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11 ABSTRACT

. The impact of uncertainty in spatial and a-spatial lumped model parameters for a
continuous rainfall-runoff model is evaluated with respect to model prediction. The model
uses a modified SCS-Curve Number approach that is loosely coupled with a geographic
information system (GIS). The rainfall-runoff model uses daily average inputs and is
calibrated using a daily average streamflow record for the study site. A Monte Carlo
analysis is used to identify total model uncertainty while sensitivity analysis is applied
using both a one-at-a—time (OAT) approach as well as through application of the extended
Fourier Amplitude Sensitivity Technique (FAST). Conclusions suggest that the model is
highly sensitive to uncertainties associated with the initial abstraction estimates followed
by model inputs and finally the Curve Number. While the model does not indicate a high
degree of sensitivity to the Curve Number at present conditions, uncertainties in Curve
Number estimation can potentially be the cause of high predictive errors when future
development scenarios are evaluated. The author of this research is Harry Manson. This
research is presented to the department of graduate studies at Ryerson University, Toronto
Ontario Canada on September 30, 2003. This work is submitted as partial fulfillment for

the degree of Masters of Applied Science in Environmental Science and Management
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Introduction

Often in science, it is necessary to study and comprehend systems that for a variety
of reasons are too complex or impractical to effectively study in reality. This notion is
especially true in the case of hydrological models and as a result, various stakeholders
often utilize a modelling assisted approach in order to simplify systems of interest. While
environmental models range in complexity and application, Singh (1996) notes that all
hydrological modelling requires accurate and representative data, the manipulation of
which is cumbersome largely because of the spatial nature of hydrological data, the large
volumes of data needed to support effective modelling, as well as challenges surrounding
data organization and management.

Within the last 15 years, rapid advances in computing power, now commonly
available to the average user, have motivated the evolution of computer based modelling of
the environment and one of the most significant advances in computer-assisted modelling
is the development and application of geographic information systems (GIS).
Fundamentally, GIS is a system for the collection, storage, manipulation, analyzing and
display of spatial data. While basic GIS systems have been in existence for the last 30-35
years, it has been only in the last 10-15 years that GIS has evolved from its original
emphasis of storing and displaying spatial data to the development of complex and
sophisticated data manipulation and analysis. The push towards expanding the capabilities
of GIS beyond a tool for convenient cartography has been emphasized by a relatively
recent shift in the focus of the discipline from simple geographic information systems
(GISystems) towards what has been identified as geographic information science
(GIScience), (Goodchild, 1992), a topic explored extensively in the book “Geographic
Information Systems and Science” (Longley et al., 2001).

The abilities of GIS to manage the challenges associated with computer based
hydrological modelling effectively have been discussed by a number of authors (Bobba et
al., 2000; Sui et al., 2000; Correia et al, 1998; Singh and Fiorentino, 1996; Singh, 1995),
largely because GIS provides a powerful means for the management, comprehension,
visualization and analysis of hydrologic problems. While the characteristics of watershed

attributes such as soil, land use, slope and antecedent moisture conditions vary spatially in



complex ways, this variation can be managed effectively within a GIS framework. As a
result, issues surrounding data integration, compatibility and structure often significantly
challenging for even simplified hydrological models become more manageable through the

application of GIS. Singh, (1996) has reinforced this utility:

...because many models have different data requirements, a collection program
tailored to the demand of a particular model cannot be used for another with different data
requirements. Consequently a separate collection program has to be developed and data
problems can be resolved through application of a GIS. Its ability to extract, overlay and
delineate watershed characteristics permits integration with watershed models. Design
calibration and modification and comparison of these models can be significantly
Sacilitated by use of the GIS.

Further, superior means of data visualization not readily achievable with traditional
modelling approaches can be made use of within the GIS environment.

This use of GIS is also particularly suitable for investigating issues of scale
associated with traditional hydrological modelling. Such issues are tied to aspects of
heterogeneity within the model system, the degree of which varies with the geographical
focus of the model. Geographic modelling of spatially varied information such as,
precipitation, evaporation, land use, soil properties and soil moisture contents, etc. opens
the door to more physically realistic approaches to simulate the hydrological balance of
watersheds. Because traditional models tend to lump processes at the catchment or
occasionally the sub-catchment scale, the degree of variation expressed in the model is
limited by the degree of averaging of hydrological properties into homogenous units at that
scale. |

Currently both GIS users and hydrologists alike have begun to acknowledge the
wide variety of benefits associated with integrating the two disciplines (Sui et al, 1999),
which has been made largely apparent by the explosion of literature on the subject
(DeVantier and Feldman, 1993; Maidment, 1996; McDonnell, 1996; Moore, 1996;
Tsihrintzis et al., 1996; Correia et al., 1998; Sui et al., 1999). Integration of GIS with
hydrological systems however poses certain challenges as well as benefits. In many cases
the separate ontologies between GIS and traditional or mathematical hydrological
conceptions of the world pose problems in the co-evolution of coupled GIS and
hydrological applications.

