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ABSTRACT 

 

 

The Fully Bayesian (FB) approach to road safety analysis has been available for some 

time, but it is largely unevaluated and untested.  This study is trying to bridge the gap by 

conducting a thorough evaluation of FB method for black spots identification and 

treatment effect analysis.   

 

First, an evaluation is conducted on the univariate FB versus the empirical Bayesian (EB) 

method for single level severity data through the development of various models, and 

multivariate FB versus univariate FB for multilevel severity data, as well as the 

performance of various ranking and evaluation criteria for black spots identification.   It 

is confirmed that the FB method is superior to the EB with respect to key ranking criteria 

(expected rank, mode rank and median rank of posterior PM, etc.).   The multivariate FB 

method is better than univariate FB for the multilevel severity crashes. 

 

Then a test of the FB before-after method for treatment effect analysis is performed. Two 

FB testing frameworks were employed. First the univariate before-after fully Bayesian 

(FB) method was examined using three simulated datasets. Then multivariate Poisson log 
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normal (MVPLN), univariate Poisson log normal (PLN) and PG (Poisson gamma) 

models were evaluated using two groups of California unsignalized intersections.  

Hypothetical treatment sites were selected from these datasets such that a significant 

effect would be estimated by the naive before-after method that does not account for 

regression to the mean. This study confirmed that FB methods can indeed provide valid 

results, in that they correctly estimate a treatment effect of zero at these hypothetical 

treatment sites after accounting for regression to the mean.  

 

Finally the EB and the validated FB before after methods were applied to evaluation of 

two treatments: the conversion of rural intersections from unsignalized to signalized 

control; and the conversion of road segments from a four-lane to a three-lane cross-

section with two-way left turn lanes (also known as road diets).  The result indicates that 

both FB and EB method can provide comparable treatment effect estimates.  This would 

suggest it is still appropriate to conduct treatment effect analysis using the EB method for 

univairate crash data, but that it is essential in so doing to account for temporal trends in 

crash frequency.   
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CHAPTER 1  INTRODUCTION 

 

 

 

1.1 OVERVIEW OF ROAD SAFETY  

 

1.1.1 The Status of Road Safety  

Road traffic crashes constitute one of the world’s largest public health and injury problems. 

According to the World Health Organization (2009), 1.2 million people are killed on the world’s 

roads each year, and as many as 50 million others are injured.  The injuries due to road collisions 

are identified as one of the leading epidemics of our time and this epidemic of road traffic 

injuries in most regions of the world is still increasing.  The World Health Organization predicts 

that road traffic injury will rise to become the fifth leading cause of death by 2030.  In the United 

States, ninety-four percent of all transportation fatalities occur on highways. More than 41,000 

Americans are killed each year in motor vehicle crashes, and three million are injured.  More 

productive years of life are lost due to road collisions than any other disease, more than heart 

disease and cancer combined (US Department of Transport, 2001). In Canada, about 200,000 

people were injured and 3,000 people were killed in 2006 (Transport Canada, 2005).  The human 

and economic consequences of motor vehicle crashes are unaffordable and unacceptable. The 

majority of motor vehicle crashes are predictable and preventable; the carnage is unnecessary. 

 

1.1.2 The Need for Road Safety Study 

The above facts suggest a significant need for continuing research to improve road safety 

through reduction of the harm (deaths, injuries, and property damage) that results from road 

crashes.  Road safety management exclusively deals with road traffic crashes with regard to 

ways to reduce the number of crashes and their consequences.  

 

The analytical aspects of safety management of a road network can be simply divided into three 

basic parts:  hazardous site identification (or network ranking), implementation of treatment for 

identified hazardous sites, and analysis of treatment results (Hauer, 1997; Geurts and Wets, 

2003).  Hazardous site identification and treatment effect analysis play important roles in the 

improvement of road safety and provide guidance on road planning, design, maintenance, 
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construction and operation.  Both procedures will be investigated and discussed in this thesis 

using fully Bayesian methods.  The current approaches for both procedures and the objective of 

this thesis will be briefly introduced in the rest of Chapter 1. 

 

1.2 CURRENT METHODS FOR HAZARDOUS SITE IDENTIFICATION 

Hazardous site identification is also called hot spot identification, black spot identification, 

priority investigation location flagging, identification of sites with promise, network screening, 

or network ranking.  In this thesis, these terms are used without distinction. Network ranking is 

the first step in the site safety improvement process.  A black spot can be defined as a site where 

the accident risk or a safety indicator is ―unacceptably high‖ and safety countermeasures are 

most warranted.   The product of network screening is a list of sites that are ranked by priority 

for the conduct of detailed engineering studies (Hauer et al., 2004).  It is important that the 

process for identifying sites requiring safety investigation be efficient because resources can be 

wasted on sites that are incorrectly identified as unsafe and sites that are truly unsafe can remain 

untreated if they are not properly identified in this process (Persaud et al., 1999). 

 

There are several methods currently applied for network screening: conventional or naïve 

methods, the Empirical Bayes (EB) method and Fully Bayesian or hierarchical Bayesian method 

(denoted as FB or HB, respectively).  Details are discussed below: 

 

1.2.1 Conventional Methods (Naïve Methods) 

Conventional methods (or naïve methods) are used to rank sites utilizing accident counts and/or 

rates, often in a statistical quality control framework.  Top ranked sites are identified as sites with 

promise for further examination and possible treatment. Typically, resources are invested to 

improve correctable sites from the top down until allocated funds are expended. 

 

The naïve methods are now known to have difficulties in identifying deviant sites because of 

potential bias due to the regression-to-the-mean (RTM) phenomenon in which sites with a 

randomly high accident count can be wrongly identified as being hazardous and vice versa 

(Persaud et al., 1999; Hauer et al., 2004; Hauer, 1996; Elvik, 2008a; Elvik, 2008b; Brüde and 

Larson et al., 1988).  In the area of traffic safety, the RTM effect may be explained as follows. 
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Sites with accident counts above (or below) the expected frequency at sites with similar traits in 

a short period will in the following short period have accident counts which on average, are 

closer to the expected number of accidents at sites with similar traits.  That is, when data is not 

enough, i.e. at a particular location which only spans a few years, a naïve statistical analysis that 

relies on information from a short period data at that site fails to capture the true long-term 

behavior of that site. The estimated long-term crash frequency obtained over a few years can be 

excessively influenced by a single year with an unusually high (or low) number of crashes. This 

is known as the RTM effect.  In other words, the crash counts have regressed to the mean (see 

Davis, 1976; Bland and Altman, 1994a and 1994b, for a general description and examples). 

 

A. Ranking criteria for the conventional method 

The ranking criteria associated with the conventional method are the upper tail crash frequency, 

upper tail crash rates, or upper tail crash frequency combining upper tail crash rates (Elvik, 

2008a). The details are described below. 

 

a. Upper Tail Crash Frequency 

Black spots are identified based on the total crash counts in the whole period (normally 3 or 4 

years), where the recorded number of crashes belongs to the upper percentage (i.e., 1%, 2.5% or 

5%) or the top ranking of the entire population distribution. 

 

b. Upper Tail Crash Rates 

The procedure is the same as above, but crash rates are used as criteria instead.  The crash rate is 

the accident count divided by traffic volume or entering vehicle volume, usually in units such as 

crashes per thousand or million vehicles.  

 

The use of crash rates makes an implicit assumption that crashes are linear to exposure. The 

possible nonlinearity of the relation, which many investigators have confirmed with developed 

safety performance functions (SPFs) (Hauer, 1992; Hauer, 1997; Persaud et al., 1999; Lord and 

Persaud, 2002; Miao and Lord, 2007; Persaud and Nguyen, 1998; Persaud et al., 2002; Sayed 

and Rodrigez, 1999; Turner-Fairbank Highway Research Center, 1999; Brüde and Larson, 1988 

etc.), is the primary argument against using crash rates as a criterion. 
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c. Upper Crash Frequency Combined with Upper Crash Rates 

Sites that record a number of accidents greater than upper critical percentage values (i.e. 2.5%, 

1%, or 5%) in a population of sites and have higher-than-average accident rates are classified as 

hazardous sites. The average accident rate refers to the overall average for the whole population 

of sites. 

 

All of the above criteria directly use observed crash counts or crash rates to identify hot spots.  It 

implies that this method cannot address the RTM problem and the results are not reliable. 

 

B. Ranking criteria involving crash severity 

Instead of ranking locations based on only one severity crashes, the identification of hazardous 

locations can be done in terms of the total risk when crash counts at different levels of severity 

are available, which is defined as the product of the crash frequency and its consequences 

(usually in terms of weight).  It is obvious that different levels of severity crashes contribute 

different safety levels to the site.  For example, in Belgium (Geurts, 2003) the safety of the site 

can be expressed as: 

P = X + 3*Y + 5*Z                 (1-1) 

where 

X = total number of light injuries,  

Y = total number of serious injuries, and 

Z = total number of deadly injuries. 

 

C. Application of the conventional method 

Despite the drawbacks mentioned above, conventional methods are currently still used to 

identify black spots in many jurisdictions due to the ease of application (Elvik, 2008b; 

SØrenthen, 2007; Geurts, 2004). Specifically, Elvik conducted a detailed survey with the black 

spot identification method in Europe.  The survey results are shown in Table 1-1 (Elvik, 2008b). 

It is seen that in many countries, recorded crash counts are directly used for ranking   despite the 

fact that methods based on this random variable fail to address the RTM problem. 
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Table 1-1 Overview of definitions of hazardous road locations in selected European countries

Country Reference to 

population of sites

Sliding window 

applied

Reference to normal 

level of safety 

Recorded or expected 

number of crashes

Crash severity 

considered

Length of 

identification period

Austria No Yes, 250m Yes, by means of 

critical values for 

crash rate

Recorded, minimum 

critical value 3-function 

of traffic volume

No 3 years

Denmark Yes, detailed 

categorization of 

roadway elements

Yes, for road 

sections-variable 

length

Yes, by means of 

crash prediction 

models

Recorded, based on 

statistical test-minimum 

four crashes

No 5 years

Flanders No Yes, 100m No Recorded, weighted by 

severity 

Yes, by means of 

weights 

3 years

Germany No No, crash maps 

inspected

No Recorded, minimum 

values 3 or 5

Yes, by different 

critical values

1 year (all crashes) 

or 3 years (injury 

crashes)

Hungary No Yes, 100 or 1000m No Recorded, minimum 4 No 3 years

Norway Not when 

identifying black 

spots

Yes, 100m (spot) 

or 1000m (section)

Yes, by means of 

normal crash rates 

for roadway 

elements

Recorded higher than 

normal by statistical 

test, minimum values 4 

(spots) or 10 (sections)

Yes, by estimating 

crash costs and 

potential savings

5 years

Portugal Yes, for one 

definition; no for 

the other

Yes, for one 

definition; no for 

the other

Yes, for one 

definition; no for the 

other

Recorded in one 

definition (minimum 5), 

expected in the other

Yes in one definition 

(by severity 

weighting); no in other

1 or 5 years

Switzerland Yes, open roads 

and junctions

No, fixed sections 

of variable length

Yes Recorded, a set of 

critical values

Yes, by different 

critical values

2 years
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1.2.2 Empirical Bayesian Method 

To overcome the drawbacks of the conventional techniques, the empirical Bayes (EB) approach 

was originally developed for before-after studies to evaluate the effects of road safety treatments.  

Hauer (1980) was among the first researchers to indicate how the EB method eliminates the 

effects of RTM in road crash data.  Since then, the EB approach has been suggested, examined 

and widely explored by several researchers (Brüde and Larson et al., 1988, Persaud et al., 1999; 

Persaud and Lyon, 2007; Hauer and Persaud, 1983; Hauer, 1992; Hauer et al., 2004; Hauer et al., 

2002; Saccomanno et al., 2001; Cheng and Washington 2005a, 2008; Hauer, 1996; Elvik, 1997; 

Elvik, 2008a; Elvik, 2008b, 2008c).  The EB approach is now a primary method for both 

treatment effect analysis and black spot identification. 

 

A. Basics of the EB approach 

According to the EB method, the best estimate of expected crashes for a specific site is obtained 

by combining two sources of information: (1) the crash record (y) for a specific entity or site 

(intersection, road section, etc.), and (2) expected crashes ( ) for similar sites, which is obtained 

from a crash prediction model or a safety performance function.  In this way, it can be seen that 

the EB procedure essentially aims to smooth out the random fluctuations in crash data by 

specifying the safety of a site as an estimate of its long-term mean (λ) instead of its short-term 

count.  The expected crashes for a specific site can be estimated as: 

                                                                              

where 

   = expected crash counts in n years at site i, 

  = expected crashes in n years at similar sites, estimated from safety performance functions 

(SPFs), 

   = observed crash counts in n years at site i, and 

   = the weight given to the estimated expected crashes for similar entities and estimated from 

the mean and variance of the SPFs estimate. 
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For a negative binomial (NB) model where the expected number of accidents is gamma 

distributed with shape parameter k, and the recorded number of crashes xi for each entity is 

Poisson distributed, αi can be calculated as: 

 

   
 

  

 
     

                                              

 

     
  

 
     

                                              

 

where k = the over-dispersion parameter of the NB model and is estimated from the SPF 

calibration process with the use of maximum likelihood estimation for the required reference 

group.  The density function is: 

 

        
       

           
  

  

    
 

  

 
 

    
 

 

                                            

 

Generalized linear modeling is used to estimate the required reference group SPF by using, e.g., 

the software package SAS (SAS Institute 1998) and assuming a negative binomial (NB) error 

distribution.  The NB dispersion parameter, k, is also estimated by SAS. 

 

Annual SPF multipliers are calibrated to account for temporal effects on safety due to variations 

in weather, demography, crash reporting and so on.  After applying the multipliers, the estimated 

   can be directly used to identify hot spots or to derive other criteria, such as potential for safety 

improvement (PSI) to detect hot spots. 

 

B. Ranking criteria 

 

a. Expected crashes    

For each site, the EB estimate of the expected number of crashes is obtained by combining the 

observed crash counts with an estimate of the normal number of crashes from an SPF as 
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mentioned in Equation 1-2. Sites with the highest estimates of    are classified as hazardous.  In 

other words, black spots are identified based on the expected crashes (  ) in the whole data 

group, where    belongs to the highest percentage (i.e., 1%, 2.5% or 5%) or the top ranking 

subgroup of the whole population distribution. 

 

b. Potential for safety improvement (PSI) 

The PSI was originally introduced by McGuigan (1981) as the difference between the observed 

crash count of a site and expected crashes for similar sites estimated from SPFs, denoted as 

PPSI: 

               (1-6) 

 

This ranking criterion is based on the achievable benefits due to potential highway engineering 

improvements.     represents what might be normally expected on the basis of traffic volume 

alone or similar sites, and may not be reduced by highway engineering treatments.  This method 

seems reasonable as it reflects the belief that any road or intersection which is open to traffic will 

have a certain level of risk. 

 

Because the suggested accident count is included in Equation1-6, it would be difficult for 

application due to random fluctuations in counts where, as is often the case, a relatively short 

accident history is used.  To overcome the limitation, Persaud (1999) proposed that the EB 

estimated expected crashes    rather than observed crashes    for each site should be used.  In 

this way, the PSI for each site is calculated and sites can be ranked to identify hazardous sites. 

The revised PSI is: 

 

                                                 (1-7) 

 

 

By comparing Equations 1-2 and 1-7, it can be found that higher crash counts    will influence 

the priority for further investigation for a particular site for both the EB expected crashes and EB 

PSI methods, but it is not the sole factor.  On the other hand, the value of    has a different 

impact on the selection of hot spots for both ranking criteria.  Larger values of    will increase 

the value of expected crashes      thus increasing the probability of the site being identified as a  
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hot spot for the first criterion;  for the PSI criterion, larger values of     will decrease the 

corresponding probability because the PSI is diminished with the increase of   .  Thus, sites 

ranked as unsafe by the PSI method could indeed have no safety issue because of a low    and 

unsafe sites (a large  ) might not be ranked to the top list because of a large   . 

 

Different weights for crashes of different severity levels can be introduced in both criteria. 

 

 

C. Evaluation criteria 

There are several evaluation criteria to identify the performance of the ranking methods.  Persaud 

and Lyon (1999) developed two criteria to quantify the performance of the methods: observed 

crashes in the following period, and the difference between observed crashes and predicted 

crashes for similar sites (estimations from SPFs) in the subsequent period.  Another criterion 

borrowed from epidemiology (Elvik, 2008a) is usually used to conduct evaluations: the 

percentage of correct positives, also called sensitivity (Elvik, 2008a), which is the percentage of 

safe sites that are correctly claimed; and the percentage of correct negatives, also called 

specificity (Elvik, 2008a), which is the percentage of unsafe sites that are correctly claimed.  

Besides these criteria, Cheng and Washington (2008) developed three new evaluation criteria: 

the method consistency, total rank differences and Poisson mean differences tests.  These three 

tests are designed to evaluate a method’s performance by measuring the consistency in terms of 

number of the same hot spots identified, the sum of total rank differences of hazardous road 

sections identified and the sum of Poisson mean differences of black spots recognized across two 

periods.  The evaluation criteria are described below: 

 

 Criterion 1: Sum of observed crashes in the succeeding time period 

 

      
         

    
                                        (1-8) 

where  

  
    sum of observed crash counts in the second time period i+1 for ranking method j, 

n = total number of sites, 

α = the percentage of top ranked high risk sites, and 
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       = observed crash counts at top ranked nα sites by method j during second time 

period i+1. 

 

This criterion rests on the premise that a site identified as high risk during period 1 should also 

reveal inferior safety performance in a subsequent period 2, given that no significant changes 

have occurred at the site and that the site is, in fact, high risk. It simply requires a comparison of 

the sum of observed crashes at the ranked high-risk sites (identified by method 1 during time 

period i) during the succeeding time period i + 1 to crashes which occur at the same number of 

high-risk sites (in time period i + 1) identified by other possible ranking criteria.  The method 

which provides the most crashes in period i+1 at the top ranked sites is the best. 

 

 Criterion 2: Sum of differences between observed and predicted crashes at similar sites  

 

        
       

        
                   

        
        

        
               (1-9) 

 

where 

     
    =Pseudo potential safety improvement for top high risk sites ranked by method j 

during the second time period i+1. 

 

Similar to the first criterion, this evaluation measure aims to determine whether the high risk 

sites in the first period are also high risk in the second period, except that it is based on 

differences between observed and predicted crashes at similar sites (estimated from SPFs) rather 

than crash counts.  The differences between observed and predicted crashes at similar sites are 

somewhat like the PSI.  Likewise, the sum of differences (observed crashes minus estimations 

from SPFs) at ranked high-risk sites during the subsequent time period i + 1 identified by method 

1 (during previous time period i) are compared with those from other possible ranking criteria. A 

greater sum of differences means a better method, which indicates that there is more room to 

improve safety.  It should be noted that predicted crashes for similar sites are estimated from 

SPFs. 

 

 Criterion 3: Sensitivity and specificity 
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Data for the second time period i+1 are usually used to assess whether the hazardous sites 

identified in the first time period are true or false positives.  The idea is that true positives will 

persist in having a bad safety record, whereas false positives will regress toward a more normal 

safety record. There are also some false negatives (i.e., sites not detected in the first time period, 

but which are detected in the second time period).  Usually two measures are used to evaluate the 

ranking criteria: 

 

                
                           

                         
                                                   

 

                
                           

                         
                                                   

 

where 

                            = number of sites that continue to belong to the top ranked nα in 

the second period, 

                          = number of sites that drop out of the top ranked list (nα) in time 

periods i+1,  

                            = number of sites that do not belong to the top ranked list (nα) in 

both the time periods i and i+1, 

                          = number of new sites that enter the list (nα) in the time period i+1,  

total number of positives = the number of correct (true) positives + the number of false 

negatives, and 

total number of negatives = the number of correct negatives + the number of false positives. 

 

In statistics, the terms false positive, which refers to type I errors, and false negative, which is 

associated with type II errors, are used to describe possible errors made in a statistical decision 

process.  Table 1-2 presents the concepts of these terms more clearly. 

 

 

 

http://en.wikipedia.org/wiki/Statistics
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Table 1-2 Concept of False Positive and False Negative 

 

1
st
 time period i 

High risk Not High risk 

2
nd

 time period i+1 

High risk True (correct) Positive 
False Negative 

Type II error 

Not High risk 
False Positive 

Type I error 
True Negative 

 

 

This evaluation criterion is borrowed from epidemiology (Deeks, 2001; Rothman and Greenland, 

1998). The criterion employs a number of correct positives, or complementarily false positives, 

and correct negatives, or complementarily false negatives, to assess the performances of various 

ranking criteria.  It can be seen that a larger evaluation measure, which means more consistency 

in the next period, results in a better method.   

 

 Criterion 4: Method Consistency  

 

          
        

      
  

 
        

          
        

    
 
   (1-11) 

where 

       
        

      
  

 
= top ranked nα high risk sites by method j during first time period i, 

and 

       
          

        
    

 
= top ranked nα high risk sites by method j during time period i+1. 

 

This test is designed to evaluate the performance of a method by measuring the number of the 

same hot spots identified in both periods.  This criterion is simply used to identify the 

intersection of the top nα ranked sites identified in time period i and the subsequent time period i 

+ 1 from various ranking criteria.  It can be found that a better method means more intersections 
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of top ranked sites.  The method yielding the largest intersection of sites is said to be the most 

consistent.  This criterion is similar to criterion 3 and can be seen as another one of its forms. 

 

 Criterion 5: Total Rank Differences  

This test is built on the method consistency test, and takes into account the rankings of safety 

performance of road sections in the two periods.  The sum of total rank differences between the 

ranks of the hazardous road sections identified in the first period and ranks identified in the 

second period for the same group sites is used to reflect the performance of consistent rankings 

of sites across periods. This criterion is used to reflect the performance of consistent rankings of 

sites across periods.  

            
     

 

      

        
                                          

where 

n = total number of sites, 

       
  = the rank order for site k by method j during time period i, and 

       
     = the ranked order for site k (identified in time period i) by method j during 

subsequent time period i+1. 

 

It can be seen that a smaller total rank difference means more consistency in the ranking method.  

However, this criterion has a problem in that it cannot differentiate the volatile changes of 

identified sites in the second period.  For example, if sites 10 and 15 have rankings of 1
st
 and 8

th
 

in period 1, but 6
th

 and 3
rd

 in period 2, ranked by method j, from Equation 1-12,      , so that 

a consistent conclusion can be falsely drawn with this criterion.  To avoid the situation, thus the 

absolute values of difference should be used in calculating the sum of rank differences of the two 

periods.  

 

 Criterion 6: Poisson Mean Differences  

One major problem with these rank related evaluation criteria, as pointed out by Cheng and 

Washington (2008), is that each false identification is weighted equally. For example, if a site 

with a total Poisson mean (TPM) of 16.8 is wrongly selected for treatment instead of one with 
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16.9, the error is really rather small, whereas if a site with a TPM of 6.9 is mistakenly selected 

instead of one with 16.9, the error is much more significant.  The Poisson mean differences 

associated with the two false identifications are 0.1 and 10, respectively which are relatively 

large differences, whereas sensitivity and specificity differences are the same with these false 

identifications.  Poisson mean differences are proposed by Chen and Washington (2005b) to 

obviate this drawback.  This criterion can be expressed as: 

 

          
         

  

 

      

                                  

 

They suggested that a smaller value of this criterion is desirable.  From ranks 3 through to 6, an 

underlying assumption is that there is homogeneity across the two periods.  However, this may 

not be the case in real applications.  Thus, we believe that the sum of the Poisson means in the 

succeeding time period might be a better criterion. 

 

D.  Applications of the EB method and limitations  

The EB method was extensively examined by researchers (Persaud, 1999; Saccomanno et al., 

2001; Elvik, 2008a, 2008c; Cheng and Washington, 2005a, 2008).  It was confirmed that the EB 

method can provide promising results.  Hauer (1997) and Hauer et al. (2002) presented an 

excellent illustration on how to clearly implement the EB method with a step by step procedure.  

Now the EB method is widely applied for road safety studies.  The Highway Safety Manual (to 

be published in 2010 by AASHTO) employs the EB method as a standard method for road safety 

analyses.  However, there are still some limitations of the EB method: 

 It requires a large sample size of data to develop SPFs. This can be costly or otherwise 

impractical. 

 There is no flexibility to define underlying distributions for the observed crashes in that 

only an NB distribution for the observed crashes can be assumed, however, there may be 

other distributions which are more suitable for the data set, but which cannot be 

implemented with the EB method  

 Only point estimations of expected crashes are available. This implies that the EB method 

does not consider the uncertainty of the obtained data  
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 It is difficult to select the function form of SPFs. The chi-square test is commonly used to 

evaluate the fit of the model.  However, it does not take into consideration the penalty of 

an overparameterized model  

 It cannot handle multivariate correlation distributions. This is even worse when crash 

data with different levels of severity are available for network ranking.  Intuitively, there 

should be some correlation between crashes of different severity levels, and disregarding 

this correlation may lead to biased results 

 It is difficult to incorporate spatial correlations and/or time series correlations, and 

 The ranking procedure can be time consuming and costly.  To implement the EB method, 

the first step is to calibrate SPFs. When different severity crash data are available, the 

whole EB procedure needs to apply for each severity of crash individually.  In other 

words, the whole procedure needs to be performed again and again.  This is time 

consuming and costly. 

 

With these issues, the application of the EB method can be problematic and a new method, the 

fully or Hierarchical Bayes (FB or HB, used interchangeably) method was proposed to overcome 

these limitations.  The current FB ranking method and associated ranking criteria will be 

investigated in detail in Chapter 5. 

 

1.3 TREATMENT EFFECT ANALYSIS 

Following black spot identification, the diagnosis of safety issues and the development of 

potential remedies, there is implementation of countermeasures to improve the safety 

performance of some identified black spots.   After that, it is prudent to conduct a treatment 

effect analysis to determine if implemented countermeasures improve road safety, and to provide 

feedback information for a road safety management system.  The treatment effect can be 

quantified in terms of the number or percentage of crashes reduced. 

 

1.3.1 Measurement of Treatment Effect  

 Crash Reduction  

                                                     

where  
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CR = crash reduction in terms of number of crashes reduced in the period after 

implementation, 

λ   the expected crashes for the whole treatment group without treatment in after period, 

and 

       the expected crashes for the whole treatment group with treatment in after period.  

 

 Crash Reduction Rate 

    
        

  
                                            

where  

CRR = crash reduction rate in terms of percentage of crashes reduced in the after period. 

 

In order to obtain CR and CRR, there are two tasks: estimate the expected crashes for the whole 

treatment group without treatment in after period   ; and estimate the expected crashes for the 

whole treatment group with treatment in after period       .  Normally,       is estimated to be 

the observed crashes in the after period (Hauer, 1997).  Thus the critical issue for the treatment 

effect analysis becomes how to estimate   .  Currently, there are three methods to estimate   : 

naïve before-after treatment study, comparison group before-after study, and the EB before-after 

safety study (Hauer, 1997). These are described below. 

 

1.3.2 Method for Treatment Effect Analysis 

Before-after studies, also called longitudinal studies, are commonly used methods to evaluate the 

safety effects of a single treatment or a combination of treatments in highway safety (Hauer, 

1997). This type of study is deemed superior to cross-sectional studies because they can exclude 

time-invariant unobserved individual differences, and can account for temporal order of events. 

The fundamental difference between cross-sectional and before-after studies is that cross-

sectional studies take place at a single point in time while before-after studies involve a series of 

measurements taken over a period of time. Both are observational studies.  

 

Before-after studies can be grouped into three types: the simple (naïve) before-after study, the 

before-after study with comparison group (also called before after C-G method), and the before-



17 

 

after study using the EB method (using a ―reference‖ group similar in concept to a comparison).  

The selection of the method is usually governed by the availability of data, such as crashes, 

traffic flow, etc., and can also be influenced by the amount of available data (or sample size).  

Here, the term ―after‖ means the safety status after the implementation of a treatment; 

correspondingly, the term ―before‖ refers to the status before the implementation of a treatment. 

 

A. Naïve before-after study (simple before-after study) 

This approach assumes that all of the observed changes in crashes are due to treatment. It does 

not account for the temporal effects on safety due to variations in weather, demography, crash 

reporting and so on.  Thus, the expected number of accidents in the after periods with or without 

treatment has the form: 

          

 

   

                                                               

 

       

 

   

   

   
                                                        

 

Crash reduction and crash reduction rate are calculated as: 

                

 

   

   

   
     

 

   

                                               

                              

    
        

  
 

    
 
   

   

   
     

 
   

    
 
   

   

   

                                              

where 

   = observed crash counts at site i in a before period of      years, and 

    = the observed crash counts at site i in an after period of     years. 

 

Naïve before-after methods, like naïve methods for black spot identification, are still appealing 

in that they are easy to apply. Although widely used, they are inevitably likely to have errors in 
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that they fail to address the RTM problem.  That is, a randomly large number of crashes for a site 

during a before period is normally followed by a reduced number of crashes during a similar 

after period, even if no countermeasures have been implemented (while the opposite applies in 

the case of a randomly small number of crashes).  In the latter part of the thesis, an example will 

be given.  In that example, naïve results show a large crash change in the before- after period at 

high crash sites even if there is no treatment implemented.  

 

B. Comparison group before-after method 

This method employs a comparison group to estimate the expected number of accidents in the 

after period for treatment sites (  ) had treatment not been implemented. 

Assume that: 

   = crashes observed at comparison site(s) which correspond to treatment site i in the before 

period of tBi years, and 

    = crashes observed at comparison site(s) which correspond to treatment site i in the after 

period of tAi years. 

 

Then,                                         
 
   

   

   
                                                        

 

Compared with the naïve method, this method can account for unrelated effects (Persaud and 

Lyon, 2007), or non-scheme effects (Hirst et al., 2004), or confounding factors (Elvik, 2002), 

such as time and traffic trends, but will not account for RTM unless the comparison group is 

similar to the treatment group in all of the possible factors that could influence safety.  Persaud 

and Lyon (2007) reported that there are immense practical difficulties in achieving this ideal. 

Moreover, it is difficult to test the necessary assumption where the comparison group is 

unaffected by the treatment. In addition, this method will not control for changes in safety which 

results from changes in traffic volume at the treatment sites that might result from the treatment 

itself. 

 

It should be noted that normally, the sample size of the comparison group is relatively small; 

again, this method cannot be used to conduct a treatment analysis by itself.  The detailed 
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information of this method can be obtained from Hauer (1997), Persaud and Lyon (2007), and 

Hirst et al. (2004). 

 

C. EB before-after method 

 

a. Procedure 

In the EB approach (Hauer, 1992; Hauer, 1997; Hauer and Harwood, 2002; Persaud and Nguyen, 

1998; Harkey et al., 2008), the change in safety for a given crash type at a location is given by:  

 

    (1-21) 

 

where   is the expected number of crashes that would have occurred in the after period without 

treatment and   is expected number of crashes that occurred in the after period with treatment, 

which is normally estimated to be the number of reported crashes in the after period.  

 

In estimating  , the effects of the regression to the mean and changes in traffic volume are 

explicitly accounted for using SPFs which relate crashes to traffic flow and other relevant 

factors. Annual SPF multipliers are calibrated to account for the temporal effects on safety due to 

variations in weather, demography, crash reporting and so on.  

 

In the EB procedure for the treatment effect analysis, the SPFs is used to first estimate the 

number of crashes that would be expected in each year of the before period at locations with 

traffic volumes and other characteristics similar to the one being analyzed.  The procedure to 

obtain an estimate of   is the same as Equation 1-2. 

 

A factor is then applied to   to account for the length of the after period and differences in traffic 

volumes between the before and after periods. This factor is the sum of the annual SPF 

predictions for the after period divided by P, the sum of these predictions for the before period. 

The result, after applying this factor, is an estimate of  .  The procedure also produces an 

estimate of the variance of  . 
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The estimate of   is then summed over all sites in a treatment group of interest (to obtain      ) 

and compared with the count of crashes during the after period in that group (    ). The 

variance of    is also summed over all sections in the treatment group. 

 

The index of effectiveness () is estimated as: 

                                
                

 

The standard deviation of   is given by: 

          

 

 
                 

                  
  

   
         

    
   

 

 

   

             

 

The percent change in crashes is in fact 100(1); thus a value of   0.80 with a standard 

deviation of 0.10 indicates a 20 percent reduction in crashes with a standard deviation of 10%. 

 

b. Applications and limitations 

Like the EB application for network ranking, the EB method for the treatment effect analysis was 

extensively evaluated and found to provide promising results (Persaud and Lyon 2007; Hauer 

1992; Hauer 1997; Hauer and Harwood 2002; Elvik 2008c; Brüde and Larson 1988, etc.).  It is 

now widely used for the treatment effect analysis (Persaud 1988; Persaud and Hauer 1997; 

Persaud and Nguyen 1998; Persaud et al. 2001; Persaud et al. 2003; Persaud 2005; Harkey et al. 

2008) because it can address RTM problems with step by step procedures for implementation.  

However, there are still some limitations of this method similar to those identified for network 

ranking.  The new FB method for the treatment effect analysis is explored, evaluated and 

discussed in Chapter 6. 

 

 1.4 MOTIVATION AND RESEARCH OBJECTIVES 

Due to the limitations of the currently popular method of EB for road safety analyses, it is 

necessary to explore the development of a new method which can overcome its drawbacks.  The 

FB method has been recently introduced to road safety analyses  (Miaou and Lord 2003; Bossche 
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et al. 2003; Brijs et al. 2004; Carriquiry and Pawlovich 2005; Miaou and Song 2005; Pawlovich 

et al. 2005; Lord 2006; Aul 2006; Miranda-Moreno and Fu 2007; Lan et al. 2009; Persaud et al. 

2010; Park and Lord 2007; Ma and Kockelman 2006; Ma and Kockelman 2008; El-Basyouny 

and Sayed  2009; Aguero-Valverde and Jovanis 2009; Lan and Persaud 2010).  However, few 

have applied the FB in either network ranking or a treatment effect analysis mainly due to the 

lack of systemic evaluations.   Moreover, in the above studies, normally only one function form 

of expected crashes was investigated.   Furthermore, no evaluation of the FB method was 

conducted for both network ranking and treatment effect analysis. All of these issues will be 

discussed, explored and investigated in detail in the latter part of this thesis. 

 

To this end, the objectives of this dissertation are to: 

 Explore various FB models with correlated data. Various FB models will be proposed 

and discussed with correlated data that might occur in road safety studies, including data 

with time series, spatial, temporal spatial, multivariate (with or without temporal 

correlation and/or with or without spatial correlations). 

 

 Investigate the model selection criteria and to find possible best model criteria.  Different 

model selection criteria, e.g., log likelihood (LL), Akaike information criterion (denoted 

as AIC, see Akaike, 1973 and Bozdogan, 2000),   Bayes information criterion or the 

Schwarz criterion (denoted as BIC, see Schwarz, 1978) and deviance information 

criterion (defined as DIC, see Spiegelhalter et al., 2002), will be investigated.   

 

 Develop a proper approach to conduct a thorough evaluation of FB for black spots 

identification. Two categories of data, single severity data and multilevel severity data, 

will be used to explore the performance of the FB methods using various ranking and 

evaluation criteria.  

   

 Investigate ranking and evaluation criteria to identify the possible criteria.  Specifically, 

the posterior mode rank of the decision parameter (the Poisson mean in this study) is 

proposed as a ranking criterion and evaluated for hotspot identification. The other seven 

ranking criteria including posterior Poisson mean, posterior expected rank, posterior 
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median rank, posterior probability of being the worst, raw data, posterior PSI and 

posterior PPSI will be also evaluated and compared, and the most robust criteria will be 

identified.  Moreover, in addition to sensitivity and specificity, the sum of crash counts 

and sum of PPSI in the evaluation period, the sum of the Poisson mean and sum of the 

PSI in the second time period are proposed and employed as two new criteria to evaluate 

the performance of the ranking methods and various ranking criteria.   

 

 Design a method to test FB for treatment effect analysis.   Two FB testing frameworks 

will be employed. First the univariate before-after FB method will be examined using 

three simulated datasets. Then multivariate and univariate FB methods will be evaluated 

and compared using two groups of untreated California unsignalized intersections (one 

with high crash counts and another one with low crash counts).  The test will be 

performed for hypothetical treatment sites that have significant naive treatment effects 

due to regression to the mean.  The FB method will be validated if it accounts for 

regression to the mean and estimates a treatment effect of zero at these hypothetical 

treatment sites. 

 

 Explore and compare the performance of the EB and FB approaches for network ranking 

and treatment effect analysis and to identify the advantages of FB method over the EB 

method.  Both FB and EB methods will be evaluated and compared based on their 

performance in terms of various evaluation criteria for black spots identification using 

single severity crash data.  For treatment effect analysis, EB and FB methods will be 

compared with the application to evaluate two treatments: the conversion of rural 

intersections from unsignalized to signalized control; and the conversion of road 

segments from a four-lane to a three-lane cross-section with two-way left turn lanes (also 

known as road diets).   

 

1.5   ORGANIZATION OF DISSERTATION 

This dissertation is composed of eight chapters.  

 



23 

 

Chapter 2 presents the basics of the FB method.  Two approaches, univariate FB (Poisson-

gamma (PG) and Poisson-log normal (PLN) and multivariate FB (multivariate Poisson-log 

normal, denoted as MVPLN) are discussed in terms of marginal and posterior distributions. The 

procedure to obtain FB posterior distributions is described. Then, the basics of EB and FB are 

compared.  Finally, the advantages of FB are discussed in terms of the ability to handle 

correlation longitudinally (time series correlation) and spatially (spatial correlation), and 

correlations between different severities / different types of crashes, flexibility for model 

selection either in terms of function forms or underlined distributions of dependent variables 

(PG, PLN, mixture distributions), and capability to provide rich inference information.   

 

Chapter 3 discusses FB models with correlated data.   Various univariate FB methods to deal 

with each correlated data case (temporal, spatial, temporal combined with spatial correlations) 

are discussed in detail.  Multivariate FB models with different severity or types of crash counts 

with a combination of spatial and/or temporal correlated data are also studied.   

 

Chapter 4 indicates that the objective in model selection is to use as parsimonious a model as 

possible while ensuring that reliable results are obtained.   The competing models should be 

compared based on a trade-off between the fit of the data to the model and the corresponding 

complexity of the model.  Popular model selection criteria, including maximum likelihood, 

Bayes factors (Burnham and Anderson, 2004), AIC, BIC and DIC, are discussed in detail. The 

advantages and disadvantages of these methods are highlighted and issues with model selection 

are summarized. 

 

Chapter 5 presents the evaluation of FB for network ranking using 5 severity levels of data (fatal, 

incapacitating-injury, non-incapacitating injury, minor injury and property damage only (PDO) 

crashes) and 1 severity level of crash (total crashes) data for California four legged unsignalized 

intersections with 2 lanes on major roads.  The evaluations are performed by using data from one 

level of severity (total injured)  to compare the EB results with univariate FB results, and 5 

severity levels of data to compare the results obtained from univariate FB models with 

multivariate Poisson-log normal (MVPLN) models.  Eight ranking criteria (posterior expected 

rank, mode rank, median rank, the probability of being the worst, Poisson mean, PSI, PPSI and 
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raw data) and 5 evaluation criteria (sum of Poisson mean, sensitivity and specificity, sum of the 

PSI, sum of the PPSI and sum of crash counts in evaluation period) are explored in this study. 

The evaluation methods include the EB, univariate PG and univariate PLN with four function 

forms of the expected crashes, and univariate Poisson autoregressive first order (P AR (1) model) 

models for data from a single level of severity and MVPLN AR (1) and P AR (1) for multilevel 

severity crash data.   In addition, a sensitivity analysis of ranking criteria and a data history 

sensitivity analysis are conducted with data for different ranking periods (first 3 years vs. first 6 

years).  The results are compared with each other and the best method and most robust ranking 

criteria are identified and discussed for each of the cases (multilevel of severity cases and one 

type of crash case). 

