.

• Placing two dampers symmetrically at each end is better than attaching only

one damper.

• Always face the counterweight with the larger mass toward the insulator clamp

and the lower counterweight mass toward the mid-span.

• With respect to the optimum location of the damper, the rule of thumb men-

tioned from the literature review should not be used as it is not effective because

it only pertains to a specific frequency. Instead, all the dominant vibration fre-

quencies should be considered in order to examine the optimum location range.

• The best optimum range to be predicted should correspond to the dominant

frequency that resulted in the highest vibration amplitude.
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6.2 Proposed Future Work

Further research in the subject topic could be listed as follows:

• Investigate the mechanical behaviour of the messenger.

• Conduct an experiment to validate the model of a single conductor with a

damper.

• Examine the variation of the flexural rigidity and the tension for longer span

length.

• Extend the developed model by including the non-linear terms, conductor self-

damping, and torsion.

• Examine the coupling between the insulator and the conductor.

• Develop a Finite Element model for bundle conductor by modeling the conduc-

tor and the spacer dampers as one system.
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Appendix A

Appendix

A.1 ANSYS Vibration Modes

As discussed in section 5.1.1.1, the remaining vibration modes of interest of the single

conductor with a Stockbridge damper are shown in the figures below:

Figure A.1: Fourth mode of vibration of the conductor plus a damper.
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Figure A.2: Fifth mode of vibration of the conductor plus a damper.

Figure A.3: First mode of vibration with a closer look at the damper.
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Figure A.4: Second mode of vibration with a closer look at the damper.

Figure A.5: Third mode of vibration with a closer look at the damper.
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Figure A.6: Fourth mode of vibration with a closer look at the damper.

Figure A.7: Tenth mode of vibration with a closer look at the damper.
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Figure A.8: Fifteenth mode of vibration with a closer look at the damper.

Figure A.9: Fifth mode of vibration of the conductor plus a damper.
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Appendix B

Appendix

B.1 MATLAB Codes

The following MATLAB codes were used to determine the natural frequencies and the

response of a single conductor with a Stockbridge damper under Aeolian vibration.

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Input
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 g=0;% Gravity
5 D=0.0219; % conductor diameter in meters
6

7 P=0.18522; %wind Force for v=7m/s in N/m
8

9 EIc=16; %fluxural rigidity of the conductor in N/mˆ2;
10 rhoAc=.987; % kg/m; %mass per unit length of the conductor;
11 Lc=372; %span: Total length of the conductor
12

13 T=17280;% tension
14

15 edofc=4; % dof of an element of the conductor
16 edofd=10; % dof of an element of the damper
17 nel=50; % nber of element of the conductor
18 dofn=2; % dof per none (can use it for both messenger & conductor
19 % because the same element was used)
20 neld1=1; % number of element for damper1
21 neldl=neld1;
22 neldr=neldl;
23 neld2=neld1; % number of element for damper2
24

25

26 nnodesysd=2*neld1+1; % nber of nodes in the messenger
27 nnodesys=(nel+1+2*(2*neld1+1));%number of node in the global
28 %system since neld1=neld2
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29 gdof=dofn*nnodesys; %total dof of the whole syst %
30 %(i.e conductor and damper combined)
31 gdofd=dofn*nnodesysd; %Total dof of the messenger only
32 dofsystc=2*(nel+1); % global dof of the conductor only
33

34

35 msys=zeros(gdof);
36 ksys=zeros(gdof);
37 fsys= zeros(gdof,1);
38 fgsys=zeros(gdof,1);
39

40

41 rhoAr=0.498; %mass per unit length of the messenger on the right
42 rhoAl=rhoAr; %mass per unit length of the messenger on the left
43 h=0.05; %Height of the damper
44

45 lc=Lc/nel; %length of each element
46 Lr=0.15; %0.15,0.15,0.15 length of the messenger from the bottom
47 %of clamp to the weight on the right
48 Ll=0.2;%.2,0.15,0.175,. %length of the messenger from
49 %the bottom of clamp to the weight on the left
50

51 lr=Lr/neldr; % element length of the messenger on
52 % the right and it's only valid when neld1 is even
53 ll=Ll/neldl; % similarly on te left
54

55 Ir=0.001814;% Inertia of the right−side damper in Nmˆ2
56 Il=0.00741;% Inertia of the left−side damper in Nmˆ2
57 EIl=3.19; %fluxural rigidity of the messenger in the left
58 EIr=EIl;%fluxural rigidity of the messenger in the right
59