All aspects of modelling from conception to application however, involve a

simplification of the system under study and consequently the introduction of numerous



sources of uncertainty cannot be avoided. Uncertainties in a model are the result of error
within the model or deviation from reality and best management practices for traditional
hydrological modelling suggest that uncertainty in model performance should be identified,
understood, communicated and, where possible, reduced. While numerous studies and
methods have been developed that manage uncertainty associated with hydrological
modelling, the effects of uncertainty propagation in hydrological models based on GIS are
not as widely understood and may have a significant impact on the reliability of GIS-based
hydrological models.

One popular approach used to model rainfall-runoff relationships and the effects of
future land use changes on a hydrological regime is in the application of the United States
Natural Resources Conservation Service (NRCS) Curve Number method. At the center of
this method is a series of Curve Numbers relating soil and land use conditions within a
watershed to physical rainfall-runoff relationships. Once a suitable Curve Number is
defined for a particular area, prediction of future development impacts rely in conversion
tables, relating the current Curve Number to some future value based on a prediction of
increases in impervious surface area. The Curve Number method is relatively popular
because of its inherent simplicity of application. Further it is often used in conjunction with
a GIS as relevant soil and land use data can easily be processed in this environment to
derive either lumped or distributed Curve Number parameters. As a result, this method
provides an excellent opportunity to study the impacts of uncertainty propagation in GIS-
based hydrological modelling, and is the focus of this research.

In order to deal effectively with uncertainties derived from the application of GIS to
hydrology, comprehension of how uncertainty may be introduced in these types of models
is of significant importance. The scope of this research first and foremost is to examine the
role of uncertainty propagation within the context of GIS, hydrological, and coupled
models. In order to comprehend this, an understanding of hydrological and GIS model
ontology is necessary as this investigates how each model deals with the simplification of
reality and thus directly influences the ways in which uncertainty is introduced. Following
this, various sources of potential uncertainty are identified, as are paths of error

propagation.



Understanding of the role of uncertainty and its effect on model performance has
been achieved in traditional models through the application of global model uncertainty
analysis (UA) and parameters specific sensitivity analysis (SA). While uncertainty analysis
can provide an indication of the overall uncertainty or tolerance of a models predictive
capacity, parameters specific sensitivity analysis quantifies the degree of impact each factor
of the underlying model contributes to the overall model performance. While GIS-based
models have not typically been subjected to this type of analysis, application of UA in
conjunction with SA can provide guidance on the utility of a GIS-based models
performance and application of these methods to GIS-based hydrological models can
provide a strong indication of the effects of uncertainties resulting from geographic data.

The overall scope of this research is to examine the role of uncertainty in spatial
and a-spatial data and how this uncertainty impacts the reliability of GIS-based
hydrological models. This research does not attempt to suggest a better model, but rather
examines a modeling approach that is widely applied within the field of hydrology.
Investigation of the implication of data uncertainty on model performance will take place is
a series of steps. In Chapter 1 a general review is provided of basic modelling theory. This
is first in the general sense and later in the chapter with specific emphasis on the various
types of hydrological modelling. Chapter 2 provides the reader with a review of GIS and
coupled models. Various challenges with respect to the evolution of the coupling of GIS
with hydrological modelling is reviewed, as are concepts of best management practices
applied to a GIS based hydrological model. In Chapter 3, a comprehensive discussion of
uncertainty and error is provided. Topics reviewed include error, uncertainty, error
propogation in modelling as well as the various types of uncertainty in spatial and a-spatial
data. Various methodologies for identifying and quantifying sources of uncertainty in data
will also be reviewed in Chapter 3. These techniques will be evaluated with respect to
published applications and a suitable methodology for performing case study is presented.
The case study in Chapter 4 focuses on the development of a lumped SCS Curve Number
based hydrological model. Model parameters are derived through loosely coupling the
mathematical model with a GIS. The uncertainty for a number of model factors is
identified and used in a global uncertainty analysis. This is followed with a one-at —a time

sensitivity analysis of model factors as well as a quantitative sensitivity test. The final



sensitivity analysis provides a quantitative measure of the sensitivity of the model to each
model factor and their #™ order interactions with other model factors. Finally in Chapter 5,
results of the case study are evaluated with respect to model performance, global
uncertainty of the model, and the sensitivity of the model to various model factors.
Conclusions and recommendations regarding the results of the case study are presented in

Chapter 6.