 

Chapter 6 first presents the evaluation of the univariate FB using simulated data for a before-

after study, then performs the evaluation for both univariate FB and MVPLN using different 

types of crash data from California unsignalized intersections.  For the latter case, two data sets, 

one with relatively high crash counts and the other with lower crash counts, are selected for 

evaluation, respectively. The objective of the evaluation for different types of crashes is to 

determine if MVPLN is superior to univariate FB for each of these cases. 

 

Chapter 7 provides a comparison and discussion of the pros and cons of the two Bayesian 

approaches, EB and FB methods, based on, and illustrated with, empirical applications. These 

applications pertain to the evaluation of two treatments: the conversion of rural intersections 

from unsignalized to signalized control, and the conversion of road segments from a four-lane to 

a three-lane cross-section with two-way left turn lanes (road diets). In each case, the numerical 

results from the two approaches are compared.   

 

Lastly, Chapter 8 concludes this dissertation with a short summary of this research and some 

suggestions for future studies.  
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CHAPTER 2 FULLY BAYESIAN METHOD FOR ROAD SAFETY 

ANALYSIS 

 

 

2.1 INTRODUCTION OF THE BAYES METHOD 

In Bayesian models, the likelihood of the observed data y given parameters θ, denoted by 

                , is used to modify the prior beliefs      with updated knowledge to obtain a 

posterior density of θ,        .  Thus, according to Bayes’ theorem, 

 

                                                                                                  

 

where 

y = observed data, 

θ = parameters, 

    θ   joint probability of observed data y and parameters θ, 

    θ                                                       θ given fixed data y, 

π θ                                                                         , 

                                         ,           θ π θ  θ, and 

π θ                                         θ                                                      

 

Therefore, the posterior density can be written as: 

       
          

    
                                                      

 

Equation 2-2 gives a general solution for updating prior probabilities into posterior probabilities. 

However, the actual calculation can be laborious.  It can be seen that      is constant with 

respect to θ, and has the role of a normalizing constant.  Generally, there are two approaches to 

obtaining the posterior distribution: 

 by finding                   . This approach, however, is normally impossible 

                   ies unless it has a conjugate prior for the likelihood, 
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 by the Markov chain Monte Carlo (MCMC) method.    m Equation 2-2, ignoring the 

normalizing constant, Bayes' formula is often written in a proportional form: 

 

π θ         θ π θ                                             

 

Comparing Equations 2-1 and 2-3, we can find that posterior distribution is proportional to the 

joint distribution.  For this reason, we can derive all the estimates and even draw random samples 

from the posterior density by MCMC simulation techniques (Brooks, 1998; Gelfand, 1990) 

without knowing the constant     .  In fact, MCMC is now frequently used to estimate the 

posterior distribution π θ   , and      can be ignored in many calculations.   

 

2.2 WINBUGS AND ITS SAMPLING METHODS 

The software WinBUGS (Lunn et al., 2000; Spiegelhalter et al., 2003; Cowles, 2004) is 

commonly used to implement the FB method. This section summarizes the basics of how this is 

achieved. 

   

2.2.1 The Gibbs Sampler 

An MCMC algorithm, which is known as Gibbs sampling (Congdon, 2003; Cowles, 2004), is 

used to construct the transition kernels for its Markov chain samplers. It uses a fixed sequence of 

Gibbs transition kernels each of which updates a different component of the state vector, as 

follows. Given starting values (initial values), the Gibbs sampler proceeds by systematically 

updating each variable in turn, via a single Gibbs update, as follows: 

 

Specify an initial value:   
   

   
   

        
   

  

Repeat for             

         
   

        
     

        
     

    

. 

. 

. 

         
   

        
   

   
   

          
   

      
     

   
     

    

. 

. 

. 
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Return the values    
   

   
   

        
   

                  

 

It should be noted the first L iterations  must be disregarded to ensure convergence of the chains 

due to the effects of the initial values.  The first disregarded iteration is also called burn-in 

iteration (Lunn et al., 2000; Spiegelhalter et al., 2003).  After convergence, when the sample size 

m is large enough (m-L), then the mean of the parameters is: 

   
 

   
   

   

 

     

                                        

 

From the above, it can be seen that, conceptually, the Gibbs transition is fairly straightforward. 

Ideally, the conditional distribution   θ   θ 
   

  θ 
   

      θ   
   

 θ   
     

   θ 
         will be in the 

form of a standard distribution which allows efficient random variate generation, and a suitable 

prior specification often ensures that this is the case.   

 

2.2.2 The Metropolis-Hastings Algorithm 

The Gibbs sampler owes some of its success and popularity to the fact that in many statistical 

models, the complete conditional posterior distributions   θ   θ 
   

      θ   
   

 θ   
     

   θ 
         

take the form of some well-known distributions, such as having conjugate priors, i.e. Poisson-

gamma models, which allow efficient random variate generation.  However, there remain many 

important applications where this is not the case, which require alternative MCMC schemes.  In 

such cases, the Metropolis-Hastings algorithm (Chib and Greenberg, 1995; Brooks, 1998) is used 

to draw posterior samples for parameters estimation in WinBUGs.  This powerful algorithm 

provides a general approach for producing a correlated sequence of draws from the target density 

that may be difficult to sample by a classical independence method. The Metropolis-Hastings 

algorithm generates a sequence of draws as depicted below: 

 

Step 1: Start with any initial value θ  satisfying f (θ )>0. 



28 

 

 

Step 2: Using current θ  value, sample a candidate point θ
 
 from some distribution   θ     , 

which is the probability of returning a value of θ
 
 given a previous value of θ . This distribution 

is also referred to as the proposal or candidate-generating distribution.  

 

Step 3: Calculate  

      
       

           
   

             
  

where 

          the proposal distribution, which is the probability of returning a value of   given 

a previous value of   .,  

      
    the proposal distribution, the probability of returning a value of    given a 

previous value of   , and 

  = stationary limiting distribution which is the same as the distribution that we wish to 

simulate. 

 

It should be noted that the choice of the proposal distribution   θ  θ         θ  θ
   is essentially 

arbitrary, subject to the condition that the resulting chain is aperiodic and irreducible, has a 

stationary distribution π  and in practice, generally selected so that observations may be 

generated with reasonable ease. 

 

Step 4: generate a random variable u from uniform distribution U[0,1] 

 

Step 5: if u  αθ  θ 
, accept the proposal value θ      θ    , θ    θ   

 Otherwise, reject the proposal value θ
 
, θ    θ  

 

Step 6: go to step 2, repeat until a large enough sample has been generated. Finally, return 

    θ  , θ    θ . 
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The one-dimensional Gibbs sampler is a special case of Metropolis-Hastings, where the proposal 

distribution   θ  θ   π θ      For them, αθ  θ 
     It means that the proposal θ

  is always 

accepted.  

2 

2.3 HIERARCHICAL BAYES METHOD 

The hierarchical Bayes (HB) method is widely used in Bayesian analysis. It is a powerful tool for 

expressing rich statistical models that more fully reflect a given problem than a simpler model 

could otherwise. 

 

Given data y and parameters θ, a simple Bayesian analysis starts with a prior probability (prior) 

     and likelihood                  to compute a posterior probability π θ         θ π θ . 

Often, the prior on θ depends, in turn, on other parameters φ (called hyper parameter) that is not 

mentioned in the likelihood. So, the prior       must be replaced by a prior       , and a prior 

     on the newly introduced parameters φ is required, which results in a posterior probability 

π θ               . 

 

                                                                         

Since  

                                                          

                                                       

 

Plugging Equations 2-6 and 2-7 into Equation 2-5, 

                                        

 

The posterior distribution is: 

         
              

      
 

            

      
                                                 

So, 
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This is the simplest example of an HB model.  The process may be repeated; for example, the 

parameters φ may depend in turn, on additional parameters ψ, which will require its own prior. 

Eventually, the process must terminate with priors that do not depend on any other unmentioned 

parameters.  It is quite common that almost all the Bayes methods involve HB study, and this is 

also quite popular in road safety studies, i.e. crashes Y~ Poisson (θ), and θ ~ gamma (α, β).  In 

this study, HB and FB will be used interchangeably. Five HB models, which are PG, PLN, P 

AR(1), MVPLN and MVPLN AR (1), are investigated which will be described in detail in the 

latter part of this thesis. 

 

2.4 FULL BAYESIAN (FB) MODELS  

In road safety studies, sometimes only one dependent variable or several uncorrelated dependent 

variables is/are introduced into the analysis procedure, e.g., a treatment effect analysis based on 

total crashes. In this case, a univariate FB model is appropriate for providing promising results 

(Lan et al. 2009, Persaud et al. 2010).  Actually, it is confirmed in this study that a univariate FB 

method works well even with multiple uncorrelated dependent variables (Lan and Persaud 2010), 

for example, for different types of crashes. While in other situations, this may require a 

multivariate correlated random effects model for promising results, e.g., network ranking based 

on multilevel severity crashes, intuitively, these different severity crashes are inherently 

correlated.  In this latter case, a univariate FB model might no longer be proper for the study 

since it fails to capture the inherent relationship between these correlated dependent variables.  

Under this situation, a multivariate FB must be performed.  The univariate and multivariate FB 

models involved in this study are introduced in the next sub-sections. 

 

2.4.1 Univariate FB Models 

Crash counts      at site i in year t are typically assumed Poisson distributed with a mean     ,  

                                                                                             

where 
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and 

     = observed number of crashes at site i in year t, 

    = expected number of crashes at site i in year t, 

      expected number of crashes at similar sites in year t, 

                , X could be the logarithm of the covariates (logarithm of traffic 

volumes) or just covariates and M is the number of covariates, 

                                         , and 

    = random effect at site i. 

 

Crash counts at a given site are inherently discrete, positive numbers, and often are small, as in 

the case of fatal and injury accidents. In an EB study, the NB distribution is regarded as an 

effective model and is the only available distribution applied for overdispersed count data.  FB, 

however, has more flexibility to choose the distributions of the crash counts.  Generally, there are 

two popular HB models (PG and PLN models) with respect to different distributions of random 

effects      in road safety analyses.   

 

                   is rewritten as                      .       is said to follow PG or PLN distribution 

with regard to the distributions that     follows: 

 

A. Poisson-gamma models (                      and                    

The FB model is called a PG model if                       and                  .  It can be 

seen that this model introduces a gamma distributed multiplicative random effect.   The posterior 

distribution of      and marginal distribution of crash counts      can be expressed or derived as 

follows: 

 

a. Posterior distribution of       
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Since                    

   Then                           

    From Equation 2-10,  

            α     β                     α     β                                   

 

            , the Poisson likelihood is: 

             
    

          

     
                                                

Prior gamma distribution                        

                 
    

               

            
                                     

 

Plugging Equations 2-16 and 2-17 into Equation 2-15, and the posterior distribution is: 

                  
    

         
        

 
     

 

            
 

 

       
         

        
 

     
 
                         

 

It can be found that the posterior distribution of the PG FB model has the same form of prior 

distribution (Equation 2-17).  The posterior distribution is also gamma distributed, such that 

                                 
 

     
 . The prior gamma distribution and the posterior 

are then called conjugate distributions, and the prior gamma is called a conjugate prior for the 

likelihood Poisson distribution (Gelman et al., 2003). A conjugate prior is an algebraic 

convenience; otherwise, a difficult numerical integration may be necessary. Furthermore, 

conjugate priors may provide intuition, by more transparently showing how a likelihood function 

updates a distribution. 

 

b. Marginal distribution     α β : 
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For simplicity of notation, we omit the subscript.  Apply Bayes’ theorem, the joint distribution of 

(     has the probability density function (abbreviated as pdf): 

                                                                

 

The marginal distribution is: 

                                                         

 

The marginal distribution of crash counts y is: 

           
     

  
 

     
 

 
  

         
                                                      

 

         
 

           
        

    
 

  
  

                                                          

 

Assume that       
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It can be seen that Equation 2-22 is a Polya density function with parameters         . When 

random effects follow                   , then                  .  A special case is      , 

when Equation 2-22 becomes: 

 

      
 

 
   

      

      
 

 

   
 

 

 
 

   
 

 

                                                                  

 

Equation 2-23 is a density function of NB distribution.  When the crash count   follows the 

Poisson distribution with its own mean  (               ) and   follows a gamma distribution 

with shape parameter   and scale parameter     (                , then crash counts 

marginally follow the NB distribution with mean   and dispersion parameter  :            .  

The estimators of the expected Poisson mean      and variance        are: 

                 

       

                     

 

The estimators of expected crash counts      and variance        are: 

            

        

              

 

B. Poisson-log normal models (                      and                    

When                  , then                       , the FB model is said to be a PLN 

model. Similarly, the posterior and marginal distribution can be shown as follows: 

 

 Posterior distribution of      of PLN model 

The subscript is omitted for a simple expression as before.  If                       , then 

                      ,  

 

Prior Log-Normal distribution                       : 
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Plugging Equations 2-16 and 2-24 into Equation 2-15, 

 

                    α  β   

  
     

  
  

 

     
 

 
          

     

  
       

    
 

 
          

                                         

 

It has been found that the prior log normal distribution and the posterior are not conjugate 

distributions.  In this case, the estimators of the expected Poisson mean      and variance 

       cannot have a closed form.  Both can be estimated through the MCMC method. 

 

 Marginal distribution     α β  of PLN model 

As defined in Equation 2-19, the marginal distribution of crash counts y is: 

         
     

  
 

 

     
 

 
          

                                                       

 

        
 

      
      

 
            

                                                     

 

It can be seen that there is also no closed form of the integral in Equation 2-26.  The estimators 

of expected crash counts      and variance        cannot be expressed in a closed form either.    

 

2.4.2 Multivariate FB models 

Practically, the analysed dependent variables (crash counts) may not be a single level and/or 

single type.   In fact, crash data are normally collected at different severity levels (i.e. fatal, 

injured, PDO, etc.) and pertain to different types (e.g., total, read end, right angle and left turn).  

Intuitively, collisions at different severity levels are correlated while crashes for different types 
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may or may not be correlated.  In such cases, a univariate FB model is unable to capture the 

underlying correlation that might occur between these different severity levels and/or different 

types of crashes.  For this reason, it is natural to believe that a multivariate FB approach might be 

a better approach for safety analyses based on crash types and severities. The following sections 

will introduce two multivariate FB models: multivariate Poisson (MVP) and MVPLN models. 

 

A. Multivariate Poisson (MVP) models  

MVP models can be presented in a different way (Tsionas, 1999, 2001; Ma and Kockelman, 

2006; Karlis and Meligkotsidou, 2005; Brijs et al., 2006).  For ease of implementation, the 

following assumption is made for MVP distributions, as used by Tsionas (1999, 2001).  

 

Let crash counts      
     

      
  be described as L types or injury severity levels of 

multivariate crash records at location i (where i=1, 2…N).   Suppose that       
     

      
  are 

independent Poisson variables at site i with parameters   
     

      
 , and    follows a Poisson 

distribution with parameter   , independently of   
     

      
 .  Define 

 

  
    

     

  
    

                        

. 

.                                          

. 

  
    

     

 

Then, the variables   
     

      
   (where i=1, 2,...,N) are said to follow the MVP distribution.  It 

can be seen that   
     

      
  marginally follow Poisson distributions with means   

        
  

       
    .  Thus MVP cannot model data with overdispersion. 

 

The correlation coefficients between   
        

  is  
  

     
 , 

 
  

     
  

      
     

  

   
     

 

                                   

 

where 



37 

 

      
     

                            
        

   and 

   
     

                     

 

Since    is independent of         and                                 

 

      
     

         
       

       

       
    

         
            

                 

            

      
     

    
 
                                                                 

 

      
         

      

       
        

 
 +2Cov(  

      

 θ 
   

 
 

      
     

     

Similarly,  

      
     

     

Thus  

 
  

     
  

      
     

  

   
     

 

 
  

    
        

     

                            

 

It can be seen that the correlation coefficient  
  

     
  is a non negative number.  This could be 

critical for the analyzed data.  In fact, the data do not always meet this requirement. This method 

has been investigated by several researchers in road safety studies.  For example, Ma and 

Kockelman (2006) applied an MVP regression approach to assess the effects of covariates on 

collision counts at different severity levels, Brijs et al. (2006) employed MVP to identify and 

rank sites according to their total expected cost to society by using  accident data from 23,184 

accident locations in Flanders (Belgium).  However, one must keep in mind that MVP models do 

not support negative covariances (or negative correlation coefficients) between random 

variables.  The covariance (or correlation coefficient) in the MVP setting is always positive, as 
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shown in Equations 2-29 and 2-30.   Moreover, the MVP model has Poisson marginal 

distributions and thus cannot model overdispersion.  Furthermore, crash data are found to be 

significantly overdispersed relative to the mean, and using the Poisson regression models may 

overstate or understate the likelihood of crashes (Maher and Summersgill, 1996). 

 

The above two drawbacks, especially the second one, greatly limit the application of MVP.  As a 

matter of fact, MVP has been rarely applied in road safety studies.  For this reason, MVP models 

will not be further explored in this study.  To overcome the shortcomings of MVP, a more 

flexible and powerful multivariate FB model, MVPLN, has been suggested in road safety studies 

and will be briefly introduced below. 

 

B. Multivariate Poisson-log normal (MVPLN) models  

Let crash counts      
     

      
  be L types or injury severity levels of multivariate crash 

records at location i.  M is defined to be the number of covariates and                  .  

Let       
    

    
      

    be the (M+1) dimensional regression coefficients for crash type or 

severity k.       
     

      
    are the unobserved random errors for crash type or severity 1, 

type or severity 2,..., type or severity L, respectively.   

 

Each type or severity of crash is assumed to be independently Poisson distributed. That is,  

    
         

             
   

where 

    
               

                                                                                           

 

    
                                                                                                     

 

where 

    
 = the expected crashes of type/severity level k at location i in year t, and 

    
 = the expected crashes of type/severity k at similar sites in year t.  

 

Assume that   
             , where   is an unrestricted     covariance matrix between 

different severity/type of crashes;  thus the correlation between different types or severity of 
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crashes is built through the multivariate normal distribution of      The details of MVPLN is 

described in Chapter 3. 

 

2.5 COMPARISON OF THE BASICS OF FB AND EB 

From the above sections and Chapter 1, it is seen that both EB and FB combine prior and current 

information to derive an estimate for the expected safety of a site that is being evaluated. In the 

context of crash analyses, the prior information is the expected accident frequency from a group 

of similar sites and the current information is the site specific observed accident frequency. EB 

and FB are not different types of studies. They are indeed two related approaches to combining 

prior and current information. However, there are still some differences in the two approaches,  

which can be summarized as follows. 

 

In the EB approach, prior information comes from using a reference group of sites similar to 

those under evaluation to calculate a sample mean and variance or from a calibrated safety 

performance function (SPF) that relates the crash frequency of the reference sites to their 

characteristics.  The SPFs are developed by the maximum likelihood method.  The inference of 

the parameters of SPFs is based on the likelihood of the data alone.  The point estimates of the 

expected mean and the variance are then combined with the site specific crash count to obtain an 

improved estimate of a site’s long-term expected crash frequency.  Basically, there are two steps 

to conduct an EB study: the first step of the procedure (SPF development) uses a classical 

approach (maximum likelihood) to develop SPFs by using observed data while the second step 

(the estimation of the expected crashes) employs a Bayesian approach, which combines the 

observed crashes with the SPF estimates to obtain estimates of expected crashes.  It can be seen 

that the observed data are used twice in the EB procedure: once in the development of SPFs, and 

in another time, to estimate site specific long-term expected crash frequency.  Hence, this 

method is called the empirical Bayesian method.  It should be noted, however, in EB studies, the 

NB distribution of the dependent variable (crash counts) is usually assumed, and a large sample 

of the reference group is required for developing SPF. 

 

In the Full Bayes approach, the likelihood of the observed data y given parameters θ, denoted 

as                 , is used to modify prior beliefs      with updated knowledge to obtain 
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posterior density       . The procedure to combine prior information with site specific crash 

frequency is integrated. Unlike the EB procedure, the observed crash data are used only once 

with the FB procedure.  Instead of a point estimate of the expected mean and its variance, a 

distribution of likely values of expected crashes is generated. Thus rich information can be 

obtained from the posterior distributions.  The FB or HB methods offer a number of potential 

advantages and are summarized below:  

 the small sample properties of FB models, which may allow the estimation of valid 

crash models with smaller sample sizes, 

 the ability to include prior knowledge in the coefficient values in the modeling along 

with the data collected, 

 the ability to include spatial correlation between sites in the model formulation, 

 the ability to handle correlation longitudinally (time series correlation), 

 the ability to deal with correlations between different severities / different types of 

crashes, 

 the capability to provide rich information of the inference such as the posterior 

distribution of outcomes, 

 the ability to specify very complex model forms, 

 the use of an integrated procedure for all outcomes, avoiding the need for independent 

SPFs, and 

 the flexibility for model selection either in terms of function forms or underlying, 

more complex distributions of dependent variables (PG, PLN, and mixture 

distributions), through an HB structure. 

 

With regards to the last bulleted point, the FB method can accommodate distributions such as 

hierarchical PG, PLN and even mixture models (Lord, 2006; Miranda-Moreno and Fu, 2007; Lan 

et al., 2009; Persaud et al., 2010; Maher and Mountain, 2009; Park and Lord, 2009), while the 

EB approach relies on the assumption of an NB distribution of crash counts in using an NB 

dispersion parameter directly in the estimation process. 
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CHAPTER 3 FB MODELS WITH CORRELATED DATA 

 

 

Observed crash counts are usually correlated, for example, along a corridor or across years.  For 

the former case, there might be a spatial correlation between the sites while a time series 

correlation might exist for the latter case.  Furthermore, crashes of different types/severities at 

the same site might be correlated. When this is the case, then a multivariate approach that was 

described in Chapter 2 is necessary.  The situation becomes extremely complicated when all of 

these conditions converge, for instance, when there are observed crash counts of different 

types/severities along a corridor across several years.  In this case, spatial correlation, time series 

correlation and a multivariate approach might need to be combined together. This might induce 

underestimation or overestimation of the posterior distributions of crash frequency if these 

correlations are disregarded.  However, it is impossible to conduct this sort of analysis by using 

the empirical Bayes approach (EB), because EB itself is a univariate approach.  Because of 

MCMC simulation techniques, this problem can be solved with the FB method. 

 

Similar to Chapter 2, FB models with correlated data will be introduced in two separate ways: 

univariate FB models with correlated data and multivariate FB with correlated data.  

 

3.1 UNIVARIATE FB MODELS WITH CORRELATED DATA 

 

3.1.1 Univariate FB Models with Time Series Data 

Accident counts on an entity often exhibit time trends due to temporal changes in factors such as 

road conditions, traffic flow, weather, the economy, accident-reporting practices, advances in 

vehicular technologies, and design standard improvements.  Successive observations are likely to 

be dependent. It therefore stands to reason that FB models which accommodate these trends 

should provide better estimates of safety than traditional models in the identification of 

hazardous entities and in the evaluation of treatments applied to those entities since both tasks 

require the use of time series accident data.  In an EB framework, this time correlation might be 

conducted by applying a time multiplier as described in Chapter 1 and a generalized estimating 

equation (GEE) procedure (Zeger and Liang, 1986; Liang and Zeger, 1986; Lord and Persaud, 
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2000).  Lord and Persaud (2000) applied the GEE procedure to analyse motor-vehicle accidents 

at 868 four-legged signalized intersections in Toronto for 1990 through to 1995. They assumed 

that the crash counts follow an NB distribution. The results demonstrated that not accounting for 

temporal correlation does not affect the coefficient estimates, but that the variance of these 

estimates is considerably underestimated.   For the EB approach, this means that the estimated 

SPFs would be the same with or without the GEE procedure; thus the final results of either a 

network ranking or treatment effect analysis should be the same. This result could be caused by 

the limitations of EB as mentioned in Chapter 2 as well as the GEE procedure itself. Another 

reason might be that the crash database used has only 5 years of observations that may not 

exhibit strong time correlation. The GEE method for other data might provide better results, but 

applications of GEE are minimal.  For FB, it is much more flexible to work with time series data.  

The details are as follows. 

 

A. Time multiplier model 

Suppose                   
                                                   

          
                                          

                                                                 

where 

     = observed number of crashes in time t at site i, 

    = expected number of crashes in time t at site i,  

      expected number of crashes in time t at the sites similar to site i, 

                       Covariates in time t at site i and M is the number of covariates,  

    = Time varying intercept, 

                                                                           , and 

                             , which follows gamma distribution or log normal distribution 

as described in Chapter 2. 

 

The time varying intercept     is used to account for temporal variations in crash occurrences.  It 

is similar, in principle, to the time multiplier in an EB study. It has been demonstrated that this 

model can provide promising predicted results (Persaud et al., 2010; Lan and Persaud, 2010). 
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B. Time varying coefficient model 

                                                                                               

where 

                                                                                      

 

This model can be seen an extension of the time multiplier model.  However, it does not mean 

that this model is superior to the time varying model.  In fact, it has been confirmed that the time 

multiplier model is better than this model probably due to overparameterizing (Lan and Perssaud, 

2010). 

 

C. Time trend model 

A time trend model might be employed to deal with time series data.   It can be seen as an 

alternative way to consider the relationship among time series data.  The model can be described 

as: 

                                                                 

 

In a comparison of Equation 3-3 with Equation 3-1, it can be found that Equation 3-3 has an 

extra term    to account for a time trend and that all the coefficients are fixed.  This model was 

found to probably provide better results than other previous models (Lan and Persaud, 2010). 

 

The above three models are simple ways to deal with time series data.   However, they do not 

really introduce time series correlation between successive time periods.  The following section 

introduces models that are able to explain inherent temporal correlations. 

 

D. Autoregressive (AR) FB models  

One major class of models for time series data is the autoregressive (AR) model (Chib and 

Greenberg1994;  Congdon, 2001 and 2003), and the first order autoregressive process AR (1) is 

the simplest model to describe dependence in the values of an outcome variable over successive 

time points.  An AR (1) model in random error can be employed to account for time dependence 

in road safety studies, which means that values of random effects at time t depend upon their 
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immediate predecessor.  A model that allows for AR (1) dependence in the random errors might 

be ideal to reproduce the dynamic features of time series crash data. 

 

The AR (1) model can be written as: 

                 
                                                     

and 

                                                                          

          
     

                                                                                     

where 

                          , and M is the number of covariates at time t, 

                                         , 

                               , 

                             ,              ,                        

                                                                             

 

The first point of      is usually modeled as: 

                                               

 

     is a latent data point, typically modelled as a fixed effect or an unknown parameter, and the 

diffuse uninformed prior can be a normal distribution with a large variance, i.e., 

                

 

It should be noted that w            the AR process is stationary, otherwise the process is 

nonstationary (Congdon, 2001,2003; Chib and Greenberg, 1994).   It should also be noted that a 

classical statistical approach with the AR (1) rests on a stationarity assumption.  However, for 

the FB approach, this restriction can be relaxed, which means that some trends may be seen in 

the data. 

 Stationary AR (1) process 
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For this, simply confine         , i.e.,                 , and the above models can be used 

to model a stationary process. Alternatively, the first point of      can be simply set to 

                   (Haque et al., 2010; Congdon, 2001). 

 

 Nonstationary AR (1) process 

On the other hand, for a nonstationary process, it can be modeled by defining           such 

that                            ,  and the variance of the first point      can be relaxed. 

 

For a road safety study, the Poisson mean usually transforms to its logarithm in the modeling 

process.  The stationarity of AR (1) should be met.   However, in this study, the assumptions for 

prior of stationarity or non-stationarity in the AR (1) process have been investigated and the 

results will be presented in Chapter 5.   

 

E. AR (1) with time trend FB model 

The above mentioned non-stationary process can be transformed to a stationary process by 

adding a trend variable into the model.  Alternatively, one can consider that a trend analysis only 

accounts for a broadscale time series pattern in a long period, while an AR (1) model with 

random effects explains fine-scale autocorrelation between successive time periods. 

 

The functional form of the proposed model is similar to the above AR (1) model except that a 

time trend variable is included in the functional form of   
   

.  In other words, this model includes 

one more covariate of time, t. It should be noted, however, that the literature contains no 

instances where this model was used for road safety analysis.  This model, and the previous AR 

(1) model, are explored for network ranking studies only; they are not applicable for treatment 

effect analyses since the treatment year typically needs to be excluded.  The results are detailed 

in Chapter 5.  It is anticipated that the AR (1) model with a stationarity assumption of random 

errors would be better if it represents a stationary AR process.  

 

3.1.2 Univariate Spatial FB Models  

Spatial FB models are required when analysed sites are along a corridor or within a road network 

because the sites along a certain corridor will affect each other, especially for those that are close 
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to each other.  Several adjacent sites, e.g.., signalized intersections along a certain corridor or 

within a road network, share a high percentage of the same or similar traffic.  For example, 

signals within a road network are coordinated in most circumstances, and this coordination will 

promote the platooning of vehicles that cross the intersections.  Furthermore, adjacent entities 

probably have similar types of land use and roadway design. In order to improve estimation in 

safety analysis, there is the need to look at the spatial relationship for adjacent sites along a 

corridor or within a road network rather than treat each intersection as an isolated entity. 

 

Spatial correlation can be managed in several ways.  For example, Abdel-Aty and Wang (2006) 

employed the GEE procedure (Zeger and Liang, 1986; Liang and Zeger, 1986; Lord and 

Persaud, 2000) to introduce spatial correlations by using the maximum likelihood method.  They 

assumed that crash counts follow the NB distribution, analyzed the resulting regression 

coefficients, and concluded that the spatial model is better based on the cumulative residual plots 

from all of the developed models.  It should be noted that they used an EB method.   

 

A. Gamma distribution for the latent variable 

Shaddick et al. (2007) used a gamma distribution for the latent variable. The fundamental 

difference is that instead of the mean of a Poisson distribution at a particular location being 

directly associated with the value of a latent variable at that location, the latent variables lie on 

the boundaries between the locations. The mean for a particular location is then modeled as a 

combination of the latent variables that lie on its boundaries; this combination induces 

correlation between the Poisson means as shown below. The appeal of this approach is the ease 

in working with a PG set-up in which exact expressions for expectations and variances are 

available.  

 

Suppose 

           
 
θ 

                                                  

and 

λ   
 
θ 

 
 

 
 
                                                                                 

θ 
   θ

   
      θ
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where 

   = observed number of crashes at site i,  

λ = expected number of crashes at site i, 

 
 
  expected number of crashes at sites similar to site i, 

                  , and M is the number of covariates, 

β                                         , 

θ 
  = random effect at site i, 

θ    θ   latent variable controls between           and          , respectively,             

are considered to be independent and follow a gamma distribution,                

                , and 

   the level of dependence between the latent variables,         . 

 

It can be seen that spatial correlation is included in the developed models through random effects 

at site i.  However, this spatial model is only appropriate for spatial correlations along a corridor 

where the analyzed site has only two adjacent sites.  This spatial method cannot model cases 

with more than two adjacent sites, such as road networks. 

  

B. Log normal distribution for the latent variable 

In most cases, the latent variables are treated as log normal distributions for easy presentation 

and implementation.  Unlike the gamma distribution of latent variables, this method does not 

have any restriction; it works for both corridor and road network cases. The hierarchical Poisson 

models, however, have several forms.  The two most popular forms are the conditional auto-

regressive (CAR) models with or without site specific random effects (Aguero-Valverde and 

Jovanis, 2008: Lichstein et al, 2002; Lu et al., 2007).   

 

a. Model 1--- only spatial correlated random effects included 

 

             
                                                        

where 
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There are two methods to obtain     
        

 ,  

 

 Method A (CAR model) 

   
            

 

                                         

and 

   

              

                             

where 

     random effect at site i, 

       all the random effects at sites j which are adjacent to site i, 

   
= expected logarithm of random effect at site i, 

     weight that determines the relative influence of location j on location i, typically 

defined in CAR models to decrease with increasing distance between i and j (e.g.,     

 
          

 ) and is zero if i and j are not adjacent; sometimes one can simply set       if 

sites i and j are adjacent, otherwise        (Lichstein et al, 2002; Congdon, 2003a, 2003b), 

   a parameter to be estimated that determines the direction (positive or negative) and 

magnitude of the spatial correlated effect. 

 

 Method B (intrinsic CAR model) 

   
       

       

     
                                                  

and 
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   Variance that controls the extra Poisson variation, typically set equal to some fixed 

value, or assigned a distribution itself, often a relatively vague inverse gamma distribution. 

 

Several researchers have introduced similar models in their study (Lu et al., 2007; Aguero-

Valverde and Jovanis, 2008; Congdon, 2003b).  However, it should be noted that no study 

comparing methods A and B has been found in the literature, and there are no applications in 

road safety studies which use model 1 and include methods A and B. 

 

b. Model 2--- Spatial Correlated Random Effects Combined with Site Specific Random 

Effects  

             
                                                            

where 

     uncorrelated site specific random effects, which is the same as Equation (2-12),  

basically reflecting unmeasured differences among segments,  and assumed to be 

independent and identically gamma or log normal distributed,       
   
 

             or 

    
   
 

         . 

 

3.1.3 Univariate Spatial–Temporal FB Models  

When spatial data are collected over time, a spatial-temporal statistical analysis can provide 

benefits which are not possible with only the spatial or temporal model.  For example, a spatial–

temporal FB model is a good option for investigation when an analysis is performed for a 

roadway corridor or a network that uses longitudinal data.  The spatial-temporal FB models can 

be developed and have two basic forms with regard to different ways in dealing with time series 

data, as presented below. 

 

A. Basic spatial–temporal FB models  

This basic spatial–temporal model actually only considers spatial correlation and time variation. 

It does not include time series correlation in the model.  As for the spatial correlation part, there 

are two models, with and without site specific random effects     . 
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 Model A: with site specific random effects     

                 
                                                            

 

 Model B: without site specific random effects      

                 
                                                         

 

     takes the same functional form of Equations 3-1, 3-2, and 3-3 to account for temporal 

variation in crash occurrence.  Random effects     associated spatial correlations are obtained 

through the procedure presented above.  The site specific random effects     can have gamma or 

log normal distribution structures. 

 

There has been only one known instance of a spatial-temporal model application in road safety 

studies.  For this, Li et al. (2007) employed a GIS-based Bayesian crash rate model for an intra-

city motor vehicle crash analysis. Their model can be rewritten as: 

                     
                                                                

            

where 

       crash counts at site i on road type j in time t., 

       a factor which is proportional to the annual average daily vehicle miles traveled 

(VMT), 

      expected crashes at site i on road type j in time t.  It can be seen that      is a multiplier 

model although only one covariate x, which corresponds to road type, is included, 

       site specific random effects at site i on road type j in time t and which is assumed to 

be       
   
 

        
  , and 

       spatial correlated random effects at site i on road type j in time t.  In other words, the 

adjacent spatial effects are correlated, but vary with time. It is assumed to follow the CAR 

model, which is defined in Equation (3-10). 
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It is evident that the developed model seems to count temporal effects repeatedly and might have 

some problems.  The temporal effect was counted 3 times: in coefficient    , in site specific 

random effects        and in spatial effects      .  It should be noted that this was the only model 

explored in the Li et al. study (2007). 

 

B. Spatial–temporal AR FB models 

Fully spatial–temporal FB models account for correlations between successive time periods and 

among adjacent road segments or sites.  Time series correlations can be properly accounted for 

by AR (1) random errors       .       has two forms: one with time trend and another one without 

the trend.                           ,    is again, the same.   

 

                 
                                                              

 

It should be noted that there is no site specific random effect     included in this model in that the 

initial time series random effects       already implicitly include site specific random effects.  

The univariate spatial–temporal FB models can have different expressions with various 

combinations of time series correlation random effects and spatial random effects as mentioned 

before.   

 

3.2 Multivariate Poisson Log normal FB Models  

 

3.2.1 Case where random errors    follow multivariate normal distributions 

Basic case:  

From Chapter 2,  

                         , denoted f                
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where 

                     are coefficients which correspond to type or severity k crash 

models, and 

                 ,covariates at location i. 

 

           
   

        

    
                            

 

Given that the random effects                              , denoted as                 

independently follow an L-dimensional normal distribution                   , the probability 

density function of the L-dimensional log normal distribution is 

           
 

                 
 
   

  
 
 
             

                                      

 

where 

                                       

    = an unrestricted     covariance matrix between different severity/types of crashes.   

  

     

          

          

    
          

    

 

                    

                   

                                

                              

 

Uninformative prior distributions are usually specified when there is a lack of sufficient prior 

knowledge of the distributions for individual parameters. The most common priors for regression 
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parameters                         are defined as the diffused normal distributions 

(with zero mean and large variance).    
   
 

                                     he joint 

distribution of                       is defined as   , 

 

   
 

         
 

 
   

        
        

 

                                               

 

A Wishart (R, p) prior is defined for    , denoted as      where R is the scale matrix  and p is 

the degrees-of-freedom parameter respectively.  The hyper-prior parameters R and     are 

known, usually assuming     for vague priors (Tunaru, 2002). The parameterization of the 

Wishart probability density function (pdf) is 

                 
 
      

     
                                         

 

The conditional density of observed crashes    given      is: 

                                                     

 

   

 

 

Since                ,                                           .  According to the Bayes 

theory, the posterior joint pdf of parameters   and   is proportional to the product of prior and 

likelihood, 

                            

                          

 

   

 

From Equation 3-20, 

                                                             

 

   

 

   

 

 

Plugging in                                                       , we get 
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As well, the posterior pdf of parameters          can be obtained as follows: 

                                                                

 

   

 

                                                                

 

   

 

Since there is no standard density form for conditional posterior distributions of         , and 

        , they require the use of the Metropolis–Hastings (M-H) algorithm set in WinBUGs, as 

mentioned in Chapter 2. 

 

A. Multivariate with longitudinal crash data 

If the data are time series data (longitudinal data), as mentioned earlier, it might be necessary to 

address these effects in models.  Two methods can be employed to deal with possible temporal 

variations as described below. 

 

a. Method 1: Function for expected crashes that contains time effects  

      expected crashes of type k at sites which is similar to site i, can have model forms which 

introduce time effects, such as a time multiplier (Equation 3-1), time varying coefficients 

(Equation 3-2) or time trend (Equation 3-3).   Then, the best model can be selected based on 

model selection criteria, such as DIC (Spiegelhalter et al., 2002). Temporal effects can be 

accounted for in this way. Again, the random effects are                . 

  

b. Method 2: Autoregressive FB models 
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Instead of using FB models that contain temporal effects, time series correlation models (mostly 

AR (1) model) can be directly employed to obtain the expected Poisson mean       , crashes at 

site i for type k crashes in year t.   

 

                              

                                                                

                                                                                                

 

where 

     random effects at site i for type k crashes, following multiple normal distribution, and 

        time series random effects at site i for type k crashes in year t and similar to Equation 

3-5, 

                                                                              

 

                              ,              ,                     

Similarly, for a stationary process, the first point of       can be set as                  

   . 

 

B. Multivariate models with spatial correlated crash data 

When multivariate crash data are along a corridor or within a road network, spatial 

multivariate FB models are required.   

 

                                                              

 

where, 

Spatially correlated random effects      can be obtained by methods discussed previously, such 

as CAR or ICAR (Equations 3-7 to 3-12).  Local specific random effects                    

follow multivariate normal distributions,           . 
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C. Multivariate models with spatial correlated longitudinal crash data 

Most often, spatial correlated data are also longitudinal.  For multivariate models with spatial 

correlated longitudinal crash data, the method is similar to the above MVPLN AR (1) model.  

The random effects can be divided into two parts: one is the spatial correlated random effect      

for type k crashes; another is the site specific random effects,      , which basically reflects 

unmeasured differences among segments and are assumed to be correlated to the random effects 

of other types of crashes at the same location.  The expected crashes at site i for type k crash in 

year t can be written as: 

                                                                    

where, 

Time series random effects       , spatially correlated random effects       and local specific 

random effects                    can be obtained from aforementioned methods. 

 

3.2.2 Case where both coefficients and random errors    follow multivariate normal 

distributions  

This method is quite similar to the previous case, except that coefficients               no 

longer independently follow the diffused univariate normal distributions.  Instead, similar to 

random errors   , regression coefficients which correspond to different types of crashes follow a 

multivariate normal distribution                        
              for a vague prior, 

and similarly, the prior of    

   is set to follow the Wishart distribution. 