60 mdr=0.856;%mass of the damper on the right in Kg
61 mdl=1.5;% mass of the damper on the left
62 mmr=rhoAr*Lr; % mass of the messenger on the left
63 mml=rhoAl*Ll; %massof the messenger on the right
64

65 bcdof=zeros(8,1);
66 bcdof(1)=1; % applying bc at node1 ( i,e wc1=0)
67 bcdof(2)=2;
68 bcdof(4)=2*(nel+1);
69 bcdof(3)=2*nel+1;%applying bc at the last node of the
70 %conductor(i,e wcn=0)
71 bcdof(5)=2*(nel+1)+2*neldl+1; % applying bc at the node of the
72 %damper which is clamped ( i,e wd=0)
73 bcdof(6)=2*(nel+neldl+2);% i.e (wd'=0)
74 bcdof(7)=gdof−2;% boundary condition on the rotation of mid node
75 % of damper2
76 bcdof(8)=gdof−3;%boundary condition on the displacement
77 %of mid node of damper2
78

79 Ld1=10;% 5.5,10,10;15;
80 Ld2=360;%366.5, 366.5,360; 366% damper location
81

82 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 % This function determine the location of the damper in the element
84 function ld2=findld2(Ld2,lc,nel)
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85

86 for n=1:nel
87

88 if (Ld2/lc>n && Ld2/lc≤(n+1)) %get element matrice with
89 %damper
90

91 ld2=Ld2−n*lc; %ld is the location of damper in element
92

93 end
94 end
95

96 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97

98 %Find location of the damper1 and damper2 in the element
99

100 if (Ld1/lc<1)
101 ld1=Ld1;
102 elseif (Ld2/lc>1)
103 ld2=findld2(Ld2,lc,nel);%Call the subroutine findld2 to
104 %determine the location
105 %of the damper in the element
106 end
107

108 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
109 % Matrix KM is the subroutine that ccomputes the mass and stiffness
110 % matrices
111

112 function [K,M,Kd,Md1,Md2 F,Fg1 Fg2]=matrixKM(Ir,Il,h,rhoAr,rhoAl,...
113 lc,ld1,ld2,lr,ll,EIc,T,rhoAc,EIl,EIr,mdr,mdl,mmr,mml,P,g)
114

115 %Note that the subcrip 1 and 2 denote the damper on the left and
116 %right of the mid−span.
117 syms xc xr xl
118 % shapes function defined from 0 to l ( Cubic polynomial)
119

120 Nc=[1−3*(xc/lc)ˆ2+2*(xc/lc)ˆ3;xc−2*lc*(xc/lc)ˆ2+lc*(xc/lc)ˆ3;...
121 3*(xc/lc)ˆ2−2*(xc/lc)ˆ3;−lc*(xc/lc)ˆ2+lc*(xc/lc)ˆ3];
122 Nr=[1−3*(xr/lr)ˆ2+2*(xr/lr)ˆ3;xr−2*lr*(xr/lr)ˆ2+lr*(xr/lr)ˆ3;
123 3*(xr/lr)ˆ2−2*(xr/lr)ˆ3;−lr*(xr/lr)ˆ2+lr*(xr/lr)ˆ3];
124 Nl=[3*(xl/ll)ˆ2−2*(xl/ll)ˆ3;−ll*(xl/ll)ˆ2+ll*(xl/ll)ˆ3;...
125 1−3*(xl/ll)ˆ2+2*(xl/ll)ˆ3;xl−2*ll*(xl/ll)ˆ2+ll*(xl/ll)ˆ3];
126

127 % First derivation of the shapes function
128 d1Nc=diff(Nc,xc);
129 d1Nr=diff(Nr,xr);
130 d1Nl=diff(Nl,xl);
131

132 % Second derivation of the shapes function
133 d2Nc=diff(d1Nc,xc);
134 d2Nr=diff(d1Nr,xr);
135 d2Nl=diff(d1Nl,xl);
136

137 % Shape function evaluated at damper mass
138

139 Nri=subs(Nr,xr,lr); % Right−side damper mass
140 d1Nri=subs(d1Nr,xr,lr);
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141 Nli=subs(Nl,xl,ll);%Left−side damper mass
142 d1Nli=subs(d1Nl,xl,ll);
143