Modelling Chapter 1

This section is intended to provide the reader with a working background of
environmental modeling. The development of modelling best management practices
(BMP’s) as well as various modelling approaches and terminology is discussed. The role of
Geographic Information Systems (GIS) in the field of hydrology is reviewed, as is the most
common approaches to merging GIS with physical based hydrological models. The reader
will finish the chapter with an understanding of environmental modelling as well as the role
of physically based models, GIS and challenges facing the integration of the two

approaches.
1.1 Environmental Modelling

Models are used in virtually every discipline, from physics to philosophy, for
hypothesis formulation and testing, as heuristic tools for understanding system structure
and function, and in assessing the effects of future control or management.strategies
(Bobba et al., 2000). While evolving separately, both hydrological modelling and GIS
share many common elements application of these models to a decision-making process
requires a comprehensive understanding of modelling tolerance and limitations.

The term model is generically considered to mean a conceptualization of reality.
Despite an extensive diversity of applications and developments, models share many
common, and one pivotal element in that they are all in some way devised to simplify a real
world pattern or process too vast or complex to study or manipulate at natural scales and
complexities. The subject of interest, for a modelling study is commonly referred to as a
system. Within a system, an object of interest may be referred to as an entity, and an
attribute is considered to be a property of an entitv. Because a model is designed to
simplify the study of a system, the user must weigh the benefits of creating a model simple
enough to represent only those aspects of the system of interest but on the other hand,

should be sufficiently detailed such that valid conclusions can be drawn about that system
(Banks, 2000).



1.2 Model Classification

Models can be categorized into numerous classes and subclasses (see Figure 1.1).
The primary distinction within model classification is made between physical and
mathematical models. A physical model is a scaled down physical structure representing a
subject of interest. Some examples may include an architect’s building model. A map can
also be considered a particular subclass of physical model defined as a graphic
representation of the milieu or all aspects of the cultural and physical environment (Dent,
1996). Because maps have a distinct relationship with geographic information systems, and

are the sources of much primary geographic data, they are discussed to a certain extent.

1.2.1 Mental Models

Although not often classified, mental models, are also an important class of
modelling. The roots of model structure discussed in the next section are derived from the
mental constructs of a real world system and hence mental models could theoretically be
placed higher in the classification system than physical and mathematical models as both
physical and mathematical models can be expressed as the result of mental models. For
example, one famous example of a mental mathematical model is that of Einstein’s Special
Theory of Relativity or SPTOR (Einstein, 1920). Since technology at the time of the
development of the SPTOR limited bench scale physical modelling of its principles,
Einstein developed his principles according to what are now considered, “thought

experiments”. From a series of though experiments,
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Figure 1.1. The creation of a model begins with a conceptualization of reality, Often described as a
mental model. the manifestation of ench mav take on varions classes and enh-clasges



Einstein developed the SPTOR and later through mathematical models extended
this to the General Theory of Relativity (Einstein, 1920).

1.2.2  Mathematical Models

The mathematical model is the primary means with which a scientist may
investigate an environmental system. A mathematical model uses symbolic notation and
mathematical equations to represent the physical processes of the system of interest.
Usually hierarchical in its development, many mathematical models are complex enough to
require relating a series of mathematical equations describing and integrating the behavior
of various components or factors of a single system. In this respect, the results of
computing a solution for one mathematical model are often used to drive another model.

The term factors refer to those aspects of the system that are described
mathematically and are commonly categorized as model structure, model attributes, model

inputs, model variables, model parameters and model outputs.

Model Structure

Lei, (1996) has defined model structure as a group of hypotheses consisting of a set of
general laws Ly, Ly,...L, and a set of statements pertaining to empirical circumstances Cj,
Cy...C,. Laws governing the dynamics of model structure include physical laws such as
the laws of thermodynamics and gravity. As an example, a popular model structure used in
hydrological modelling is the mass balance approach introduced by Thornthwaitee, (1944).
The mass balance approach conceptualizes the water catchment as a series of inputs,
outputs and storages (Figure 1.2). Each physical process conceptualized in the model

structure is defined by a series of statements operating under a set of physical laws where:



AET

Infiltration

ASM Stream

Percolation
to groundwater

Figure 1.2. Thornthwaitee, (1944) conceptualized a rainfall-runoff relationship as a series
of storages and linkages. Source: Dunne and Leopold, (1998).

OF = P-I-AET + AGWS (L.1)
and:
OF = Overland Flow
P = Precipitation
I = Interception Loss
AET = Actual Evapotranspiration
AGWS = Change in Ground Water Storage

As previously identified, mathematical models can be hierarchical especially when
dealing with complex systems. In that respect, mathematical models are often composed of

a series of hierarchical model structures. Various common mathematical approaches to
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water balance variables are vast and include but are not limited to general interception loss
(Dunne et al., 1998); regional interception loss (Helvey and Patrice 1965), grass
interception (Stoltenberg et al., 1950; Merriam, 1961; Lull, 1964; Crouse, 1966) Modelling
of evaporation studies include those treated by the USGS (1954) and include the water
budget method, as well as the energy budget method and the Blaney Criddle Formulae
(USSC, 1970). Evaporation models are dependent on variables of solar radiation and have
been addressed in the form of mean monthly solar radiation (Chang, 1968). The movement
of groundwater is most often accounted for using Darcey’s Law, methods concerning the
determination of zones of recharge and discharge have been conducted by Meyboom
(1962); and Toth (1966) and common methods for modelling groundwater infiltration
include those of Horton, (1940) as well as Green and Ampt (1911).