 

This model can be seen as an extension of previous MVPLN models.  It is investigated and 

compared with normal MVPLN in this study and the results are shown in Chapter 6. 

 

3.3 SUMMARY 

Various FB models for correlated data are introduced, proposed and documented in this chapter.  

Correlated data may include spatially, temporally and locally correlated crash data of various 

types or severities.  However, due to the limitations of the data at hand, FB models which 

involve spatially correlated data are not explored further in this research.   
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In addition, for longitudinal data, it should be noted that AR (1) cannot be applied for the 

treatment effect analysis in that the countermeasure implementation year typically needs to be 

excluded, and thus there is a gap between the before and after treatment.  However, the 

multiplier FB model, the FB model with time varying coefficients and time trend FB models can 

be investigated as alternative ways to account for time effects.  For network ranking, the FB 

models which consider time correlation and multivariate correlation have been extensively 

explored and the results are shown in Chapter 5.  



58 

 

CHAPTER 4 BAYESIAN MODEL SELECTION 

 

 

 

In Chapters 2 and 3 various FB models, were proposed and introduced.  Intuitively, the results 

from each model might be different.  The question then arises as to how the quality of a 

computational model should be evaluated and which model should be selected to draw 

conclusions about application.  To answer this question, a model comparison is required for a 

diversity of features, including variable selection in regression, determination of the number of 

components in a mixture model, or the choice of parametric family.  Currently, there are few 

road safety research studies which involve model selection.  Most studies only rely on one model 

while other research uses one functional form of expected crashes, but with different 

distributions of random errors, such as PLN or PG and MVPLN FB models.  Of course, these 

studies are not comprehensive and the best model for the data might not even be considered.  

Thus the results could be biased.  In our recent publication (Lan et al., 2010), it can be seen that 

estimations from competing models are indeed very different.  

 

As with frequentist analogues, Bayesian model comparison will not indicate which model is 

`true', but rather will reveal the preference for the model given the data and other information.  

These preferences can be used to choose a single `best' model or improve estimation via model 

averaging, in which expected values obtained from different models are weighted by their 

corresponding posterior probabilities (Congdon, 2001; Raftery, 1999).   The latter case is beyond 

the scope of this study and will not be further investigated. Rather the focus of this research is on 

ways to identify the best among competing models.  This chapter starts with the discussion of 

model selection criteria, followed by the introduction of popular model selection methods, and 

ends with a summary of issues for the model selection methods.  

 

4.1 MODEL EVALUATION CRITERIA 

Model evaluation criteria  not only depend on descriptive adequacy which determines whether 

the model fits the observed data, but also complexity or simplicity, which determines whether the 

model’s description of the observed data is achieved in the simplest possible manner (also 

defined as generalizability, which implies whether the model provides a good predictor of future 
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observations) (Myung et al., 2009).   However, it should be noted that this is highly reliant on the 

knowledge, experience, and preferences of the modeller for model selection as to whether the 

theoretical construct of the model helps make sense of the observed data, and whether the 

components of the model, especially its parameters, are understandable.  This can be challenging 

when quantified criteria of competing models are very close with each other.     

 

4.1.1 Descriptive adequacy 

The descriptive adequacy of a model is assessed by measuring how well it fits a set of empirical 

data, in other words, by testing goodness-of-fit.  A number of goodness-of-fit (GOF) measures 

can be employed, including sum of squared errors, maximum likelihood, and chi-squared values.  

GOF measures are popular because they are relatively easy to compute and the measures are 

versatile. Perhaps most of all, a good fit is an almost irresistible piece of evidence in favour of 

the adequacy of a model.  As Myung et al. (2009) point out, a model that appears to do just what 

one wants it to do, which is to mimic the process that generates data, is a very attractive model.  

This, however, does not necessarily mean that a better fit will result in a more accurate model, as 

frequentists tend to expect. In fact, when comparing competing models, the result may be that the 

selected model is not a good model after all. 

 

GOF would be suitable for model evaluation and comparison were it not for the fact that data are 

noisy (measurement error).  A data set contains the regularity that is presumed to reflect the 

phenomenon of interest plus noise. GOF does not distinguish between the two (Myung et al., 

2009), and provides a single measure of a model’s fit for both (i.e., GOF = fit to regularity + fit 

to noise).  Thus, a good fit can be achieved for the wrong reasons, by fitting noise well instead of 

regularity. For this reason, GOF alone cannot be used as a criterion for model selection because 

of the potential to yield misleading information. 

 

4.1.2 Complexity or simplicity 

What allows a model to fit noisy data better than its competitors is that it is the most complex. 

What distinguishes a simple model from a complex one is the sensitivity of the model to 

parameter variation (Myung et al., 2009).   A complex model with many parameters, because of 

its extra flexibility, tends to capture these spurious patterns more easily than a simple model with 
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few parameters for a noisy data. Consequently, the complex model yields a better fit to the data, 

not because of its ability to more accurately approximate the underlying process, but rather 

because of its ability to capitalize on sampling errors. Therefore, choosing a model based solely 

on its fit, without appropriately filtering out the effects due to sampling errors, will result in 

choosing an overly complex model that poorly generalizes to other data from the same 

underlying process. A consequence of such practice is that the model may become more 

sophisticated as additional parameters or modifications of the model are introduced to account 

for newly found discrepancy which may be, in fact, sampling errors between a model's 

predictions and new observations, and the model's generalizability may be further decreased 

(Myung, 2000).   

 

It can be seen that complexity affects not only model fit, but also the generalizability of a model 

and the variability in parameter estimation. It is thus necessary to take this reality into account 

when evaluating models.  Normally, a simple model will generalize better to new data sets than a 

complex model and therefore will have a higher degree of predictive accuracy. In addition, the 

behaviour of a simple model is more tractable because parameter estimates will be more stable 

after repeated data fittings than those of complex models (Myung, 2000).    Hence, this indicates 

as a rule of thumb in practice, that the simple model is always preferred to ensure high 

generalizability, provided that there are similar quantified criteria from competing models. 

 

4.1.3 Generalizability  

The goal of model selection is to identify one model, from a set of competing models, which best 

captures the regularities underlying the cognitive process of interest.  Thus, in order to measure a 

model’s generalizability, the model selection method must be sensitive to the properties of the 

model in addition to considering GOF.  We know that simplicity and parsimony of models can 

improve model generalizability because a complex model with many parameters tends to capture 

these false patterns more easily than a simple model with few parameters for noisy data.   

 

There are many examples in the literature in which model generalizability is addressed. For 

example, through a few simulation studies, Pitt et al. (2003) found that model selection criteria 

that consider model generalizability are superior to those only based on the GOF method; Liu 
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and Aitkin (2008) investigated model selection criteria which consider model generalizability, 

such as Bayes factor (Kass and Raftery, 1995; Raftery, 1999), BIC (Raftery, 1999; Schwarz, 

1978; Burnham, 2004) and DIC (  Spiegelhalter et al., 2002; Berg et al., 2004);   Myung et al. 

(2009) especially explained why generalizability is the preferred criterion for model selection 

and pointed out that good generalizability is achieved by trading off GOF with model 

complexity.  Figure 4-1 (Pitt and Myung, 2002; Myung et al., 2009) gives an excellent 

presentation of such a trade-off.  That is, one way of estimating the generalizability of a model is 

by appropriately discounting the model’s GOF relative to its complexity.  More details can be 

found in Myung et al. (2000, 2009), Pitt et al. (2003), Liu and Aitkin (2008), and Yu and Meyer 

(2006).  

 

 

 

 

 

 

 

 

Figure 4-1 An Illustration of the Relationship between Goodness of Fit and 

Generalizability as a Function of Model Complexity 

The y axis represents any fit index, where a larger value indicates a better fit (e.g., 

maximum likelihood). The three smaller graphs provide a concrete example of how fit 

improves as complexity increases. In the left graph, the model (line) is not complex enough 

to match the complexity of data (dots). The two are well matched in complexity in the 

middle graph, which is why this occurs at the peak of the generalizability function. In the 

right graph, the model is more complex than data, capturing micro variation due to random 

error.  
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4.2 MODEL SELECTION METHODS 

Although each criterion mentioned above identifies a property of a model that can be evaluated 

on its own, in practice they are rarely independent of one another. Consideration of all three 

simultaneously is necessary to fully assess the adequacy of a model.  

 

The core of model selection is that to avoid choosing unnecessarily complex models, a model 

should be selected based on its generalizability, rather than its GOF.  Inference under models 

with too few parameters (variables) can be biased, while with models having too many 

parameters (variables), there may be poor precision or identification of effects that are, in fact, 

spurious. These considerations call for a balance between under- and overfitted models—the so-

called model selection problem (Forster, 2000). 

 

Model selection is realized by defining a selection criterion that makes an appropriate adjustment 

to its GOF by taking into account the contribution from model complexity (Myung, 2000).  In a 

Bayesian framework, there are several different selection methods for choosing between 

competing models, such as Bayes factors, AIC (Akaike,1973; Bozdogan, 2000; Burnham and 

Anderson, 2002, 2004), BIC, DIC, marginal likelihood, etc.   They differ from each other in 

terms of if and how such adjustments are made to best estimate a model's generalizability.  

Among them, DIC is the most popular in that it counts penalties for model overfitting and is 

readily available. (It is the default setting in software WinBUGs (Lunn et al., 2000; Spiegelhalter 

2003; Cowles, 2004.)  This is also the reason why DIC is the major criterion for model selection 

in this study, while other methods are used as alternative measures for comparison. 

 

4.2.1 The Method of Maximum Likelihood 

The maximum likelihood method is principally a method of parameter estimation, but extends 

straightforwardly to model selection.  The objective is to choose the best of the best. That is, out 

of the maximum likelihood hypotheses in the competing models, the one that has the greatest 

likelihood or equivalently, the greatest log-likelihood is selected (Forster, 2000).  This method, 

however, does not account for generalizability since it is in fact a typical model selection method 

based only on GOF.  In fact, in the case of nested models, it can never favour anything less than 

the most complex of all the competing models.  Thus, this method is rarely used to compare 
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Bayesian models.  It is just reviewed here for completeness and studied in Chapters 5 and 7 for 

reference. 

 

4.2.2 The Bayes Factor Method 

 

A. Bayes factor 

In Bayes’ theorem, Bayesian inference is often described as a method which shows how belief is 

altered by data and the Bayes factor is the index through which the data ―speak‖, as distinct from 

the purely subjective part of the equation (Goodman, 1999).  The Bayes factor is actually a 

summary of the evidence provided by the data in favour of one scientific theory, represented by a 

Bayesian model, as opposed to another. It is a formal Bayesian model assessment method. 

 

For example, as  in Chapter 2, assume that a model class J can be specified for some observed 

data y by a likelihood function, denoted as        or L( |y), which gives the probability of 

observing y as a function of parameter  . A Bayesian analysis begins with a prior density,    ) 

(the terms ―density‖ and ―distribution‖ are used interchangeably), which represents one’s 

uncertainty about the true parameter before observing any data.  Once the data are observed, 

Bayes’ theorem can be applied to produce an updated posterior density, and      ), also written 

as        as follows:   

 

       
          

    
 

          

    
                                                     

where 

                                                                             

 

Similarly, we can apply Bayes’ theorem to model selection by defining J competing 

models,            , as having prior probabilities          of being a true model, where 

      
   . Letting    be the parameter set in model j with prior     ), then, the posterior 

probabilities         of being a true model for model j after observing data y are: 
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where 

         the marginal probability for model j, also denoted as        in this thesis, 

         the posterior probability of being true model for model j, and 

           
 
     averaged marginal density across competing models. 

 

Plugging in                     , Equation 4-3 can be rewritten as 

 

            
                     

                      
 
   

                                      

 

Suppose there are two competing models i and j, then the posterior odds of being the true model 

is: 

       

       
 

 

       

       
 

                      
 
   

                      
 
   

  
     

     
   

     

     
                       

 

where 
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If one’s belief in each competing model as being the true model is the same, that would suggest a 

non-informative prior,            .  The posterior odds is equal to the Bayes factor in favour 

of model i, and this is why the Bayes factor is employed as a typical method for Bayesian model 

selection. 

       

       
 

     

     
                                                 

 

In fact, Bayesian model comparison is a method of model selection based on Bayes factor 

(Burnham and Anderson, 2004). It has been shown that the Bayes factor method prefers a 

parsimonious model to a more complex one (Gelfand and Dey, 1994).   Table 4-1 gives the 

reference values of the Bayes factor as well as that (in natural logarithm) for Bayesian model 

selection (Kass and Raftery, 1995). 

 

Table 4-1 Reference values of Bayes factor for Bayesian model selection 

              

Evidence against    

                               

0-2 1-3 Not worth more than a bare mention 

2-6 3-20 Positive 

6-10 20-150 Strong 

>10 >150 Very strong 

 

 

B.  Marginal likelihood 

From Equations 4-5 and 4-6, it can be seen that the core problem is how to calculate marginal 

likelihood (the integral of Equation 4-2) in order to obtain the Bayes factor.  Marginal likelihood 

might be sometimes analytically available, for example, for exponential family distributions with 

conjugate priors (e.g., the PG model, where crashes follow the Poisson distribution and the 

Poisson mean follows a gamma distribution, implying that crashes marginally follow NB 

distribution as derived in Chapter 2).  However, more often, computation in the models is 

intractable, requiring the implementation of MCMC numerical methods.  The simplest apparent 

estimator of the marginal likelihood is the harmonic mean estimator. 
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To increase the efficiency of the model likelihood estimator, it is preferable to use samples from 

the posterior distribution. Newton and Raftery (1994) suggested the harmonic mean of the 

posterior sample likelihood as the estimator for marginal likelihood       under model j, that is, 

                        can be estimated as 

 

      
 

 
 

      
    

 
   

                       

where 

                                                                 

      
      likelihood for draw m from a series of draws (draw1, draw 2, ..., draw M) from 

MCMC output for model j. 

 

The harmonic mean can be easily obtained from the output of WinBUGs.  However, it is 

worthwhile to mention that a possible problem with this approach is that it can be quite unstable 

because the inverse likelihood does not have finite variance (i.e., some of the likelihood terms in 

the sum might be near 0). 

 

4.2.3 AIC  

AIC is an abbreviation of the Akaike information criterion (Akaike, 1973 and Bozdogan, 2000).  

Akaike (1973) applied a correction of the estimation bias by penalizing extra parameters when 

the maximum likelihood estimations (MLEs) are used in estimating the expected log likelihood.  

AIC is aimed at solving the prediction problem, i.e., finding the model    that produces 

estimates of the density     
     which is close, on average, to the true density. It was derived 

based on the information theory (Bozdogan, 2000; Burnham and Anderson, 2002, 2004) and it is 

one of the most popular penalizing approaches for Bayesian model selection, especially in 

econometrics.  It adds a penalty factor (shown in Equation 4-8) that is proportional to the 

difference in the number of parameters between two models.   Thus, the question in model 

selection, which is how much additional information a parameter must add to justify the ―cost‖ 

of its inclusion, might be answered.  The AIC can be written as follows: 
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      is the maximized likelihood function of the parameters in model, computed at a value   that 

maximizes the probability of the data given the model;  and k, which is the number of free 

parameters in the model, promotes model parsimony by penalizing models with increased model 

complexity (larger k).    

 

A better model means a larger      , which results in a smaller value of the AIC.  Thus the model 

with a minimum AIC value is chosen as the best model to fit the data, that is, the model in the 

suite with the best overall statistical properties and parameter balance.     Burnham and Anderson 

(2002) suggested that models with a difference in AIC < 2 are all plausible; values of 4-7 are 

considerably less so, while >10 means that the models are missing some important explanatory 

variables.  Note that, per Akaike’s rule of thumb, two models are essentially indistinguishable if 

the difference of their AICs is less than 2. 

 

Note that the penalty term is relatively more important for small sample sizes, which increases 

the tendency to select simpler models.  Since the penalty in the AIC does not increase with 

sample size, this method clearly favours larger models as the sample increases.  This is 

especially so when the sample size increases (say, sample size N to infinity), in which case the 

AIC produces the same selection as the chi-square criterion.  That is, similar to the chi-square 

method, it tends to favour overly complex models with large sample sizes (Busemeyer and 

Wang, 2000; Browne, 2000). 

 

4.2.4 BIC  

Closely related to the AIC method is Bayes information criterion (BIC) or the Schwarz criterion 

(Schwarz, 1978).  This is another popular ranking model method which considers model 

generalizability.   As AIC is very popular in econometrics, the BIC, on the other hand, is more 

popular in sociology (Weakliem, 2004). 

 

BIC can be regarded as an approximation to the log Bayes factor.  For well-behaved models and 

moderate to large sample sizes, BIC provides a useful approximation to the log Bayes factor 

(Wasserman, 2000).   
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where 

        the maximized likelihood function, 

    the number of free parameters in the model, and 

   the sample size 

 

It can be seen that AIC and BIC have the same form: −2 log L plus a penalty for each free 

parameter in the model.  BIC differs from AIC only in the second term, which now depends on 

the sample size n.  The penalty for each parameter is 2 for AIC, and         for BIC.  Clearly, as 

n increases, BIC favours simpler approximating models (that is, models with a smaller number of 

parameters k) than AIC.    

 

Since BIC can be seen as a useful approximation to the log Bayes factor (Wasserman, 2000), the 

critical values of BIC differences for model comparison and selection can be taken from those 

for Bayes factors shown in Table 4-1. 

 

Despite the superficial similarity between AIC and BIC, researchers believe that the latter is 

derived in a very different way and within a Bayesian framework (detailed derivation see 

Wasserman, 2000), while the former is based on the information theory (classical statistical 

methods) (Bozdogan, 2000).  However, Burnham and Anderson (2004) proved that AIC can be 

justified as a Bayesian result by using a ―savvy‖ prior on models, that is, a function of sample 

size and the number of model parameters, and BIC can be derived as a non-Bayesian result.  

More detailed discussion on the relationship between AIC and BIC can be found in Kuha (2004) 

Wasserman (2000), Weakliem (2004) and Burnham and Anderson (2004. 

 

4.2.5 DIC 

As noted, AIC and BIC methods trade off a measure of model adequacy, measured by the log-

likelihood, against a measure of complexity, measured by the number of free parameters.  

Obviously, the calculation of AIC or BIC requires the specification of the number of free 

parameters. For a nonhierarchical Bayesian model with parameter  , obtaining the number of 
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free parameters is straightforward.  However, for a complex hierarchical model, the specification 

of the dimensionality of the parameter space is rather arbitrary. (For details, see Yu and Meyer, 

2006.)  

 

DIC was introduced as a model selection method by Spiegelhalter et al.(2002).  It soon became 

very popular because it can overcome the drawbacks of AIC and BIC.  First, DIC is easily 

calculated from the samples generated by an  MCMC simulation (indeed, DIC is automatically 

computed by WinBUGS 1.4). Second, there is no need for a number of free parameters.  On the 

other hand, AIC and BIC require calculating the likelihood at its maximum with respect to θ, a 

result that is not readily available from an MCMC simulation, and the specification of a number 

of free parameters.   Berg et al. (2004) extensively examined DIC through a simulation study and 

found that DIC clearly identifies the correct model out of eight different alternatives. 

 

The deviance can be defined as                        where y are the data, θ are the 

unknown parameters of the model and        is the likelihood function. C is a constant that 

cancels out when compared with different models, and therefore, does not need to be known.  

The DIC of model j can be calculated as follows: 

 

                                                                      

 

where 

      = the expected deviance for the jth model,                  given by the mean of the 

sampled deviances from MCMC simulations.  This is a measure of how well the model fits the 

data in that a larger value means a worse fit, 

      = the deviance at the posterior mean    of the parameters for model j, and 

    = the effective number of parameters of the model, computed as the difference between 

       and      , namely,                .  A larger value means more ease for the 

model to fit the data.  This can be seen as a penalty term for increasing model complexity. 

 

Models are penalized by the value of      , which favors a good fit, but also (in common with 

AIC and BIC) by the effective number of parameters    . Since       decreases as the number 
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of parameters in a model increases, the      term compensates for this effect by favoring models 

with a smaller number of parameters.  Models with smaller DIC should be preferred to models 

with larger DIC.  Differences of more than 10 in the value of the DIC might rule out the model 

with higher DIC values while differences between 5 and 10 are considered substantial. Attention 

should be paid to models when the differences are less than 5.  In such cases, the expected 

deviance for the jth model (     ) combined with engineering judgment, might be used as a 

criterion and the model with a substantially lower      is favored.  

 

From the definition of DIC, it can be seen that DIC is particularly suited to comparing Bayesian 

models when posterior distributions have been obtained using MCMC simulation. This can 

greatly reduce computation costs, especially for complicated hierarchical Bayesian models.  It 

should be pointed out that because WinBUGS calculates DIC at the posterior mean, it requires 

the posterior mean to be a good estimate of the stochastic parameters. Therefore, it is important 

to check skewness and modality of the posterior distribution when using DIC.  That is, it is only 

valid when the posterior distribution is approximately multivariate normal.  Another issue is that 

DIC might not be adequate for missing data models.  Celeux et al. (2006) extensively examined 

DIC for missing data models and found that DIC indeed favours complex models. 

 

4.3 SUMMARY 

The objective in model selection is to use a model that is as parsimonious as possible while 

ensuring that reliable results are obtained.  A natural way to compare models is to use criterion 

based on a trade-off between the fit of the data to the model and the corresponding complexity of 

the model.  Although model selection is very popular in other fields such as econometrics, 

sociology and psychology, as is evident from the cited references, there are few applications in 

road safety.  In road safety analyses, most studies only rely on one model or functional form of 

expected crashes. Of course, that model might not be the best one, given the data.  Thus the 

results might be biased.  In our most recent published research (Lan et al., 2010), it can be seen 

that the estimations from competing models may indeed have large differences.  

 

A few popular model selection criteria, such as AIC, BIC and DIC, are introduced in this 

chapter.  Each of these methods has its own advantages and drawbacks, but DIC seems to have 

more advantages over other methods.   Even so, it is suggested that all of these model selection 
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criteria be calculated for model comparisons.  If most of the criteria, if not all, favour the same 

model, one can be more confident that the final decision is not overly dependent on an assumed 

prior.  If, however, the selected model is quite different for each criterion, one should select the 

best model based on experience and expertise.  In that case DIC might be a very useful criterion. 

 

It should be kept in mind that only the difference of the AIC, BIC, or DIC values between 

models is meaningful for model comparison.  An individual AIC, BIC, or DIC value is 

meaningless because it varies with different data. 

 

In addition, it should be emphasized that there is no way to find the true model in real cases, so 

an approximate will often need to suffice. Model specification is difficult because our knowledge 

about the phenomenon being modeled is rarely complete. That is, empirical data obtained from 

studying the phenomenon are limited, as they only provide partial information about its 

properties and the variables that influence them. With limited information, it is next to 

impossible to construct a ―true‖ model.   

 

Finally, some researchers, such as Burnham and Anderson (2004), Wasserman (2000) and 

Raftery (1999), argue for the advantages of model averaging over selecting a single model.   

However, model-averaged inference is not common, nor has there been much effort to evaluate it 

even in major publications on model selection.  Model averaging might deserve more research, 

but it is not the objective of our study. 
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CHAPTER 5 EVALUATION OF THE FB METHOD  

FOR NETWORK RANKING 

 

 

5.1 INTRODUCTION 

This chapter begins with a literature review of actual applications of the FB method for 

hazardous site identification in road safety, and the FB ranking criteria that are used in these 

studies; this is followed by the  the objectives, details and results of the evaluation study.    

 

5.1.1 Literature Review 

The first stage of road safety studies commonly involves a comparison of the decision 

parameters (i.e., Poisson mean or expected crashes) of the sites estimated from the accident 

numbers during some period for all sites.  Then, potentially hazardous sites are determined, 

resulting in an ordered list.  This list is constructed by ranking locations based on the ranking 

criteria from a promising method, e.g,, the posterior mean, which is similar to the EB method, 

the expected rank of the posterior distribution of decision parameters (Tunaru, 2002; Miaou and 

Song, 2005), or the probability that a site is the worst (Tunaru, 2002; Miaou and Song, 2005).  

The ranked sites are generally selected by working down the list until the allocated resources are 

exhausted for the detailed examination (i.e., the diagnosis and identification of potential 

treatments), and perhaps, for subsequent treatment of locations. Different list orderings may lead 

to different sets of locations being examined in detail. An inappropriate ordering of locations, 

therefore, could lead to a truly hazardous location not being examined and considered for 

treatment. Thus it is vital to properly select the method and ranking criteria for hot spot 

identification. 

 

The first application of the FB method for road safety evaluation is probably the study of 

network ranking performed by Schluter et al. in 1997.  They proposed a Bayesian hierarchical 

PG model to rank high risk sites for 35 intersection sites using criteria such as the posterior 

probability of selecting the worst site and the posterior mean of crashes.   
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Bossche et al. (2003) employed a Bayesian binomial hierarchical model to rank hazardous 

intersections for bicycles in a small university town in Belgium based only on traffic crash data.  

In other words, no covariates were included in their study. The authors used the posterior 

Poisson mean of crashes to rank the sites.  They concluded that there is no such thing as ―the‖ 

correct ranking because of the stochastic character of bicycle crashes and that, as a result, the 

estimated crashes are not deterministic.  The difficulty with this study, first of all, is that the 

binomial hierarchical model used is questionable as it is now well known that Poisson 

hierarchical models are more favorable; secondly, their conclusion is open to question in that it is 

believed that correct ranking results do exist based on the evaluation of the performance, even if 

the crashes are not deterministic. This will be further discussed in this chapter. 

 

Geurts et al. (2004) investigated the effects on identification and ranking of black spots based on 

four different weighting value combinations that correspond to light, serious and deadly injuries. 

The four weighting value combinations are: 1-1-1; 1-1-10; 1-3-5 and 1-10-10 for light, serious 

and deadly injuries, respectively.  They concluded that weighting schemes greatly affect the 

ranking results, which is an obvious conclusion.  Their ranking criterion is based on the posterior 

mean, again obtained from crash records only, which means that no covariates such as traffic 

volumes were considered in the ranking method.  

 

Miranda-Moreno and Fu (2007) explored the differences of EB and FB through a simulation 

study.  They used a PG model to generate random samples, then applied the EB method and FB 

PG model to calculate the posterior mean to rank the sites.  They found that the FB estimators 

performed better than the EB estimators when working with data sets that have a small number 

of sites (observations) and which are characterized by an overall low mean accident frequency. 

Furthermore, when the data set is sufficiently large (e.g. over 300 sites), these two approaches 

yield practically the same results.  However, it should be noted, that the FB and EB methods 

used indeed follow the same distribution (PG distribution) in their study, while this may not be 

the case for real data.  Intuitively, the ranking results from their approach should be very close to 

that from the EB method.  For a small sample case, the estimated SPFs for EB are not reliable 

resulting in errors in the estimation of expected crashes, while the FB method can carry that 

uncertainty to the final estimation.  This is why, in principle, the FB estimator is better than the 
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EB estimator for a small sample case.  For a large data set, SPFs are no longer a problem for the 

EB method, and the results are logically very close to that of FB.  Another issue with Miranda-

Moreno and Fu (2007) is that they only use one year of simulated data to rank sites, and thus 

time series correlation could not be addressed in their study. 

  

Recently, Huang et al. (2009) conducted an evaluation of the FB method for hot spot ranking 

using crash records of 582 four-legged signalized intersections from 1997 to 2006 in Singapore.   

Three measurements, observed crashes, expected crashes from EB, and the Poisson mean from 

FB obtained from the last 3 years (2004 to 2006) of crash data were used to rank hot spots.  

Then, the average of the observed crash counts in the whole time period (1997 to 2006) is treated 

as a true mean to evaluate the FB method as well as the EB method.  Sensitivity and specificity 

are used as evaluation criteria in their study.  They concluded that the selected FB hierarchical 

models outperform the standard EB approach in correctly identifying hot spots.  The major 

problem is probably with the true mean estimate, intuitively, since even ten years of crash count 

may be subject to regression to the mean.   

 

The above mentioned studies employ a univariate approach for network ranking studies.  For the 

multivariate count data, where different severity crash data (i.e., fatal, injured and PDO), which 

are potentially correlated, are used to rank hazardous sites, it is necessary to conduct ranking 

using a multivariate FB approach.  

 

Tunaru (2002) employed a bivariate PLN model for black spot identification using two types of 

severity data: fatal or seriously injured crash records, and slightly injured crash data.  Two 

ranking criteria, the probability that a site is the worst and the median of posterior distributions 

based on the Poisson mean, were used to rank sites in his study.   

 

Miaou and Song (2005) employed a three-variate PLN model to develop a crash rate model for 

black spot identification using a two-lane rural Texas low-volume road data set, which includes 3 

different severities of crash counts: fatal, incapacitating injury and non-incapacitating injury.   

They used the posterior mean and the posterior expected rank of crash rate and crash rate cost for 

network ranking.   
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Brijs et al. (2006, 2007) developed a three-variate Poisson distribution model for black spot 

identification using three crash severity types(no covariates are involved in the study): fatal, 

seriously injured and slightly injured.  Due to the limitations of MVP models as mentioned in 

Chapter 2, the covariance (or correlation coefficient) in the MVP setting is always positive, and, 

furthermore, the MVP model cannot model overdispersed crash data.  

 

From this literature review, it can be concluded work remains to be done on the evaluation of the 

FB method for hot spot identification, especially since the ranking criteria involved in previous 

studies were very limited and little attention has been paid to model selection.  In addition only 

one function form of the expected crashes (Poisson mean) has been explored in these studies.  

The following section provides a brief introduction of the ranking criteria adopted in the 

reviewed studies.  

 

5.1.2 FB Ranking Criteria 

 

A. Posterior mean of decision parameter 

The posterior mean of a decision parameter can be the Poisson mean after obtaining the data, or 

some other measures based on the Poisson mean.  The Poisson mean of crashes is perhaps the 

most popular ranking criteria in the safety literature in that it is convenient to estimate during the 

model development procedure; indeed, it was used in almost all of the above applications for 

hazardous site identification.  It has conceptually the same meaning the expected crashes from 

the EB method.  It is the expected value of    taken over the posterior distribution of     given all 

data y, i.e.,        .  It can be calculated by: 

 

                                                                     

 

As can be seen, the posterior mean is a point estimate of the mean number of accidents over a 

long time.  Obviously, it does not take advantage of the full distribution of   .   Even so, this 

criterion continues to be popular because it is easy to obtain and is clearly understood. 

 



76 

 

B. Posterior expected rank of the decision parameter 

The posterior expected rank of the decision parameter is based on the ranks of the mean 

parameter   , which are the site specific parameters.  The ranks    
      

      
 can be 

obtained by (Shen and Louis, 1998): 

 

   
             

 

   

                                    

where 

                                         , 

                                     , 

                                     , and 

                                                                       It can be seen 

that t                             the greatest ranks correspond to the most hazardous site. 

 

Based on this posterior distribution, the expected value of the true rank order of   , indicated as 

    
  can be obtained using the posterior distribution of    

 given all data y.  The posterior 

distribution of     
 is denoted as      

   .    

 

The posterior expectation of ranks has been widely recommended as a ranking criterion and is 

defined as: 

 

    
      

        
     

                                                        

 

This method is technically sound and the measure can be obtained from the posterior 

distributions of    through the analysis of each iteration. For example, in WinBUGs,    
 can be 

obtained through the analysis of an MCMC output.   Shen and Louis (1998), and Miao and Song 

(2005) employed this criterion in their studies while Tunaru (2002) employed a median rank, 

which represents the expected rank, for easy of availability (i.e., it can be directly obtained in 

WinBUGs).  Tunaru (2002), and Miao and Song (2005) mentioned that this criterion is optimal if 
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the ranks of    are of interest, whilst the posterior means       are optimal estimates when the 

aim is to produce inference about   .  Furthermore, Laird and Louis (1989) employed the 

Gaussian model with some assumptions in their study and concluded that the posterior means 

can perform poorly.  It is worthwhile to mention that no MCMC method was employed in their 

study.  Since the MCMC method was not employed in the study and because of the assumptions, 

it is of interest to re-examine their conclusion using current MCMC methods.  This, however, 

might be difficult for large samples, where the iterations of MCMC cannot be saved for an 

output analysis due to the limited available computer memory.  With technological improvement 

in computers, this should not be an issue in the future.  Alternatively, the posterior median can be 

used and is readily available in WinBUGs output.   

 

C. The probability that the site is the worst among all sites considered in terms of the 

decision parameter (        

The probability that the site is the worst among all sites considered in terms of the decision 

parameter (        represents the posterior probability that site i has the largest decision 

parameter value (i.e., Poisson mean) than any other site, given all data y. It can be expressed as: 

 

                                                                              

 

The procedure to calculate this criterion is similar to the posterior expected rank.  The posterior 

distributions of     is used to obtain       , which can be calculated through each iteration of the 

MCMC process.    Schluter et al. (1997), Brijs et al. (2006) and Tunaru (2002) provide detailed 

information on this criterion. 

 

Currently, the above three criteria seem to be the most common for network ranking. There are 

also some less popular ranking criteria, such as the predictive distribution of accident frequency 

(Schluter et al., 1997), which will not be introduced here.    

 

5.1.3 Objective of the Evaluation Study 

Researchers have explored a few ranking criteria for hazardous site identification using the FB 

method.  However, there is no evaluation study with regards to the ranking criteria and little 
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research has been conducted on the evaluation of the ranking criteria themselves, and on the 

performance of the FB method and its variations, including comparisons of univariate EB versus 

FB, and multivariate FB versus univariate FB.  The objective of this aspect of the research was to 

fill this void by conducting a thorough evaluation of the FB method for black spot identification.  

To completely evaluate the FB method, crash data on a single severity level were used for a 

univariate FB study for comparison with the EB method.  Specifically, two data sets extracted 

from the same data with different data history were employed (one uses 6 years of data while 

another one uses 3 years of data) for the evaluation, including an investigation of the sensitivity 

of the ranking criteria.  For the 6 years of data, 11 FB models are developed and compared, and 

the best model is used for the evaluation study. Then, an evaluation study is performed by using 

multilevel severity data where 5 levels of severity data are used for hot spot identification.  

Various ranking and evaluation criteria are proposed and employed for the study, details of 

which will be introduced in the next section. 

 

The remainder of the chapter is structured as follows.  Section 2 briefly introduces the data for 

this study. The employed ranking criteria are described in Section 3 while the evaluation criteria 

are explained in Section 4.  Section 5 presents the approach and procedure for this evaluation 

study.  An evaluation of the FB method with single severity data and a comparison with the EB 

method are illustrated in Section 6.  Section 7 presents the evaluation study results for the multi 

level severity data.  Finally, a brief summary can be found in Section 8.  

 

5.2 DATA DESCRIPTION 

The Highway Safety Information System (HSIS) provided all data used in this study. Geometry, 

traffic volume and crash data were acquired from the state of California (1993-2002) for 726 

stop-controlled 4 legged intersections with 2 lanes on major roads that were selected to conduct 

this study.  The last four years of data (1999-2002) were used to evaluate the ranking results 

from the FB and EB methods, while the preceding 3 years (1996-1998) and preceding 6 years 

were employed to rank the sites for the single level severity data (total crashes each year), 

respectively.  Data composed of 5 severity levels of crash data were employed to conduct an FB 

analysis using both univariate and multivariate FB methods to determine if multivariate FB is 
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superior to univariate FB.  Detailed information will be presented in the latter part of this 

chapter. 

 

Dataset 1: 726 stop-controlled 4 legged intersections with 2 lanes on major roads 

In order to see the difference of the ranking results from the FB and EB methods, an identical 

data set was used to conduct FB and EB analyses.  The severity data on a single level for this 

study is the total crashes each year.  Various ranking and evaluation criteria were explored and 

used to conduct the evaluation of the FB method for comparison with the EB method, and for the 

sensitivity analysis of the ranking criteria.   

 

Dataset 2: 436 intersections with high crash counts 

It was of interest to investigate whether the multivariate FB method is superior to the univariate 

FB method for network ranking using multi levels of severity.  Five crash severity levels were 

used, including Sev1: fatal (K), Sev2: incapacitating-injury (A), Sev3: non-incapacitating injury 

(B), Sev4: minor injury (C), and Sev5: PDO.  Since the effect or cost of each severity of crash 

should be quite different for black spot identification, arbitrary weights were applied to these 5 

crash severity levels: 5 to fatal, 4 to injury, 3 to non-incapacitating injury, 2 to minor injury and 1 

to PDO, respectively.  That is, 

 

                                                                               

 

For example, if there is one crash for each of the 5 levels of severity, the combined weighted 

total crashes would be 15. Since the multivariate FB model is computationally demanding, as a 

result, the MCMC procedure is very slow when using WinBUGs.  In addition, the computer 

memory is usually not enough for a large data set (i.e., there is an inadequate number of 

iterations obtained before WinBUGs freezes for the 726 sites) to obtain the MCMC output.    To 

solve this problem, the weighted total crashes for each site in the first 6 years were first 

calculated.  Then, the 436 sites where the weighted total crashes are greater than or equal to 8 

were finally selected for further ranking studies. 

 

Table 5-1 provides the summary information of these datasets. 
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Table 5-1 Summary Information of the Datasets 

 

Univariate  approach:  

EB vs. FB 

FB method: 

Multivariate FB vs univariate FB 

Number of sites 726 sites 
436 sites 

(weighted total crashes ≥ 8 in year 93-98) 

Crash types Total crashes 

fatal (K), incapacitating-injury (A), non-

incapacitating injury (B), minor injury (C), 

property damage only (PDO) 

Ranking 

Dataset 1:Year 1993-Year 

1998 

Dataset 2: year 1996-Year 

1998 
Year 1993-Year 1998 

Evaluation 

Year 1999-Year 2002 

Posterior Poisson Mean was 

estimated by the model 

developed using 10 years’ 

data 

Year 1999-Year 2002 

Posterior Poisson Mean was estimated by the 

model developed using 10 years’ data 

 

5.3 FB RANKING CRITERIA  

The posterior Poisson mean (PM) of crash frequency and posterior mean of PSI were used as 

major ranking criteria for the comparison study of the FB and EB methods for hot spot 

identification in that these two criteria are available for both the FB and EB methods. For 

reference purposes, the raw crash count was also used as a ranking criterion.  For the FB method, 

a sensitivity analysis of ranking criteria was exclusively conducted using the following eight 

ranking criteria: posterior expected, posterior median and posterior mode ranks of the posterior 

distribution of the Poisson mean, the probability that the site is the worst among all sites 

considered in terms of the Poisson mean (       , PM, potential for safety improvement (PSI), 

and for reference purposes, observed crash counts and pseudo potential for safety improvement 

(PPSI) were also used as ranking criteria.  

 

The evaluation of the ranking criteria is very important because a different ranking list can be 

obtained based on different ranking criteria even if the method is the same. For example, it has 

been shown that the ranked results would be different based on ranking criterion PM or PSI 

using the EB method (Elvik, 2008a).   One of the objectives of this evaluation study is to provide 
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an overview of the ranking results in terms of differences and similarities from all the ranking 

criteria, and identify promising ranking criteria.  Details of each criterion are presented below. 

 

A. Posterior Poisson mean of crash frequency (PM) 

Based on the popularity of the posterior Poisson mean for ranking, and recognizing the fact that 

the number of crashes is not linear to traffic volume as is assumed in using crash rates as a 

ranking criterion, PM was selected as the major ranking criterion in this study. 

 

B. Potential safety improvement (PSI) 

Because of its availability for the EB method, PSI is also selected as one of the major criteria for 

exploration.  

                                                  

where 

   is the posterior Poisson mean of crash frequency, and 

    is the expected crashes at similar sites. 

 

C. Posterior expected rank of the Poisson mean (expected rank) 

The posterior expected rank of the Poisson mean was used to conduct a sensitivity analysis of 

different ranking criteria. Another purpose for using this ranking criterion is to conduct a 

comparison with the results from the PM.  Intuitively, the results from the PM and expected rank 

might be the same, or at least very close, depending on the procedure used to obtain the expected 

rank. There are two methods to obtain the expected rank.  i.e., if two chains with 8000 iterations 

are used to estimate these criteria, one method is to average the Poisson mean of two chains at 

each iteration to obtain a new chain with 8000 iterations; then the expected rank is calculated 

from the new chain (equivalent to one chain with average values of two chains for 8000 

iterations).  Another method is to combine two chains together to get one chain with 16000 

iterations, and then the expected rank is calculated based on this combined chain.  To maximally 

take advantage of the posterior MCMC output, the second method is used to obtain posterior 

expected rank,        and mode rank (presented below) in our study. It should be noted that the 

difference between these two methods should be minor. 