144 % M is the Mass matrice of the conductor w/o damper
145

146 Mc= rhoAc*int(Nc*transpose(Nc),xc,0,lc);
147 M=Mc;
148

149 % Mass matrice of the conductor with damper
150

151 Nci1=subs(Nc,xc,ld1);
152 Nci2=subs(Nc,xc,ld2);
153 d1Nci1=subs(d1Nc,xc,ld1);
154 d1Nci2=subs(d1Nc,xc,ld2);
155

156 % Mass matrice (top left 4x4) of the conductor element with damper
157 % Damper1
158 Mcc1=Mc+mdr*(Nci1*transpose(Nci1)+lr*(Nci1*transpose(d1Nci1)...
159 +d1Nci1*transpose(Nci1))+d1Nci1*transpose(d1Nci1)*(hˆ2+lrˆ2))...
160 +Ir*d1Nci1*transpose(d1Nci1)+mdl*(Nci1*transpose(Nci1)...
161 −ll*(Nci1*transpose(d1Nci1)+d1Nci1*transpose(Nci1))...
162 +d1Nci1*transpose(d1Nci1)*(hˆ2+llˆ2))+Il*d1Nci1*transpose(d1Nci1)...
163 +mmr*(Nci1*transpose(Nci1)+d1Nci1*transpose(d1Nci1)*hˆ2)...
164 +1/2*rhoAr*(lrˆ2*(Nci1*transpose(d1Nci1)+d1Nci1*transpose(Nci1))...
165 +2/3*lrˆ3*d1Nci1*transpose(d1Nci1))+mml*(Nci1*transpose(Nci1)...
166 +d1Nci1*transpose(d1Nci1)*hˆ2)+1/2*rhoAl*(−llˆ2*(Nci1...
167 *transpose(d1Nci1)+d1Nci1*transpose(Nci1))+2/3*llˆ3*d1Nci1...
168 *transpose(d1Nci1));
169 %Damper2
170 Mcc2=Mc+mdr*(Nci2*transpose(Nci2)+lr*(Nci2*transpose(d1Nci2)...
171 +d1Nci2*transpose(Nci2))+d1Nci2*transpose(d1Nci2)*(hˆ2+lrˆ2))...
172 +Ir*d1Nci2*transpose(d1Nci2)+mdl*(Nci2*transpose(Nci2)...
173 −ll*(Nci2*transpose(d1Nci2)+d1Nci2*transpose(Nci2))...
174 +d1Nci2*transpose(d1Nci2)*(hˆ2+llˆ2))+Il*d1Nci2*transpose(d1Nci2)...
175 +mmr*(Nci2*transpose(Nci2)+d1Nci2*transpose(d1Nci2)*hˆ2)...
176 +1/2*rhoAr*(lrˆ2*(Nci2*transpose(d1Nci2)+d1Nci2*transpose(Nci2))...
177 +2/3*lrˆ3*d1Nci2*transpose(d1Nci2))+mml*(Nci2*transpose(Nci2)...
178 +d1Nci2*transpose(d1Nci2)*hˆ2)+1/2*rhoAl*(−llˆ2*(Nci2...
179 *transpose(d1Nci2)+d1Nci2*transpose(Nci2))+2/3*llˆ3*d1Nci2...
180 *transpose(d1Nci2));
181

182 % Mass of the coupling between damper on the right and the conductor
183

184 eMrc1=rhoAr*int((Nr*transpose(Nci1)+xr*Nr*transpose(d1Nci1)),xr,0,lr);
185

186 eMrc2=rhoAr*int((Nr*transpose(Nci2)+xr*Nr*transpose(d1Nci2)),xr,0,lr);
187

188 Mrc1=eMrc1+mdr*(Nri*transpose(Nci1)+lr*Nri*transpose(d1Nci1))...
189 +Ir*d1Nri*transpose(d1Nci1);
190

191 Mrc2=eMrc2+mdr*(Nri*transpose(Nci2)+lr*Nri*transpose(d1Nci2))...
192 +Ir*d1Nri*transpose(d1Nci2);
193

194 %Mass of the coupling between damper on the left and the conductor
195

196 eMlc1=rhoAl*int((Nl*transpose(Nci1)−xl*Nl*transpose(d1Nci1)),xl,0,ll);
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197 eMlc2=rhoAl*int((Nl*transpose(Nci2)−xl*Nl*transpose(d1Nci2)),xl,0,ll);
198