Model Attributes

A model attribute can be described as a single or set of properties associated with a
model entity. The number of entities in a system of interest may be related to the
complexity of a model. For example, in the case of a single sub-watershed, at the macro
scale the attributes used to describe the watershed may reflect area, maximum length,
maximum width, average elevation, slope etc. Other attributes used to describe the
watershed may relate to types of vegetation class such as agricultural, forest or wetland.
Further, types of land use may also constitute attributes of the watershed and include
categories such as urban, rural, industrial, etc. The number and types of attributes as well as
entities within a system are a function of the complexity of the model as well as the

complexity of the system at a given scale of interest.

The set of attributes for a given entity can be described as the vector of e entity

attributes where:

_)
a=|a, a,...a, (1.2)
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Such that @ € A and A is the vector of s system attributes described as:

9
A= {A4;, Aj, ...As} (1.3)

Model Inputs

Model inputs can be described as external variables that drive the system and are usually
defined according to a time series. Because a model may have more than a single input,

model inputs are often described as a vector denoting a series of n model inputs where:

ﬁ
I) =1L, I2¢ 5o ngy | (1.4

Typical examples of model inputs within the context of environmental models included

temperature, precipitation and evaporation.

Model Variables

Model variables, sometimes referred to as system state variables; refer to physical
properties of a system that may vary within the context of the system and for each discrete

time step. Further, a model variable can be measured directly and can also be denoted in

vector form for a set of model variables where:

ﬁ
X = X1, Xz, .. Xnpl (1.5)

Model Parameters

Model parameters are typically coefficients that appear in mathematical functions

and differ from model variables insofar as they are not directly measurable. A model
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parameter also does not typically vary with respect to time. Further, parameters are ideally
statistically independent of one another. In cases where parameters are not statistically
independent, the model structure is said to be poor (Lei, 1996). The set of model

parameters can be described in vector notation as
—
Py =[P, P2yy---Pry] (1.6)

Model Outputs

The model structure, attributes, variables and parameters all contribute to the model
output. The degree to which each one of the system components contribute to the model
output relates to the sensitivity of the model components as well as the model structure.
The temporal resolution of a model output is often normally a function of the temporal
resolution of the model inputs. A vector of model outputs in time series can be described

as:

O(1) = 044,02, ... O] (1.7)

Models may further be classified as either discrete or continuous. A discrete model is one
in which the system state of the model is examined at only discrete steps in time, while
continuous modelling describes a system whose state varies continuously over a period of
time of a given resolution. The resolution of time intervals in a continuous model will
depend on the application of the model and the scale of the system of interest. Most
modelling in practice however is neither fully discrete nor fully continuous (Banks et al.,
2000; Law and Kelton 2000). Whether a model is discrete or continuous depends largely
on the time interval under which the phenomenon of interest is being investigated. In some
cases, a phenomenon, which can be easily conceptualized as continuous such as

streamflow, will behave more and more discretely given a coarse enough temporal
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resolution. Precipitation on the other hand, could be easily modeled as a series of discrete
events and is often modeled as a continuous phenomenon again depending on the temporal
resolution of the investigation.

An environmental model may also be further classified as either deterministic or
stochastic. A deterministic model is one that possesses a known set of model inputs
resulting in a set of unique outputs while stochastic modelling possesses some model inputs
which are random in nature, having stochastic properties and typically are estimates of the
true values of inputs based on inferential statistics, thus resulting in a set of ‘model outputs
that can only be considered estimates of the true characteristics of the system (Banks et al.,

2000)

1.3  Hydrological Modelling

Application of mathematical modelling for an extensive number of water related
issues has been in use over the last 50 years (Bobba et al, 2000; Freidman, et al 1984) while
notions of modelling tools at the local and regional watershed scales have been presented in
what Newson, (1998) refers to as a “modern” context for the last 300 years. Further, one
historical account by Nace, (1974) puts hydrological prediction and management within a
3-6000 year context thus, application of mathematical models to hydrology is not a new
science the applications of which have been documented by Singh (1996; 1989; 1988).

Singh, (1996) proposes a classification scheme for hydrological models reflecting
five characteristics common to all watershed models including watershed characteristics,
initial system state, and the model’s governing equations and the model inputs and outputs.
Each of these elements can be directly compared to elements found in all mathematical
models including model structure and model parameters, the system state or model
variables, model inputs, model outputs and model system attributes (see Figure 1.3). The
governing equations of the hydrological model relate specifically to the model structure
and parameters while the initial system state of the watershed can be described by system
state variables and model parameters at the onset of the modelling scenario. Watershed

characteristics can be described by the set of system attributes and the relationship between
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model inputs and outputs and this likewise has been used to classify models in the

hydrological sense.