 



82 

 

D. The probability that the site is the worst among all sites considered based on the PM 

(        

The Poisson mean of crashes is used to calculate the probability of a site being the highest 

ranked hot spot.  In other words, from a Bayesian MCMC output, the number of times for which 

each site has the largest PM is calculated.  A larger number suggests more safety problems. 

Then, this number can be sorted from largest to smallest to rank black spots. 

 

E. Median rank of the posterior distribution of the Poisson mean (median rank) 

The median rank of the Poisson mean is used as a ranking criterion to compare the results with 

other ranking criteria, especially with the posterior expected rank.   If the ranking results from 

the median rank are very close to those obtained by the expected rank, then the median rank can 

be used as a substitute for the expected rank of the posterior Poisson mean since it is readily 

available in WinBUGs output.   

 

F. Mode rank  of the posterior distribution of the Poisson mean (mode rank) 

This ranking criterion is proposed since, intuitively, the mode rank of the posterior distribution of 

the Poisson mean is conceptually solid.  It, thus, might be a better ranking criterion than median 

rank and expected rank.  Mode rank means that each site is ranked by the most frequently 

occurring rank in the posterior distribution of Poisson mean.  Similarly, it can be obtained by an 

analysis of data from the MCMC output, where a site can have a different rank order for each 

iteration. 

 

G. Observed crash counts 

This measure is only used for reference comparison. Due to the random variation of this 

measure, it usually provides biased results if sites with a high counts are identified as black spot. 

 

H. Pseudo Potential safety improvement (PPSI) 

Conceptually, PPSI is the same as PSI, but it is calculated as the difference between the observed 

crash counts (rather than the PM) and the expected crashes at similar sites.  Similarly, this 

measure could provide biased results due to the RTM problem. 
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5.4 FB EVALUATION CRITERIA  

The objective of this study is not only to use the FB method for network ranking, but more 

importantly, to evaluate the performance of the FB method for network ranking.  The data in the 

first period are used to produce a ranked list of the hot spots, while data in the succeeding period 

are used to rank another list of the unsafe sites.  Then, the results from these two ranked lists are 

compared and evaluated using various evaluation criteria.  Properly selected evaluation criteria 

are vital for this evaluation study.  The following three measures described in Chapter 1 are used 

to evaluate the performance of the FB method.  

 

 Criterion 1: sum of observed crashes in the succeeding time period 

Given the short period for evaluation, normally a few years, the RTM problem is a big issue 

which cannot be accounted.  This criterion is, as mentioned, used for reference purposes. 

 

 Criterion 2: sum of differences between observed crashes and predicted crashes at 

similar sites in the next period (sum of the PPSI) 

This is the same as the ranking criteria PPSI.   It is used for reference purposes, since there is no 

control for randomness in accident counts using this criterion. 

 

 Criterion 3: sensitivity and specificity 

This is the most popular evaluation criteria, especially in epidemiology.  From Equations 1-9-a 

and 1-9-b, it can be seen that sensitivity is used to evaluate the ability of a specific method to 

correctly identify true hazardous sites, whilst specificity is used to measure the capability to 

identify safe sites.  Ideally, a good ranking method should perform well in relation to both 

sensitivity and specificity. This means that it identifies as many of the truly hazardous sites as 

possible (sensitivity), while at the same time, not identifying a large number of sites that are truly 

not hazardous (specificity). Unfortunately, a trade-off must be made between sensitivity and 

specificity. Higher sensitivity means lower specificity, and vice versa.  However, for the top 

ranked limited sites, specificity normally is large and so is not an issue.  The critical measure is 

sensitivity for the top ranked sites as is shown later. 
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It should be noted that the assumption associated with these two evaluation criteria is 

homogeneity. In the two closed time periods, it is assumed that the road sections or sites are in 

the same or similar underlying operational states over these two time periods (similar traffic 

volume, driver population, pavement conditions, weather fluctuations, driving environment, 

traffic controls, etc.), and their expected safety performance remains virtually unaltered. Under 

this homogeneity assumption, a good ranking method will perfectly identify the same set of hot 

spots across two periods.  However, in reality, homogeneity cannot be completely met.  If the 

assumption is violated, these evaluation criteria should be used with caution. 

 

Recognizing that these criteria fail to differentiate the disparity of the posterior Poisson mean or 

other decision parameters associated with false identification, we propose two other evaluation 

criteria: sum of the posterior Poisson mean and sum of the PSI in the second period, described as 

follows. 

 

 Criterion 4: sum of the posterior Poisson mean in the subsequent period 

The posterior Poisson mean is an estimate of the expected true mean after obtaining the data in 

the second period.  This measurement can properly address the RTM problem and is a 

convenient criterion for ranking evaluation.  Obviously, a larger sum of the PM in the second 

time period suggests a better method. 

 

 Criterion 5: sum of the PSI 

Similar to the ranking criterion PSI, the sum of the PSI in the second period is used as an 

evaluation criterion. 

 

In all, it can be found that higher values of the above five evaluation criteria indicate a better 

ranking method.  Eight ranking criteria and five evaluation criteria are explored in this study.  

However, it should be noted that the major criteria for ranking are PM, PSI and expected rank, 

mode rank, median rank and       , while the key ones for evaluation are sensitivity and 

specificity, sum of the PM, and sum of the PSI in the succeeding period.  It should be noted that 

the sum of the PSI and PM may not be used as evaluation criteria for the comparison of the FB 

and EB methods in that the estimates of these two measures may not be comparable due to the 
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different modeling structure.  A further investigation of these two criteria should be conducted in 

terms of the values in the evaluation period.  Other criteria, including the sum of observed 

crashes, sum of differences between observed crashes, and predicted crashes for similar sites, are 

only used for reference. 

 

5.5 THE APPROACH FOR NETWORK RANKING AND EVALUATION  

This section presents detailed information with regard to the ranking criteria as well as 

evaluation criteria involved in this study.  

 

For single level crash severity data cases, where a univariate approach was applied, 726 

unsignalized four legged intersections were used to conduct this study.  The ranking and 

evaluation results from the FB are compared with those from the current prevailing EB method 

by using two ranking criteria, PM and PSI, and various evaluation criteria as mentioned earlier. 

Moreover, the above mentioned eight ranking criteria are exclusively explored for the FB 

method.  Furthermore, the sensitivity of the data history is studied for both the FB and EB 

methods.  In other words, a sensitivity analysis with different periods of data history for ranking 

is conducted. To this end, 3 years of data (1996-1998) and six years of data history (1993-1998) 

are used to identify the most hazardous sites, respectively, while the second period (1999-2002) 

is used to evaluate the ranking results identified by both ranking periods using different methods 

and ranking criteria.   

 

Generally, there are two ways to obtain the estimates of the expected crashes in the second 

period. One uses the second time period only (1999-2002) to develop FB models (or SPFs for the 

EB method) to estimate the true mean while the other one takes advantage of the whole time 

period data (1993-2002) to develop FB models.  It is reasonable to believe that FB models 

developed using ten years of data can provide a better estimate of the true mean for 1999-2002.  

Thus, the second method to estimate the true mean was adopted.   

 

Data for the two time frames described as follows were used to conduct a comprehensive 

evaluation study including a comparison with the EB method, a time sensitivity study and a 

ranking criteria sensitivity study. 
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Time Frame 6-4-10:  

Six years of data (1993-1998) are used to develop the FB models (or calibrate the SPF for the EB 

method) and identify the hotspots. The years 1993-2002 are employed to develop the models (or 

calibrate the SPF for the EB method); then the developed models (or calibrated SPF) are used to 

estimate the true mean of the crashes in 1999-2002 for evaluation. 

 

Time Frame 3-4-10: in this case, only three years of data (1996-1998) are used to rank sites. 

 

For multi-level severity data, several crash severity types, such as fatal, injury and PDO, are used 

to identify the black spots.  In such cases, a multivariate approach and/or a univariate approach 

can be performed on these data.  In this study, both multivariate FB and univariate models were 

developed. The results are compared and evaluated based on different ranking criteria and 

evaluation criteria.  One of the objectives of this study was to identify if there is an advantage in 

the multivariate approach (in our study, MVPLN AR (1) model) over the univariate Poisson AR 

(1) model.  Since the safety effect of different severity crashes is quite different, five weights 

were given to the five severity levels of crash data as previously explained.  Finally, 436 

unsignalized intersections with weighted combined high crash counts were extracted from the 

sites used for a single level severity study. 

 

5.6 FULL BAYESIAN METHOD WITH SINGLE SEVERITY DATA 

The total crash count each year from 1993 to 2002 at each of the 726 unsignalized California 

four legged intersections was used to conduct this study.  First, comprehensive FB model 

development was done for Time Frame 6-4-10.  That is, six years of data (1993-1998) were used 

for ranking, and four years of data (1999-2002) combined with 10 years of data (1993-2002) for 

evaluation in that the true mean in the evaluation period was estimated from the model 

developed using ten years of data. Then, the best model was selected to conduct a comparison 

study with the EB method.  The selected model was applied to Time Frame 3-4-10 and the multi-

level severity data.  More information is provided below. 

 

5.6.1 Bayesian Model Framework 
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In road safety studies, it is normally assumed that the observed crash count      at site i in year t 

follows a Poisson distribution:                 . The expected crash at intersection i in year t is 

    , where           
  .  The term       represents random effects, which account for latent 

variables across the sites while      is the expected crashes at similar sites.  Normally, the basic 

form of the regression term      is of the same form as SPFs used in EB studies.  In this study, the 

basic form of FB models is a product form:  

                 

          
   

             
        

                                            

where 

     = the expected crashes at location i in year t, 

     = the expected crashes at the sites similar to site i in year t,  

      AADT on the major road at intersection i in year t, 

       AADT on the minor road at intersection i in year t, 

         = fixed coefficients, and 

                           . 

 

It can be seen that      is the same form as that used in EB studies for intersections (Sayed and 

Rodrigez, 1999; Turner-Fairbank Highway Research Center, 1999; Persaud and Nguyen, 1998; 

Persaud et al., 2002). In this study, the form of      has some variations, as described in Chapter 

3. 

Basically, there are three categories of FB models based on the different formats of random 

effects      :  PG models where                  ; PLN models where                    

       and Poisson AR models where random effects have an AR format. In this research, 11 

Bayesian models, including 4 PG, 4 PLN, and 3 Poisson AR(1) models, were developed using 

six years of data (1993-2002) as described below. 

 

A. Poisson Gamma models 

The random effect is                      and                       .  There are four PG 

models based on the different forms of      in this study. 
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 Model 1:  Original PG model 

     has the same form as Equation 5-8.  This is the basic form of the PG model and does not 

account for time effects.  This model is defined as PG_6yrs for data in 1993-1998 and PG_10yrs 

for 10 years’ data. 

 

 Model 2:  Time multiplier PG model 

Similarly, this model is denoted as PG_M_6yrs and PG_M_10yrs hereafter.       is the same as 

Equation 5-8. However, instead of a fixed      a time varying coefficient     which is used to 

account for temporal variations in crash occurrences, is introduced into this model. It is similar in 

principle to the time multiplier in an EB study. It has been demonstrated that this model is 

promising (Persaud et al., 2010). 

 

 Model 3: Time trend PG model 

             
        

                                               

 

A potential time trend      in the observed crash series is included in this model as an 

alternative way to deal with temporal variation.  This model is described as PG_T_6yrs and 

PG_T_10yrs respectively in the study for 6 years (1993-1998) ranking data and the data (1993-

2002) used to estimate the true mean for evaluation. 

 

 Model 4: Time varying coefficient PG model 

Similar to Model 2, aside from the time varying multiplier     , the other coefficients are also 

relaxed to be all time varying              . It is expected that this model could be comparable to 

Model 2.  For convenience, this model is called PG_VC_6yrs and PG_VC_10yrs, respectively. 

 

B. Poisson Log Normal  models 

For the PLN models, the random effects are                and                   

             , such that the prior expected value of the precision parameter       is 1, and the 
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prior variance of the precision is set at 1000.   Accordingly, there are four PLN models in our 

study, based on the four different forms of      which are the same as those for the PG models. 

 

The four PLN models are: 

 Model 5: Regular PLN model  

(Denoted as PLN_6yrs and PLN_10yrs, respectively) 

 

 Model 6: Time multiplier PLN model  

(PLN_M_6yrs and PLN_M_10yrs) 

 

 Model 7: Time trend PLN model  

(Defined as PLN_T_6yrs and PLN_T_10yrs) 

 

 Model 8: Time varying coefficients PLN model 

(PLN_VC_6yrs and PLN_VC_10yrs, respectively) 

 

C. Poisson AR (1)  models 

The last category in this study is the Poisson AR model, where the random effect    is the AR 

model of the order 1.  As mentioned in Chapter 3,  AR (1) random errors can be employed to 

count time dependence in road safety studies, meaning that values of random effects at time t 

depends upon their immediate predecessor.  A model which allows for AR (1) dependence in 

random errors might be an ideal model to reproduce the dynamic features of time series crash 

data. 

 

Two AR (1) forms of    are explored: one has a stationary form and the other does not.  In 

addition, a time trend Poisson stationary AR (1) is also developed to see if there is a broad scale 

trend in the data.  Details are as follows. 

 

 Model 9: Stationary Poisson AR (1) model (denoted as P_AR(1)_6yrs and 

P_AR(1)_10yrs respectively) 

The AR (1) model can be written as 
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and 

                                                                           

 

where 

     is the same as Equation 5-8, 

                             ,              ,                        

                                                                             

 

To ensure a stationary process,           is confined by setting                         

(Beta (1,1) is the same as Uniform [0,1]) and the first point of      is simply set as             

       in the study.  

 

 Model 10: Non-Stationary Poisson AR (1) Model 

This model is the same as Equations 5-10 and 5-11, but the correlation coefficient     does not 

necessarily belong to         and can be set:         .  This model was used for comparison 

with Model 9.  It was expected that the results from these two models should be very close.  This 

model is denoted as P_NAR(1)_6yrs and P_NAR(1)_10yrs for convenience. 

 

 Model 11: Stationary Poisson AR (1) trend model 

As mentioned in Chapter 3, this model can be seen as an alternative for the non-stationary 

process by adding a trend variable for transformation into a stationary process.  Alternatively, it 

can be considered that a trend analysis only accounts for a broad scale time series pattern for a 

long period of time while AR (1) in the random effects explains fine-scale autocorrelation 

between successive time periods.  

 

The model form is the same as Model 9, but the expected crashes at similar sites      takes the 

form of Equation 5-9. Similarly, the model is abbreviated as P_AR (1)_T_6yrs and P_AR 

(1)_T_10yrs hereafter. 
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It should be noted that the Poisson mean usually transforms to its logarithm in the modeling 

process in road safety studies.  The stationary process of AR (1) should be met, thus it is 

anticipated that the AR (1) model with a stationary assumption of random errors would be better. 

 

All of the prior distributions for all coefficients            ) are assumed to be non-informative 

N(0,1000) to reflect the lack of precise knowledge of the coefficient values. The posterior 

distributions were calibrated by MCMC methods using all the data from 1993 to 1998, and 1993 

to 2002, respectively. 

 

5.6.2 Bayesian Model Selection 

The years 1993-1998 and 1993- 2002 were used to develop the above 11 FB models for ranking 

and an evaluation analysis, respectively.  The dependent variable is the total crashes each year 

and the independent variables are annual average daily traffic volume (AADT) on major and 

minor roads.  The summary of the data is tabulated in Table 5-2.  It can be seen that the AADT 

on major roads increases by a small amount in the evaluation method.  Since traffic volume 

increases systematically for almost all intersections across years, it should not be a problem to 

use sensitivity and specificity as evaluation criteria.  However, the sum of the PM might be a 

better evaluation criterion since a few intersections did not follow this pattern. 

 

Table 5-2  Summary data for 726  California Unsignalized Intersections  

    year 1993- year 1998     

  Mean  Standard Deviation Maximum Minimum 

Total Crashes 

/site. year 
1.34 1.77 13 0 

AADTMajor 8209 4239 29732 2917 

AADTMinor  652 860 7800 100 

  

 

year 1993 - year 2002 

 

  

  Mean  Standard Deviation Maximum Minimum 

Total Crashes 

/site. year 
1.40 1.89 18 0 

AADTMajor 8526 4459 29732 2900 

AADTMinor  653 863 7800 100 
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As explained in Chapter 4, the objective in model selection is to use as parsimonious a model as 

possible while ensuring that reliable results are predicted.  Model choice is better based on 

penalized measures of fit than unmodified likelihood and deviances (Spiegelhalter et al., 2003; 

Congdon, 2001 and 2003). 

 

The results relating to model selection criteria are listed in Tables 5-3 to 5-8.  AIC, BIC and DIC 

were selected and calculated for major model selection criteria.   In addition, the marginal 

likelihood was estimated by the harmonic mean from the MCMC output.  It can be seen that the 

marginal likelihood is almost the same as the corresponding posterior mean of log likelihood 

(LL) in Tables 5-3 and 5-4. This is because of the large sample in the MCMC output (at least 

10,000 samples in our study) indicating that the distribution of the output might be indeed close 

to a normal distribution.   Hence, for this reason, marginal LL will not be listed in other tables.   

Since LL does not introduce penalties for including extra parameters, it is used only for reference 

purposes. 

 

WinBUGS 1.4 was used for the model development.  Two parallel chains were run for both 

scenarios of initial status to obtain the posterior distributions of the coefficients, LL and other 

decision parameters, such as Poisson mean of crashes, PSI, etc. Convergence was monitored by 

Gelman-Rubin convergence diagnostic plots and historical plots (Spiegelhalter et al., 2003; 

Cowles, 2005; Brooks and Gelman, 1998) set in WinBUGs. The results in terms of parameters 

and model selection criteria from all the above eleven models are presented in Tables 5-3 to 5-8.  

The parameter estimates from the SPFs developed for the EB study, using the maximum 

likelihood approach, are also listed in Tables 5-7 and 5-8. 

 

The meanings of the symbols in the following tables and hereafter are: 

           , are coefficients that correspond to the intercept, AADT on major roads, AADT on 

minor roads, and time trend as shown in Equation 5-9, 

r is the time series correlation coefficient,  

BCI is the Bayesian credit interval, 

K means number of parameters in the model, 

LL is the log likelihood of the developed model, and 
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Mar. LL is the marginal log likelihood estimated from the harmonic mean of likelihood from the 

MCMC output (see Equation 4-7). 

 

For the PG models (Tables 5-3 and 5-4), PG and PG_T  are comparable and better than the other 

two models (time multiplier model and varying coefficients) in terms of the lower values of AIC, 

BIC and DIC.  PG_T_6yrs is deemed to be the optimal model in this group in consideration of 

the time series of the crash data and given that it also has comparable values of AIC, LL and to 

PG_6yrs.  For all four developed PG models that use 6 years of data, LL is almost the same, 

which indicates that the fitting is not improved with the extra parameters.  For 10 years of data, 

similarly, model PG_T_10 yrs is the best model.  The value of LL for the more complex model 

PG_M is greater (although not by much) than PG and PG_T which means that the extra 

parameters somewhat improve the fit, but the scale is very limited.  However, the LL of 

PG_VC_10yrs is almost the same as that of PG_M_10yrs.  

 

It can be seen that the differences of BIC among these four models are much larger than other 

criteria in that BIC has a large penalty          for the extra parameters in a large sample size 

(i.e., when the sample size is greater than 7, then the penalty of BIC is greater than that of AIC).   

The difference is even larger for 10 years of data because the sample size is bigger.    

 

For the PLN group (Tables 5-5 and 5-6), not surprisingly, the values of all the model selection 

criteria follow a similar pattern as PG models.  For the sake of the values of the model selection 

criteria, and in consideration of the time series of the crash data, PLN_T_6yrs and PLN_T_10yrs 

are the best for both data groups, respectively, as expected.  Also, it can be seen that the 

parameters of the PLN group are generally comparable to those from the PG group. 
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Table 5-3 Parameter Estimation and Model Diagnostics (PG models)

(year 1993-year 1998)

PG_6yrs PG_T_6yrs PG_M_6yrs PG_VC_6yrs

 mean  mean  mean  mean

Constant -7.83 -8.54 -6.97 -7.71 -8.17 -7.19 -8.15 -8.45 -7.83 -7.36 -9.27 -5.91

β0 -8.19 -8.50 -7.86 -8.08 -9.49 -6.82

-8.15 -8.46 -7.83 -7.84 -9.52 -5.66

-8.22 -8.53 -7.89 -8.19 -9.56 -6.59

-8.17 -8.48 -7.84 -7.34 -8.61 -6.11

-8.21 -8.52 -7.87 -7.91 -9.32 -6.42

AAdtmajor 0.58 0.49 0.66 0.58 0.51 0.62 0.61 0.56 0.65 0.51 0.34 0.70

β1 0.61 0.46 0.75

0.60 0.37 0.80

0.59 0.41 0.73

0.57 0.44 0.69

0.56 0.39 0.73

AAdtminor 0.47 0.41 0.53 0.46 0.41 0.51 0.49 0.43 0.53 0.50 0.43 0.58

β2 0.47 0.38 0.55

0.45 0.37 0.52

0.51 0.42 0.59

0.41 0.32 0.49

0.51 0.43 0.58

Trend β3 -0.01 -0.02 0.01

No. of Parameters: K 4 5 9 19

Log likelihood: LL -5632 -5632 -5633 -5634

Mar. LL -5632 -5632 -5633 -5633

AIC 11271 11272 11282 11304

BIC 11290 11298 11333 11419

DIC 11746 11748 11753 11764

95% BCI 95% BCI 95% BCI 95% BCI
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Table 5-4 Parameter Estimation and Model Diagnostics (PG models)

(year 1993-year 2002)

 mean  mean  mean  mean

β0 -8.05 -8.39 -7.74 -7.97 -8.27 -7.70 -7.73 -8.13 -6.94 -6.84 -8.18 -5.34

-7.76 -8.17 -6.98 -7.79 -9.66 -6.54

-7.73 -8.13 -6.95 -7.57 -9.09 -5.99

-7.79 -8.20 -7.01 -7.89 -9.66 -6.43

-7.74 -8.15 -6.96 -7.01 -8.68 -5.17

-7.78 -8.19 -7.00 -7.88 -9.59 -6.20

-7.77 -8.17 -6.98 -7.71 -9.49 -6.01

-7.74 -8.15 -6.95 -7.56 -9.18 -5.87

-7.65 -8.06 -6.86 -8.27 -9.79 -6.60

-7.69 -8.09 -6.90 -9.33 -10.49 -7.71

β1 0.60 0.57 0.63 0.59 0.55 0.62 0.57 0.50 0.61 0.46 0.29 0.60

0.58 0.44 0.77

0.58 0.39 0.72

0.56 0.41 0.75

0.54 0.32 0.71

0.56 0.37 0.74

0.57 0.39 0.75

0.54 0.36 0.73

0.61 0.42 0.76

0.75 0.57 0.87

β2 0.48 0.44 0.55 0.47 0.43 0.53 0.47 0.43 0.53 0.49 0.40 0.58

0.46 0.37 0.54

0.44 0.36 0.51

0.50 0.41 0.58

0.40 0.33 0.48

0.51 0.43 0.59

0.46 0.39 0.54

0.48 0.40 0.56

0.51 0.44 0.60

0.47 0.39 0.54

β3 0.01 0.00 0.01

K 4 5 13 31

LL -9524 -9522 -9518 -9517

Mar. LL -9523 -9522 -9518 -9517

AIC 19054 19052 19060 19094

BIC 19075 19080 19143 19301

DIC 19602 19600 19601 19611

PG_10yrs PG_T_10yrs PG_M_10yrs PG_VC_10yrs

95% BCI 95% BCI 95% BCI 95% BCI
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(year 1993-year 1998)

 mean  mean  mean  mean

β0 -8.43 -9.45 -7.24 -7.89 -9.01 -6.93 -7.87 -8.92 -6.90 -8.42 -9.66 -7.47

-7.91 -8.96 -6.94 -9.09 -10.18 -8.16

-7.87 -8.92 -6.91 -8.84 -9.92 -7.50

-7.94 -9.00 -6.97 -9.35 -10.71 -8.24

-7.88 -8.94 -6.91 -8.30 -9.39 -7.10

-7.92 -8.98 -6.95 -8.95 -10.25 -7.11

β1 0.61 0.49 0.71 0.56 0.46 0.67 0.56 0.45 0.68 0.60 0.50 0.72

0.69 0.59 0.80

0.69 0.54 0.81

0.70 0.58 0.84

0.65 0.51 0.77

0.64 0.46 0.77

β2 0.49 0.42 0.55 0.48 0.42 0.53 0.48 0.42 0.53 0.50 0.43 0.57

0.47 0.38 0.54

0.45 0.36 0.53

0.50 0.43 0.59

0.41 0.34 0.49

0.52 0.44 0.60

β3 -0.01 -0.02 0.01

K 4 5 9 19

LL -5653 -5653 -5653 -5654

AIC 11312 11314 11322 11344

BIC 11331 11340 11373 11459

DIC 11806 11805 11810 11820

95% BCI 95% BCI 95% BCI 95% BCI

Table 5-5 Parameter Estimation and Model Diagnostics (PLN models)

PLN_6yrs PLN_T_6yrs PLN_M_6yrs PLN_VC_6yrs
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(year 1993-year 2002)

 mean  mean  mean  mean

β0 -8.15 -7.50 -8.88 -8.37 -7.86 -9.08 -7.27 -5.39 -8.24 -7.21 -6.03 -8.22

-7.31 -5.42 -8.28 -8.08 -6.94 -9.26

-7.27 -5.37 -8.24 -7.97 -6.55 -9.67

-7.34 -5.45 -8.31 -8.19 -7.12 -9.36

-7.28 -5.39 -8.26 -7.66 -6.35 -8.82

-7.32 -5.41 -8.30 -8.34 -6.79 -9.66

-7.31 -5.42 -8.29 -8.39 -7.03 -9.59

-7.28 -5.38 -8.26 -8.08 -7.12 -9.39

-7.19 -5.28 -8.17 -8.77 -7.87 -9.86

-7.22 -5.30 -8.21 -10.15 -8.98 -11.18

β1 0.58 0.50 0.66 0.59 0.54 0.66 0.50 0.31 0.61 0.46 0.35 0.56

0.58 0.46 0.71

0.59 0.46 0.76

0.56 0.45 0.69

0.58 0.44 0.71

0.57 0.42 0.72

0.61 0.47 0.73

0.57 0.46 0.69

0.63 0.52 0.73

0.80 0.69 0.90

β2 0.48 0.42 0.54 0.50 0.46 0.54 0.46 0.37 0.52 0.50 0.44 0.58

0.47 0.38 0.55

0.45 0.38 0.53

0.51 0.44 0.58

0.41 0.34 0.48

0.52 0.44 0.59

0.47 0.40 0.54

0.49 0.42 0.55

0.53 0.46 0.60

0.48 0.42 0.55

β3 0.01 0.00 0.01

K 4 5 13 31

LL -9544 -9543 -9537 -9536

AIC 19094 19094 19098 19132

BIC 19115 19122 19181 19339

DIC 19661 19658 19663 19669

95% BCI 95% BCI 95% BCI 95% BCI

Table 5-6 Parameter Estimation and Model Diagnostics (PLN models)

PLN_10yrs PLN_T_10yrs PLN_M_10yrs PLN_VC_10yrs
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Table 5-7 Parameter Estimation and Model Diagnostics (Poisson AR(1) models)

(year 1993-year 1998)

 mean  mean  mean  mean

β0 -8.45 -9.10 -7.59 -8.16 -9.06 -7.38 -8.25 -9.24 -7.42 -8.81 -9.96 -7.66

β1 0.62 0.52 0.70 0.59 0.51 0.68 0.60 0.50 0.71 0.69 0.56 0.88

β2 0.48 0.42 0.53 0.47 0.41 0.54 0.47 0.42 0.52 0.48 0.42 0.53

β3 -0.01 -0.03 0.01

r 0.95 0.93 0.97 0.95 0.93 0.97 0.97 0.93 1.00

K 5 6 5 4

LL -5526 -5521 -5535

AIC 11060 11052 11078

BIC 11086 11084 11104

DIC 11751 11750 11756

95% BCI 95% BCI 95% BCI 95% BCI

P_AR(1)_6yrs P_AR(1)+T_6yrs P_NAR(1)_6yrs EB_6yrs

Table 5-8 Parameter Estimation and Model Diagnostics (Poisson AR(1) models)

(year 1993-year 2002)

 mean  mean  mean  mean

β0 -9.04 -8.38 -9.73 -8.77 -9.53 -7.88 -8.77 -8.08 -9.57 -9.25 -10.35 -8.14

β1 0.67 0.59 0.74 0.63 0.50 0.72 0.64 0.57 0.73 0.73 0.61 0.85

β2 0.50 0.43 0.55 0.50 0.46 0.55 0.50 0.44 0.56 0.48 0.43 0.54

β3 0.00 -0.01 0.01

r 0.97 0.96 0.98 0.97 0.96 0.98 0.99 0.97 1.00

K 5 6 5 4

LL -9269 -9269 -9283

AIC 18546 18548 18574

BIC 18574 18582 18602

DIC 19489 19491 19490

95% BCI 95% BCI 95% BCI 95% BCI

P_AR(1)_10yrs P_AR(1)+T_10yrs P_NAR(1)_10yrs EB_10yrs
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For Poisson AR (1) models (Tables 5-7 and 5-8), P_AR (1) and time trend model P_AR (1)+T 

are comparable and better than the non-stationary model P_NAR (1) for these two data sets.  

This confirms that it should be a stationary process for the logarithm of crash data.  P_AR (1) is 

more preferable because of a simpler form.  

 

Poisson AR (1) has much lower values of AIC, BIC and a higher value of LL compared with PG 

and PLN models for the dataset of 1993 – 1998, and comparable values of the DIC of 

PG_T_6yrs, P_AR (1)_6yrs is deemed to be the best model for this data group and is thus used 

for further exploration and for comparison with the EB results. 

  

For the 10 year dataset (1993 - 2002), all the model selection criteria including LL, AIC, BIC 

and DIC favor the P_AR (1) _10 yrs model.  This model is used to estimate the true mean of 

crashes for 1999 – 2002 to evaluate the performance of the ranking method and criteria. 

 

5.6.3 Evaluation of FB and EB for Hot Spot Identification 

Time frames 3-4-10 and 6-4-10 were used to conduct a comparison of the FB method with the 

EB method for hotspot identification.  According to the model selection result from 6 years of 

ranking data, P_AR (1)_3yrs was deemed to be the best model for the three years of ranking 

dataset and was used for the comparison study.  The data for 1996 to 1998 is summarized in 

Table 5-9.  Compared with the data in Table 5-2, it can be found that traffic volume on major 

roads continues to grow while traffic volume on minor roads stays almost the same.  Crashes in 

1996 to 1998 stay almost the same and crashes in the evaluation period increases by 0.07 

crashes/site.year. 

 

Table 5-9  Summary data for 726  California Unsignalized Intersections  

    year 1996 - year 1998     

  Mean  Standard Deviation Maximum Minimum 

Total Crashes / 

site. year 
1.33 1.79 13 0 

AADTMajor 8358 4347 28604 2917 

AADTMinor  655 867 7800 100 

 



100 

 

The posterior Poisson mean or expected crashes and the PSI in ranking periods, which are 

available for the EB method, were used for the comparison study.  Crash counts in the ranking 

periods were used only for reference purposes. 

  

As noted earlier, there are five evaluation criteria applied, including sensitivity and specificity, 

sum of crash count, sum of Poisson mean, sum of the PSI and sum of the PPSI in next period 

(1999 - 2002). 

 

It should be noted there are two ranking periods: one is 1993 to 1998 and the other is 1996 to 

1998.  The evaluation period is 1999 to 2002.  Also note that the estimate of true mean of the 

evaluation period was derived from the model by using 10 years of data (from 1993 to 2002).  In 

other words, models P_AR(1)_3yrs and P_AR(1)_6yrs were used for ranking, respectively, and 

model P_AR(1)_10yrs was used for evaluation purpose.  

 

Before comparing the results of FB with EB, it is necessary to investigate the estimates from 

these two methods since the Poisson mean, PSI and PPSI might be different due to the different 

developed models and error structures. It was found that the sum of the PM in the evaluation 

period for the 726 sites from EB is 4297 crashes while there are 4279 crashes from FB. This 

confirms that the estimation of expected crashes from both methods is indeed comparable, but 

the EB method provides a slightly higher value for the evaluation period (1999 –2002).  

Nevertheless, this suggests that it is appropriate to use PM as an evaluation criterion for 

comparison of both methods.  The sum of the PM from EB was adjusted by multiplying a ratio 

    
             for a better comparison.  However, PSI and PPSI are quite different due 

to the different structures of random effects and cannot be employed as evaluation criteria for the 

comparison; however, they can be used to evaluate the performance of ranking criteria by each 

method. For example, the ranking criteria, PM and the PSI, can be evaluated based on the 

evaluation criteria, sum of the PSI and the sum of the PPSI for the FB and EB methods, 

respectively. 

 

The evaluation results from the FB P_AR(1) models and the EB method are presented in Figures 

5-1 to 5-4 for Time Frame 6-4-10, and Figures 5-5 to 5-8 for Time Frame 3-4-10.   The P_AR(1) 
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model provides better results than those from the EB method ranked by PM or PSI in terms of 

higher values of sensitivity, specificity, and sum of Poisson mean for both time frames.  It is easy 

to see that the P_AR(1) model, which is ranked by PM, provides the best results since it has the 

highest values of sensitivity, specificity, and sum of Poisson mean, while the EB method ranked 

by PSI provides the poorest results as shown in Figures 5-1 to 5-8.  If the crash count in 1999 –

2002 is used as an evaluation criterion, then both methods ranked by PM provide almost similar 

results, and better ones than by PSI.  
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Figure 5-1  Sensitivity by Alternative Ranking Methods
Rank: 1993-1998  

Evaluation: 1999-2002 esitmated from 1993-2002
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Figure 5-2  Specificity by Alternative Ranking Methods
Rank: 1993-1998  

Evaluation: 1999-2002 esitmated from 1993-2002

P_AR(1)   By PM
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EB by PM
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Figure 5-3  Sum of PM (1999-2002) by Alternative Ranking Methods
Rank: 1993-1998           Evaluation: 1999-2002 esitmated from 1993-2002

P_AR(1)   By PM

P_AR(1)  by PSI

EB by PM
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by raw data

PM=Poisson mean

PSI=Poisson mean - predicted crashes at similar sites
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Figure 5-4  Total Observed Crashes (1999-2002) by Alternative Ranking 
Methods

Rank: 1993-1998     Evaluation: 1999-2002 esitmated from 1993-2002

P_AR(1)   By PM

P_AR(1)  by PSI

EB by PM

EB by PSI

PM=Poisson mean

PSI=Poisson mean - predicted crashes at similar sites
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Figure 5-5  Sensitivity by Alternative Ranking Methods
Rank: 1996-1998            Evaluation: 1999-2002 esitmated from 1993-2002

P_AR(1)   By PM

P_AR(1)  by PSI
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by raw data
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Figure 5-6  Specificity by Alternative Ranking Methods
Rank: 1996-1998          Evaluation: 1999-2002 esitmated from 1993-2002

P_AR(1)   By PM

P_AR(1)  by PSI

EB by PM

EB by PSI

by raw data

PM=Poisson mean

PSI=Poisson mean - predicted crashes at similar sites
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Figure 5-7  Total Expected Crashes (1999-2002) by Alternative Ranking 
Methods

Rank: 1996-1998         Evaluation: 1999-2002 esitmated from 1993-2002

P_AR(1)   By PM

P_AR(1)  by PSI

EB by PM

EB by PSI

PM=Poisson mean

PSI=Poisson mean - predicted crashes at similar sites
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The evaluation results from the top ranked 10, 20, 30, 40 and 50 sites by the P_AR(1) model and 

the EB method for both time frames are listed in Table 5-10.  For the top ranked 10 sites (about 

1.38 % of all sites), both the FB and EB methods have the same value of sensitivity and 

specificity, regardless whether the ranking is by PM or PSI for the data of the two time frames.  

However, it cannot be concluded that the EB method obtains the same top ten ranked sites and 

provides comparably promising results to the FB method.  The evaluation criterion, sum of the 

PM in the second period, might provide more information for comparison of the two methods.  

From Table 5-10, it can be seen that the FB method indeed provides much better results than the 

EB method in terms of a higher value of the sum of the PM. This might be caused by the tiny 

difference in the PM of the sites in the ranking period and might be due to lack of homogeneity 

between the ranking period and the evaluation period.  In fact, even if the data do meet the 

homogeneity assumption for the very few top ranked sites, it is still problematic to evaluate the 

ranking results based only on sensitivity in that it cannot differentiate the values of the PM for 

false positive identification in the few top ranked sites.  For example, for the top 10 most 

hazardous ranked sites, false identification of one site causes a 10% difference in sensitivity 
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Figure 5-8  Total  Crash Counts (1999-2002) by Alternative Ranking Methods
Rank: 1996-1998           Evaluation: 1999-2002 esitmated from 1993-2002
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while the Poisson mean may just have a minor difference (say, 0.01 crashes/year). For this case, 

it is strongly recommended that the sum of the PM in the second period should be taken as a 

major evaluation criterion.  In fact, from Table 5-10, the sum of the PM ranked by PM from FB 

method is 263 crashes in 1999 -2002 (per 6 years of ranking data) for the top 10 ranked sites, 

while the EB method gives just 242 crashes (multiply the ratio of total expected crashes from the 

FB over that from the EB which is      
            ).  The sum of the PM ranked by PSI 

by the FB method also has a much higher value than that from the EB method.  Similarly, the 

three years of ranking data (1996- 1998) have the same pattern.  This proves that the FB method 

can provide much better ranking results than the EB method for the top ranked 10 sites in terms 

of much higher values in the sum of the PM, even though they both have the same values of 

sensitivity and specificity. 

 

With top ranked 20, 30, 40 and 50 sites, the FB method still provides better ranking results 

ranked by PM or PSI in contrast to the EB method as identified by two datasets (1993-1998 and 

1996-1998) as shown in Table 5-10 and Figures 5-1 to 5-3, and Figures 5-5 to 5-7 based on the 

evaluation criteria sensitivity and specificity, and sum of the PM.  In most cases, the sum of the 

crash counts from the FB method is also greater than that from the EB as is evident from Table 

5-10.  In fact, the FB method ranked by PM has the best ranking results.  Thus, it can be 

concluded that the FB method is superior to the EB method for network ranking based on the 

evaluation results obtained. 

 

5.6.4 Sensitivity Analysis of Ranking Criteria  

A total of eight ranking criteria; the PM, the PSI, the PPSI, crash counts, expected rank  of the 

posterior distribution of PM (denoted as expected rank), model rank and median rank of the 

posterior distribution of PM (defined as mode rank and median rank, respectively) and the 

probability of being the worst in terms of the highest value of PM, were explored using 3 years 

of data (1996-1998) and 6 years of data (1993-1998), respectively, for ranking by the previously 

identified best Poisson AR (1) model.  A total of five evaluation criteria including sensitivity and 

specificity, sum of crash counts, sum of the PM, sum of the PSI and sum of the PPSI in the 

second period (1999 – 2002) were employed to conduct the evaluation study. 