199 Mlc1=mdl*(Nli*transpose(Nci1)+ll*Nli*transpose(d1Nci1))...
200 +Il*d1Nli*transpose(d1Nci1)+eMlc1;
201

202 Mlc2=mdl*(Nli*transpose(Nci2)+ll*Nli*transpose(d1Nci2))...
203 +Il*d1Nli*transpose(d1Nci2)+eMlc2;
204

205 Mcl1=transpose(Mlc1);
206 Mcr1=transpose(Mrc1);
207

208 Mcl2=transpose(Mlc2);
209 Mcr2=transpose(Mrc2);
210

211 %Mass of the damper on the left
212 eMll=rhoAl*int((Nl*transpose(Nl)),xl,0,ll);
213 Mll=mdl*Nli*transpose(Nli)+Il*d1Nli*transpose(d1Nli)+eMll;
214

215 %Mass of the damper on the right
216 eMrr=rhoAr*int((Nr*transpose(Nr)),xr,0,lr);
217 Mrr= mdr*Nri*transpose(Nli)+Ir*d1Nri*transpose(d1Nri)+ eMrr;
218 Mlr=zeros(4);
219 Mrl=transpose(Mlr);
220

221 % Element mass matrice with damper
222 % Mass element from ld(1)Note that this is 12x12 matrice
223 m1=[Mcc1 Mcr1 Mcl1;Mrc1 Mrr Mrl;Mlc1 Mlr Mll];
224 m2=[Mcc2 Mcr2 Mcl2;Mrc2 Mrr Mrl;Mlc2 Mlr Mll];
225

226 % Reducing this 12x12 matrice to 10x10 leads to Md
227 % conductor element with damper1
228 Md1=[m1(1:6,1:6) m1(1:6,7)+m1(1:6,9) m1(1:6,8)+m1(1:6,10)...
229 m1(1:6,11:12);m1(7,1:6)+m1(9,1:6) m1(7,7)+m1(7,9)+m1(9,7)...
230 +m1(9,9) m1(7,8)+m1(7,10)+m1(9,8)+m1(9,10) m1(7,11:12)...
231 +m1(9,11:12);m1(8,1:6)+m1(10,1:6) m1(8,7)+m1(8,9)+m1(10,7)...
232 +m1(10,9) m1(8,8)+m1(8,10)+m1(10,8)+m1(10,10) m1(8,11:12)...
233 +m1(10,11:12);m1(11:12,1:6) m1(11:12,7)+m1(11:12,9)...
234 m1(11:12,8)+m1(11:12,10) m1(11:12,11:12)];
235 %conductor element with damper1
236 Md2=[m2(1:6,1:6) m2(1:6,7)+m2(1:6,9) m2(1:6,8)+m2(1:6,10) ...
237 m2(1:6,11:12);m2(7,1:6)+m2(9,1:6) m2(7,7)+m2(7,9)+m2(9,7)...
238 +m2(9,9) m2(7,8)+m2(7,10)+m2(9,8)+m2(9,10) m2(7,11:12)...
239 +m2(9,11:12);m2(8,1:6)+m2(10,1:6) m2(8,7)+m2(8,9)+m2(10,7)...
240 +m2(10,9) m2(8,8)+m2(8,10)+m2(10,8)+m2(10,10) m2(8,11:12)...
241 +m2(10,11:12);m2(11:12,1:6) m2(11:12,7)+m2(11:12,9)...
242 m2(11:12,8)+m2(11:12,10) m2(11:12,11:12)];
243

244 % Element stiffness matrices
245

246 Kc=int(EIc*(d2Nc*transpose(d2Nc))+T*(d1Nc*transpose(d1Nc)),xc,0,lc);
247

248 K=Kc;
249

250 Krr=int(EIr*(d2Nr*transpose(d2Nr)),xr,0,lr);
251

252 Kll=int(EIl*(d2Nl*transpose(d2Nl)),xl,0,ll);
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253

254 Krc=zeros(4);Kcr=zeros(4);Klr=zeros(4);
255 Klc=zeros(4);Kcl=zeros(4);Krl=zeros(4);
256

257 % stiffness matrice of the element with damper is K
258

259 k=[Kc Kcr Kcl; Krc Krr Krl; Klc Klr Kll];
260

261 %The 10x10 stiffness matrice is Kd
262

263 Kd= [k(1:6,1:6) k(1:6,7)+k(1:6,9) k(1:6,8)+k(1:6,10) k(1:6,11:12);...
264 k(7,1:6)+k(9,1:6) k(7,7)+k(7,9)+k(9,7)+k(9,9) k(7,8)+k(7,10)...
265 +k(9,8)+k(9,10) k(7,11:12)+k(9,11:12);k(8,1:6)+k(10,1:6) ...
266 k(8,7)+k(8,9)+k(10,7)+k(10,9) k(8,8)+k(8,10)+k(10,8)+k(10,10)...
267 k(8,11:12)+k(10,11:12);k(11:12,1:6) k(11:12,7)+k(11:12,9)...
268 k(11:12,8)+k(11:12,10) k(11:12,11:12)];
269