Hydrological Modeling Environmental Modeling
(Mathatical/Computer) (Mathematical)
Governing Model
| Equations Stru‘i:ture
P Watershed | _ System »
Input I characteristics Output Input < Attributes | Output

A A

| Initial Variables
| Conditions Parameters

Figure 1.3. Adapted from Singh (1995), the classification scheme used to group hydrological models is
strongly related to model factors in mathematical environmental modelling,

1.3.1 Models Classified by Process

Models classified by process are described as being lumped, distributed, or quasi (semi)
distributed. A model is said to be lumped if takes into account no spatial variability in the
watershed process. The lumped approach is typical of numerous models because of its
simplicity in capturing and utilizing only dominant watershed characteristics. Further
lumped models typically are less computationally demanding as the models will depend on
a smaller set of attributes, inputs, and variables. For example, models using the SCS curve
approach will be dependant on Curve Numbers, which relate rainfall to runoff
transformation by a set of numbers that correspond to various soil and land-use
combinations. In the case of a lumped model, a single Curve Number is used to describe
the dominant characteristics of the entire watershed. Lumped models, however, are
commonly criticized for over generalizing the watershed characteristics, possibly leading to
poor model performance.

In 1973, O’Neil expressed seminal findings that error in predictions from modelling

should decrease with a decreasing degree of model aggregation. Distributed modelling, as
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opposed to lumped modelling explicitly attempts to capture spatial variation in model
inputs, variables, and attributes of the system of interest through the representation of the
system as a series of locally representative homogenous units. These units can be in the
form of a continuous tessellation of cells such as grid squares or they can be of variable
geometry such as division by sub-watersheds or some other meaningful land-parceling
scheme.

While in theory, distributed models preserve a higher amount of information about
the system of interest by avoiding generalization, in reality a lack of field or laboratory data
prevents such a general formulation of distributed models (Singh 1996; Vachaud et al.,
2002). In these cases, the terms mixed, semi-distributed or quasi-distributed are often used.
The term distributed can also be misieading as a model is only as distributed as its smallest
homogenous unit and most often, models which claim to be distributed only incorporate
distributed elements such as soil type or land use while still incorporating a lumped input
scheme. Dependent upon the scale of the units, a model can behave more like a lumped
model or more like a distributed model although because the resolution of the land parcels
is feasibly finite such is the degree to which a model will be distributed. Appropriate scales
for grid elements in distributed modellin;g have been investigated by Wood et al (1990;
1988).

The performance of mixed models is varied. In a study by Carpenter et al, (2001), a
typical lumped modelling approach was examined in combination with NEXRAD
distributed radar-rainfall data. The results of the study indicated that the NEXRAD
distributed precipitation produced data that was no more accurate, or reliable than
traditional lumped precipitation input using area-weighted rain gauge data. Obled et al,
(1994) found that the hydrological model TOPMODEL, was sensitive to the changes in
input volume from distributed versus lumped rainfall inputs, but that the particular model
was insensitive to spatial patterns of rainfall. Shah et al., (1996), has experimented with
distributed rainfall input versus that of spatially averaged rainfall and found that in cases
where antecedent conditions and wet-lumped rainfall produced comparable results to that
of distributed modelling provided at least one rain gauge lies within the catchment. For
antecedent conditions that are dry, however, better results are found with distributed

rainfall data and the spatial pattern of rainfall is found to be an important factor. It was
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further noted that this comparability might lie in the ability to compensate for inaccuracy in

model prediction through the calibration of the model.

1.3.2  Models Classified by Scale

Watershed models in this class can be categorized by temporal or spatial scale (see Figure
1.4). In the temporal case, a model may be described as continuous or discrete (event-
based) as is described in the first section. Singh (1996), makes a further distinction by
separating classification schemes based firstly on temporal resolution of input and
processing and secondly on the temporal resolution of the model output. In this case, a
model may be either set to perform for daily, monthly, seasonally or yearly time scales.
Models can also be set to shorter time intervals such as hourly or by the minute. Typically
models that are continuous, and of short time intervals are more difficult to calibrate and
often produce reasonable results only for longer periods of time.