107 

 

Table 5-10 Comparison of Evaluation Results of EB and FB

Hotspots identified from 1996-1998 data Hotspots identified from 1993-1998 data

FB: Poisson AR(1) model By Poisson mean

ranked  sites Sensitivity Specificity ∑tot1999-2002 ∑PM1999-2002 Sensitivity Specificity ∑tot1999-2002 ∑PM1999-2002

10 0.20 0.99 241 248 0.30 0.99 263 263

20 0.65 0.99 484 488 0.60 0.99 485 485

30 0.70 0.99 717 713 0.70 0.99 702 698

40 0.73 0.98 904 893 0.78 0.99 932 920

50 0.74 0.98 1055 1047 0.80 0.99 1116 1097

FB: Poisson AR(1) model  By PSI=Poisson mean-predicted crashes at similar sites

10 0.30 0.99 235 243 0.40 0.99 243 244

20 0.50 0.99 453 457 0.55 0.99 454 463

30 0.47 0.98 641 643 0.57 0.98 707 698

40 0.65 0.98 848 839 0.70 0.98 899 876

50 0.74 0.98 1034 1014 0.74 0.98 1047 1022

EB method By Expected Crashes

ranked  sites Sensitivity Specificity ∑tot1999-2002 ∑PM1999-2002 Sensitivity Specificity ∑tot1999-2002 ∑PM1999-2002

10 0.20 0.99 241 224 0.30 0.99 260 243

20 0.65 0.99 508 469 0.50 0.99 476 439

30 0.63 0.98 715 664 0.67 0.99 702 651

40 0.70 0.98 899 831 0.68 0.98 917 846

50 0.70 0.98 1087 1005 0.72 0.98 1116 1028

EB method By PSI

10 0.30 0.99 235 209 0.40 0.99 243 209

20 0.40 0.98 446 391 0.50 0.99 468 416

30 0.40 0.97 641 569 0.50 0.98 700 625

40 0.55 0.97 827 736 0.58 0.98 892 788

50 0.64 0.97 1034 921 0.64 0.97 1016 901

Evaluation period: year 1999 - year 2002 estimated by the  models developed using 10 years' data 
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The objectives of this aspect of the research were to evaluate the ranking criteria given the best 

FB model, using the above evaluation criteria, and to identify the relationship between the 

ranking criteria. To achieve the first objective, the evaluation results from alternative ranking 

criteria were compared to identify the criterion that provides the most promising results.  To 

reach the second goal, the identified sites by the most popular criterion, PM, and most 

recommended criterion, expected rank, were treated as the base condition, respectively, then 

ranked sites by other criteria were compared with those by PM and expected rank.  The 

percentage of the same sites were calculated, which may or may not take into consideration the 

exact order within that top ranked group, e.g., for the top 10 ranked sites identified by PM, the 

same sites are located in the top 10 sites ranked by median rank, but only 4 sites have the exact 

same order when ranked by PM. In this example, the two criteria are deemed to be exactly the 

same in terms of top ranked sites without considering the order, but are only 40% in similarity 

when considering the order of the top 10 ranked sites.  In this way, insights into the ranking 

criteria were obtained in terms of how much of the identified sites by different criteria were the 

same in terms of ranked sites, and in terms of the exact order of the ranked sites. 

 

Since there could have been several sites with the same median rank, or same mode rank or the 

same probability of being the worst, a second level of ranking criterion, the expected rank, was 

added to resolve ties.  The evaluation results from the eight ranking criteria are presented in 

Figures 5-9-5-14 for ranking data in 1993 – 1998 and in Figures 5-15 – 5-18 for ranking data in 

1996 – 1998.  The information associated with the eight ranking criteria in the ranking and 

evaluation periods in terms of the sum of the PM, sum of the PSI, sum of the PPSI and sum of 

total crashes, and sensitivity and specificity among these two periods are tabulated in Tables 5-

11 – 5-14 for both time frames. 
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Figure 5-9  Sensitivity by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1993-1998
Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI
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by Raw data
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by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-10  Specificity by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1993-1998
Evaluate: 1999-2002 estimated from 1993-2002

by PM
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Figure 5-11  Sum of Poisson Mean (1999-2002) by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1993-1998
Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites
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Figure 5-12  Sum of  Observed Crashes  (1999-2002) by  Various Ranking Criteria
Poisson AR(1) Model

Rank: 1993-1998
Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites
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Figure 5-13 Sum of PSI (1999-2002) by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1993-1998
Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites
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Figure 5-14 Sum of PPSI (1999-2002) by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1993-1998                     Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites
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Figure 5-15  Sensitivity by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1996-1998             Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites



116 

 

 

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250 300 350 400

Sp
ec

if
ic

it
y

Number of intersections identified from 1996-1998 data

Figure 5-16  Specificity by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1996-1998          Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites
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Figure 5-17  Sum of Poisson Mean (1999-2002) by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1996-1998       Evaluate: 1999-2002 estimated from 1996-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites
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Figure 5-18  Sum of PSI (1999-2002) by Various Ranking Criteria
Poisson AR(1) Model

Rank: 1996-1998         Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by PPSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites

PPSI=crash count -predicted crashes at similar sites
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A. Analysis of ranking results from various ranking criteria 

 

a. The probability of being the worst 

It is easy to see that very few sites were identified as black spots based on the probability of 

being the worst.  As a matter of fact, 40 sites in 1993-1998, 49 sites in 1996-1998, and only 20 

sites in the evaluation period, have a probability that is greater than 0 of being the worst.  The 

majority of the sample has a probability of 0.  This ranking criterion, however, provides 

comparably good results for the identified top ranked sites from the graphs and tables.  

Sometimes it provides exactly the same results as those identified by PM in terms of the 

evaluation results. i.e., for the top 10 ranked sites, the criterion provides identical results as those 

ranked by PM and expected rank in terms of the sum of crash counts, sum of the PM, sum of the 

PSI, sum of the PPSI in the ranking period and evaluation criteria in the second period for the 

two time frames from the tables.  For the top 20 ranked sites, this ranking criterion has less 

desirable results in comparison to the PM and expected rank from Tables 5-12 and 5-14 for the 6 

year of ranking data.  However, for the ranking period of 3 years, this criterion provides much 

better results in terms of higher values of PM, PSI, crash counts, and PPSI in the evaluation 

period.  Indeed, this is the best ranking result for the top 20 ranked hazardous sites. 

 

b. Posterior Poisson mean 

Unlike other criteria, such as expected rank, mode rank, and the probability of being the worst, 

which involve extensive data process procedures, PM is easy to obtain during the modeling 

process.  From the tables and graphs, PM can provide solid ranking results based on the 

evaluation criteria except for the sum of the PSI and sum of the PPSI.  These evaluation criteria 

show that the PM gives the best or near best ranking results from the graphs and tables of the two 

time frames.  This conclusion indicates that reliable ranking results might be obtained by the 

easily available ranking criterion, the PM of each site.  

 

c. Posterior expected rank 

The posterior expected rank provides almost the same ranking results as the PM from the graphs.  

Information from the top ranked 10 to 50 sites in the ranking and evaluation periods are listed in 

Tables 5-11 to 5-14.   It can be seen that this criterion seems to provide exactly the same results 
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as the PM in terms of the information in the ranking and evaluation periods from the graphs 

listed in Tables 5-11 and 5-12 for 1993-1998.  For the second set of data (1996-1998), the 

expected rank has the same results as the PM for the top 10, 20 and 30 ranked sites, and for the 

top 40 and 50 ranked sites, the expected rank has higher values for the evaluation criteria, which 

indicates that it can provide a better ranked list than the PM.  Note that this small difference may 

be a result of the procedure used to obtain the expected rank, as mentioned previously.  Further 

examination of these two ranking criteria will be presented later. 

 

d. Posterior median rank 

Unlike other rank based criteria, the posterior median rank is available in WinBUGs output.  It is 

used as a comparison of the expected rank and to see if it can provide comparably promising 

results.  From Figures 5-9 to 5-18, the line which represents the sites ranked by median rank is 

totally overlapped by the lines ranked by PM and expected rank for the two ranking data.   From 

Table 5-12, it can be found that for the top 10, 20 and 30 ranked sites, median rank has the same 

results as expected rank from the information in the ranking and evaluation periods for both time 

frames.  For the top 40 and 50 ranked sites, the information in the ranking period for these two 

criteria is slightly different for 1993-1998 as shown in Table 5-12, but the evaluation results are 

completely the same, meaning that the sites that are not identified by expected ranking, but have 

very similar properties as those ranked by it, are identified by median ranking.   

 

For the 1996-1998 ranking data, median rank has a slightly worse result than the expected 

ranking for the top 40 ranked sites, but provides the same results as PM from all the evaluation 

criteria.  For the top 50 ranked sites, both median and expected ranks have the same evaluation 

results.  

 

From above evaluation results, it can be found that generally, median rank can provide the same 

promising results as expected rank and slightly better results than PM.  This indicates that 

median rank might be used as a substitute for expected rank in hotspot identification. 
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By PM= Poisson mean

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 391 368 239 262 0.30 0.99 263 263 168 168

20 732 688 438 483 0.60 0.99 485 485 298 298

30 1033 975 560 615 0.70 0.99 702 698 389 395

40 1297 1221 704 777 0.78 0.99 932 920 537 554

50 1522 1436 784 865 0.80 0.99 1116 1097 619 645

By PSI=Poisson mean-predicted crashes at similar sites

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 386 355 266 297 0.40 0.99 243 244 180 182

20 722 671 458 509 0.55 0.99 454 463 306 300

30 1015 947 614 682 0.57 0.98 707 698 451 463

40 1250 1162 742 830 0.70 0.98 899 876 568 593

50 1460 1353 854 962 0.74 0.98 1047 1022 657 684

By PPSI=crash counts-predicted at similar sites

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 386 355 266 297 0.40 0.99 243 244 180 182

20 722 671 458 509 0.40 0.98 454 463 306 300

30 1009 940 614 683 0.50 0.98 700 693 452 461

40 1248 1159 742 831 0.60 0.98 890 870 563 587

50 1449 1339 853 963 0.62 0.97 1017 998 643 664

By Crash Frequency

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 393 367 253 279 0.20 0.99 252 253 171 169

20 733 686 448 494 0.45 0.98 478 479 300 299

30 1036 973 588 650 0.53 0.98 693 693 407 409

40 1297 1221 704 777 0.65 0.98 932 920 537 554

50 1525 1434 812 901 0.74 0.98 1133 1106 650 682

Table 5-11 Summary of Evaluation Results by Various Ranking Criteria ( P_AR(1) ) 

Hotspots identified from 1993-1998 data
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By Posterior Expected Rank

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 391 368 239 262 0.30 0.99 263 263 168 168

20 732 688 438 483 0.60 0.99 485 485 298 298

30 1033 975 560 615 0.70 0.99 702 698 389 395

40 1297 1221 704 777 0.78 0.99 932 920 537 554

50 1522 1436 784 865 0.80 0.99 1116 1097 619 645

By Posterior Median Rank

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 392 367 245 269 0.30 0.99 263 263 168 168

20 732 688 438 483 0.60 0.99 485 485 298 298

30 1033 975 560 615 0.70 0.99 702 698 389 395

40 1294 1220 692 762 0.78 0.99 932 920 537 554

50 1517 1434 773 852 0.80 0.99 1116 1097 619 645

By Posterior Mode Rank

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 391 368 239 262 0.30 0.99 271 269 178 180

20 732 688 438 483 0.65 0.99 485 485 298 298

30 1033 975 560 615 0.67 0.99 702 698 389 395

40 1297 1221 704 777 0.73 0.98 921 912 524 539

50 1522 1436 784 865 0.78 0.98 1107 1090 606 630

By Probability of being  the worst

ranked  sites ∑tot93-98 ∑PM93-98 ∑PSI93-98 ∑PPSI93-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 391 368 239 262 0.30 0.99 263 263 168 168

20 732 687 440 485 0.55 0.99 463 469 285 282

Table 5-12 Summary of Evaluation Results by Various Ranking Criteria ( P_AR(1) ) 

Hotspots identified from 1993-1998 data
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 by PM= Poisson mean

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 226 204 140 162 0.20 0.99 241 248 155 147

20 408 364 241 284 0.65 0.99 484 488 315 313

30 557 502 299 352 0.70 0.99 717 713 429 436

40 696 626 365 432 0.73 0.98 904 893 530 547

50 826 741 426 507 0.74 0.98 1055 1047 609 624

 by PSI=Poisson mean-predicted crashes at similar sites

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 228 201 150 177 0.30 0.99 235 243 169 164

20 400 349 253 304 0.50 0.99 453 457 318 317

30 550 481 331 401 0.47 0.98 641 643 431 431

40 684 597 401 488 0.65 0.98 848 839 561 573

50 809 706 462 565 0.74 0.98 1034 1014 669 692

by PPSI=crash counts-predicted at similar sites

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 225 197 150 178 0.30 0.99 219 230 162 154

20 400 349 253 304 0.35 0.98 453 457 318 317

30 544 472 330 402 0.43 0.98 626 632 430 427

40 681 593 400 488 0.55 0.97 835 827 553 564

50 805 700 461 566 0.64 0.97 1023 1002 664 687

by Crash Frequency

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 228 202 149 175 0.20 0.99 255 258 181 178

20 408 361 248 295 0.45 0.98 484 487 326 326

30 559 497 317 377 0.60 0.98 722 715 461 471

40 699 623 381 456 0.60 0.98 903 892 554 567

50 829 739 437 524 0.66 0.97 1062 1049 628 647

Table 5-13 Summary of Evaluation Results by Various Ranking Criteria ( P_AR(1) ) 

Hotspots identified from 1996-1998 data
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By Posterior Expected Rank

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 226 204 140 162 0.20 0.99 241 248 155 147

20 408 364 241 284 0.65 0.99 484 488 315 313

30 557 502 299 352 0.67 0.99 717 713 429 436

40 696 626 365 432 0.75 0.99 916 901 536 554

50 827 741 428 510 0.76 0.98 1066 1054 619 638

By Posterior Median Rank

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 226 204 140 162 0.20 0.99 241 248 155 147

20 408 364 241 284 0.65 0.99 484 488 315 313

30 557 502 299 352 0.67 0.99 717 713 429 436

40 696 626 365 432 0.73 0.98 904 893 530 547

50 827 741 428 510 0.76 0.98 1066 1054 619 638

By Posterior Mode Rank

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 226 203 141 164 0.20 0.99 234 242 151 143

20 405 364 232 273 0.70 0.99 501 501 317 319

30 555 501 295 346 0.67 0.99 707 707 418 421

40 695 625 367 434 0.75 0.99 918 904 544 564

50 823 738 425 506 0.76 0.98 1078 1061 627 651

By Probability of being  the worst

ranked  sites ∑tot96-98 ∑PM96-98 ∑PSI96-98 ∑PPSI96-98 Sensitivity Specificity ∑tot99-02 ∑PM99-02 ∑PSI99-02 ∑PPSI99-02

10 226 204 140 162 0.20 0.99 241 248 155 147

20 405 363 233 274 0.60 0.99 511 510 325 329

Table 5-14 Summary of Evaluation Results by Various Ranking Criteria (P_AR(1) ) 

Hotspots identified from 1996-1998 data
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e. Posterior mode rank 

Mode rank generally provides similar results as expected rank and even better results at times.   

For example, for the three years of ranking data (Table 5-14), it provides slightly better results 

for the top 20, 40 and 50 ranked sites based on the evaluation criteria in the second time period, 

while expected rank has somewhat better results for the top 10 and 30 ranked sites.  For ranking 

data in 1993-1998, mode rank has the same or somewhat better results for the top 10, 20 and 30 

ranked sites while expected rank is better for the top 40 and 50 ranked sites. 

 

f. PSI and PPSI 

The evaluation results from the PSI are not as good as had been expected and this, by the way, 

confirms the results by Elvik (2008a) who used the EB method, and sensitivity and specificity as 

evaluation criteria. Only when based on the criteria, sum of the PSI and sum of the PPSI, will the 

PSI criterion give the best results.  For the other evaluation criteria, the PSI provides very poor 

results.  The PPSI provides even worse ranking results than the PSI.  As a matter of fact, it is the 

worst ranking criterion based on other evaluation criteria other than the sum of the PSI and sum 

of the PPSI in the second period for the ranked sites.  This indicates that PSI and PPSI cannot be 

used alone as ranking criteria.  This is theoretically correct since sites that do not have safety 

issues should not be selected for further investigation even if they can be greatly improved with 

treatment. 

  

g. Raw data (crash count) 

It is not surprising to see that the performance of raw data is poor, if not the worst, in comparison 

to all of the evaluation criteria.  This is mainly due to the RTM problem.   

 

In all, PM, expected rank, mode rank, median rank and the probability of being the worst from 

the posterior seem to be reliable ranking criteria.  Raw data cannot be used as a ranking criterion 

alone but might be combined with other criteria to conduct a ranking analysis.  PSI provides the 

worse results out of all five reliable ranking criteria, but is better than PPSI, except for the sum of 

the PSI and sum of the PPSI.   It might be used as a ranking criterion if and only if the objective 

of the network ranking is to find an ordered list which has the greatest potential for improvement 

regardless of current safety site conditions, which sounds unreasonable.  Thus we can conclude 
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that PSI and PPSI actually cannot be used as ranking criteria.  However, PSI might be used as a 

second level criterion for ranking, for example, safety issues within sites with a small difference 

of the PM or expected rank, PM or the expected rank could be regarded similarly. Then, priority 

is placed on sites with high values of PSI.   In addition, the sum of the PSI could be used as an 

evaluation criterion for hotspot identification.   

 

B. Best ranked results by ranking criteria 

From the above figures and tables, the following best ranking results can be obtained based on 

all of the evaluation criteria, except for the sum of the PSI and sum of the PPSI, where PSI has 

the best ranking results.   

 

a. Ranking data in 1993-1998  

The top 10 best ranked sites were obtained by mode rank (Table 5-12). 

The top 20 best ranked sites were identified by mode rank (Table 5-12). The Poisson mean, 

expected rank, and median rank provide the same evaluation results, but with less sensitivity 

value (false identification of 1 site). 

 The top 30 best ranked sites were ranked by Poisson mean, median rank and expected rank 

while mode rank has the same evaluation results except that there is a somewhat lower 

sensitivity (false identification of 1 site). 

The top 40 and 50 best ranked sites were ranked by Poisson mean, median rank and expected 

rank (Tables 5-11 and 5-12). 

For the number of ranked sites greater than 50, generally, Poisson mean, median rank and 

expected rank provide somewhat better results than mode rank in terms of sensitivity and 

specificity as is evident from Figures 5-9 and 5-10. There are no obvious differences from Figure 

5-11, and it seems that the previously mentioned 3 ranking criteria and mode rank have the same 

promising results in terms of the sum of the Poisson mean. 

 

b. Ranking data in 1996-1998  

The top 10 best ranked sites were obtained by Poisson mean, expected rank, median rank and the 

probability of being the worst (Tables 5-13 and 5-14). 

The top 20 best ranked sites were obtained by the probability of being the worst (Table 5-14). 
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The top 30 best ranked sites were obtained by Poisson mean, expected rank, and median rank 

(Tables 5-13 and 5-14). 

The top 40 and 50 best ranked sites were identified by mode rank (Table 5-14). 

For the number of ranked sites greater than 50, generally, Poisson mean, median rank, expected 

rank and mode rank provide the same promising results. 

 

From the above analysis, the proposed ranking criterion (mode rank) provides the best results, 

and at times, this is the case for the very top ranked sites; thus it is of interest to explore this 

ranking criterion for network ranking. 

 

C. Comparison of ranked sites by other criteria through posterior Poisson mean and 

posterior expected rank 

Based on the above analysis, it is good to know the similarities among the ranking criteria in 

terms of identified sites.  To this end, the ranked sites by PM and expected rank were used as a 

baseline, and sites identified by other criteria are compared with those ranked by PM or expected 

rank using                 and             , where                 and               are 

 

                
                

  
                                 

 

             
             

  
                                 

 

                  number of identical sites that occur in the top ranked group ranked by both 

types of ranking criteria without considering the order of the ranked sites in that group,  

               number of the same sites which have the exact order in the top ranked group by 

both criteria, in consideration of the order of the ranked sites in the top ranked group, and 

N1= cutoff number of top ranked sites. 

 

The higher value of                 and              gives better and consistent ranking results 

provided by both criteria, and vice versa.  If the ranked list identified by PM is used as a 

baseline, and                   for the top 20 ranked sites, this indicates the top 20 ranked sites 
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are the same as ranked by PM, but the order may be different.  However, if              l, this 

means that both types of ranking criteria provide an identical ordered ranking list. The 

comparison results in terms of                 and              to the posterior Poisson mean and 

posterior expected rank for various ranking criteria including EB are shown in Figures 5-19 to 5-

24 for 1993-1998 and in Figures 5-25 and 5-28 for 1996-1998. 

 

a. The order of ranked sites is not considered 

The comparison results with ranked by Poisson mean or by expected rank are shown in Figures 

5-19 to 5-22 for 1993-1998 and in Figures 5-25 to 5-26 for 1996-1998. 

 

It can be seen that expected rank and median rank provide exactly the same ranked sites as PM 

for the top 10 to 100 ranked sites for 1993-1998 as shown in Figure 5-19 to 5-22 if the order of 

each site is not considered in the top ranked group. This is slightly different for the second 

ranking period data (1996-1998) for the top 40 and 50 ranked sites.  Generally, the ranked sites 

are almost the same as identified by expected rank, median rank and PM.  As a result, the shape 

of Figures 5-19, 5-20 (relation to Poisson mean) and 5-21, 5-22 (relation to expected rank) for 

1993-1998, 5-25 (relation to Poisson mean) and 5-26 (relation to expected rank) for 1996-1998, 

are almost the same.   The posterior mode rank provides at least 95% of the same ranked sites as 

PM or by posterior expected rank except for the top 10 ranked sites, where mode rank has 90% 

of the same sites as those by expected rank or PM. PPSI and PSI provide very different sites in 

comparison to those ranked by PM or expected rank. The expected crashes for EB provides more 

than 90% of the same sites as those from PM, except for the top ten sites which are ranked with 

data from 1993-1998, for which 80% of the expected crashes are identified from the same sites 

as those by PM. PSI ranked by the EB method provides the most different sites from those 

ranked by PM or expected rank. 

 

It should be noted, however, this does not necessarily mean that PM, expected rank and median 

rank provide the best results.  Rather, they provide a basic idea on the amount of similarity in the 

ranked results identified by these various ranking criteria.  In fact, sometimes mode rank can 

provide even better ranking results as analyzed above.   
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Figure  5-19  Same Portion as Ranked by Posterior Poisson Mean
without Considering the Order
Rank: year 1993- year1998 

by Expected rank
by Mode rank
by Median rank
by Probability of being the worst
by PSI
by PPSI
by Raw data
by Expected Crashes_EB
by PSI_EB
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Identified  Intersections 

Figure  5-20  Same Portion as Ranked by Posterior Poisson Mean
without Considering the Order
Rank: year 1993- year1998 

by Expected rank
by Mode rank
by Median rank
by Probability of being the worst
by PSI
by PPSI
by Raw data
by Expected Crashes_EB
by PSI_EB



130 

 

 

 

 

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 100 200 300 400 500 600 700

P
e

rc
e

n
ta

ge
 o

f 
b

ei
n

g 
 t

h
e 

sa
m

e
 a

s 
ra

n
ke

d
 

b
y 

 p
o

st
e

ri
o

r 
ex

p
ec

te
d

  r
an

k

Identified  Intersections 

Figure  5-21 Same Portion as Ranked by Posterior Expected Rank

without Considering the Order
Rank: year 1993- year1998

by Poisson mean

by Mode rank

by Median rank

by Probability of being the worst

by PSI

by PPSI

by Raw data
by Expected Crashes_EB

by PSI_EB
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Identified  Intersections 

Figure  5-22 Same Portion as Ranked by Posterior Expected Rank

without Considering the Order
Rank: year 1993- year1998

by Poisson mean
by Mode rank
by Median rank
by Probability of being the worst
by PSI
by PPSI
by Raw data
by Expected Crashes_EB
by PSI_EB
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Identified  Intersections 

Figure  5-23  Same Portion as Ranked by Poisson Mean  
Considering the Order

Rank: year 1993- year1998 by Expected rank
by Mode rank
by Median rank
by Probability of being the worst
by PSI
by PPSI
by Raw data
by Expected Crashes_EB
by PSI_EB
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Identified  Intersections 

Figure  5-24  Same Portion as Ranked  by Posterior Expected Rank 
Considering the Order

Rank: year 1993- year1998 
by Poisson mean
by Mode rank
by Median rank
by Probability of being the worst
by PSI
by PPSI
by Raw data
by Expected Crashes_EB
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b. In consideration of the order of ranked sites 

The results are presented in Figures 5-23 to 5-24 for 1993-1998 and Figures 5-27 to 5-28 for 

1996-1998. 

 

 

 

If the order of the ranked sites is considered, it can be seen that the results by PM is actually 

quite different from those by expected and median ranks even if they provide almost the same 

results without consideration of the order.  Median rank provides the most similar list to expected 

rank.  Median rank has the same ordered top 80 ranked sites as by the expected rank using data 

in 1993-1998, while it provides the same ordered top 30 sites as by the expected rank using three 

years of ranking data. This confirms that median rank might be a reliable substitute for expected 

rank in hot spot identification.  If the ranked order of each site is a concern, EB by expected 

crashes provides a far different list in comparison to those by Poisson mean, expected rank, 

median rank, mode rank and the probability of being the worst, especially for the top ranked 

limited sites.  This might be a hint that the EB method provides much poorer ranking results if 

the ranked order of each site is a concern. 
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Identified  Intersections 

Figure  5-25  Same Portion as Ranked  by Posterior Poisson Mean
without Considering the Order 
Rank: year 1996- year1998 

by Expected rank
by Mode rank
by Median rank
by Probability of being the worst
by PSI
by PPSI
by Raw data
by Expected Crashes_EB
by PSI_EB
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Identified  Intersections 

Figure  5-26  Same Portion as Ranked  by Posterior Expected Rank
without Considering the Order
Rank: year 1996- year1998 

by Posterior Poisson mean

by Mode rank

by Median rank

by Probability of being the worst

by PSI

by PPSI

by Raw data

by Expected Crashes_EB

by PSI_EB
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Identified  Intersections 

Figure 5-27 Same Portion as Ranked  by  Posterior Poisson Mean 
Considering the Order

Rank: year 1996- year1998 

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

by PSI

by PPSI

by Raw data

by Expected Crashes_EB

by PSI_EB
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5.6.5 Sensitivity Analysis of Crash Data History 

 

A. Sensitivity analysis of crash data history for the FB method 

Two time periods (1993-1998 and 1996-1998) were used to conduct a ranking analysis as 

described above.  The question of interest in this analysis is: are the ranking results the same 

from these two data sets with different crash data history, and if not, which one provides the 

better results? 

 

The evaluation results for the top 50 ranked sites from these two periods by various ranking 

criteria are presented in Tables 5-15 and 5-16.   It can be seen that the period with six years of 

ranking does not always provide better results than the shorter ranking period of three years, as 

expected. For the top 20 and 30 ranked sites, the results from the three years of data by reliable 

criteria, such as PM, median rank, expected rank, mode rank and the probability of being the 

worst, are better than for the 6 years of data.  Specifically, in the top 20 ranked sites, 3 years of 
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Identified  Intersections 

Figure  5-28  Same Portion as Ranked  by Posterior Expected Rank
Considering the Order 

Rank: year 1996- year1998 

by Posterior Poisson  mean

by Mode rank

by Median rank

by Probability of being the worst

by PSI

by PPSI

by Raw data

by Expected Crashes_EB

by PSI_EB



135 

 

ranking data with the probability of being the worst provides the best ranking results in that it has 

much higher values for the sum of the PM, sum of the PSI, even the sum of the PPSI and sum of 

crash counts of the ranked sites in the second period as shown in Table 16.  For the top 10, 40 

and 50 ranked sites, generally, the six years of ranking data provide better results than the three 

years of ranking data.  This indicates that the three years of data and six years of data indeed 

provide comparable results for the top ranked sites.  

 

B. Effects of crash data history for the EB and FB methods 

The information on the top 50 ranked sites in the second period, by PM and PSI from EB and FB 

methods which uses three years of data and six years of data, respectively, is listed in Table 5-10. 

The evaluation results of the ranked sites by PM are presented in Figures 5-29 to 5-31.  For the 

top 20, 40 and 60 ranked sites, the EB method prefers short data history, more so than the FB 

method as seen from Figure 5-29.  From Table 5-10, the top 20 and 30 ranked sites from EB or 

FB ranked by PM both have better results with three years of data rather than with six years.  

With PSI, generally, a longer data history gives better ranking results.  Note that PSI cannot be 

used as a good ranking criterion, base on previous studies. 

 

As the number of ranked sites increases, using 6 years of ranking data provides better results 

than 3 years for both EB and FB methods as shown in Figures 5-29 to 5-31.   

 

 For the top ranked limited sites, the short data history might provide better or comparable 

results.  However, this conclusion needs further study which uses different sample sizes and data 

history.  
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Hotspots identified from 1996-1998 data Hotspots identified from 1993-1998 data

Poisson AR(1) model By PM= Poisson mean

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.20 0.99 241 248 155 147 0.30 0.99 263 263 168 168

20 0.65 0.99 484 488 315 313 0.60 0.99 485 485 298 298

30 0.70 0.99 717 713 429 436 0.70 0.99 702 698 389 395

40 0.73 0.98 904 893 530 547 0.78 0.99 932 920 537 554

50 0.74 0.98 1055 1047 609 624 0.80 0.99 1116 1097 619 645

Poisson AR(1) model By PSI=Poisson mean-predicted crashes at similar sites

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.30 0.99 235 243 169 164 0.40 0.99 243 244 180 182

20 0.50 0.99 453 457 318 317 0.55 0.99 454 463 306 300

30 0.47 0.98 641 643 431 431 0.57 0.98 707 698 451 463

40 0.65 0.98 848 839 561 573 0.70 0.98 899 876 568 593

50 0.74 0.98 1034 1014 669 692 0.74 0.98 1047 1022 657 684

Poisson AR(1) model By PPSI=crash counts-predicted at similar sites

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.30 0.99 219 230 162 154 0.40 0.99 243 244 180 182

20 0.35 0.98 453 457 318 317 0.40 0.98 454 463 306 300

30 0.43 0.98 626 632 430 427 0.50 0.98 700 693 452 461

40 0.55 0.97 835 827 553 564 0.60 0.98 890 870 563 587

50 0.64 0.97 1023 1002 664 687 0.62 0.97 1017 998 643 664

Poisson AR(1) model By Crash Frequency

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.20 0.99 255 258 181 178 0.20 0.99 252 253 171 169

20 0.45 0.98 484 487 326 326 0.45 0.98 478 479 300 299

30 0.60 0.98 722 715 461 471 0.53 0.98 693 693 407 409

40 0.60 0.98 903 892 554 567 0.65 0.98 932 920 537 554

50 0.66 0.97 1062 1049 628 647 0.74 0.98 1133 1106 650 682

Notes: 1. Subscript A means year 1999-2002

Table 5-15 Summary of Evaluation Results by Various Ranking Criteria from Different Historical Data (P_AR(1))
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Hotspots identified from 1996-1998 data Hotspots identified from 1993-1998 data

By Posterior Expected Rank

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.20 0.99 241 248 155 147 0.30 0.99 263 263 168 168

20 0.65 0.99 484 488 315 313 0.60 0.99 485 485 298 298

30 0.67 0.99 717 713 429 436 0.70 0.99 702 698 389 395

40 0.75 0.99 916 901 536 554 0.78 0.99 932 920 537 554

50 0.76 0.98 1066 1054 619 638 0.80 0.99 1116 1097 619 645

By Posterior Median Rank

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.20 0.99 241 248 155 147 0.30 0.99 263 263 168 168

20 0.65 0.99 484 488 315 313 0.60 0.99 485 485 298 298

30 0.67 0.99 717 713 429 436 0.70 0.99 702 698 389 395

40 0.73 0.98 904 893 530 547 0.78 0.99 932 920 537 554

50 0.76 0.98 1066 1054 619 638 0.80 0.99 1116 1097 619 645

By Posterior Mode Rank

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.20 0.99 234 242 151 143 0.30 0.99 271 269 178 180

20 0.70 0.99 501 501 317 319 0.65 0.99 485 485 298 298

30 0.67 0.99 707 707 418 421 0.67 0.99 702 698 389 395

40 0.75 0.99 918 904 544 564 0.73 0.98 921 912 524 539

50 0.76 0.98 1078 1061 627 651 0.78 0.98 1107 1090 606 630

By Probability of being  the worst

ranked  sites Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA Sensitivity Specificity ∑totA ∑PMA ∑PSIA ∑PPSIA

10 0.20 0.99 241 248 155 147 0.30 0.99 263 263 168 168

20 0.60 0.99 511 510 325 329 0.55 0.99 463 469 285 282

Notes: 1. Subscript A means year 1999-2002

Table 5-16 Summary of Evaluation Results by Various Ranking Criteria from Different Historical Data (P_AR(1))
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Figure 5-29  Sensitivity of Alternative Ranking Methods  (Ranked  by Expected Crashes)
Rank: 1993-1998   1996-1998  

Evaluate: 1999-2002 esitmated from 1993-2002
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Figure 5-30  Specificity of Alternative Ranking Methods (Ranked  by 
Expected Crashes)

Rank: 1993-1998   1996-1998  

P_AR(1)   93-98
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Raw data  93-98
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Figure 5-31  Sum of  Expected Crashes (1999-2002) (Ranked  by PM)
Rank: 1993-1998   1996-1998  

Evaluate: 1999-2002 esitmated from 1993-2002

P_AR(1)   93-98

EB   93-98

Raw data   93-98

P_AR(1)  96-98

EB   96-98

Raw data   96-98
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5.7 FB WITH MULTILEVEL SEVERITY DATA  

  

5.7.1 Advantages of the FB Method over the EB Method 

In hotspot identification, it is not always that only one level of crash severity is used to identify 

hazardous sites.  Most often, multiple severity levels of crashes might be used for network 

ranking.  For such data, there is only one way to conduct network ranking using the EB method.  

That is, SPFs need to be individually developed and the estimation of expected crashes is 

calculated for each level of severity.  Then, the expected crashes of each level of severity can be 

combined by assigning different weights to rank the sites.  This procedure completely neglects 

possible correlation among these multiple severity data and is time consuming.  Another 

drawback with the EB method concerns the ranking criteria: only PM and PSI can be used to 

identify black spots and as previously found, the PSI cannot provide promising results.  The 

ranking results of the EB were also shown to be not as good as for the FB. 

 

For the FB method, there may be two ways to deal with such multi-severity data: a univariate 

approach and a multivariate approach.  The models with all severity crash data can be developed 

simultaneously using both the univariate approach and multivariate approach.  The expected 

crashes for each level of severity or combined severity for each site can be done within that 

model development procedure, and posterior Poisson mean or other decision parameters and 

median rank of the posterior distribution of decision parameters (Poisson mean in this study) can 

also be obtained during the procedure using WinBUGs software. All the procedures are 

integrated.  Moreover, the outputs of the MCMC procedure of FB methods enable more solid 

ranking criteria to be explored, such as posterior expected rank and mode rank, and the 

probability of being the worst.   Furthermore, it is more flexible to explore different distributions 

with FB such as PG, PLN, etc., while only Poisson or NB is available for EB. More importantly 

the possible correlation among these severity data can be properly addressed with FB.    In all, 

the FB provides many advantages over the EB method for network ranking, especially using 

multilevel severity crash data.   
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5.7.2 Data Summary 

There are a total of five levels of crash severity in this study.  These are: Sev1: fatal (K), Sev2: 

incapacitating-injury (A), Sev3: non-incapacitating injury (B), Sev4: minor injury (C), Sev5: 

PDO.   Different weights are assigned to these crashes: 5 to severity 1, 4 to severity 2, 3 to 

severity 3, 2 to severity 4 and 1 to severity 1 (PDO crashes).  A total of 436 top ranked sites 

based on combined crashes calculated by Equation 5-5 were selected for this study.  Similarly, 

data from 1993 to 1998 were used to identify hazardous sites while data from 1993 to 2002 were 

employed to estimate the true mean of the second period (1999 – 2002) for the evaluation of the 

ranked results. The summary information of the data is shown in Table 5-17.  It can be seen that 

the traffic volume on major roads increases during the evaluation period, but on a limited scale. 

Since it is a systematic pattern, and the amount is not large, sensitivity and specificity can still be 

used as evaluation criteria, but the sum of the Poisson mean might be a better evaluation 

criterion. 

Table 5-17  Summary for the 436  California Unsignalized Intersections  

    year 1993- year 1998     

Crashes 

/site.year Mean  Standard Deviation Maximum Minumum 

Sev 1 0.05 0.22 2 0 

Sev 2 0.10 0.33 4 0 

Sev 3 0.42 0.70 5 0 

Sev 4 0.42 0.72 6 0 

Sev 5 1.02 1.25 8 0 

AADTMajor 9102 4520 29732 2950 

AADTMinor  839 1010 7800 100 

    year 1993 - year 2002     

Crashes 

/site. year Mean  Standard Deviation Maximum Minumum 

Sev 1 0.04 0.21 2 0 

Sev 2 0.09 0.31 4 0 

Sev 3 0.40 0.71 8 0 

Sev 4 0.43 0.76 8 0 

Sev 5 1.09 1.36 9 0 

AADTMajor 9456 4727 29732 2900 

AADTMinor  842 1015 7800 100 
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5.7.3 Multivariate FB Model vs. Univariate FB Model 

Previously, the univariate FB method was examined for hot spot identification and it was 

concluded that the FB provides much better ranking results than the EB method, and that ranking 

criteria which include Poisson mean, posterior expected rank, median rank, mode rank and the 

probability of being the worst are reliable ranking criteria and can provide promising results. If 

the order of each ranked site is not a concern (i.e., it is only based on the cutoff number of ranked 

sites), then the Poisson mean, median rank and expected rank have almost the same results.  

Otherwise, the ranked list is quite different in terms of order for each site by these three ranking 

criteria.  Expected rank was proven to be a better ranking criterion than the other two while 

median ranking can provide very similar results as expected rank, especially for the top ranked 

limited sites. This aspect of the research will further evaluate the FB method with a special case:  

multiple crash data severity levels where univariate and multivariate FB approaches are applied.  

All previously applied ranking and evaluation criteria will be used here for this evaluation. 

 

Based on the model selection results for a single level severity case, Poisson AR (1) and 

multivariate Poisson log normal AR (1) (denoted as MVPLN AR (1) hereafter) are deemed as 

the best models for univariate and multivariate approaches, respectively, in this study.  The 

model framework is presented below. 

 

A. Multivariate Poisson Log Normal  AR(1) FB Model  

Crash counts Yit = (Yit
1
,Yit

2
,…Yit

L
) can be described as L severities of multivariate crash records 

at location i (where i=1,2…N) in year t (t=1,2…J).  Each severity crash is assumed to be 

independently Poisson distributed. That is: 

     
           

    
             

                                                  

    
       

 
   

 
    

                                         

    
       

 
     

  
 

      
  

 

                                       

where 

    
   Expected crashes of type k at sites similar to site i in year t, which is the same as 

Equation 5-8, 
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, 

                                                     , 

                                                      , 

  
  Random effects at site i for type k crashes, following a multiple normal distribution, 

and 

    
   Random time effects at site i for type k crashes in year t and similar to Equation3-30, 

    
          

 
     

                                                         

    
                           ,      

          
 ,                     

    
         

       
                                              

where, 

   
                                            

                                                          

 

The vector       
    

      
    is assumed to be multivariate normal distributed to account for 

the correlations among crashes of different severities, that is:    
    

      
          ). 

 

    = an unrestricted     covariance matrix between different severity/type of crashes.  

 

   

          

          

    
          

    

 

The MVPLN can be seen to have an additive form (logarithm) of random effects that accounts 

for the extra-variation between sites with correlated random errors among crash severities within 

a site.  The covariance between the counts,     
  and     

 , can be positive or negative depending on 

the sign of the ( k,m)th element of Σ. Thus, the correlation structure of the crash counts is 

unrestricted.  

 

C. Univariate Poisson Log Normal  AR(1) FB Model  
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A univariate P-AR (1) model has the same form of     
  as MVPLN.  The only difference is that 

the vector      
    

      
  is not included since time correlated random effects are already 

introduced. 