270 % The non conservative force F (wind force)
271

272 F=P*int(Nc,xc,0,lc);
273

274 % The conservative force obtained from the potential energy
275

276 G1=g*[mdr*(Nci1−lr*d1Nci1)+mdl*(Nci1+ll*d1Nci1);mdr*Nri;mdl*Nli];
277 %is 12x1
278 G2=g*[mdr*(Nci2−lr*d1Nci2)+mdl*(Nci2+ll*d1Nci2);mdr*Nri;mdl*Nli];
279 %is 12x1
280

281 % Reduce the above into a 10x10
282

283 Fg1=[G1(1:6,1);G1(7,1)+G1(9,1);G1(8,1)+G1(10,1);G1(11:12,1)];
284

285 Fg2=[G2(1:6,1);G2(7,1)+G2(9,1);G2(8,1)+G2(10,1);G2(11:12,1)];
286

287 return
288

289

290 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
291

292 % Assemble KM subroutine assembles the element mass and stiffness
293 % matrices. This program assembles the mass and stiffness matrices.
294 % First This subroutine looks for the element that contains the
295 % damper. Once this element is found, the element mass and stiffness
296 % corresponding to the element with the damper is called and the
297 % assembly is done in four groups. The first group, the 4x4 matrix on
298 % the top left corner of the 10x10, is assembled. Next, this
299 % subroutine assembles the second group, which is the 4x6 on the top
300 % right corner. Then, the inverse of the 4x6, which is the 6x4 at
301 % the bottom left, is called for assemblage and finally the 6x6 on
302 % the left is assembled. The AssemleKM.m calls the element without
303 % the damper at every other time.
304

305 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
306 function [ksys,msys,fsys,fgsys]=fassforsim(fsys,fgsys,ksys,msys,F,...
307 Fg1,Fg2,M,Md1,Md2,K,Kd,Ld1,Ld2,n,lc,edofc,edofd,neld1,...
308 sdof1,sdof2,neld2)
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309

310 % Intialize count (ct1, ct2...)
311 ct1=0;
312 ct2=0;
313 ct3=0;
314 ct4=0;
315

316 %Starting program for damper1
317

318 if (Ld1/lc>(n−1) && Ld1/lc<n) % get element matrice with damper
319

320 % Get the top−right 4x4 matrix
321 for k1=1:edofc
322 for j1=1:edofc
323

324 msys(sdof1+k1−1,sdof1+j1−1)=msys(sdof1+k1−1,...
325 sdof1+j1−1)+Md1(k1,j1);
326 ksys(sdof1+k1−1,sdof1+j1−1)=ksys(sdof1+k1−1,...
327 sdof1+j1−1)+Kd(k1,j1);
328 end
329

330 % Wind force on the damper element
331 fsys(sdof1+k1−1,1)=fsys(sdof1+k1−1,1)+F(k1,1);
332

333 % Force due to gravity
334 fgsys(sdof1+k1−1,1)=fgsys(sdof1+k1−1,1)+Fg1(k1,1);
335 end
336

337 for m1=1:neld1
338 sdof3=4*m1−3;
339 for k=1:edofd
340 ct2=ct2+1;
341 for j=1:edofd
342 ct1=ct1+1;
343

344 % Assemble top−left 6x4 matrix
345

346 if (ct1>4&&ct2≤4)
347 msys(sdof1+k−1,sdof1+sdof2+sdof3+j−2)=msys...
348 (sdof1+k−1,sdof1+sdof2+sdof3+j−2)...
349 +Md1(k,j);
350 ksys(sdof1+k−1,sdof1+sdof2+sdof3+j−2)=ksys...
351 (sdof1+k−1,sdof1+sdof2+sdof3+j−2)...
352 +Kd(k,j);
353 % Assemble bottom−left 4x6 matrix
354 elseif (ct1≤4 && ct2>4)
355 msys(sdof1+sdof2+sdof3+k−2,sdof1+j−1)=msys...
356 (sdof1+sdof2+sdof3+k−2,sdof1+j−1)+Md1(k,j);
357 ksys(sdof1+sdof2+sdof3+k−2,sdof1+j−1)=ksys...
358 (sdof1+sdof2+sdof3+k−2,sdof1+j−1)+Kd(k,j);
359 % Assemble bottom−left 6x6 matrix
360 elseif (ct1>4 && ct2>4) % all greater
361