The issue of appropriate temporal scales for hydrological modelling has been
discussed by a number of investigators. Many authors have demonstrated that appropriate
temporal resolution for continuous rainfall-runoff simulation falls between 1-5 minute
intervals (Niemczynowics, 1984; Gujer and Krejci, 1988; Eicher, 1990; Zhu and Schilling
1996; Burckhardt-Gammeter and Fankhauser, 1998.) Further, it is likely that temporal
resolution of 5-minute intervals will become the widely accepted paradigm over the next
decade (Ostrowski, 2000). Despite this paradigm shift however, the vast majority of
hydrologic data available to modelers fails to meet the temporal resolution standards of 5-
minute intervals. As a result of this, numerous authors have examined the possibility of
developing appropriate disaggregation procedures for larger time interval data or synthetic
time series generation; see reviews by Burckhardt-Gammeter and Fankhauser, (1998) and
Burian et al (2001). Despite the move towards a fixed time scale for hydrological
modelling, it is widely understood that natural variability in the temporal scales of rainfall
as well as spatial scales have a strong effect on the runoff produced for a system (Singh,
1997) and therefore, modelling with a fixed temporal scale may be inappropriate for some

circumstances.
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Models can also be classified based on spatial scale. Singh (1996), identified three
classes of small (micro), medium (meso) and large (macro) being of < 100km?, between
100 — 1000km®, and >1000km’, respectively. Song and James (1992), reviewed models
according to five scales of classification including the laboratory or bench scale, the
hillslope scale, the catchment scale, basin scale and, the continental/global scale, while
Ostrowski (2002), classified models according to hydrologic scales and corresponding

geographic definitions and includes a relevant temporal context (see Figure 1.4).

Hydrological Scale = Geographic Definition Temporal Scaling
m A A o
o
//.f
10— Macro scale Global .
Continental
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10° — Upper | Large streams ’ basin management
Meso scale River basin / Flood protection
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Figure 1.4. Hydrological models can be classified according to various spatial and temporal scales.
Source: Ostrowski, (2002).

There is an abundance of literature available for the interested reader dealing with
hydrological modelling at specific scales. Models performing at the micro scale include
RENSIM and SWIFT Ostrowski, (2002) which operate at scales of 10> m and are geared
towards rainfall-runoff for single house properties and small ecological storm water
management schemeé respectively. At the meso scale, examples of models for natural
environments are plentiful and include RHESsys (Tague et al, 2001), and ANSWERS
(Vachaud et al, 2002), but also exist for anthropogenic environments such as the urban
systems models URBAN (Rodriguez et al, 2000), WBrM and TALSIM (Ostrowski, 2000).
Some examples of models geared towards regional scales include SiSPAT (Boulet, 1999;

Braud et al., 1995). Many hydrological models developed for macro or global scales are
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used in conjunction with what are referred to as Global Circulation or Climate models
(GCM’s), or Soil Vegetation Atmosphere Transfer (SVAT) models. For reviews of these
applications the reader should see Kabat et al, (1997) and Liang and Xie, (2001).

1.4 Appropriate Model Scale

Ostrowski (2002), discusses a number of factors affecting the scale of a model
including the scope of investigation and system homogeneity. While somewhat intuitive,
the notion that a macro scale system may require a macro scale model may be redundant.
While the scope of any specific investigation will likely define the spatial scale of the
model in question, models are often created and tested on smaller catchments with the
intention of being applied to larger systems. In cases where models that are developed for
small areas are applied over large areas, a lack of available data at comparable detail may
result. This, in turn, almost invariably means that the amount of information available to
run the model is very much less than the ideal (Vachaud et al., 2002), resulting in poorer
model performance and a greater emphasis on model calibration to achieve desirable
results.

The homogeneity within a system refers to variability of spatial characteristics of
the system attributes. Depending on the scale of observation of a system, variability within
the system may appear as homogenous or heterogeneous. The concept of using a
distributed versus a lumped approach to modelling systems was also discussed in preceding
sections. While the lumped model approach has a model structure with parameters and
variables representative of an averaged set of system attributes, the distributed model is
broken up into a series of continuous homogenous subunits which attempt to capture the
spatial variability of attributes within the system. These units, in the most ideal case, would
show little or no natural within-unit variability of attributes consisting of uniform
combinations of land use and soil conditions (Ostrowski, 2002). However, in reality, the
finer the resolution the more heterogeneity is typically apparent, a concept described by the
phenomenon based on fractal theory (Mandelbrot, 1983).

Given a hypothetical feasibility of infinite resolution, one of the disadvantages to

distributed modelling is easily recognized as, for a given distributed model with infinite
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resolution capability, the number of hydrological response units will be representative of
infinite numbers of attribute combinations. Therefore, such a model would require an
infinite set of parameters and variables to describe the system attribute variation. This
limitation defined largely by computing power and methods of field investigation and
validation leads to the necessity for a quasi-distributed approach where some averaging is
inevitable. The scale of the model should, therefore, be chosen in such a way as to
maximize naturally definable homogeneity while balancing the need for detailed
information against a finite availability of computing power. The scale should also be
carefully considered because neglecting the issue of spatial variation of attributes through
inadequate averaging can result in a loss of spatial detail and possibly a loss of

hydrological extremes in distributed simulation (Ostrowski, 2002).