 

5.7.4 Model Comparison and Parameter Estimation 

The parameter estimation and model selection criteria such as LL, AIC, BIC and DIC  are 

tabulated in Table 5-18 for the ranking data in 1993-1998 and evaluation data in 1993-2002.  

Due to the difference of the random effect structure and different data for model development, 

the parameter estimations are not the same, but generally follow the same pattern.  These model 

selection criteria, however, provide conflicting results: LL, AIC, BIC strongly favor a univariate 

approach in that it has a higher value of LL and lower value of AIC and BIC while DIC strongly 

prefers  the MVPLN AR(1) model for data in both periods.  Thus, the ranking results from both 

approaches are evaluated as a byproduct to identify which model selection criteria is the best. 

 

5.7.5 Evaluation of Alternative FB Approaches for Hot Spot Identification 

It is worthwhile to mention that measures such as crash counts, Poisson mean, PSI and PPSI, 

regardless as ranking or evaluation criteria, provide the combined results of five levels of 

severity data.  For example, as a ranking criterion, PMi is the sum of the weighted Poisson means 

for five severity levels of crashes during the ranking period at site i and the same procedure is 

applied to obtain other criteria.  

 

Similar to the univariate FB study, the PM might not be the same due to the structure of the 

random effects.  In order to use the sum of the PM in the second period as an evaluation criterion 

for comparison of the FB methods, the PM of the MVPLN_AR (1) in the evaluation period is 

multiplied by the ratio of the sum of the PM for the P_AR (1) in all 436 sites, which is 6693, 

over the sum of the PM from the MVPLN_AR (1), which is 6667.  The sum of the PM estimated 

from the two models is indeed quite comparable. 

 

Evaluation criteria which include sensitivity and specificity, the sum of the PM and sum of crash 

counts in the second period (1999-2002) were used to conduct the evaluation analysis. The sites 

were ranked by PM, PSI, expected rank, median rank, mode rank and the probability of being the 
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worst by using data in 1993-1998.  Crash counts at each site were also used as a rank criterion 

for reference.   The results are presented in Figures 5-32 to 5-41.  The evaluation results for the 

top 100 ranked sites are also given for clarity of the comparison in that these top ranked sites are 

the major concern.  

 

It can be seen that the MVPLN_AR (1) model has an obvious advantage over the univariate 

P_AR (1) model from the evaluation criterion -- the sum of the PM over all the corresponding 

ranking criteria.  From sensitivity and specificity, at least for the top 100 ranked sites which 

count for about 23% of the whole group, MVPLN_AR (1) provides better results in terms of 

higher values. For ranked lists with more than 100 sites, sometimes P_AR (1) provides better 

results, e.g., the top 110-150 ranked sites by all the ranking criteria except PSI, in which P_AR 

(1) is better than MVPLN_AR (1).  MVPLN_AR (1) provides better results than P_AR (1) at 

least for the top 23% ranked sites based on the sum of the PM, and sensitivity and specificity. 

For hot spot identification, the top 20% or fewer ranked sites are typically of most concern.  

Thus MVPLN_AR (1) is superior to univariate P_AR (1) for multilevel severities of crash data 

for typical network ranking applications.  If changes in traffic volumes are taken into 

consideration, the sum of the PM might be used as a better evaluation criterion than sensitivity 

and specificity.  Hence, based on that, MVPLN_AR (1) is systematically better than the 

univariate PLN AR (1) model as seen in Figures 5-39 to 5-41.  This might indicate that DIC is a 

better model selection criterion than the others, such as LL, AIC and BIC in that it favors the 

MVPLN_AR (1) model.  In fact, the posterior mean of the random effects of each crash severity 

level is strongly correlated for data from 1993-1998 and 1993-2002; the covariance and 

correlation matrix are shown in Tables 5-19 and 5-20.  For this reason, DIC might be used as a 

key model selection criterion later in the research. 
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 mean  mean  mean  mean

β0 -8.51 -12.71 -3.64 -8.82 -12.56 -4.58 -7.11 -10.61 -4.32 -6.28 -9.92 -2.71

Sev 1 β1 0.51 0.03 0.94 0.55 0.13 0.92 0.33 -0.01 0.70 0.25 -0.13 0.60

β2 0.08 -0.13 0.28 0.07 -0.14 0.27 0.11 -0.05 0.26 0.09 -0.07 0.26

r 0.87 0.11 1.00 -0.53 -0.95 0.47 0.89 0.50 0.99 -0.04 -0.73 0.75

β0 -6.33 -8.59 -3.27 -5.79 -8.08 -3.39 -5.72 -8.50 -3.45 -3.87 -6.03 -1.44

Sev 2 β1 0.27 -0.05 0.51 0.22 -0.03 0.46 0.19 -0.08 0.47 0.02 -0.26 0.26

β2 0.20 0.06 0.35 0.19 0.05 0.33 0.20 0.08 0.31 0.16 0.03 0.30

r 0.72 0.23 1.00 0.28 -0.55 0.81 0.86 0.69 0.94 0.05 -0.70 0.60

β0 -3.89 -5.29 -2.58 -3.78 -5.06 -2.54 -4.43 -5.74 -3.36 -4.10 -5.35 -2.92

Sev 3 β1 0.15 0.00 0.30 0.14 0.00 0.28 0.18 0.03 0.32 0.16 0.04 0.30

β2 0.24 0.17 0.32 0.23 0.16 0.31 0.26 0.19 0.33 0.24 0.16 0.31

r 0.88 0.74 0.98 -0.06 -0.78 0.85 0.93 0.87 0.98 -0.13 -0.86 0.74

β0 -7.61 -9.27 -5.86 -6.93 -8.64 -5.05 -8.56 -10.11 -7.29 -7.89 -9.20 -6.56

Sev 4 β1 0.48 0.28 0.66 0.41 0.20 0.58 0.56 0.40 0.73 0.50 0.37 0.64

β2 0.35 0.27 0.44 0.34 0.26 0.42 0.38 0.30 0.45 0.36 0.28 0.43

r 0.90 0.76 0.99 0.16 -0.65 0.80 0.92 0.85 0.96 0.29 -0.15 0.68

β0 -6.03 -7.57 -5.06 -5.56 -6.79 -4.21 -7.01 -8.56 -6.20 -6.51 -7.35 -5.49

Sev 5 β1 0.41 0.31 0.57 0.36 0.22 0.50 0.50 0.41 0.64 0.45 0.36 0.54

β2 0.34 0.28 0.41 0.33 0.28 0.39 0.37 0.32 0.44 0.36 0.31 0.43

r 0.95 0.90 0.99 0.10 -0.40 0.56 0.96 0.93 0.98 0.38 -0.04 0.80

25 40 25 40

-8481 -8504 -13937 -13941

17002 17078 27914 27952

17119 17283 28042 28175

17840 17698 29256 29052

AIC

BIC

DIC

No. of Parameters: K

Log likelihood: LL

P_AR(1)_6yrs MVPLN_AR(1)_6yrs P_AR(1)_10yrs MVPLN_AR(1)_10yrs

95% BCI 95% BCI 95% BCI 95% BCI

Table 5-18 Parameter Estimation from Alternative Approaches

year 1993 - year 1998 year 1993 - year 2002
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Figure 5-32 Sensitivity of Alternative Approaches

Multivariate Poisson AR(1) Model vs Univariate Poisson AR(1) model
Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by PM

MVPLN_AR(1)    by PSI

by Raw data

P_AR(1)    by PM

P_AR(1)   by PSI

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-33 Sensitivity of Alternative FB Models
Multivariate Poisson AR(1) Model vs Univariate Poisson AR(1) model

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by Expected rank

MVPLN_AR(1)    by Mode rank

MVPLN_AR(1)    by Median rank

MVPLN_AR(1)    by Probability of being the worst

P_AR(1)    by Expected rank

P_AR(1)    by Mode rank

P_AR(1)   by Median rank

P_AR(1)    by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-34 Sensitivity of Alternative FB Models
Multivariate Poisson AR(1) Model vs Univariate Poisson AR(1) model

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by Expected rank

MVPLN_AR(1)    by Mode rank

MVPLN_AR(1)    by Median rank

MVPLN_AR(1)    by Probability of being the 
worst
P_AR(1)    by Expected rank

P_AR(1)    by Mode rank

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-35 Specificity of Alternative FB Models

Multivariate Poisson AR(1) Model vs Univariate Poisson AR(1) model
Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by PM

MVPLN_AR(1)    by PSI

by Raw data

P_AR(1)    by PM

P_AR(1)   by PSI

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-36 Specificity of Alternative FB Models

Multivariate Poisson AR(1) Model vs Univariate Poisson AR(1) model
Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by PM

MVPLN_AR(1)    by PSI

by Raw data

P_AR(1)    by PM

P_AR(1)   by PSI

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-37 Specificity of Alternative FB Models

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by Expected rank

MVPLN_AR(1)    by Mode rank

MVPLN_AR(1)    by Median rank

MVPLN_AR(1)    by Probability of being the worst

P_AR(1)    by Expected rank

P_AR(1)    by Mode rank

P_AR(1)   by Median rank

P_AR(1)    by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-38 Specificity of Alternative FB Models

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by Expected rank

MVPLN_AR(1)    by Mode rank

MVPLN_AR(1)    by Median rank

MVPLN_AR(1)    by Probability of being the worst

P_AR(1)    by Expected rank

P_AR(1)    by Mode rank

P_AR(1)   by Median rank

P_AR(1)    by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-39 Sum of Poisson Mean of Alternative Approach

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by PM

MVPLN_AR(1)    by PSI

by Raw data

P_AR(1)    by PM

P_AR(1)   by PSI

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-40 Sum of Poisson Mean of Alternative Approaches

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by Expected rank

MVPLN_AR(1)    by Mode rank

MVPLN_AR(1)    by Median rank

MVPLN_AR(1)    by Probability of being the worst

P_AR(1)    by Expected rank

P_AR(1)    by Mode rank

P_AR(1)   by Median rank

P_AR(1)    by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-41 Sum of Poisson Mean of Alternative Approaches

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

MVPLN_AR(1)    by Expected rank

MVPLN_AR(1)    by Mode rank

MVPLN_AR(1)    by Median rank

MVPLN_AR(1)    by Probability of being the worst

P_AR(1)    by Expected rank

P_AR(1)    by Mode rank

P_AR(1)   by Median rank

P_AR(1)    by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Table 5-19 Posterior Means of Covariance Matrix (Σ) of random effects 

    Year 1993 - Year 1998     

  Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 

Severity 1 0.17 

    Severity 2 0.14 0.14 

   Severity 3 0.11 0.11 0.11 

  Severity 4 0.09 0.11 0.11 0.14 

 Severity 5 0.07 0.09 0.10 0.12 0.14 

 

  Year 1993 - Year 2002     

  Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 

Severity 1 0.21 

    Severity 2 0.20 0.24 

   Severity 3 0.16 0.20 0.20 

  Severity 4 0.12 0.17 0.18 0.18 

 Severity 5 0.08 0.14 0.15 0.16 0.18 

 

Table 5-20 Posterior Means of Correlation Matrix of random effects 

  

Year 1993 - Year 1998 

  

 

Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 

Severity 1 1 

    Severity 2 0.92 1 

   Severity 3 0.77 0.88 1 

  Severity 4 0.62 0.78 0.91 1 

 Severity 5 0.43 0.63 0.79 0.90 1 

  

Year 1993 - Year 2002 

  

 

Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 

Severity 1 1 

    Severity 2 0.91 1 

   Severity 3 0.76 0.92 1 

  Severity 4 0.61 0.83 0.93 1 

 Severity 5 0.41 0.67 0.81 0.92 1 

 

5.7.6 Sensitivity Analysis of Ranking Criteria 

This part of the study conducted a sensitivity analysis of the ranking criteria for both multivariate 

and univariate approaches. Evaluation criteria, which include sensitivity and specificity, the sum 
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of the PM and sum of the PSI in the evaluation period, were used to identify the most appropriate 

criterion from all of the ranking criteria.  Hence, this can be considered as a confirmation of the 

previous conclusion from the single severity study.  From that study,  it was concluded that PM, 

expected rank, and median rank are generally deemed to be comparable to the best ranking 

criteria if the order of the individually ranked sites is not a concern within the group; otherwise 

expected rank provides better results than PM.  Mode rank provides comparable results, but 

sometimes may provide better results, especially for the top ranked sites. The probability of 

being the worst is also a comparably good ranking criterion, but is only available for top ranking 

a few sites in that the majority in the group has a probability of zero for being the worst. 

 

A. MVPLN_AR (1) model 

The evaluation with all ranking criteria is presented in Figures 5-42 to 5-47.  Based on the 

evaluation criteria, sensitivity, specificity and sum of the PM, similar results are obtained as for a 

single level crash analysis in that PM, expected rank and median rank provide similarly 

promising ranking results.  Mode rank and the probability of being the worst have the best results 

for the top 10, 20 and 30 ranked sites (the probability of being the worst only has 20 ranked sites 

in the evaluation period) in terms of all evaluation criteria except for the sum of the PSI.  For the 

evaluation criteria, sensitivity, specificity and the sum of the PSI of the top 10, 20 and 30 ranked 

sites, it seems that PSI has good or better results.  However, based on the sum of the PM, it is the 

worst ranking criteria.  In general, PSI does not have good results as other explored ranking 

criteria, except for raw count data which always provides poor ranking results.   The reason that 

PSI performs well in terms of sensitivity for the top 10 or 20 ranked sites, but does not perform 

well in terms of the sum of the PM, is probably the error caused by a tiny difference of the PSI in 

the ranking period for a small sample size.  When the number of ranked sites increases, this error 

diminishes.  To eliminate such errors, it may be better by introducing multilevel of criteria as 

proposed earlier.  It can be concluded that there is no difference in the ranked sites if the 

difference in the decision parameters (such as expected rank, mode rank, etc) is located within a 

similar range, say, the difference of PM is less than 0.05 crashes/(site-year).  Then, the second 

level of ranking criteria, such as PSI, can be introduced and so on. Ranking results might be 

improved in this way. 

. 
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Figure 5-42 Sensitivity by Various Ranking Criteria
Multivariate Poisson AR(1) Model

Rank: 1993-1998         Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-43  Specificity by Various Ranking Criteria
Multivariate Poisson AR(1) Model

Rank: 1993-1998        Evaluate: 1999-2002 estimated from 1993-2002

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-44  Sum of PM (1999-2002) from Various Ranking Criteria
Multivariate Poisson AR(1) Model

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst
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Figure 5-45  Sum of Poisson Mean (1999-2002
Multivariate Poisson AR(1) Model
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Figure 5-46 Sum of PSI (1999-2002) from Various Ranking Criteria
Multivariate Poisson AR(1) Model

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-47  Sum of Observed Crashes (1999-2002) from Various Ranking 
Criteria

Multivariate Poisson AR(1) Model

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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B. Univariate P_AR (1) model 

The evaluation results of the ranking criteria from the univariate P_AR(1) model are presented in 

Figures 5-48 to 5-51.  The similar pattern as the multivariate approach can be observed in these 

figures. 
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Figure 5-48 Sensitivity of various ranking criteria
Poisson AR(1) Model for multi levels of severity data

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank
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Figure 5-49  Specificity from Various Ranking Criteria
Poisson AR(1) Model for multi levels of severity data

by PM
by PSI
by Raw data
by Expected rank
by Mode rank
by Median rank
by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at 
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Figure 5-50  Sum of PM (1999-2002) from Various Ranking Criteria
Poisson AR(1) Model for multi levels of severity data

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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Figure 5-51  Sum of PSI (1999-2002) from Various Ranking Criteria
Poisson AR(1) Model for multi levels of severity data

by PM

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst

PM=Poisson mean

PSI=Poisson mean-predicted crashes at similar sites
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A. Comparison of ranked sites by other criteria with by PM or expected rank 

Following the same procedure as before, the set of ranked sites by PM or expected rank was used 

as a baseline, and sites identified by other criteria were compared with those by PM or by 

expected rank.  The percentages of identical sites occurring in both by PM or expected rank and 

by the criterion of interest was calculated by Equations 5-17 and 5-18 and are shown in Figures 

5-52 to 5-59 for multivariate and univariate approaches. 

   

The median and expected ranks closely identify the same sites as PM, while mode ranking 

results in at least 90% of the same sites if the order of the ranked individual site is not a concern.  

PSI provides the greatest differences in ranking in comparison to PM or expected rank, while 

sites ranked by raw data are also systematically different from those ranked by PM.  Thus, it is 

further confirmed that PSI cannot be used as a major ranking criterion, but might, nevertheless, 

be employed as a secondary criterion. 
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Figure  5-52  Same Portion as Ranked by Poisson Mean 
without Considering the Order

Multivariate Poisson AR(1) Model

by PSI

by Raw data

by Expected rank

by Mode rank
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Figure  5-53  Same Portion as Ranked by Poisson Mean
Considering the Order

Multivariate Poisson AR(1) Model

by PSI

by Raw data

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst
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Figure  5-54  Same Portion as Ranked by Posterior Expected Rank of PM
without Considering the Order 

Multivariate Poisson AR(1) Model

by PSI

by Raw data

byPoisson Mean

by Mode rank

by Median rank

by Probability of being the worst
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Figure  5-55 Same Portion as Ranked by Posterior Expected Rank of PM
Considering the order

Multivariate Poisson AR(1) Model

by PSI

by Raw data

by Poisson mean

by Mode rank

by Median rank

by Probability of being the worst
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Figure  5-56  Same Portion as Ranked by Poisson Mean
without Considering the Order

Poisson AR(1) Model for five severities data

by PSI

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst
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Figure  5-57  Same Portion as Ranked by Poisson Mean
Considering the Order

Poisson AR(1) Model for five severities data

by PSI

by Expected rank

by Mode rank

by Median rank

by Probability of being the worst
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Figure  5-58  Same Portion as Ranked by Posterior Expected Rank of PM
without Considering the Order

Poisson AR(1) Model for five severities data

by PSI

by Poisson mean

by Mode rank

by Median rank

by Probability of being the worst
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If the order of the ranked individual site is taken into consideration, the ranked pattern is quite 

different from those that do not consider the order, as is evident from Figures 5-53, 5-55, 5-57 

and 5-59.  The lists ranked in order by median, PM and expected rank are different while median 

rank provides the closest ranking to expected rank, but the similarity of results by median rank 

and by expected rank diminishes in comparison to the previous results for a single level of 

severity.   

 

5.8 SUMMARY 

Ten years of data from 1993-2002 that detail 726 unsignalized four legged intersections in 

California were used to evaluate the FB method for hot spot identification in comparison with 

the EB method, while 436 top ranked sites with five levels of severity data based on combined 

crash counts were selected for an evaluation study of the multivariate FB method.  A thorough 

evaluation of the univariate FB versus EB method for single level severity data and multivariate 

FB versus univariate FB for multilevel of severity data, as well as the performance of various 

ranking and evaluation criteria, was presented in this chapter.  
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Figure  5-59  Same Portion as Ranked by Posterior Expected Rank of PM
Considering the Order

Poisson AR(1) Model for five severities data

by PSI

by Poisson mean

by Mode rank

by Median rank

by Probability of being the worst
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For the univariate FB study with 726 sites, a total of 11 FB models were developed.  Poisson AR 

(1) was identified to be the best model for comparison with the EB method and for further study 

and the AR (1) model was applied to multilevel severity crashes.  Two time frames (1996-1998 

and 1993-1998) were used to rank the sites for the evaluation study. The period 1999-2002 was 

selected as the evaluation period.  Estimates of the true mean for the evaluation period were 

derived from the model developed using a total of 10 years of data. It is reasonable to be 

believed the 10 years of data can provide a better estimation of the true mean for the evaluation 

period. 

 

A total of 8 ranking criteria, which include posterior Poisson mean, posterior expected rank, 

posterior mode rank, posterior median rank, posterior probability of being the worst, raw data, 

posterior PSI and posterior PPSI have been examined for the developed FB models.  

Specifically, the mode rank of the posterior distribution of the Poisson mean was proposed as a 

ranking criterion for the evaluation study and it proved to be promising in that it can sometimes 

provide the best results, especially for top ranked sites.  In addition, the sum of the Poisson mean 

and sum of the PSI in the evaluation period are proposed as evaluation criteria.  The sum of the 

Poisson mean was found to be a solid evaluation criterion; especially for limited numbers of top 

ranked sites.  As well, it does not assume homogeneity, unlike sensitivity and specificity. The 

evaluation criteria include sensitivity and specificity, the sum of the PM, sum of the PSI, sum of 

crash counts and sum of the PPSI. The following conclusions can be obtained from this aspect of 

the study: 

 

 It was found that FB provides better results than the EB method in terms of higher 

sensitivity, specificity, sum of the PM and even sum of crash counts in the evaluation 

period regardless of whether ranking is by PM or PSI (see Table 5-10). 

 

 Posterior expected rank, median rank and PM provide almost the same results if the order 

of the individual sites in the ranked group is not considered.  Expected rank has 

somewhat better ranking results than PM and median rank.   
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 If the order of the individual sites in a ranked group is a concern, expected and median 

ranks of the posterior PM provide different lists.  Median rank provides the closest 

ranked ordered list to those identified by expected rank, while PM could not provide 

good results if the order of the ranked sites is a concern. 

 

 Mode rank provides at least 90% of the same identified sites as PM or expected rank 

without taking into consideration the order of the ranked group.  However, there is a 

substantial difference in rank order in comparison to PM or expected rank.  It is shown to 

provide the best ranking results, especially for the top ranked group. 

 

 The probability of being the worst has the fewest ranked sites in that the majority has 

zero probability as the worst site.  For the top ranked sites, the probability of being the 

worst may provide the best ranking results. 

 

 Short data history (3 years) can provide better ranking results than longer data history (6 

years) for the where identification of only limited top ranked limited is of interest, as is 

common in a black spot identification program.  As the number of ranked sites increases, 

a longer data history generally provides better results.  Further study is necessary to 

determine the optimal data history for hot spot identification. 

 

 For multilevel severity data, a multivariate approach is better for network ranking than 

the univariate approach based on the evaluation results, but with longer modeling time.  

From the model selection results, DIC might be the best criterion compared to others 

such as AIC and BIC. 

 

 Where only a few top ranked sites are of interest, sensitivity may not be a good 

evaluation criterion because one false positive can cause a huge difference in sensitivity 

while the decision parameter may just have a minimal difference (i.e. 10.5 crashes versus 

10.51 crashes).  In such cases, the sum of the PM might be used as a major evaluation 

criterion.  To eliminate the effect caused by the small differences in decision parameters, 

multilevel ranking criteria might be necessary.  For example, within some small range, 

where the primary decision parameters produce are essentially the same, a second level 
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ranking criterion could be implemented, and so on.   However, this suggestion needs 

further study. 

 

 It is shown that PSI cannot provide good ranking results in that it has lower values of 

sensitivity, specificity, sum of the PM and sum of crash counts.  It is only a good ranking 

criterion if it is based on the sum of the PSI or sum of the PPSI.  In addition, it provides 

the most different ranked sites when PM or expected rank is used.  PSI might be used as a 

second level ranking criterion while other reliable criteria, such as expected rank, PM or 

mode rank etc., are used as first level ranking criteria. 
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CHAPTER 6 EVALUATION OF FB METHOD FOR TREATMENT 

EFFECT STUDY  

 

 

6.1 INTRODUCTION 

Network ranking and treatment effect analysis are two major tasks in road safety study.   The FB 

method for network ranking was explored and evaluated in Chapter 5.   Treatment effect 

analysis, one of the most important tasks for road safety analysts, is explored in this Chapter. 

This aspect of the research has recently been published (Lan et al., 2009; Lan and Persaud, 

2010), and some of the documentation below is taken from those sources. 

 

For the past two decades, the empirical Bayesian (EB) method (Hauer, 1997; Sayed and 

Rodrigez, 1999; Hauer, 2002; Turner-Fairbank Highway Research Center, 1999; Persaud and 

Nguyen, 1998; Persaud et al, 2002) has been used successfully to perform this evaluation. A 

recent paper (Persaud and Lyon 2007) has summarized experience to date with this approach for 

evaluating safety treatments. 

 

Recently, with the availability of the software package WinBUGS (Spiegelhalter et al., 2003), 

fully Bayesian (FB) approach has been suggested as a useful alternative to the empirical Bayes 

approach (Lan et al. 2009; Persaud et al. 2010; Carriquiry and Pawlovich 2005; Pawlovich et al. 

2006) in that it is believed to require less data for untreated reference sites, it better accounts for 

uncertainty in data used, and it provides more detailed causal inferences and more flexibility in 

selecting crash count distributions.  

 

One study of treatment effect analysis using univariate FB was conducted by Pawlovich et al. 

(2006). This study introduced treatment effect coefficients into the model and employed matched 

pairs to estimate treatment effects. Pawlovich et al. developed an accident rate model and then 

used the model to estimate expected crashes in the after period for both the treated sites and the 

matched reference sites. A 25% reduction in crash frequency per mile was found in their study, 

which is close to the 24% reduction obtained from the Naïve before-after method (Pawlovich et 
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al., 2006). The approach employed by Pawlovich et al. is similar in principle to a conventional 

comparison group C-G study (Hauer, 1997). 

 

Crash data normally are collected at different severity levels (i.e. fatal, injured, PDO etc.) and 

pertain to different types (e.g., total, read end, right angle and left turn).  Since collisions type 

and severity level could be correlated, it is natural to believe that a multivariate FB approach 

might be better for safety analysis based on both crash type and severity. As a matter of fact, the 

multivariate Poisson (MVP) model was introduced by Tsionas as early as 2001 and several 

researchers such as Karlis and Meligkotsidou (2005) as well as Ma and Kockelman (2006) have 

worked on this method. For example, Ma and Kockelman (2006) applied MVP regression 

approach to assess the effects of covariates on collision counts at different severity levels. The 

drawbacks of MVP, such as the assumption of equal and nonnegative covariance terms, as well 

as the inability to account for overdispersion, were subsequently revealed.  As a result, this 

method was not really implemented in treatment effect analysis. 

 

To overcome the shortcomings of MVP, the multivariate Poisson Log normal (MVPLN) model 

approach was introduced and applied to road safety analysis (Park and Lord 2007;  Ma et al. 

2008; Aguero-Valverde and Jovanis 2009; El-Basyouny and Sayed 2006; Park et al. 2009). For 

example, Park and Lord (2007) applied MVPLN approach to 451 three-leg unsignalized 

intersections in California. They developed a MNPLN model for crash frequency by 5 injury 

severities using the software MATLAB (Demuth et al., 2006).  For comparison, they also 

developed a univariate Poisson model and a univariate Negative Binomial (NB) model for each 

crash severity level using SAS. They analyzed the resulting regression coefficients and posterior 

correlation coefficients matrix of random effects of these five severities. They concluded that 

MVPLN can provide more accurate estimates in terms of lower standard deviations of 

parameters for one severity crashes and the posterior correlation matrix showed correlation of 

latent effects.  However, it should be noted that this pattern does not occur in crashes of the other 

four severities. 

 

Ma et al. (2008) employed MVPLN for Washington State rural two-lane highway crashes with 

five injury severity levels. Crashes collected from over 7773 homogeneous segments were used 



175 

 

to conduct the study using the software R.  Univariate EB Poisson and NB models were also 

investigated. Their results indicated that MVPLN provided better predictions. Aguero-Valverde 

et al. (2009) and El-Basyouny et al. (2009) both developed MVPLN models and univariate FB 

Poisson Log normal (PLN) models for crash severity modeling and site ranking using WinBUGs. 

They found that the MVPLN model is superior to the univariate FB model in terms of overall 

performance of the model in that MVPLN has a lower DIC value. 

 

Park et al. (2009) applied the MVPLN before-after approach for different severity crash data to 

evaluate the effect of decreasing posted speed limit on Korean expressways. Their before-after 

approach is quite different from our before-after FB approach (Lan et al. 2009; Persaud et al. 

2010; Lan and Persaud, 2010) in that they introduce an intervention model. 33 treatment sites 

and 203 reference sites are used to calibrate the intervention model to obtain the expected crash 

frequency with treatment and to predict the expected crashes without treatment in the after 

period. The final MVPLN results are compared with those from Naïve (traditional method) and 

EB approaches. Overall, the MVPLN results are between those from the Naïve and EB, but are 

quite different from the results of the EB and naïve analyses.  It is possible that the limited 

sample of 33 treatment sites used to calibrate the intervention model and obtain the 

corresponding coefficients related to treatment may have been too small. If so, then this could be 

a major limitation of this method in that typically the sample of treatment sites available for 

evaluation can be quite limited. 

 

Both the MVPLN and univariate FB approaches use Markov Chain Monte Carlo (MCMC) 

(Gamerman, 2006; Gilks; 1996; Brooks, 1998) methods to derive the posterior distribution of 

estimates. Previous researchers on this subject favoured MVPLN models based on the estimated 

regression coefficients (Park and Lord, 2007), predicted results (Ma et al., 2008) or DIC 

(Aguero-Valverde and Jovanis, 2009; El-Basyouny and Sayed, 2009). These researchers believe 

that the MVPLN modeling approach has the following advantages over univariate EB or FB: a) 

It takes into account correlations that exist among different severity levels; b) It can cope with 

both overdispersion and a fully general correlation structure in the data; c) It can simultaneously 

provide estimation results for crashes at different severity levels. 
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The motivation for this aspect of the research was to build on the pioneering work of earlier 

researchers who investigated only the univariate FB or the MVPLN approaches for crashes at 

different injury severity levels. Moreover, previous researchers employed only one function form 

for expected crashes.  In that formulation,     
  is the type k crash frequency at site i in year t and 

is assumed that     
               

       
  , where         

   is the random effects for type k crash 

at site i,     
  follows the MVPLN (Park and Lord, 2007; Ma, et al., 2008; Aguero-Valverde and 

Jovanis, 2009; El-Basyouny and Sayed, 2009; Park et al., 2009), PG or PLN based on a different 

form of        
  . The corresponding expected crash frequency     

  has only one form with fixed 

coefficients in each of the above studies.  However, with the powerful software WinBUGs, more 

forms of     
  such as those incorporating time varying coefficients can be further investigated. 

Finally, the univariate FB and MVPLN approach have not been examined for before-after 

treatment effect analysis. 

 

To this end, this part of the research addressed these three knowledge gaps to complement, rather 

than duplicate, the extensive work by others in this research area. First, a simulation study was 

employed to explore the univariate FB for treatment effect study. Then the MVPLN approach 

was explored and evaluated for two cases (a group with high crash counts and one with low 

crash counts).  Finally, the function forms of expected crashes both for univariate and 

multivariate FB methods were explored while addressing temporal effects. 

 

Two objectives of this study need to be achieved: 1. to examine the univariate FB before after 

method to see if it can address the regression to the mean (RTM) problem which is common in 

road safety analysis, and; 2. to examine the MVPLN FB method  to see if it can address the RTM 

problem and if it is superior to the univariate FB before after method, using different type 

crashes.  To this end, two types of data -- univariate crash data and multivariate crash data were 

used to conduct these before-after FB studies. Four forms of     
  as mentioned in Chapter 5 were 

developed and evaluated, and the results of the evaluation study are presented. The study 

evaluated variations of the before-after univariate FB and MVPLN FB methods by analyzing a 

hypothetical treatment with no effect at the sites. Then the outcomes from the univariate FB were 

compared with those from the Naive method, and the results from MVPLN method were 



177 

 

compared with those obtained from univariate PG, PLN evaluations and from the naive method.  

The detailed results are presented below. 

 

6.2 BEFORE-AFTER FB METHOD METHODOLOGY 

A before-after FB study, which is similar to the approach used by Aul (2006), was used to 

evaluate the FB method for treatment effect analysis.  The before-after FB approach is similar to 

the EB approach in that untreated reference group data are used to make inferences and to 

account for possible effects unrelated to the treatment. This FB method also includes data on the 

treated sites in the before period to develop inferential models. On the other hand, the EB 

approach only uses data from reference sites for this purpose.  

 

For convenience, the univariate FB is used here to explain the before-after FB method for 

treatment effect analysis.  Note that the same principles can be applied to the multivariate FB 

approach. Crash counts are typically time series data across years and therefore it is proper and 

necessary to include time effects into the model structure.  The following simple model structure 

can be used to represent time series crash data: 

 

Observed series = time effect + regression term + random effect     (6-1)       

                         

where the ―regression term‖  
   

 is of the same form as safety performance functions (SPFs) used 

in EB studies (Sayed and Rodrigez, 1999;  Persaud and Nguyen, 1998; Persaud et al, 2002), and 

―random effects‖ accounts for latent variables across the sites. Normally there are four ways to 

address time effect, as explained in Chapter 5: Poisson autoregressive model combining time 

effects and random effects together by an AR model; time multiplier model; time varying 

coefficients model which combines time effects and regression term; and time trend model.   For 

treatment effect analysis, however, the Poisson AR model is not applicable since the 

countermeasure implementation year should normally be excluded from the analysis.  Therefore, 

only three methods can be applied to deal with time effects for the before-after FB study. 

 

The following simple model can be used to explain the before-after FB procedures: 

           λ     
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λ     
   

                                                          

 
   

         
        

                                            

 

As can be seen in Equation 6-2, the basic form of FB models is a product format, if Equation 6-2 

is transformed into logarithm, then it becomes an additive format.    

 

Given the observed crash count      in the ―after‖ period at treated site i, the major task of 

treatment effect analysis is to compare this count with what level of safety      in the after period 

would have been expected had the treatment not been implemented. The procedure for predicting 

the expected number of crashes       in the after period without treatment includes two steps 

(Aul, 2006):  

 

Step 1: Assuming                     , posterior distributions of the parameters are calibrated 

by Markov Chain Monte Carlo (MCMC) methods using the data from reference sites and the 

before period of treated sites.  

 

Step 2: The corresponding expected total crashes      without treatment can then be obtained and 

used as an estimate of     , given the traffic volumes at each treated site in the after period. The 

change in safety is the difference between the predicted      in the after period without treatment 

and the safety      in the same period with the treatment in place. The treatment effects can then 

be calculated, either in terms of a crash frequency change or in terms of a percentage change in 

crashes. 

 

6.3 EVALUATION APPROACH 

 

6.3.1 Measurements of Treatment Effect 

Two measurements can be used to quantify the treatment effect: expected crash reduction (CR) 

and expected crash reduction rate (CRR) combining their standard deviations.  The calculation of 

these two measurements is presented below: 
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Again, assuming            λ                         

                                                             

and, 

                                                                    

where, 

   = treatment implementation year 

   = the number of years after treatment  

   = number of treated sites 

   = number of reference sites 

   = total number of sites including treatment sites and reference sites,        . 

 

Then CR and CRR can be obtained by 

 

Crash Reduction: 

     λ   

     

      

  

   

       

     

      

  

   

                            

Crash Reduction Rate:   

      
      

     
      

  
   

  λ   
     
      

  
   

                            

 

where,  λ   = expected crashes without treatment for intersection i in year t in the after period. 

 

For the Naïve method, the values of λ   are obtained directly from the before period counts while 

they are predicted from the developed model using the FB method.  CRR is a relative crash 

reduction measurement and is deemed to be a better measurement for treatment effect analysis. 

 

6.3.2 Evaluation Approach 

In order to properly evaluate the FB method, including univariate and multivariate FB methods, 

for before-after treatment evaluation a  total of five datasets were used.  First, three simulated 

datasets were used to examine the univariate FB method.  Then two groups of California 
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unsigalized intersections with four different crash types (total crashes, rear end crashes, right 

angle crashes and left turn crashes) were selected to compare the MVPLN method with the 

univariate FB method for different types of crashes.  It should be noted that each of the selected 

datasets showed a significant crash change from first period (before hypothetical treatment) to 

the second period (after hypothetical treatment).  Otherwise, the study is meaningless.   A 

hypothetical treatment was randomly assigned to each of the five groups to identify a sample of 

treatment sites which the treatment groups also have a significant crash change. Then, before-

after univariate FB (Lan et al., 2009; Persaud et al., 2010) was performed on the three simulated 

datasets while MVPLN and univariate FB studies (Lan and Persaud, 2010) were performed on of 

California unsigalized intersections, respectively. Untreated reference group data and the data for 

the treated sites in the before period were used to develop inferential models.  These models 

were then used to predict the crash frequency for treatment sites in the after period, had the 

treatment not been implemented. In this way, it was expected that the FB method should estimate 

no change in safety if it is correct.  In particular, the MVPLN FB method, if it is better, would 

provide better results than the univariate FB method and also estimate no change in safety (i.e., 

expected crashes) for the hypothetical treatment sites -- since there was no actual treatment.  The 

details of the evaluation study are presented below. 

 

6.4 EXPLORATION OF THE UNIVARIATE FB METHOD  

Variations of the before-after univariate FB method were validated using simulated data for a 

hypothetical treatment known to have no effect. 

 

6.4.1 Simulated Data 

In deriving the simulated data, it was assumed, as is common, that the crash count over ―similar‖ 

sites follows a negative binomial distribution (NBD). The NBD may be derived by 

―heterogeneous Poisson sampling‖ which assumes that the crash count       at a site over time is 

Poisson distributed with unknown mean      per unit of time at site i and that these means      

follow a Gamma distribution over similar sites, such that  
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and  

            
     

 
                                       

 

where,   is the dispersion parameter of the NBD. 

 

The data used to examine the FB methods were generated from a PG distribution (Lord, 2006). 

The simulation framework for the stop-controlled intersection dataset used is as follows (Lan et 

al, 2009): 

 

Step 1: Randomly generate entering traffic volumes on the major road (5000 ~ 40,000 AADT) 

across 6 years with random variation (within 5%). This was such that most traffic volumes would 

be around the mean value 20,000 AADT, which is typical of traffic volumes entering a stop-

controlled intersection from the major road. 

Step 2: Similarly, randomly generate traffic volumes on the minor road (500 ~ 4000 AADT) 

across 6 years with random variation (within 5%).  

Step 3: Input safety performance function (SPF) parameters. These were developed from 

California state data in a recent project (Bhim, 2005). The SPF used was:  

 

                  
            

                                                

Step 4: Calculate the expected number of crashes  
   

 for intersection i across 6 years from the 

SPF. 

Step 5: Generate a scale factor    from a Gamma distribution with the mean equal to 1 and the 

dispersion parameter  :            
 

 
  using software GenStat (Payne, 2000).  It is necessary 

to use the parameterization of the gamma distribution                when its mean and 

variance are defined as         and           , respectively.  GenStat uses this 

parameterization for generating gamma distributed values. It can be shown that when        

and            (where     and /     ), the Poisson-gamma function gives rise to a 

NB distribution with                (for detailed derivation, see Chapter 3). 

Step 6: Calculate the modified mean λi,t= i  i,t 
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Step 7: Generate a discrete value Yi,t for the observed count at intersection i in year t from a 

Poisson distribution with mean λi,t, and with the constraint that crash counts at each intersection 

is less than or equal to 10 each year to reflect typical values. 

Step 8: Repeat step 1 to step 7 ―n‖ times for the required number of intersections. 

 

Step 5 was performed using the software GenStat while other steps were performed in Excel 

coding in Visual Basic. The simulation was done for sample sizes of 1000 and 4000, with 

dispersion parameters   of 0.25, 0.5, 1.0 and 2.0, respectively, to reflect the range of typical 

values reported on relevant studies. 

 

For the generated dataset, a Naïve before after study was performed by comparing the crashes at 

a site in the first 3 years (the ―before‖ period) with those in the last two (the ―after‖ period), for a 

hypothetical treatment at the start of year 4. Only those sites where the Naïve results showed a 

substantial apparent crash reduction (≥10%) due to regression to the mean were used to conduct 

the FB analysis. In order to obtain a significant crash change from Naïve method, numerous 

trials for the above four values of the dispersion parameter were conducted. The real treatment 

effect was in fact zero since the means used to generate the counts did not change materially over 

time. The identified sites were then randomly allocated to treatment and reference groups. The 

summary information of final samples for the univariate FB validation are detailed in Tables 6-1 

to 6-3 and the corresponding naive results are tabulated in Table 6-4. 