362 msys(sdof1+sdof2+sdof3−2+k,sdof1+sdof2+sdof3...
363 −2+j)=msys(sdof1+sdof2+sdof3−2+k,sdof1+sdof2...
364 +sdof3−2+j)+Md1(k,j);
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365

366 ksys(sdof1+sdof2+sdof3−2+k,sdof1+sdof2+sdof3...
367 −2+j)=ksys(sdof1+sdof2+sdof3−2+k,sdof1+sdof2...
368 +sdof3−2+j)+Kd(k,j);
369

370 end
371 end
372

373 fgsys(sdof1+sdof2+sdof3−2+k,1)=fgsys(sdof1+sdof2+...
374 sdof3−2+k,1)+Fg1(k,1);
375 %Force of damper1 due to gravity
376 ct1=0;
377

378 end
379 ct2=0;
380 end
381 % Repeat the same procedure descibed for damper1
382

383 % starting program for damper 2
384

385 elseif (Ld2/lc>n && Ld2/lc<(n+1)) % get 2nd element with damper
386

387 for k11=1:edofc
388 for j11=1:edofc
389

390 msys(sdof1+k11−1,sdof1+j11−1)=msys(sdof1+k11−1,...
391 sdof1+j11−1)+Md2(k11,j11);
392

393 ksys(sdof1+k11−1,sdof1+j11−1)=ksys(sdof1+k11−1,...
394 sdof1+j11−1)+Kd(k11,j11);
395

396 end
397 end
398

399 for m2=1:neld2
400 sdof4=4*m2−3; sdof5=2*(2*neld2+1);
401 for k2=1:edofd
402 ct4=ct4+1;
403 for j2=1:edofd
404 ct3=ct3+1;
405

406 if (ct3>4&&ct4≤4)
407 msys(sdof1+k2−1,sdof1+sdof5+sdof4+sdof2+j2...
408 −2)=msys(sdof1+k2−1,sdof1+sdof5+sdof4...
409 +sdof2+j2−2)+Md2(k2,j2);ksys(sdof1+k2−1,...
410 sdof1+sdof5+sdof4+sdof2+j2−2)=ksys(sdof1...
411 +k2−1,sdof1+sdof5+sdof4+sdof2+j2−2)...
412 +Kd(k2,j2);
413

414 elseif (ct3≤4 && ct4>4)
415 msys(sdof1+sdof2+sdof5+sdof4+k2−2,sdof1+j2...
416 −1)=msys(sdof1+sdof2+sdof5+sdof4+k2−2,...
417 sdof1+j2−1)+Md2(k2,j2);
418

419 ksys(sdof1+sdof2+sdof5+sdof4+k2−2,sdof1+j2...
420 −1)=ksys(sdof1+sdof2+sdof5+sdof4+k2−2,...

108



421 sdof1+j2−1)+Kd(k2,j2);
422

423 elseif (ct3>4 && ct4>4)
424

425 msys(sdof1+sdof2+sdof5+sdof4−2+k2,sdof1+...
426 sdof5+sdof2+sdof4−2+j2)= msys(sdof1+sdof2+...
427 sdof5+sdof4−2+k2,sdof1+sdof5+sdof2+sdof4...
428 −2+j2)+Md2(k2,j2);
429

430

431 ksys(sdof1+sdof2+sdof5+sdof4−2+k2,sdof1...
432 +sdof5+sdof2+sdof4−2+j2)=ksys(sdof1+sdof2+...
433 sdof5+sdof4−2+k2,sdof1+sdof5+sdof2+sdof4...
434 −2+j2)+Kd(k2,j2);
435

436 end
437 end
438 % Force from damper2 due to gravity
439 fgsys(sdof1+sdof2+sdof5+sdof4−2+k2,1)=fgsys(sdof1+...
440 sdof2+sdof5+sdof4−2+k2,1)+Fg2(k2,1);
441 ct3=0;
442 end
443 ct4=0;
444 end
445

446

447

448 % Assemble all the elements without dampers
449

450 else % get element matrice w/o damper
451 for k=1:edofc
452 for j=1:edofc
453 msys(sdof1+k−1,sdof1+j−1)=msys(sdof1+k−1,sdof1+j...
454 −1)+M(k,j);
455 ksys(sdof1+k−1,sdof1+j−1)=ksys(sdof1+k−1,sdof1+j...
456 −1)+K(k,j);
457