1.5  Best Management Practices

Because of the wide use, development and application of hydrological models, the
engineering and scientific community has adopted a series of Best Management Practices
or BMP’s for the application of modelling to management and decision support. These
BMP’s are considered to be an evolved code of conduct with respect to the development
and application of modelling in modern planning and have been iterated in many forms
throughout the literature while maintaining a consistent premise. One comprehensive
outline of BMP’s for hydrological modelling encountered are those determined by the U.S.
Office of Technology Assessment (OTA) in 1982 and include the following statements and

guidelines interspersed with further considerations:

e  Models are often the most available alternative for analyzing complex resource
problems.

e Models have the potential to provide even greater benefits for future water resource
decision-making

o Water resource models vary greatly in their capabilities and limitations and must
be carefully selected and applied by knowledgeable professionals. Selecting
appropriate procedures for analyzing a particular problem is a major part of the
modelling activity
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Mathematical models should be based on a fundamental representation of physical
mechanisms and incorporate, to the extent possible state of the art understanding of
the problem.

Selection of mathematical models for regulatory applications requires a thorough
understanding of the capabilities and limitations of the available models.

Proper development of models requires modellers that are well trained in the
underlying physical principles of the environmental system as well as in the
computational procedures for modelling

Models used for regulation applications must be subject to a two stage confirmation
with field data consisting of 1) Calibration, where the parameters of the model are
estimated to allow a good match between the model predictions and an observed
field data set; and 2) verification where the model is compared to an independent
data set without further modifying the parameter values and relationships in the
model.

Comparison of the model predictions and observed field data as part of the
confirmation process should include qualitative graphical comparisons and if
appropriate quantitative measures of the goodness of fit.

Sensitivity and uncertainty analysis of environmental models should be performed
to provide decision makers with an understanding of the level of confidence in
model predictions and to identify key areas for future study.

The models initial test applications and the modelling applications should be peer
reviewed.

Further, Bobba et al., (2000), in a review of model application to a variety of hydrological

systems states:

The art of modelling lies in determining which watershed and surface water processes and data are
essential for inclusion in the model. The challenge is to develop that art into rigorous scientific
methodology suitable for the assessment...However, sophisticated models are not always the
necessity. Frequently, the simpler the approach the better.

The notion that simplistic models are often found to have superior performance to complex

models has also been stated in an earlier review by Jackson, (1975). Further, simpler
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models consisting of less complex model structure often require fewer parameters and
variables and, therefore, there is typically less uncertainty inherent within the model as all
parameters and variables bring about some degree of uncertainty as absolute values cannot
be known to within absolute accuracy and precision.

The use of comprehensive uncertainty analysis (UA) and sensitivity analysis (SA)
is a modelling practice that is not often applied to modelling applications. This is largely
because it can be a fairly arduous task and one that may result in the necessity to expend
more resources in order to build confidence in the model. The topic of SA and UA are

explored in greater detail in later parts of this thesis.



GIS and Coupled Modelling CHAPTER 2

Until recently, geographic information systems (GIS) have evolved completely
separately from the fields of hydrology or hydrological modelling. Currently, there is a
considerable amount of interest in bridging the gap between these two disciplines, a gap
resulting from the evolution of two separate conceptualizations not sharing a common
ontology (Sui et al, 1999). The topics of this chapter include an introduction to the
conceptualization of GIS model structure as well as a discussion of the benefits and

challenges posed in integrating GIS and hydrological models.

2.1 GIS Defined

While the components and capabilities of a GIS may vary to some degree from one
application to another, most GIS’s possess certain fixed or required elements described by

Marble (1984) and including:

e A data input subsystem, which collects and/or processes spatial data derived from existing maps,
remote sensors, etc. The data input is usually accomplished using digitizers, scanners or manual
encoding of geographic information grid cells, points, lines or polygons.

e A data storage and retrieval subsystem which organizes the spatial data in a form that permits it to
be quickly retrieved by the user for subsequent analysis, as well as allows for rapid and accurate
updated and corrections to be made to the spatial database. Typical directories include: land cover,
soils imagery, topography and water information.

o A data manipulation and analysis subsystem which converts data through user-defined aggregation
rules, or produces estimates of parameters and constraints for various space-time optimizations of
simulation models.

® A data reporting subsystem, which displays all, or part of the original database, as well as
manipulated data, and the output from spatial models in tabular or map form.

The heart of a GIS is in its computer platform. Typically three types of computer
platforms are used to run a GIS including in chronological order of development

(Tsihrintzis et al., 1996), mainframes, personal microcomputers (PCs), and workstations.
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While this distinction may be true from a historical development perspective, the
differences between the capabilities of a stand alone PC and what has been deemed the GIS
“workstation” have been blurred. Most of today’s PCs are exponentially more powerful
than those available to the common user in the early 1980°s and come minimally equipped
with enough processing and storage power to drive all but the most powerful and
demanding of GIS applications. In this respect, perhaps it is more useful to make a
distinction between the PC, being the most common platform and capable of easily
managing any “personal geodatabase” while the mainframe system, still in use for large so
called “enterprise spatial databases” consisting largely of decades worth of attribute data
and complex processing algorithms.