 

6.4.2 FB Model Development  

This section discusses the model development for the before-after FB method. Several variations, 

including three PG models and four PLN models which are of the same or similar forms in 

Chapter 5, were developed and tested before settling on a preferred approach. These are 

summarized below: 

 

A. Poisson – Gamma models 

As discussed in Chapter five, the random effect     in Equation 6-2 follows the Gamma 

distribution:                      and                       .  There are three PG models 

based on the different forms of  
   

 in this study. 
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Table 6-1  Summary of Simulated Dataset 1 

 (Total crashes in first 3 years ≥26,  =0.25) 

  Hypothetical Treatment Group: 47 sites 

  Variables mean Std. max min 

Years before 3 0 3 3 

Years after 2 0 2 2 

crashes/site.year   before 8.82 0.39 9 8 

crashes/site.year   after 7.60 1.50 9 4 

AADTmajor before 21057 9280 38574 5497 

AADTminor before 2819 788 3985 898 

AADTmajor after 21072 9270 38641 5274 

AADTminor after 2833 800 3933 857 

Hypothetical Reference Group:  42 sites 

  Variables mean Std. max min 

Years 6 0 6 6 

crashes/site.year 8.13 1.27 9 8 

AADTmajor 22059 9335 40393 5107 

AADTminor 2824 863 4092 612 

 

Table 6-2  Summary of Simulated Dataset 2 

 (Total crashes in first 3 years ≥19,  =1.0) 

  Hypothetical Treatment Group: 105 sites 

Variables mean Std. max min 

Years before 3 0 3 3 

Years after 2 0 2 2 

crashes/site.year   before 7.48 1.57 9 3 

crashes/site.year   after 6.60 2.05 9 1 

AADTmajor before 22603 10258 40871 5750 

AADTminor before 2685 941 4159 522 

AADTmajor after 22534 10164 41268 5682 

AADTminor after 2671 942 4138 520 

Hypothetical Reference Group:  111 sites 

Variables mean Std. max min 

Years 6 0 6 6 

crashes/site.year 6.99 1.96 9 0 

AADTmajor 22135 10342 41494 4894 

AADTminor 2797 869 4166 545 
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Table 6-3  Summary of Simulated Dataset 3 

 (Total crashes in first 3 years ≥22,  =0.25) 

  Hypothetical Treatment Group: 229 sites 

Variables mean Std. max min 

Years before 3 0 3 3 

Years after 2 0 2 2 

crashes/site.year   before 7.99 1.14 9 4 

crashes/site.year   after 7.16 1.86 9 1 

AADTmajor before 22709 10358 41727 4833 

AADTminor before 2700 827 4149 655 

AADTmajor after 22701 10342 41649 4910 

AADTminor after 2697 825 4163 682 

Hypothetical Reference Group:  263 sites 

Variables mean Std. max min 

Years 6 0 6 6 

crashes/site.year 7.58 1.54 9 1 

AADTmajor 23198 10053 41675 4997 

AADTminor 2820 809 4181 612 

 

 

Table 6-4  Naïve Crash Reduction and Crash Reduction Rate of Simulated Datasets 

Dataset 1 Total crashes in first 3 years ≥26,  =0.25 

Variables Whole group Treatment Group Reference Group 

 

(89 sites) (47 sites) (42 sites) 

Naïve Crash Reduction 338 172 166 

Naïve Crash Reduction Rate 14% (3%) 14% (4%) 14% (4%) 

Dataset 2 Total crashes in first 3 years ≥19,  =1.0 

Variables Whole group Treatment Group Reference Group 

 

(216 sites) (105 sites) (111 sites) 

Naïve Crash Reduction 584 279 305 

Naïve Crash Reduction Rate 12% (2%) 12% (3%) 12% (3%) 

Dataset 3 Total crashes in first 3 years ≥22,  =0.25 

Variables Whole group Treatment Group Reference Group 

 

(492 sites) (229 sites) (263 sites) 

Naïve Crash Reduction 1242 570 672 

Naïve Crash Reduction Rate 11% (1%) 10% (2%) 11% (2%) 
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Model 1:  original PG model 

This is the basic form of Poisson Gamma model and it does not account for time effects.  The 

function form of  
   

 is the same as Equation 5-8.  This model was defined as PG_19, PG_22 and 

PG_26 for the three identified datasets which have 19, 22 and 26 total crashes in the first three 

years, respectively. 

 

Model 2:  Time multiplier PG model, similarly denoted as PG_M_19, PG_M_22 and PG_M_26, 

respectively here after.  This is the same as defined in Chapter 5. 

 

Model 3: Time trend model 

A potential time trend β
 

   in the observed crash series was included in this model as an 

alternative way to deal with temporal variation.  This model is described as PG_T_19, PG_T_22 

and PG_T_26, respectively for the three studied datasets. 

 

B. Poisson Log Normal  models 

Three Poisson Log Normal models were developed based on the three different forms of  
   

 

which are same as those for Poisson Gamma models.  As in Chapter 5, the random effects  

             and                                  .  In addition, one alternative time trend 

model was also explored. 

 

The three PLN models are  

Model 4: Regular Poisson log normal model (PLN_19, PLN_22 and PLN_26 respectively) 

Model 5: Poisson log normal time multiplier model (PLN_M_19, PLN_M_22, and PLN_M_26) 

Model 6: Poisson log normal time trend model (PLN_T_19 and PLN_T_22 and PLN_T_26 

respectively) 

 

Model 7: PLN time trend models with yearly random effects 

           λ     
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where  
   

 is the same as Equation 5-9. 

 

Unlike the previous models, where only one random effect was introduced at each site, this 

model has yearly random effects      at each site.  This model can be seen as an alternative to 

Model 6, denoted as PLN_T_19     , PLN_T_22      and PLN_T_26      for the three datasets 

respectively.   It was expected this model can provide similar results as Model 6. 

 

6.4.3 Bayesian Model Comparison and Selection 

Two parallel chains were run for both scenarios to obtain posterior distributions of the 

coefficients and crash reduction estimates. After convergence, the results in terms of log 

likelihood (LL), DIC and CRR from the above seven models were collected and the other two 

model selection criteria AIC, BIC were calculated. The models were compared and the results 

are listed in Table 6-5. 

 

It can be seen that for datasets 1 and 2, the three PLN models. PLN time multiplier model 

(PLN_M_19, PLN_M_26), PLN time trend model (PLN_T_19 and PLN_T_26) and PLN time 

trend model with yearly random effects (PLN_T_19      and PLN_T_26      ) are comparable 

based on the model selection criteria while the PLN time trend model has slightly better results.  

Specifically, for dataset 1, model selection criteria LL, AIC, BIC are exactly the same for 

PLN_M_26 and PLN_T_26, but the DIC of PLN_T_26 is slightly better than that of 

PLN_M_26.  Also it can be seen that PLN_T_26 provides a better estimate of CRR, i.e., the 

mean is zero rather than the albeit insignificant 3% of PLN_M_26.  PLN_T_19 and PLN_T_26 

are seen to be the best models for these two datasets. 

 

For dataset 3, PLN_M_22 has the same DIC as PLN_T_22, but it has higher values of LL, lower 

values of AIC and BIC, strongly favouring this model.  Thus PLN_M_22 is deemed to be the 

best model. 

 

For all of the three datasets, as expected, PLN models for time trend with yearly randomly 

effects (PLN_T_19     , PLN_T_22      and PLN_T_26     ) provide similar results as regular 

PLN time trend models (PLN_T_19 and PLN_T_22 and PLN_T_26) in terms of the values of 



187 

 

model selection criteria and treatment reduction rate CRR, while the later one has somewhat 

better values of model selection criteria and has a simpler form.  Thus, the yearly random effects 

model was not further investigated. 

 

It can be seen that PLN models seem to have much better performance than corresponding PG 

models based on all the model selection criteria: LL, AIC, BIC and DIC. Indeed, PLN models 

have a slightly better performance in terms of CRRs than corresponding PG models.  However, it 

is interesting that the CRRs of PG models are quite comparable with corresponding PLN models. 

For example, the CRR of PLN_T_26 is 0 with standard deviation of 3% while that of PG_T_26 

is 1% with a 4% standard deviation; thus, both models estimate insignificant treatment effects.  

A similar pattern is observed with other PLN and PG models.  This result is consistent with 

conclusions obtained by Maher and Mountain (2009).  In their study, several distributions of 

random effects such as the gamma distribution, the log normal distribution and the Weibull 

distribution were investigated for estimating regression to the mean (RTM) using four datasets, 

but only with one form of  
   

; they concluded that the results in terms of estimating of RTM 

were comparable albeit the distributions of random effects were different. 

 

One can find that all of the models considering time effects, such as PLN_T, PLN_M, 

PLN_T_    , PG_T and PG_M models, successfully estimated no treatment for hypothetical 

treatment sites for all three datasets, whilst the PLN and PG models without time effects falsely 

estimated significant treatment effects for these hypothetical treatment sites.  Model PLN 

provided incorrect estimates of treatment effects even though all of the model selection criteria 

very strongly favoured PLN over PG_T and PG_M models.  This suggests that the function of 

 
   

 is much more important than what distributions the random effects follow.  In other words, it 

is meaningful if and only if models with different distributions of random effects are compared 

with each other with the same structure or function form of expected crashes  
   

.  Otherwise, a 

seriously biased result can be anticipated.  This phenomenon is further examined later in this 

thesis. 
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Table 6-5 Treatment Effect Analysis and Model Diagnostics

Dataset 1 (Total crashes in first 3 years ≥26,  =0.25) 47 Treatment sites 42 Reference sites

PLN_26 PLN_M_26 PLN_T_26 PLN_T_26 εit PG_26 PG_M_26 PG_T_26 

K 4 5 5 5 4 5 5

LL -816 -810 -810 -811 -832 -827 -827

AIC 1638 1628 1628 1630 1669 1662 1662

BIC 1650 1644 1644 1646 1681 1678 1678

DIC 1644 1636 1633 1635 1717 1712 1708

CRR 9% (2%) -2% (3%) 0 (3%) 0 (3%) 11% (2%) -2% (4%) 1% (4%)

Dataset 2 (Total crashes in first 3 years ≥19,  =1.0) 105 Treatment sites 111 Reference sites

PLN_19 PLN_M_19 PLN_T_19 PLN_T_19  it PG_19 PG_M_19 PG_T_19 

K 4 5 5 5 4 5 5

LL -2121 -2113 -2112 -2115 -2125 -2118 -2117

AIC 4248 4234 4232 4238 4256 4244 4242

BIC 4263 4254 4252 4258 4271 4264 4262

DIC 4265 4252 4248 4250 4353 4342 4338

CRR 7% (1%) -1% (2%) 0 (2%) 0 (2%) 8% (2%) -1% (3%) 1% (2%)

Dataset 3 (Total crashes in first 3 years ≥22,  =0.25) 229 Treatment sites 263 Reference sites

PLN_22 PLN_M_22 PLN_T_22 PLN_T_22  it PG_22 PG_M_22 PG_T_22 

K 4 5 5 5 4 5 5

LL -4743 -4722 -4725 -4726 -4778 -4761 -4763

AIC 9492 9452 9458 9460 9562 9530 9534

BIC 9509 9475 9481 9483 9579 9553 9557

DIC 9511 9475 9475 9478 9725 9695 9693

CRR 7% (1%) 0 (1%) 1% (1%) 1% (1%) 8% (1%) 0 (2%) 2% (1%)

Notes: 1. K is the number of parameters

2. CRR means crash reduction rate

3. Negative sign indicates an increase in crashes

4. Standard errors are in parentheses
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6.4.4 Evaluation Results of Univariate FB  

Table 6-6 compares the treatment effects obtained from the Naïve and FB approaches. The 

Naïve method predicted a significant total crash reduction after a hypothetical treatment with 

no effect was implemented, which is incorrect since RTM is not accounted for. On the other 

hand, the CRR shows correctly that there are no significant treatment effects estimated by the 

FB method, suggesting that RTM has been properly accounted for, and therefore that this 

method can be used for observational before-after studies. 

 

Table 6-6    Comparison of Treatment Effect Estimates from Naïve and FB Studies 

Method 
Crash Reduction Rate 

(CRR) 

Treatment Effects 

Identified? 

Naive 

Dataset 1 14% (4%) Yes 

Dataset 2 12% (3 %) Yes 

Dataset 3 10% (2%) Yes 

FB 

Dataset 1 0 (3%)  (PLN_T_26) No  

Dataset 2 0 (2%)  (PLN_T_19) No  

Dataset 3 0 (1%)  (PLN_M_22) No  

Note:  1. Datasets are identified in Tables 6-1 to 6-3 

           2. Standard deviations are in parenthesis 

 

 

6.5 EVALUATION OF THE MULTIVARIATE FB METHOD  

This section describes the evaluation of the multivariate FB method using two datasets of 

hypothetical before-after data for California unsignalized intersections, with different types of 

crashes for high and low crash count groups.  For the multiple type crash data, two ways can 

be used to conduct an FB analysis.  One way is to develop univariate FB models for each 

type of the crash by assuming that the different types of crashes are independent.  Another 

way is to develop multivariate FB models as a whole accounting for the possible correlations 

among these different types of crashes.  The objective of this part of the work was to evaluate 

if MVPLN is superior to univariate FB for these two data cases.  Thus both univariate FB and 

multivariate FB approaches were applied to these two datasets through various developed 

models.  The approach showing lowest treatment effect is deemed to be the best model, since 

there was in fact no treatment.  

 

6.5.1 Data Description 
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All data used were provided by the Highway Safety Information System (HSIS, 

http://www.hsisinfo.org/). Geometry, traffic volume and four types of crash data (total, right 

angle, left turn and rear end) were acquired for the State of California for the period 1993-

2002. The unsignalized intersections included 1381 sites that are three legged and 726 sites 

that were 4-legged with two lanes on the major road. In order to investigate the difference of 

treatment effects estimated from the before-after MVPLN and univariate FB methods, a 

hypothetical treatment was assumed to happen at the start of year 1998. A Naïve before-after 

study was performed for the two groups of data, each sorted in descending order by the 1993-

1997 crash counts for each type of crashes, by comparing the crash frequency at a site in the 

first 5 years (the ―before‖ period) with that for the last four years (the ―after‖ period, i.e., after 

1998). It was essential that only those subgroups where the Naïve results showed a 

substantial apparent crash change (absolute value of CRR ≥5%) due to RTM be used to 

conduct the analysis. In addition, it was desirable to investigate MVPLN for both high and 

low crash frequency entities. The sites in the selected subgroups were then randomly 

allocated to identify treatment and reference groups. Table 6-7 shows information for the two 

groups of data, the 4-legged unsignalized group with 7-10 total crashes/site (case 1) in the 

first 5 years, and the 3-legged unsignalized group with 2-3 total crashes/site (case 2) in the 

same period. 

Table 6-7 Naïve Crash Reduction Rate  

Case 1: Four legged unsigalized intersections  

(Total crashes in first 5 years =7-10/site) 

Variable Whole group 

 (116 sites) 

Crash reduction rate 

Treatment group 

 (57 sites)  

Crash reduction rate 

Reference group  

(59 sites)  

Crash reduction rate 

Total crashes -12% (5%) -11% (7%) -4% (6%) 

Right Angle crashes -18% (11%) -26% (18%) -3% (13%) 

Left Turn crashes  -25% (15%) -34% (22%) -14% (20%) 

Rear End crashes  14% (12%) 31% (14%) 3% (21%) 

Case 2: Three legged unsigalized intersections  

(Total crashes in first 5 years =2-3/site) 

Variable Whole group 

 (364 sites) 

Crash reduction rate 

Treatment group 

 (170 sites)  

Crash reduction rate 

Reference group  

(194 sites)  

Crash reduction rate 

Total crashes -18% (5%) -21% (8%) -17% (7%) 

Right Angle crashes -136% (79%) -56% (72%) -212% (137%) 

Left Turn crashes  -16% (13%) -17% (19%) -18% (19%) 

Rear End crashes  4% (15%) 17% (18%) -13% (24%) 

Notes: 1. Negative sign indicates an increase in crashes 

2. Standard errors are in parentheses 
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As seen in Table 6-7, some of the changes in crashes in last four years before and after 

hypothetical treatment, though substantial, have large standard deviations. However, this was 

not seen as a major obstacle to proceeding with this dataset. 

 

Summary information for treatment and reference sites for both cases is detailed in Tables 6-

8 and 6-9. It can be seen that the reference sites in the two groups are close to the 

corresponding treated sites in terms of crashes/site-year, AADT on the major road and AADT 

on the minor road.  

 

Table 6-8 Summary of Four Legged Unsignalized Intersections  

(Case 1: Total crashes in first 5 years =7-10/site) 

57 Hypothetically treated Unsignalized Intersections 

Variable Mean Minimum Maximum 

Years before 5 5 5 

Years after 4 4 4 

Total crashes/site.year   before 1.67 0 7 

Total crashes/site.year   after 1.78 0 7 

Right Angle crashes /site.year   before 0.31 0 6 

Right Angle crashes/site.year   after 0.35 0 4 

Left Turn crashes /site.year   before 0.21 0 2 

Left Turn crashes/site.year   after 0.28 0 3 

Rear End crashes /site.year   before 0.21 0 3 

Rear End crashes/site.year   after 0.14 0 1 

AADTmajor before 9267 3200 22400 

AADTminor before 833 101 7800 

AADTmajor after 10274 4005 24000 

AADTminor after 833 101 7800 

59 Unsignalized Reference Intersections 

Variable Mean Minimum Maximum 

Years  10 10 10 

Total crashes/site.year    1.72 0 8 

Right Angle crashes/site.year    0.42 0 6 

Left Turn crashes /site.year    0.23 0 3 

Rear End crashes/site.year    0.14 0 2 

AADTmajor  9055 3100 27754 

AADTminor  674 120 4500 
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Table 6-9 Summary of Three Legged Unsignalized Intersections  

 (Case 2: Total crashes in first 5 years =2-3/site) 

170 Hypothetically treated 3-legged Unsignalized Intersections 

Variable Mean Minimum Maximum 

Years before 5 5 5 

Years after 4 4 4 

Total crashes/site year   before 0.49 0 3 

Total crashes/site year   after 0.60 0 6 

Right Angle crashes /site year   before 0.007 0 1 

Right Angle crashes/site year   after 0.009 0 1 

Left Turn crashes /site year   before 0.08 0 2 

Left Turn crashes/site year   after 0.1 0 3 

Rear End crashes /site year   before 0.06 0 2 

Rear End crashes/site year   after 0.05 0 2 

AADTmajor before 8367 2900 30000 

AADTminor before 379 100 1950 

AADTmajor after 9107 2928 30761 

AADTminor after 385 100 1950 

194 Unsignalized 3-legged Reference Intersections 

Variable Mean Minimum Maximum 

Years  10 10 10 

Total crashes/site year    0.52 0 8 

Right Angle crashes/site year    0.009 0 1 

Left Turn crashes /site year    0.08 0 3 

Rear End crashes/site year    0.04 0 3 

AADTmajor  8160 2550 24800 

AADTminor  338 100 2200 

 

 

6.5.2  Bayesian Model Framework 

The Bayesian models for multivariate data are similar to Equations 5-14 to 5-16 in Chapter 5.  

That is,
 
    

            
  ,

 

    
             

        
    

 
                          (6-10) 

    
                  (6-11) 

 

where, 

     
 = the modified expected crashes of type k or severity k at location i in year t. 

    
 = the expected crashes of type k or severity k at location i in year t.  
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  = the random effect for crash type k or severity k at location i.   

 

The difference between MVPLN models and univariate FB models is in how to deal with the 

relationship among the random effects    
    

      
 .  If the possible correlation among these 

crash counts is neglected by assuming   
    

      
  independently follows a gamma or normal 

distribution, then the above model is univariate PG or PLN, respectively.  On the other hand, 

the vector      
    

      
  can be assumed to be multivariate normally distributed to 

account for the correlations among different type crashes, that is:    
    

      
          ). 

 

Below are the five different function forms of expected crashes     
  for unsignalzied 

intersections, as described in Chapter 5. 

 

 Model 1: Regular model (denoted as MVPLN, PLN or PG, respectively) 

    
   β 

 

     
  

 

      
  

 

                                                  

 

 Model 2: Time multiplier model (defined as MVPLN_M, PLN_M or PG_M)  

    
   β   

 

     
  

 

      
  

 

                                                  

 

The only difference of Models 1 and 2 is that intercept β
   

 varies with the year 

 

 Model 3: Time trend model (described as MVPLN_T, PLN_T or PG_T, respectively) 

 

    
   β 

 

     
  

 

      
  

 

    
                                                    

 

 Model 4: Time varying coefficients model (defined as MVPLN_VC, PLN_VC or 

PG_VC) 

 

    
   β   
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Similarly, prior distributions for all coefficients (β
   
  β

   
  β

   
  β

 
 
) are assumed non-

informative [i.e., N(0,1000)] to reflect the lack of precise knowledge of the value of the 

coefficients.  

 

 Model 5:  MVPLN model with coefficients follow multivariate normal distribution 

(denoted as MVPLNp) 

This model is developed based on the result from previous four MVPLN models, where 

the best MVPLN model is identified.  This model has the same form of     
  as for the 

MVPLN model identified as best, but with all coefficients for different types of crashes 

also following the multivariate normal distribution. 

 

  
    

      
          

) 

  
    

      
          

) 

... 

The prior of Σβ 

   is set to follow the Wishart distribution as explained in Chapter 3.  It is 

expected that this model provides comparable results as the identified MVPLN model in 

terms of CRRs. 

 

6.5.3 Evaluation Results 

Two parallel chains were run for both scenarios to obtain posterior distributions of the 

coefficients and crash reduction estimates.  After convergence, the results in terms of DIC 

and CRR from the above four models  (MVPLN, univariate PG and PLN) were tabulated as 

shown in Tables 6-10 to 6-11 and Tables 6-13 to 6-14. It is worth mentioning that all CRRs 

and DICs for the four types of crashes, either from MVPLN or univariate FB, can be 

simultaneously obtained with WinBUGs. Also of note is that the computation time for 

univariate PLN or PG is much less than that for MVPLN. 

 

From Tables 6-10 to 6-11 and Tables 6-13 to 6-14, it is seen that the CRRs are quite sensitive 

to the expression for     
 . For Model 1, the same form as EB, a treatment effect has been 

incorrectly identified for total crashes and left turn crashes. For the other 3 models for     
 , 

which consider temporal variation across years in different ways, no significant treatment 

effects have been detected as should be expected since, again, there was no real treatment. 
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This indicates the importance of including temporal effects in model development, consistent 

with the way rigorous EB applications have applied time trend multipliers in the SPFs used in 

the analysis.  

 

For Case 1, as seen in Tables 6-10 and 6-11, the high crash frequency group, the DIC of the 

PLN is the lowest for each formulation of     
 ; its value is at least 10 fewer than that of 

MVPLN and PG, suggesting that the PLN model is the best one.  However, MVPLN and 

univariate FB provide consistent predictions of CRRs for each form of     
  in spite of the 

different DICs.  

 

For MVPLN models, DICs from MVPLN_VC_7-10 has the highest DIC value (5993) while 

DICs from the other 3 models stay the same (5979).  Thus the other three models are deemed 

to be competitive in terms of DICs.  Then the expected deviance for the jth model 

Dbarj,which can be seen as a measurement of goodness of fit, was used as the second 

criterion to identify the best model from the 3 candidates; MVPLN_M_7-10, which includes 

temporal variations, is seen to be the best MVPLN model in that it has much lower values of 

Dbar. Similarly, PLN_M_7-10 was identified to be the best PLN model for comparison. 

 

MVPLNp_M_7-10, which is similar to MVPLN_M_7-10 but with all the coefficients of 

different type crashes also following multivariate normal distribution, was also developed.  

Both models have comparable results in terms of DIC and CRRs as seen in Table 6-12.  

However, this model takes much longer to run than MVPLN_M_7-10 due to the extra 

multivariate distributions of the coefficients.  Thus MVPLN_M_7-10 is deemed to be 

superior to MVPLNp_M_7-10, especially where computation time is an issue. 

 

For Case 2, the low crash frequency group, the DIC from PG is much higher than that for the 

other two models (a DIC difference ≥ 10) for each expression of     
 . The difference in DICs 

from the MVPLN and PLN Models 1, 2, and 3 is greater than 6, while it is only 2 for Model 

4, indicating that, generally, PLN has a better performance than MVPLN.  Similar to Case 1, 

CRR estimates from MVPLN, PLN and PG are comparable for each form of     
 .  DICs of 

Models 2 and 4 are much higher than those of Models 1 and 3, suggesting that the latter two 

are competitive.  The time trend model (Model 3) is deemed the best because temporal effects 

are accounted for, in contrast to Model 1, which again produced incorrect CRR estimates.  
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Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

Model 1: MVPLN_7-10 Model 1: PLN_7-10 Model 1: PG_7-10

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 947 916 31 978 lt 953 925 28 980 lt 939 903 36 975

ra 1257 1193 64 1321 ra 1255 1187 68 1323 ra 1245 1184 61 1306

re 793 772 21 814 re 801 793 8 810 re 787 761 26 813

tot 2821 2776 45 2866 tot 2834 2818 16 2850 tot 2827 2774 53 2880

total 5818 5657 161 5979 total 5843 5724 120 5963 total 5798 5622 176 5973

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -0.10 0.04 -0.18 -0.03 CRR1 -0.08 0.03 -0.15 -0.02 CRR1 -0.10 0.04 -0.18 -0.02

CRR2 -0.23 0.11 -0.48 -0.03 CRR2 -0.21 0.12 -0.45 0.00 CRR2 -0.19 0.11 -0.43 0.00

CRR3 -0.29 0.12 -0.55 -0.07 CRR3 -0.30 0.12 -0.56 -0.09 CRR3 -0.31 0.13 -0.58 -0.08

CRR4 0.07 0.09 -0.13 0.24 CRR4 0.04 0.09 -0.14 0.20 CRR4 0.09 0.09 -0.11 0.26

Model 2: MVPLN_M_7-10 Model 2: PLN_M_7-10 Model 2: PG_M_7-10

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 947 908 39 987 lt 957 924 33 990 lt 939 895 45 984

ra 1248 1176 71 1319 ra 1247 1173 74 1321 ra 1236 1166 70 1305

re 785 757 29 814 re 795 778 17 811 re 781 746 35 816

tot 2805 2752 54 2859 tot 2819 2795 24 2843 tot 2812 2750 62 2874

total 5786 5593 193 5979 total 5818 5670 148 5966 total 5768 5556 211 5979

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -0.03 0.06 -0.15 0.09 CRR1 0.00 0.05 -0.10 0.10 CRR1 -0.02 0.06 -0.15 0.10

CRR2 -0.13 0.16 -0.48 0.16 CRR2 -0.11 0.16 -0.46 0.17 CRR2 -0.10 0.16 -0.45 0.18

CRR3 -0.16 0.18 -0.57 0.16 CRR3 -0.14 0.18 -0.54 0.16 CRR3 -0.16 0.19 -0.60 0.16

CRR4 -0.07 0.21 -0.54 0.27 CRR4 -0.13 0.21 -0.59 0.21 CRR4 -0.06 0.22 -0.55 0.29

Notes: 1. CRR1, CRR2,  CRR3, CRR4 are crash reduction rates for total, right angle, left turn, rear end crashes respectively

2. tot: total crash ra: right angle crash lt: left turn crash re: rear end crash

Table 6-10   Comparison of Results from MVPLN, PLN and PG Models

(Case 1: total crash in first 5 years=7-10/site)

Multivariate FB Univariate FB
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Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

Model 3: MVPLN_T_7-10 Model 3: PLN_T_7-10 Model 3: PG_T_7-10

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 948 915 33 981 lt 954 926 28 982 lt 940 903 37 977

ra 1258 1193 65 1323 ra 1257 1189 68 1325 ra 1247 1185 62 1309

re 788 767 21 809 re 796 787 9 806 re 783 757 27 810

tot 2821 2776 46 2867 tot 2835 2817 17 2852 tot 2828 2774 54 2881

total 5815 5651 164 5979 total 5842 5720 123 5965 total 5798 5619 179 5977

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -0.07 0.06 -0.19 0.04 CRR1 -0.05 0.05 -0.15 0.04 CRR1 -0.07 0.06 -0.19 0.04

CRR2 -0.10 0.15 -0.42 0.17 CRR2 -0.10 0.15 -0.41 0.16 CRR2 -0.08 0.15 -0.40 0.18

CRR3 -0.33 0.20 -0.78 0.01 CRR3 -0.30 0.19 -0.73 0.02 CRR3 -0.35 0.21 -0.81 0.01

CRR4 -0.33 0.24 -0.87 0.08 CRR4 -0.38 0.24 -0.92 0.02 CRR4 -0.32 0.24 -0.86 0.09

Model 4: MVPLN_VC_7-10 Model 4: PLN_VC_7-10 Model 4: PG_VC_7-10

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 937 884 53 991 lt 944 895 48 992 lt 929 868 61 990

ra 1242 1154 87 1329 ra 1241 1151 90 1331 ra 1231 1144 87 1317

re 785 741 44 828 re 792 759 33 825 re 780 730 51 831

tot 2777 2708 68 2845 tot 2783 2744 39 2823 tot 2783 2706 77 2860

total 5740 5488 252 5993 total 5760 5550 210 5971 total 5723 5448 275 5998

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 0.06 0.06 -0.06 0.17 CRR1 0.08 0.05 -0.02 0.17 CRR1 0.08 0.06 -0.05 0.19

CRR2 0.00 0.17 -0.36 0.28 CRR2 -0.01 0.17 -0.37 0.28 CRR2 0.02 0.17 -0.34 0.31

CRR3 0.02 0.19 -0.39 0.35 CRR3 0.02 0.18 -0.37 0.33 CRR3 0.02 0.20 -0.41 0.36

CRR4 -0.06 0.22 -0.56 0.30 CRR4 -0.13 0.21 -0.63 0.23 CRR4 -0.05 0.23 -0.56 0.32

Notes: 1. CRR1, CRR2,  CRR3, CRR4 are crash reduction rates for total, right angle, left turn, rear end crashes respectively

2. tot: total crash ra: right angle crash lt: left turn crash re: rear end crash

Multivariate FB Univariate FB

Table 6-11   Comparison of Results from MVPLN, PLN and PG Models

(Case 1: total crash in first 5 years=7-10/site)
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Similarly, MVPLN, with coefficients for different types of crashes following a multivariate 

normal distribution, were developed for the time trend model.  The results of MVPLNp_T_2-

3 and MVPLN_T_2-3 are tabulated in Table 6-15.   Again, it is seen that comparable results 

are provided.  This result further confirms that MVPLN models with coefficients following 

the multivariate normal distribution are unnecessary. 

 

The results in terms of DIC and CRRs for both cases favour PLN, indicating that the different 

crash types may not be correlated. Another interesting finding is that PLN is superior to PG 

for both high and low crash cases. With a large sample size, as will be seen in  

Chapter 7, the PG was usually better than PLN, with much lower DICs, while the studies 

using several small samples with high crash counts favour PLN as shown earlier in the 

evaluation of the univariate FB method.  Lord and Miranda-Moreno (2008) found that when 

crash data are characterized by low sample mean values and a small sample size, PLN offers 

a better alternative than the PG model in terms of stability of posterior mean value. However, 

from the DICs for extremely low crash counts from both cases in this study (right angle in 

Tables 6-10 and 6-11, rear end crashes in Tables 6-13 and 6-14), PG generally seems better 

than PLN and this result is quite different from that of Lord and Miranda-Moreno (2008).  

This suggests that there is no hard and fast rule to decide which model (PG or PLN) is better; 

rather it can be concluded that PLN is always a useful alternative to PG and needs to be 

considered when conducting safety analysis.   

Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 945 906 39 984 lt 947 908 39 987

ra 1248 1177 70 1319 ra 1248 1176 71 1319

re 783 757 26 809 re 785 757 29 814

tot 2807 2752 55 2863 tot 2805 2752 54 2859

total 5784 5592 190 5974 total 5786 5593 193 5979

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -3% 6% -16% 8% CRR1 -3% 6% -15% 9%

CRR2 -15% 16% -49% 13% CRR2 -13% 16% -48% 16%

CRR3 -23% 18% -62% 8% CRR3 -16% 18% -57% 16%

CRR4 -2% 17% -39% 26% CRR4 -7% 21% -54% 27%

MVPLNp_M_7-10 MVPLN_M_7-10

Table 6-12  Comparison of Competing MVPLN Models

(Case 1: total crash in first 5 years=7-10/site)
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Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

Model 1: MVPLN_2-3 Model 1: PLN_2-3 Model 1: PG_2-3

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 1541 1495 47 1588 lt 1574 1555 19 1593 lt 1542 1494 48 1590

ra 262 249 12 274 ra 270 265 5 275 ra 260 246 15 275

re 1019 977 42 1061 re 1039 1011 28 1066 re 1010 965 44 1054

tot 5176 5109 67 5244 tot 5207 5190 17 5224 tot 5189 5116 73 5262

total 7997 7829 169 8166 total 8090 8021 69 8159 total 8001 7822 180 8181

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -0.12 0.04 -0.19 -0.05 CRR1 -0.11 0.03 -0.17 -0.05 CRR1 -0.12 0.04 -0.19 -0.05

CRR2 -0.23 0.29 -0.91 0.21 CRR2 -0.21 0.26 -0.82 0.19 CRR2 -0.22 0.28 -0.88 0.22

CRR3 -0.15 0.09 -0.35 0.01 CRR3 -0.14 0.08 -0.31 0.00 CRR3 -0.14 0.09 -0.33 0.03

CRR4 0.11 0.09 -0.09 0.27 CRR4 0.11 0.09 -0.07 0.27 CRR4 0.13 0.09 -0.06 0.29

Model 2: MVPLN_M_2-3 Model 2: PLN_M_2-3 Model 2: PG_M_2-3

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 1548 1496 52 1600 lt 1574 1543 31 1605 lt 1545 1488 57 1602

ra 262 245 17 280 ra 267 252 15 282 ra 258 236 23 281

re 1018 968 50 1068 re 1038 1003 36 1074 re 1010 957 53 1063

tot 5177 5103 74 5251 tot 5206 5180 27 5233 tot 5188 5106 82 5270

total 8005 7812 194 8199 total 8085 7977 108 8193 total 8001 7786 215 8216

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -0.02 0.05 -0.14 0.08 CRR1 -0.02 0.05 -0.12 0.08 CRR1 -0.02 0.06 -0.13 0.08

CRR2 0.32 0.23 -0.24 0.64 CRR2 0.33 0.22 -0.21 0.64 CRR2 0.33 0.23 -0.22 0.65

CRR3 -0.10 0.15 -0.42 0.16 CRR3 -0.10 0.14 -0.41 0.15 CRR3 -0.09 0.15 -0.41 0.17

CRR4 0.11 0.16 -0.26 0.38 CRR4 0.11 0.16 -0.25 0.37 CRR4 0.12 0.16 -0.24 0.39

Notes: 1. CRR1, CRR2,  CRR3, CRR4 are crash reduction rates for total, right angle, left turn, rear end crashes respectively

2. tot: total crash ra: right angle crash lt: left turn crash re: rear end crash

Multivariate FB Univariate FB

Table 6-13   Comparison of Results from MVPLN, PLN and PG Models

(Case 2: total crash in first 5 years=2-3/site)
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Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

Model 3: MVPLN_T_2-3 Model 3: PLN_T_2-3 Model 3: PG_T_2-3

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 1545 1501 45 1590 lt 1572 1549 23 1595 lt 1543 1495 49 1592

ra 260 247 13 273 ra 267 261 6 274 ra 257 241 16 273

re 1020 979 41 1061 re 1045 1020 24 1069 re 1011 965 45 1056

tot 5174 5107 67 5241 tot 5204 5188 16 5221 tot 5185 5112 73 5258

total 8000 7835 165 8165 total 8088 8018 70 8158 total 7996 7813 183 8179

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -0.03 0.05 -0.13 0.06 CRR1 -0.03 0.05 -0.12 0.06 CRR1 -0.03 0.05 -0.14 0.07

CRR2 0.24 0.25 -0.37 0.60 CRR2 0.22 0.25 -0.37 0.57 CRR2 0.26 0.25 -0.33 0.61

CRR3 -0.11 0.14 -0.41 0.13 CRR3 -0.10 0.13 -0.37 0.14 CRR3 -0.11 0.14 -0.40 0.13

CRR4 0.04 0.16 -0.31 0.31 CRR4 0.03 0.16 -0.32 0.29 CRR4 0.06 0.16 -0.30 0.32

Model 3: MVPLN_VC_2-3 Model 3: PLN_VC_2-3 Model 3: PG_VC_2-3

Dbar Dhat pD DIC Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 1554 1487 67 1621 lt 1586 1544 42 1627 lt 1551 1478 72 1623

ra 257 232 25 283 ra 263 242 22 285 ra 255 223 32 287

re 1017 955 62 1079 re 1042 997 46 1088 re 1007 936 71 1078

tot 5173 5081 91 5264 tot 5201 5157 44 5245 tot 5184 5085 99 5282

total 8001 7755 246 8247 total 8092 7940 153 8245 total 7996 7723 273 8270

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 0.02 0.05 -0.09 0.12 CRR1 0.01 0.05 -0.09 0.11 CRR1 0.01 0.06 -0.10 0.12

CRR2 0.38 0.22 -0.16 0.69 CRR2 0.35 0.22 -0.20 0.65 CRR2 0.40 0.23 -0.13 0.74

CRR3 -0.02 0.15 -0.36 0.25 CRR3 -0.04 0.14 -0.34 0.20 CRR3 -0.02 0.15 -0.35 0.23

CRR4 0.25 0.16 -0.10 0.51 CRR4 0.20 0.15 -0.14 0.46 CRR4 0.25 0.16 -0.10 0.51

Notes: 1. CRR1, CRR2,  CRR3, CRR4 are crash reduction rates for total, right angle, left turn, rear end crashes respectively

2. tot: total crash ra: right angle crash lt: left turn crash re: rear end crash

Multivariate FB Univariate FB

Table 6-14   Comparison of Results from MVPLN, PLN and PG Models

(Case 2: total crash in first 5 years=2-3/site)
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The final results from the favoured univariate PLN, the corresponding MVPLN and from the 

naïve before-after study are summarized in Table 6-16.  

 

For case 1, which included 57 treatment sites and 59 reference sites, both MVPLN and PLN 

provided much lower CRR estimates than the Naïve method, which did not account for 

regression to the mean.  However, differences of DICs between MVPLN and PLN are greater 

than 10 for all forms of     
 , suggesting that PLN is superior to MVPLN in terms of overall 

performance. 

  

For case 2, the relatively low crash group that included 174 treatment sites and 190 reference 

sites, the difference is more dramatic in that the MVPLN and PLN correctly estimated no 

significant treatment effect for all types of crashes, while the Naïve method shows there is a 

significant total crash reduction.  The differences of DICs between MVPLN and PLN are less 

than 10 for all forms of    
 , indicating that the differences might be reduced with the increase of 

sample sizes, a hypothesis that needs support with further study.  

 

Tables 6-17 and 6-18 are the MCMC estimates of the posterior covariance matrix and correlation 

matrix of the latent effects   of the MVPLN model for both data groups, respectively.   It can be 

Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

Dbar Dhat pD DIC Dbar Dhat pD DIC

lt 1546 1502 44 1590 lt 1545 1501 45 1590

ra 260 250 11 271 ra 260 247 13 273

re 1020 980 41 1061 re 1020 979 41 1061

tot 5174 5107 67 5241 tot 5174 5107 67 5241

total 8001 7838 162 8163 total 8000 7835 165 8165

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50%

CRR1 -3% 5% -13% 6% CRR1 -3% 5% -13% 6%

CRR2 18% 26% -43% 55% CRR2 24% 25% -37% 60%

CRR3 -12% 14% -41% 12% CRR3 -11% 14% -41% 13%

CRR4 5% 16% -30% 32% CRR4 4% 16% -31% 31%

 MVPLNp_T_2-3  MVPLN_T_2-3

Table 6-15  Comparison of Competing MVPLN Models

(Case 2: total crash in first 5 years=2-3/site)
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seen that covariances are very low for both groups, indicating weak correlations among different 

crash types, while, by contrast, the correlation coefficients for case 2 seem to suggest a strong 

correlation among different types of crashes.  This is, however, a false correlation indicator 

because it is caused by very low crash counts for each type of crash (i.e., mainly zeroes at each 

site each year for each type of crash). In fact the correlation coefficients are reduced with the 

increased crash frequency for case 1.  Further, the evaluated results themselves confirm that the 

data may not be strongly correlated. It can be concluded that correlation coefficients alone 

cannot be used for correlation identification for low sample mean data.  