458 end
459 fsys(sdof1+k−1,1)=fsys(sdof1+k−1,1)+F(k,1);
460 end
461 end
462

463 end
464

465 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
466 % Apply BC subroutine is used for applying boundary condition
467

468 function [ksys,msys,fsys,fgsys]=feaplycsf(ksys,msys,fsys,fgsys,bcdof)
469

470 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
471 % Purpose:
472 % Apply constraints to eigenvalue matrix equation
473 % [kk]{x}=lamda[mm]{x}
474 %
475 % Synopsis:
476 % [kk,mm]=feaplycs(kk,mm,bcdof)
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477 %
478 % Variable Description:
479 % kk − system stiffness matrix before applying constraints
480 % mm − system mass matrix before applying constraints
481 % bcdof − a vector containging constrained d.o.f
482 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
483

484 n=length(bcdof);
485 dofsys=size(ksys);
486 %fprintf(1,'Print length of bcdof %d\n',n);%
487 for i=1:n
488 c=bcdof(i);
489 for j=1:dofsys
490 ksys(c,j)=0;
491 ksys(j,c)=0;
492 msys(c,j)=0;
493 msys(j,c)=0;
494 end
495 fsys(c,1)=0;
496 fgsys(c,1)=0;
497 ksys(c,c)=1;
498 msys(c,c)=1;
499 end
500

501

502 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
503 % Free Vibration analysis
504 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
505 for n=1:nel %loop for the total number of elements
506 sdof1=2*n−1; sdof2=(nel−n)*2; %adding sdof2 in the global
507 %matrice would skip all dofs after 2nd node of damper element
508 [K,M,Kd,Md1,Md2 F,Fg1 Fg2]=fematriKM( Ir,Il,h,rhoAr,...
509 rhoAl,lc,ld1,ld2,lr,ll,EIc,T,rhoAc,EIl,EIr,mdr,mdl,...
510 mmr, mml,P,g);
511

512 [ksys,msys,fsys,fgsys]=AssembleKM(fsys,fgsys,ksys,msys,F,...
513 Fg1,Fg2,M,Md1,Md2,K,Kd,Ld1,Ld2,n,lc,edofc,edofd,neld1,...
514 sdof1,sdof2,neld2);
515 end
516

517 [ksys,msys]=applyBC(ksys,msys,bcdof); %apply the boundary conditions
518 fsol=eig(ksys,msys); % Solve for the natural frequency (ˆ2)
519 fsol=sqrt(fsol);%Determine natural frequencies in rad/s
520 herz=fsol/2/pi; %Determine natural frequencies in Hz
521 [m,n]=size(fsol);
522 break
523

524 fprintf(1,' natual frequencies\n');
525 fprintf(1,'mode (Hz) rad\n');
526 for i=3:m % ignore the 1st 2 natural frequencies
527 fprintf(1,'%2d %6.4e %6.4e \n',(i−2),herz(i),fsol(i));
528 end
529 return
530

531 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
532 % Force vibration analysis
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533

534 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
535 % The Linearize subroutine converts second order ODE into the first
536 % This program converts the problem to a system of first oder ODE
537 function Xdot=linearize(t,q)
538

539 global mu fg f gdof
540

541 w=2*pi*41.45; % 9.53 is the excitation frequency
542 % M*dotdot(q)+K*q=F+Fg; dotdot(q)+mu*q=f+fg;
543 % x1=q; x2=dotq; and dotx2=dot(dotq)
544 % Note that q is the displacement and dotq is the velocity and
545 % dot(dotq) is the acceleration. In this case q(1) is the
546 % displacement and q(2) is the velocity
547

548 X1dot=q(gdof+1:2*gdof,1); % the velocity q(2); q[q(1);q(2)]
549 X2dot=f*sin(w*t)+fg−mu*q(1:gdof,1);
550 Xdot=[X1dot;X2dot];
551 return
552

553 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
554 % MainSimulation determine the response
555 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
556

557 for n=1:nel %loop for the total number of elements
558 sdof1=2*n−1; sdof2=(nel−n)*2; %adding sdof2 in the global
559 %matrice would skip all dofs after 2nd node of damper element
560 [K,M,Kd,Md1,Md2 F,Fg1 Fg2]=fematriKM(Ir,Il,h,rhoAr,...
561 rhoAl,lc,ld1,ld2,lr,ll,EIc,T,rhoAc,EIl,EIr,mdr,mdl,...
562 mmr,mml,P,g);
563