 

 

Similar to the model comparison for the univariate FB approach, all of the models considering 

time effects have successfully estimated no treatment for those hypothetical treatment sites, 

whilst the PLN and PG models without time effects falsely assessed significant treatment for 

these hypothetical treatment sites.  PLN Model 1 for both data groups has much less DIC of 

MVPLN Models 2, 3 and 4, indicating that the PLN Model 1 is superior to the three MVPLN 

models.  However, it incorrectly estimates significant hypothetical treatment effects of CRR1, 

CRR2 and CRR3 for case 1 as well as significant treatment effects of CRR 1 and CRR3 for case 

2, while the other three models provide the correct estimate of zero effect.  This result further 

Table 6-16   Final Results from MVPLN, Univariate FB and Naïve

Case 1: total crash in first 5 years=7-10/site

Fully Bayesian Before-After Naïve Before-After

Model 2: MVPLN_M_2-3 Model 2: PLN_M_2-3

 node  mean  Std  node  mean  Std  node  mean  Std

CRR1 -0.03 0.06 -0.15 0.09 CRR1 0.00 0.05 -0.10 0.10 CRR1 -0.11 0.07 -0.25 0.03

CRR2 -0.13 0.16 -0.48 0.16 CRR2 -0.11 0.16 -0.46 0.17 CRR2 -0.26 0.18 -0.60 0.09

CRR3 -0.16 0.18 -0.57 0.16 CRR3 -0.14 0.18 -0.54 0.16 CRR3 -0.34 0.23 -0.78 0.10

CRR4 -0.07 0.21 -0.54 0.27 CRR4 -0.13 0.21 -0.59 0.21 CRR4 0.31 0.14 0.04 0.58

Case 2: total crash in first 5 years=2-3/site

Fully Bayesian Before-After Naïve Before-After

Model 3: MVPLN_T_2-3 Model 3: PLN_T_2-3

 node  mean  Std  node  mean  Std  node  mean  Std

CRR1 -0.03 0.05 -0.13 0.06 CRR1 -0.03 0.05 -0.12 0.06 CRR1 -0.21 0.08 -0.37 -0.06

CRR2 0.24 0.25 -0.37 0.60 CRR2 0.22 0.25 -0.37 0.57 CRR2 -0.56 0.72 -1.97 0.86

CRR3 -0.11 0.14 -0.41 0.13 CRR3 -0.10 0.13 -0.37 0.14 CRR3 -0.17 0.19 -0.54 0.20

CRR4 0.04 0.16 -0.31 0.31 CRR4 0.03 0.16 -0.32 0.29 CRR4 0.17 0.18 -0.17 0.51

notes: 1. BCI means Bayesian confidence interval

2. CI means  confidence interval

95% BCI 95% CI95% BCI

95% BCI 95% BCI 95% CI
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confirms the previous conclusion that various function forms of expected crashes should be 

compared accordingly by different random error distributions to select the best model.  

Otherwise, the estimated results may be seriously biased. 

Table 6-17  Covariance Matrix of ε 

 Case 1: Total crashes in first 5 years =7-10/site 

 

total right angle let turn rear end 

total 0.014 

   right angle 0.050 0.383 

  let turn 0.011 0.005 0.058 

 rear end 0.000 -0.043 0.009 0.023 

     Case 2: Total crashes in first 5 years =2-3/site 

 

total right angle let turn rear end 

total 0.009 

   right angle 0.011 0.023 

  let turn 0.012 0.017 0.032 

 rear end 0.014 0.024 0.012 0.052 

 

 

Table 6-18  Correlation-coefficients Matrix of ε 

Case 1: Total crashes in first 5 years =7-10/site 

 

total right angle let turn rear end 

total 1 

   right angle 0.684 1 

  let turn 0.383 0.031 1 

 rear end -0.013 -0.459 0.250 1 

     Case 2: Total crashes in first 5 years =2-3/site 

 

total right angle let turn rear end 

total 1 

   right angle 0.802 1 

  let turn 0.717 0.638 1 

 rear end 0.658 0.677 0.286 1 

 

6.6 SUMMARY  

The Fully Bayesian approach to road safety analysis has been available for some time, but has 

made very little impact on the way mainstream road safety evaluation studies are conducted. 
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This is perhaps because researchers and analysts were content with the empirical Bayes method 

and because the FB method was largely untested.  

 

The objectives of this chapter were: 1. to examine if the FB before-after method can address the 

regression to the mean (RTM) problem and estimate no treatment effect athypothetical treatment 

sites for which there was in fact no treatment; 2. to explore if MVPLN is superior to the 

univariate FB method.  Both univariate and multivariate before-after FB methods for treatment 

effect analysis were tested through three simulated datasets and two observed datasets. Sites 

were assigned randomly to hypothetical treatment and reference groups, such that the naïve 

before-after method would incorrectly show a significant treatment effect. It was confirmed that 

FB methods can indeed provide valid results, by correctly estimating no treatment effect at these 

hypothetical treatment sites.  

 

Two FB testing frameworks were employed. First the univariate before-after fully Bayesian (FB) 

method was examined using three simulated datasets where there was a hypothetical treatment 

known to have no effect.  Three forms of expected crashes      were explored.  It was found that 

the FB method can provide correct results, in that they estimate a treatment effect of zero.  PLN 

and PG provide comparable results for these three datasets although they have big difference of 

model selection criteria LL, AIC, BIC and DIC.  PLN is better than PG models in terms of model 

selection criteria and slightly better estimation results of CRRs.  This might imply that the 

function form of      is more important than the distribution of latent effects.  The models 

accounting for time effects can give correct estimates of treatment effect while those that do not 

account for time effects provide incorrect estimates. 

 

Finally, MVPLN, univariate PLN and PG models were evaluated for treatment effect analyses 

using two groups of California unsignalized intersections with different type’s crashes (total, rear 

end, right angle and left turn).  One group had relatively high crash frequencies (the total crashes 

in the first 5 years was between 7 and 10) while another group had lower crash frequencies (the 

total crashes in the same period was between 2 and 3). Four structural forms of expected crashes 

    
  were developed and investigated for the univariate FB and MVPLN evaluation.  For each 

form of     
 , it was found that MVPLN, PLN and PG provide comparable results for crash effect 

estimates while PLN was the best model in terms of the DIC measure. Similarly, it was found 
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that crash effect estimates are very sensitive to the form of     
  and that those models considering 

temporal effects of unobserved latent variables are superior to those that do not account for time 

variations.   Both MVPLN and univariate FB models can simultaneously provide treatment effect 

estimates for all types of crashes using WinBUGs, but the computation time of the univariate FB 

is less. Thus, the univariate FB might be favoured when conducting before-after treatment effect 

analysis using different crash types.  

 

Conclusions from the investigation in this chapter can be summarized as follows: 

1. The univariate FB method was shown to be able to address the RTM problem and can 

provide promising results for treatment effect analysis. 

2. It is essential to introduce time effects into the developed models for treatment effect 

analysis, i.e., the function form of expected crashes      should account for time 

variations.  .  

3. The results in terms of crash reduction rate are more sensitive to function form of 

expected crashes      than to the distributions of latent effects.  Selection of the model 

distribution should be performed based on the same function form of expected crashes 

    ; otherwise, results may be seriously biased. 

4. MVPLN, PLN and PG model provide comparable estimates of treatment effect in terms 

of CRRs for different type crash data.  Both univariate FB models and MVPLN models 

can simultaneously provide estimates of treatment effect for all crash types while 

univariate FB models have less computation time. MVPLN with coefficients following 

multivariate normal distribution do not provide better results and the compoutation time 

can be very large, so this model is not recommended. 

5. Correlation coefficients alone cannot be used for the identification of correlations in data 

with low sample mean. 

6. If only DIC is used as a model selection criterion, and DICs of alternative models are 

comparable, then the expected deviance could be used as a second criterion to select the 

best model.   
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CHAPTER 7 APPLICATIONS OF FULLY BAYESIAN METHOD FOR 

TREATMENT EFFECT ANALYSIS 

 

 

7.1 INTRODUCTION 

In Chapter 6, The FB before-after method for treatment effect analysis was evaluated and shown 

to provide promising results.  Naturally, it is worthwhile then to compare the FB approach with 

the now conventional EB approach.  To evaluate safety treatments with the EB approach, the 

before period crash experience at treated sites is used in conjunction with a negative binomial 

crash prediction model for untreated reference sites to estimate the expected number of crashes 

that would have occurred without treatment. This estimate is compared to the crashes observed 

after treatment to evaluate the effect of the treatment. This approach accounts for regression-to-

the-mean effects that result from the natural tendency to select for treatment those sites with high 

observed crash frequencies.  

 

This chapter provides a detailed comparison and discussion of the pros and cons of the two 

Bayesian approaches (EB and FB), based on, and illustrated with, empirical applications. These 

applications pertain to the evaluation of two treatments: the conversion of rural intersections 

from unsignalized to signalized control; and the conversion of road segments from a four-lane to 

a three-lane cross-section with two-way left turn lanes (also known as road diets). Part of The 

investigation of the conversion of rural intersections from unsignalized to signalized control has 

recently been published (Persaud et al., 2010; Lan et al., 2009) and some of the documentation 

below is taken from that source. 

 

7.2 APPLICATION TO EVALUATION OF ROAD DIETS 

The analysis undertaken examined the safety impacts of converting four lane roadways to 3 lane 

roadways where the middle lane is now a double left-turn lane, a treatment commonly known as 

road diets. The sites are located on the fringes of urbanized areas. 
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The FB analysis documented below also investigated the effect of size of the reference group. To 

this end, two reference samples were used to conduct the FB: 15 yoked reference sites and 296 

reference sites, and the results compared with those from the EB. 

 

7.2.1 Data Description 

There were 15 treatment sites for this study. There were also 15 comparison sites which were 

used for an earlier FB study conducted by Pawlovich et al. (2005).  In that study, comparison 

sites were chosen to match treatment sites in attributes including traffic volume, geometry and 

location (in terms of population size). Monthly crash records, traffic volumes and other road 

characteristic variables for all 30 sites were available for the period 1982-2004.  

 

The 15 yoked reference sites were not enough for the EB analysis because a safety performance 

function could not be developed using this small sample size. For this reason, an expanded 

reference group of 296 sites was used to conduct for EB study. Yearly crashes, traffic volume 

and other variables are available for this reference group (296 sites) from 1982 to 2004 with a 

few missing values. Data for the 15 treated, 15 yoked reference and 296 reference sites are 

summarized in Tables 7-1, 7-2 and 7-3.  

Table 7-1 Summary data for 15 treated segments 

Variable Mean Minimum Maximum 

Years before 17.53 11.00 21.00 

Years after 4.47 1.00 11.00 

Crashes/mile-year before 23.74 4.91 56.15 

Crashes/mile-year after 12.19 2.27 30.48 

AADT before 7,987 4,854 11,846 

AADT after 9,212 3,718 13,908 

Length (miles) 1.02 0.24 1.72 

 

Table 7-2 Summary of data for 296 untreated reference segments 

Variable Mean Minimum Maximum 

Years 21.8 5 23 

Crashes/mile-year 26.8 0.2 173.7 

AADT 8,606 826 24,772 

Length (miles) 0.99 0.27 3.38 
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Table 7-3  Summary of data for 15 untreated yorked segments 

Variable Mean Minimum Maximum 

Years 22.9 21 23 

Crashes/mile-year 15.8 0 55.9 

AADT 7,006 778 15,374 

Length (miles) 1.33 0.49 2.53 

 

 

7.2.2 The FB Models  

The time trend and time multiplier PLN and PG models were shown in Chapter 6 to be 

potentially the best models for this aspect of the research. The FB models were developed using 

the treatment and yoked reference group as well as the treatment group with 296 reference sites, 

respectively. 

           λ     

λ     
   

                                                          

With respect to the gamma or log normal distribution that latent effect       follows, the 

developed models are called PG or PLN models accordingly, as explained before. 

 

 Model 1: Time trend model 

PLN models for the two reference groups are denoted as PLN_T_Yoked Pair, 

PLN_T_Reference296,  respectively, accordingly defined as PG_T_Yoked Pair and 

PG_T_Reference296 for the PG models. 

 
   

           
                                                                    

where,  

        AADT on road section i in year t, 

α β
 
 β

 
 = coefficients , 

    yearly varying coefficients, and 

                            , follows gamma or log normal distribution 

 

 Model 2: Time multiplier model 
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Similarly, PLN models for the two reference groups are denoted as PLN_M_Yoked Pair, 

PLN_M_Reference296,  respectively, and defined as PG_M_Yoked Pair and 

PG_M_Reference296 for the PG models. 

 
   

            
                                                            

 

7.2.3 Model Comparison 

Again, two parallel chains were run for both initial cases to obtain posterior distributions of the 

parameters and crash reductions.  The model selection criteria Log likelihood (LL), AIC, BIC 

and DIC were collected and calculated.   The results obtained from the developed FB models are 

tabulated in Tables 7-4 and 7-5, respectively, using the two reference groups. 

        Table 7-4 Treatment Effect Analysis and Model Diagnostics  

    

Reference Group: 296  sites 

   PLN_T_ Reference296 PG_T_ Reference296 

K 4 

  

  K 4 

  

  

LL -23510 

  

  LL -23500 

  

  

AIC 60442 

  

  AIC 60422 

  

  

BIC 56323 

  

  BIC 56303 

  

  

DIC 45599 

  

  DIC 45592 

  

  

 node  mean  sd 2.50% 97.50%  node  Mean  sd 2.50% 97.50% 

CRR 51% 1% 49% 52% CRR 51% 1% 49% 52% 

PLN_M_ Reference296 PG_M_ Reference296 

K 25 

  

  K 25 

  

  

LL -22870 

  

  LL -22860 

  

  

AIC 59162 

  

  AIC 59142 

  

  

BIC 67342 

  

  BIC 67322 

  

  

DIC 44324 

  

  DIC 44314 

  

  

 node  mean  sd 2.50% 97.50%  node  Mean  sd 2.50% 97.50% 

CRR 47% 1% 45% 49% CRR 47% 1% 45% 49% 

Note: K is the number of parameters 

      

For 296 reference sites, all criteria except BIC favour the PG time multiplier model 

PG_M_Reference296 (bolded in Table 7-4); thus it is deemed to be the best model to estimate 

the treatment effects.  However, the PLN time multiplier model PLN_M_Reference296 provides 
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the same estimate of treatment (the same mean and standard values of CRR) even though they 

have different values of model selection criteria.  Similarly PLN_T_Reference296 has the same 

value of CRR withPG_T_Reference296. 

 

Table 7-5 Treatment Effect Analysis and Model Diagnostics 

   

 Reference Group: Yoked Pair (15 sites) 

   PLN_T_Yorked Pair PG_T_Yorked Pair 

K 4 

  

  K 4 

  

  

LL -1867 

  

  LL -1868 

  

  

AIC 4944 

  

  AIC 4946 

  

  

BIC 4573 

  

  BIC 4575 

  

  

DIC 3759 

  

  DIC 3759 

  

  

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50% 

CRR 53% 1% 51% 55% CRR 53% 1% 51% 55% 

PLN_M_Yorked Pair PG_M_Yorked Pair 

K 25 

  

  K 25 

  

  

LL -1824 

  

  LL -1823 

  

  

AIC 4858 

  

  AIC 4856 

  

  

BIC 5595 

  

  BIC 5593 

  

  

DIC 3693 

  

  DIC 3690 

  

  

 node  mean  sd 2.50% 97.50%  node  mean  sd 2.50% 97.50% 

CRR 49% 1% 46% 51% CRR 49% 1% 46% 51% 

Note: K is the number of parameters 

      

For the yoked 15 reference sites case, LL, AIC and DIC favour both PLN and PG models with 

time multiplier function form of expected crashes      (bolded in Table 7-5).  Both models were 

regarded as best for estimation and, indeed, again provide the same estimate of treatment effect, 

CRR.  The same pattern was applied to the other two models, as shown in Table 7-5.  The study 

with two data cases further confirms how sensitive treatment estimates can be to the function 

forms of expected crashes      rather than to the distribution of latent effects. 

 

The results of the FB analysis using the two reference groups are presented later for comparison 

with the results from the EB analysis, which is taken from the published paper (Persaud et al., 

2010). 
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7.2.4 The FB Results with Comparison of EB 

The results for different study groups using the FB and EB are shown in Table 7-6. Crash 

reduction rates estimated from Equation 6-5 for the FB analysis were converted to crash effects 

measured as a % change. First, it can be seen that the FB approach can provide similar results to 

the EB, without even considering the variances of the estimates.    Even with the relatively small 

sample size (the yoked pair), the FB still can provide fairly good results. This sample of 15 

reference sites was too small to estimate a safety performance function to apply the EB approach, 

suggesting perhaps that the FB has an advantage over the EB when the reference group size is 

restricted because of cost and other practical limitations.  

 

It is natural to compare our FB results with those from the Pawlovich et al. (2006) FB analysis. 

In that study, which used the same treatment and yoked reference sites with monthly data, the 

yoked pair was used to play the role of the treatment sites, but without the intervention, and a 

crash rate (crashes per unit of average daily traffic volume) model was developed to conduct the 

treatment effect analysis using a comparison group approach.  By contrast, this research used a 

before-after approach that developed a crash count model with traffic volume as an independent 

variable (Equations 7-2 and 7-3), recognizing that the relationship between crashes and traffic 

volume may not be linear, as is assumed in a crash rate model. In addition, Pawlovich et al. 

reported an average reduction in crashes per mile while a composite effect over all crash sites 

was estimated in this research, in effect giving more weight to the results for longer segments. 

Thus, regardless of these subtle differences in approaches, differences in the results of the two 

FB studies are not directly comparable because of the different outcome variables.   

 

Table 7-6 Comparison of Crash Effects Estimated by the  

EB and FB Approaches for 15 road diet treatments 

(negative sign indicates an increase in crashes) 

(standard errors are in parentheses) 

Number of  reference sites EB FB 

15 (yoked) Not done 49% (1%) 

296 47% (2%) 47% (1%) 
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7.3 APPLICATION TO EVALUATION OF TRAFFIC SIGNAL INSTALLATION 

 

7.3.1 Data Description 

The Highway Safety Information System (http://www.hsisinfo.org/) provided all data used in the 

study. Geometry, traffic volume and crash data from 1993 to 2002 were acquired for the State of 

California. In order to see the difference in treatment effects from the before-after FB and the 

more established before-after empirical Bayes (EB) approaches, the identical dataset was used to 

conduct the FB analysis as was used for the EB analysis conducted earlier (Bhim, 2005;  Harkey 

et al., 2008). Tables 7-7 to 7-9 provides the summary information for each target crash type 

(total, rear-end, right angle and left turn) in the before and after periods at the converted 

intersections, which were all in rural areas and included 4 three-legged intersections and 24 four-

legged intersections; of the latter, 14 had two lanes on the major and 10 had four lanes on the 

major.  

 

Table 7-7 Converted three legged intersections with 2 lanes on major road 

Number of Sites = 4 

Variable mean minimum Maximum 

Years before 1 1 6 

Years after 6 4 9 

Crashes/site-year before 6.458 1 153 

Crashes/site-year after 3.525 0.57 7.778 

Right-angle crashes/site-year before 0.083 0 0.33 

Right-angle crashes/site-year after 0 0 0 

Rear-end crashes/site-year before 0.083 0 0.167 

Rear-end crashes/site-year after 0.215 0 0.5 

Left-turn crashes/site-year before 3.125 0.33 10.33 

Left-turn crashes/site-year after 0.146 0 0.33 

Major road AADT before 12975 5750 19100 

Minor road AADT before 5613 201 10300 

Major road AADT after 15105 7400 26945 

Minor road AADT after 5638 201 10300 
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Table 7-8 Converted four legged intersections with 2 lanes on major road 

Number of Sites = 14 

Variable mean minimum Maximum 

Years before 4.286 1 8 

Years after 5.714 2 9 

Crashes/site-year before 3.303 0.125 8.6 

Crashes/site-year after 3.280 0.667 9 

Right-angle crashes/site-year before 0.964 0 2.5 

Right-angle crashes/site-year after 0.379 0 1.667 

Rear-end crashes/site-year before 0.198 0 0.75 

Rear-end crashes/site-year after 0.173 0 0.5 

Left-turn crashes/site-year before 0.886 0 3.25 

Left-turn crashes/site-year after 0.727 0 3.25 

Major road AADT before 10344 7400 18738 

Minor road AADT before 2150 101 5280 

Major road AADT after 11204 7762 21700 

Minor road AADT after 2187 101 5280 

 

 

Table 7-9 Converted four legged intersections with 4 lanes on major road 

Number of Sites =  10 

Variable mean minimum Maximum 

Years before 3.4 1 6 

Years after 6.6 4 9 

Crashes/site-year before 5.557 2.667 10.5 

Crashes/site-year after 5.229 1.44 10.75 

Right-angle crashes/site-year before 2.15 0 7 

Right-angle crashes/site-year after 0.568 0 1.167 

Rear-end crashes/site-year before 0.2 0 1 

Rear-end crashes/site-year after 0.44 0 1.25 

Left-turn crashes/site-year before 1.507 0 3 

Left-turn crashes/site-year after 1.018 0 2.667 

Major road AADT before 15958 7018 25666 

Minor road AADT before 2716 600 9700 

Major road AADT after 18235 7155 29750 

Minor road AADT after 2790 600 9646 
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The reference group of untreated intersections included 1,381 that were three legged, 726 that 

were 4-legged with two lanes on the major, and 181 that were 4-legged with four lanes on the 

major.   The summary information of reference groups are tabulated in Tables 7-10 to 7-12. 

 

Table 7-10 Stop Controlled 3legged intersections with 2 lanes on major road 

Number of Sites = 1381 

Variable Mean Minimum Maximum 

Years 10 10 10 

Crashes/site-year 0.84 0 19 

Right-angle crashes/site-year 0.02 0 3 

Rear-end crashes/site-year 0.06 0 3 

Left-turn crashes/site-year 0.17 0 15 

Major road AADT 9027 2550 33500 

Minor road AADT 554 100 10001 

 

Table 7-11 Stop Controlled 4legged intersections with 2 lanes on major road 

Number of Sites = 726 

Variable Mean Minimum Maximum 

Years 10 10 10 

Crashes/site-year 1.40 0 18 

Right-angle crashes/site-year 0.33 0 14 

Rear-end crashes/site-year 0.10 0 4 

Left-turn crashes/site-year  0.23 0 9 

Major road AADT 8526 2900 29732 

Minor road AADT  653 100 7800 

 

Table 7-12 Stop Controlled 4legged intersections with 4 lanes on major road 

Number of Sites = 181 

Variable Mean Minimum Maximum 

Years 10 10 10 

Crashes/site-year 1.24 0 12 

Right-angle crashes/site-year 0.28 0 7 

Rear-end crashes/site-year 0.10 0 3 

Left-turn crashes/site-year 0.25 0 8 

Major road AADT 12462 2952 36000 

Minor road AADT 596 100 6000 
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7.3.2 FB Models 

Since the treatment sites for each type of intersections are limited, three groups of intersections 

were combined together to estimate the treatment effect.  PG models with or without trend, and 

PLN models with or without trend, were developed to conduct the before-after FB analysis. In 

addition, PG or PLN with time multiplier model was also developed based on the results 

presented above for the four models developed. Dummy variables are necessary to combine all 

groups together.  The expected crashes can be modeled as: 

 

 Models without trend 

 
   

                       
                      

                                                       

 Models with trend 

 
   

                       
                      

                                              

 Model with time multiplier 

 
   

                               
                      

                                           

where, 

 
   

  expected number of crashes at intersection i in year t 

i=1 to N, with N being the total number of intersections in the treatment database 

(including 3 and 4-legged intersections with either 2 or 4 lanes on the major road; 

   = dummy variable, such that   =1, if intersection i is 3 legged, and   =0 otherwise; 

similarly,  

    = dummy variable, such that    =1, if intersection i is 4 legged with 2 lanes on the 

major road, and    =0 otherwise; 

    = dummy variable, such that   =1, if intersection i is 4 legged with 4 lanes on the 

major road, and   =0 otherwise; 

                                     Coefficients for dummy variables 

                yearly varying coefficients 
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Prior distributions for all coefficients                                     and                  

are again assumed as non-informative N (0, 1000). 

 

The DICs and CRRs for each type of crash are shown in Tables 7-13 and 7-14, respectively. It is 

seen that the PG models have much lower values than the PLN models.  Based on this, the time 

multiplier PG model described in Equation 7-9 was applied, but it is not favoured due to the 

extra 27 parameters introduced. The difference of DICs for the PG with trend or without trend 

models is less than 10 for each type of crash, except for rear-end crashes, indicating that the two 

models are comparable. With this in mind, and considering that the time effects model should be 

always favoured given that model selection criteria are comparable, the PG_T was selected to 

conduct analysis for all types of crashes. 

 

From Table 7-14, again, it is seen that PLN and PG, PLN_T and PG_T models provided very 

consistent estimates, as was found in the previous study.  This further strengthens the conclusion 

that CRR is more sensitive to the function form of expected crashes than to the distributions of 

latent effects. 

Table 7-13   DICs from Competitive Models 

  Total Rear-end Right-angle Left-turn 

Poisson-Lognormal without trend 54164 12012 12281 19632 

Poisson-Lognormal with trend 54158 11996 12274 19629 

Poisson-Gamma without trend 53971 11876 12036 19428 

Poisson-Gamma with trend 53965 11850 12040 19423 

Time multiplier Poisson-Gamma  53986 11851 12060 19436 

 

Table  7-14  Summary of Crash Effects Estimated by Alternative Models  

  PLN PLN_T PG PG_T PG_M 

Total 19%  (6%) 22%  (5%) 19% (5%) 22% (5%) 22% (5%) 

Rear-end -20%  (21%) -26%  (23%) -23% (22%) -27% (23%) -31% (24%) 

Right-angle 81%  (2%) 79%  (3%) 81% (2%) 79% (3%) 78% (3%) 

Left-turn 49%  (6%) 52%  (6%) 50% (6%) 52% (6%) 53% (6%) 

Notes: 1.  negative sign indicates an increase in crashes 

 

 

2. standard errors are in parentheses 
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7.3.3 FB Results and Comparison with the EB 

The FB results are presented in Table 7-14. They indicate highly significant reductions in left-

turn, right-angle and total crashes following signal installation; for rear-end crashes, an  increase 

of 27% was detected, but this was not statistically significant, likely because there were few of 

the crashes to begin with. 

 

The EB results are also presented in Table 7-15 for comparison.  It should be noted that the 

conventional statistical tests for the differences of the results from the FB and EB are not 

relevant since these are two estimates from the same sample. Nevertheless, visual inspection 

does suggest that the results from the two methods are comparable.  The results are consistent 

across methods. Notably, the standard errors from the FB method are smaller than for the EB 

method, in contrast to the indication by Carriquiry et al. (2005) that the standard deviation from 

FB can be relatively large. This is likely because they introduced an intervention model, for 

which only 15 treatment sites were used to calibrate the intervention coefficients to obtain the 

expected crash frequency with treatment in the after period. 

 

Table 7-15 Summary of Crash Effects Estimated by the FB and EB Methods  

(negative sign indicates an increase in crashes) 

(standard errors are in parentheses) 

 

 

FB Method  

Poisson Gamma with 

trend 

Empirical Bayes (EB) 

Method 

Total 22% (5%) 16% (6%) 

Rear-end -27% (23%) -26% (27%) 

Right-angle 79% (3%) 72% (5%) 

Left-turn 52% (6%) 49% (7%) 

 

 

7.4 SUMMARY  

A detailed comparison of the two Bayesian approaches (EB and FB) was presented, based on, 

and illustrated with the evaluation of two treatments: the conversion of rural intersections from 

unsignalized to signalized control; and the conversion of road segments from a four-lane to a 

three-lane cross-section with two-way left turn lanes (also known as road diets). 
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The results suggest that the EB and FB results for treatment evaluation studies are comparable 

while FB method provides smaller standard deviations, which indicates a more stable estimate.  

This would suggest it is still appropriate to conduct treatment effect analysis using EB for 

univairate crash data and different type of crash data, but that it is essential in so doing to 

account for temporal trends in crash frequency.  This conclusion is quite different from the 

network ranking investigation in which it was found that the FB method is superior to the EB 

method.   This is probably because autoregressive models are not applicable to the FB before-

after method in that the conversion year of treatment needs to be excluded for analysis. 

 

It must be said, however, that the FB method is much more efficient than the EB for multivariate 

modeling of different types of crashes since all of the estimates of each type of crashes are 

obtained in one modeling procedure, while EB needs to conduct analysis for each type of crashes 

by developing and applying separate SPFs.  Another advantage of the FB method is that it is 

available for situations where it is difficult to acquire a large enough reference group to calibrate 

safety performance functions required for the EB approach.  For multilevel severity crash and/or 

spatial correlated data, the FB method is expected to provide better estimates in that it is able to 

deal with the inherent correlation among the crashes and/or segments.  
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CHAPTER 8 ACCOMPLISHMENTS, CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE STUDIES 

 

 

8.1 ACCOMPLISHMENTS 

The Fully Bayesian approach to road safety analysis has been available for some time, but has 

made very little impact on the way mainstream road safety evaluation studies are conducted. 

This is perhaps because researchers and analysts were content with the empirical Bayes method, 

and because the FB method was largely unevaluated and untested and may have been seen as too 

complicated to be worth the effort.   

 

This study tried to address this gap by conducting a thorough evaluation of the FB method for 

two aspects of road safety analysis -- black spot identification and treatment effect analysis.  To 

doing so, the following tasks were performed. 

 

1. Explored various FB models with correlated data 

Various FB models were proposed, developed  and presented with correlated data, such as time 

series, spatial, temporal spatial, multivariate (with or without temporal correlation) and/or spatial 

correlations.  Spatially related FB models were not further investigated due to the limitations of 

the data at hand.   

 

2. Investigated the model selection criteria to identify best possible model selection criterion 

Model selection criteria LL, AIC, BIC and DIC were obtained and compared in the evaluation 

studies.  It was found DIC might be the best criterion in that the selected FB models can provide 

a better result. 

 

3. Developed a proper approach to conduct a thorough evaluation of FB for black spot 

identification  

Ten years of data from 1993-2002 for 726 unsignalized four legged intersections in California 

were used to evaluate the FB method for hot spot identification in comparison with the EB 
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method, while 436 top ranked sites with five levels of severity data based on combined crash 

counts were selected for an evaluation study of the multivariate FB method.  A thorough 

evaluation of the univariate FB versus EB method for single level severity data and multivariate 

FB versus univariate FB for multilevel of severity data, as well as on the performance of various 

ranking and evaluation criteria, was conducted.  

 

For the univariate FB study with 726 sites, 11 FB models were developed and Poisson AR (1) 

was identified as the best model for comparison with the EB method and for further study and 

the AR (1) model was applied to multilevel severity crashes.  Two time frames (1996-1998 and 

1993-1998) were used to rank the sites for the evaluation study. The period 1999-2002 was 

selected as the evaluation period.  Estimates of the true mean for the evaluation period were 

derived from the model developed, using a total of 10 years of data expected to be long enough 

to reasonably estimate  the true mean for the evaluation period. 

 

4. Investigated ranking criteria and evaluation criteria and identified the possible best ranking 

criteria and evaluation criteria 

A total of 8 ranking criteria, which include posterior Poisson mean, posterior expected rank, 

posterior mode rank, posterior median rank, posterior probability of being the worst, raw data, 

posterior PSI and posterior PPSI have been examined. Specifically, the mode rank of the 

posterior distribution of the Poisson mean was proposed as a ranking criterion.  In addition, the 

evaluation criteria, which include sensitivity and specificity, the sum of the PM, sum of the PSI, 

sum of crash counts and sum of the PPSI, were explored.  The best ranking criteria and 

evaluation criteria were identified.   

 

5. Designed an approach to properly evaluate FB method for treatment effect analysis  

Two FB testing frameworks were employed. First the univariate before-after fully Bayesian (FB) 

method was examined using three simulated datasets. Then MVPLN, univariate PLN and PG 

models were evaluated for treatment effect analyses using two groups of California unsignalized 

intersections.  Hypothetical treatment sites were assigned randomly to these datasets to separate 

treatment and reference sites such that the treatment group would have significant naive 
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treatment effect.  It was confirmed that FB methods can indeed provide promising results, in that 

they correctly estimate a treatment effect of zero at these hypothetical treatment sites.  

 

6. Evaluated the performance of the EB and FB approaches for network ranking and treatment 

effect analysis to identify the advantages of FB method over the EB method 

Both FB and EB methods were evaluated and compared based on ranking criteria of PM and PSI 

for black spot identification, using the single severity crash data.  It was found that the FB 

method is superior to EB method in that it provides better results and it has more solid ranking 

criteria.  For treatment effect analysis, EB and FB methods were applied to evaluation of two 

treatments: the conversion of rural intersections from unsignalized to signalized control; and the 

conversion of road segments from a four-lane to a three-lane cross-section with two-way left turn 

lanes (also known as road diets).  The results indicate that both FB and EB method can provide 

comparable treatment effect estimates, while the estimate from the FB method has smaller 

standard deviations, indicating a more stable estimate.  This would suggest it is still appropriate 

to conduct treatment effect analysis using EB for univairate crash data and multi-type crash data, 

but that it is essential in so doing to account for temporal trends in crash frequency.  This 

conclusion is quite different from that for the network ranking investigation.  This is probably 

because autoregressive models are not applicable to FB before-after method, in that the 

conversion year of treatment needs to be excluded for analysis. 

 

8.2 CONCLUSIONS 

Through the evaluation studies of the FB method for black spots identification and treatment 

effect analysis, the following conclusions were obtained: 

 For single severity data, FB provides better results than the EB method in terms of higher 

sensitivity, specificity, sum of the PM and even sum of crash counts in the evaluation 

period, regardless whether ranking is by PM or PSI. For multilevel severity data, a 

multivariate approach has better performance than the univariate FB approach for 

network ranking.   

 

 Posterior expected, median and mode ranks, as well as the probability of being the worst 

and posterior Poisson mean are good ranking criteria while expected rank has somewhat 
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better ranking results than PM and median rank, both mode rank and the probability of 

being the worst may provide the best ranking results especially for the top ranked group.   

Expected rank, median rank and PM provide almost the same results if the order of the 

individual sites in the ranked group is not considered.  Mode rank provides at least 90% 

of the same identified sites as PM or expected rank without taking into consideration the 

order of the ranked group.  However, there is a substantial difference in rank order in 

comparison to PM or expected rank.  It is shown that PSI cannot provide good ranking 

results but it might be used as a second level ranking criterion while other reliable criteria 

such as expected rank, PM or mode rank etc., are used as first level ranking criteria. 

 

 Where only a few top ranked sites are of interest, sensitivity may not be a good 

evaluation criterion because one false positive can cause a huge difference in sensitivity, 

while the decision parameter may just have a minimal difference (i.e. 10.5 crashes versus 

10.51 crashes).  In such cases, the sum of the PM might be used as a major evaluation 

criterion.   

 

 Short data history (3 years) can provide better ranking results than longer data history (6 

years) for the where identification of only limited top ranked limited is of interest, as is 

common in a black spot identification program.  As the number of ranked sites increases, 

a longer data history generally provides better results.   

 

 The FB method was shown to be able to address regression to the mean problem and to 

provide promising results for treatment effect analysis.  Both univariate FB and MVPLN 

models can simultaneously provide comparable estimates of treatment effect in terms of 

CRRs for different crash types.  Univariate FB might be favoured due to overall 

performance and much shorter modeling time when using different types of crashes.  In 

addition, correlation coefficients alone cannot be used for correlation identification for 

low sample mean data. 

 

 The results in terms of crash reduction rate are more sensitive to function form of 

expected crashes      than to the distributions of latent effects.  Model selection of various 
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distributions should be performed based on the same function form of expected crashes, 

    ,; otherwise, seriously biased results can be anticipated.   In addition, it is essential that 

the function form of expected crashes      accounts for time variations.  The model 

addressing time effect is always preferred unless it is strongly not favoured by the model 

selection criteria. 

 

 MVPLN with coefficients following multivariate normal distribution is not recommended 

due to largely increased modeling running time and comparable results in terms of model 

selection criteria applied, and the CRRs estimated. 

 

 DIC is a better model selection criterion than log likelihood, BIC and AIC.  When only 

DIC is used as model selection criteria, and if DICs of alternative models are comparable, 

then the expected deviance might be used as a second criterion to select the best model. 

 

 For cases such as small reference samples, multilevel severity crashes and/or spatial 

correlated data, FB method is anticipated to provide better estimates in that it is able to 

deal with the small sample problem and handle the coherent correlation among the 

crashes and/or segments. 

 

8.3 RECOMMENDATIONS FOR FUTURE STUDIES 

 

The research can be extended in several directions as follows: 

1. Research for black spot identification can be extended to explore multilevel ranking 

criteria.  For example, within some small range, where the primary decision parameters 

produced are essentially the same, a second level ranking criterion could be implemented, 

and so on.  Potentially, expected rank can be used as first level criterion; PSI would then 

be used as the second level criterion.  In this way, the ranked list might provide the most 

hazardous sites, while achieving the greatest possible safety improvement with a limited 

budget. 
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2.  Three and six years’ ranking data were used to study the effect of data history for black 

spots identification. Further study could be performed by exploring other data history 

years to find an optimal data history for hot spot identification.   

 

3. Spatial correlated data could be used for the evaluation of black spot identification and 

treatment effect analysis and to identify the magnitude of difference from the FB and EB 

methods. 

 

4. Finally, it would be useful to do a similar comparative evaluation of EB and FB methods 

using other datasets to examine the above conclusions. 
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APPENDIX 

 

Probability Distributions for Modeling 

 

This appendix provides a summary of the probability distributions used in this 

dissertation, which are Poisson distribution, Gamma distribution, log normal distribution, 

multivariate normal distribution and Wishart distribution.  The probability density function 

(denoted PDF), its mean and variance of each probability distribution are  provided below. 

 

1. Poisson 

The Poisson distribution is a discrete distribution.  It is used to model the number of events 

occurring within a given time interval or a given space. 

 

                                              , 

 

then the PDF is 

        
      

  
                 

 

The  mean and variance: 

                        

                          

 

 

2. Gamma 

The Gamma distribution is a continuous probability distribution.  The probability density 

function of the gamma distribution can be expressed in terms of the gamma function 

parameterized in terms of a shape parameter   and scale parameter  .  

 

                                                , 
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The PDF is 

          
          

    
                           

 

The mean and variance of the Gamma distribution are: 

                         

                             

 

3. Lognormal 

If X is a random variable with a normal distribution, then Y = exp(X) has a log-normal 

distribution; likewise, if X is log-normally distributed, then X = log(Y) is normally distributed. 

A log normal distribution is a probability distribution of a random variable whose logarithm is 

normally distributed.  The PDF of a log-normal distribution is: 

 

                     

The PDF is 

          
 

     
 

 
        

                

 

Its expected value (mean) and variance are, 

        
  

  

           
         

 

 

4. Multivariate normal Distribution 

If  a random vector               is a multivariate normal distribution: 

          

 

The PDF is 
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where |Σ| is the determinant of Σ, and where               could instead be written as         . 

This expression reduces to the density of the univariate normal distribution if Σ is a scalar (i.e., a 

1×1 matrix).  

 

The vector μ in these conditions is the expected value of X and the matrix Σ is the covariance 

matrix. 

 

The mean and variance are 

       

         

 

5. Wishart Distribution 

A Wishart (R, p) prior is defined for the covariance matrix     of multivariate normal 

distribution in this study, denoted as      where R is the scale matrix  and p is the degrees-of-

freedom parameter respectively.  The hyper-prior parameters R and     are known, usually 

assuming     for vague prior, where K is the number of severities or types of crashes in road 

safety analysis.  

            

The parameterization of the Wishart probability density function (pdf) is 

              
 
      

     
                                  

 

The mean and variance are 
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