564 [ksys,msys,fsys,fgsys]=AssembleKM(fsys,fgsys,ksys,msys,F,...
565 Fg1,Fg2,M,Md1,Md2,K,Kd,Ld1,Ld2,n,lc,edofc,edofd,neld1,...
566 sdof1,sdof2,neld2);
567 end
568

569 [ksys,msys]=applyBC(ksys,msys,bcdof); %apply the boundary conditions
570

571 % Divide all the terms in the eom by the mass matrix
572 mu=msys\ksys; % inv(msys)*ksys
573 f=msys\fsys*P; % x Lc because of the force per unit length P
574 fg=msys\fgsys;
575 %c=alpha*msys+beta*ksys; % Conductor selfDamping ratio
576 %from ref.[10] ( Dyanmical analysis of t.l
577 endtime=10; % Time for the simulation
578 tspan=[0 endtime];
579

580 % Intial Condition
581 q01=zeros(gdof,1); % initial displacement vector
582 q02=zeros(gdof,1); % initial velocity vector
583 q0=[q01;q02];
584 [t,q]=ode45('linearize',tspan,q0);
585

586

587 x=length(t); % number of iteration i.e number of ∆Ts
588
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589 q1=q(1:x,1:2*nel); % q1 is the displacement vector
590 %( 2 dof vertical displacement and rotation)
591 y max=max(max(abs(q1))); %find the maximum displacement of the
592 %conductor (this will always be the max
593 %vertical displ since the rotation is
594 %much smaller than this) maximum relative
595 %displacement of the conductor peak to peak
596 %max. amplitude
597 % find dof corresponding to maximum displ.
598 for tmax=1:x % i.e only q1 (displacement)
599 for nmax=1:2*nel
600 if (q1(tmax,nmax)==y max | | q1(tmax,nmax)==−y max)
601 locate=nmax; % locate the dof corresponding to the
602 % maximum displacement
603 end
604 end
605 end
606 locate
607 yc pp=2*y max
608 xmid=2*max(abs((q1(1:x,nel+1))))
609 maxval Ymdr1=2*max(abs((q(1:x,gdof−7))))
610 maxval Ymdl1=2*max(abs((q(1:x,gdof−11))))
611 maxval Ymdr2=2*max(abs((q(1:x,gdof−1))))
612 maxval Ymdl2=2*max(abs((q(1:x,gdof−5))))
613 m y2=2*max(abs((q1(1:x,3))))
614 m yf=2*max(abs((q1(1:x,2*nel−1))))
615

616 % Initialize the relative displacement vectors
617

618 xmid=zeros(x,1); % Mid−span displacement
619 Ymax=zeros(x,1); % Maximum displacement
620 Y 2=zeros(x,1); % Displacement of the second node
621 Y f=zeros(x,1); % Displacement of the penultimate node
622 Y mdr=zeros(x,1); % Displacement of right−side damper
623 Y mdl=zeros(x,1); % Displacement of left−side damper
624

625 for is=1:x % loop for all deta T
626

627 xmid(is)=1/D*q1(is,nel+1); % the displacement in the midspan
628 %(This is only correct provided nel
629 %is even)
630

631 Y 2(is)=1/D*q1(is,3); %relative displacement of the second
632 %node for all dT
633 Y f(is)=1/D*q1(is,2*nel−1); %relative displacement of the
634 %penultimate node
635

636 Y mdr1=1/D*q1(is,gdof−1); % relative displ. of
637 %the damper on the right
638 Y mdl1=1/D*q1(is,gdof−5); % relative displacement of the left
639 Ymax(is)=1/D*q1(is,locate); %relative max displ for each ∆T
640

641 end
642 hold on
643

644 % Plot displacement vectors vs time
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645 plot(t,xmid,'−')
646 hold on
647 plot(t,Ymax,'−')
648 hold on
649 plot(t,Y 2,'−')
650 hold on
651 plot(t,Y f,'−')
652 hold on
653 plot(t,Y mdr)
654 hold on
655 plot(t,Y mdl)
656 legend('Response of midpoint(for Ld=1.1) m {dr}=0.856 & m {dl}=1.5');
657 ylabel('Relative maximum displacement (Ymax/D)');
658 xlabel('time in second')
659 plot(t,q(:,1));plot(t,q(:,2),':')
660 legend('x1','x2');ylabel('Amplitude');xlabel('time')
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