While the distinction between what has become known as a personal versus an
enterprise geodatabase is somewhat vague, the distinction may be classified based on the
particular database management system engine. Personal geodatabases are typically smaller
and perform well through the use of less powerful database engines such as Microsoft
Access, while enterprise databases are large, have many interrelationships, multiple
concurrent or individual users, possess dedicated data management and wvalidation
managers, and are typically housed in more robust database software packages such as

Oracle, dBase or Microsoft Sequel Server.

2.2 GIS Data Structure

Data within a GIS are stored in what is known as a geodatabase or a spatial database
management system (SDBMS). The SDBMS has a number of features that make it
attractive for use in GIS applications. These have been described by Longley et al, (2001)
and outlined initially by Date (1995) as:

o Collecting all data at a single location reduces redundancy and duplication.

e Maintenance costs decrease because of better organization and decreased
data duplication

e Applications become data independent so that multiple applications can use
the same data and they can evolve separately over time.

o User knowledge can be transferred between applications more easily
because the database remains constant.
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o Data sharing is facilitated and a corporate view of data can be provided to
all managers and users.

e Security and standards for data and data access can be established and
enforced.

A DBMS can be classified according to the way in which it stores and manipulates
data (Longley et al., 2001) and typically in a GIS consists of one of three formats including
the relational database management system (RDBMS), the object database management
system (ODBMS), and the object-relational database management system (ORDBMS).

The RDBMS is the most popular data structure model used in conjunction with
GISystems. Typically, relational databases consist of one or many two dimensional arrays
within which attributes are organized as a series of fields (columns). The fields within an
array are typically classified or grouped in various tables according to a hierarchy of
system attributes. Each array also contains a list of records (rows), and each record
represents an entity within the system of interest.

The ODBMS evolved out of RDBMS largely to compensate for the fact the
RDBMS was not designed to store complex objects such as geographic relationships,
sounds, video or other complex media. The ORDBMS largely evolved out of the need for
RDMS vendors to address the issues of limitations in standard RDBMS’s. As a result,
RDBMS’s have in many cases have been equipped to handle geographical objects and

other media through the evolution of data storage and management algorithms.

2.3 GIS Model Structure

The physical model structure or spatial structure, is similar to any model structure
in that it represents a. set of relationships that describe or conceptualize reality. In the case
of a GIS, reality is inherently spatial and model structures within a GIS conceptualize or
simplify special relationships in a form that can be easily encoded into a digital format.

Within GIS there are two commonly accepted model structures, raster and vector,
each with separate advantages and disadvantages dependent upon the context of

application. While the two model structures vary considerably, most conventional GIS
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packages are capable of processing spatial data in both forms although integration is often
slow and takes large amounts of processing that is subject to many sources of error and,

consequently, uncertainty.

2.3.1 Raster Based GIS

In the raster model structure, also commonly referred to as the field model, space is
conceptualized as a continuous tessellation of cells. While normally square, occasionally
raster fields are stored as hexagonal grids or some other geometrically and optimally
packable shape. Spatial variation within raster-based modelling is conceived through the
assignment of numerical values to each cell in the tessellation and each cell is of a fixed
scale or dimension for example 10 m” or 10m x 10m, which defines its scale or resolution
(Figure 2.1).

A raster model may represent more than one theme in which case each cell having a
fixed location in space can have one or more cell values each belonging to mutually
exclusive and exhaustive classes and each representing a separate theme within the GIS
data model. As an example, a single cell for a raster model may represent an elevation in
one theme, a soil type in another and a land use in a third theme. In the case of the land use
class, the given cell number may be ordinal and represent one in a set of mutually exclusive

and exhaustive numbers such that:
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Figure 2.1. A 100 m* resolution raster model for the Duffin’s Creek watershed depicting
land use classes

X; =n 2.1

and n e{l,2...N}

where X represents a given cell and i and j represent the row and column of the cell
respectively.

n represents the numerical value of the cell and

where possible values and n are whole numbers such that 1 <n<NV

If a numeric integer field represents a soil classification and, we are modelling a soil
system based on the Soil Conservation Service (SCS) HSG soil grouping criteria, then each
cell will be classified according to four possible values where, 1 may represent soil type
“A”, 2 type “B”, 3 type “C” and 4, type “D”. Likewise, a number of discrete land use
classes also identified by the SCS could be represented uniquely in a separate theme such
that 1 may represent “Permanent Meadow™ , 2 “Forested Wetland”, 3 “Urban Open Space”

etc until all classes in each theme are uniquely identified by a numerical value.
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In some cases, however, classes may not be so discrete and may represent a range
of values. Data may be ordinal or quantitative in nature and be associated with one of a set
of mutually exclusive classes each belonging to a single theme and each representing a
range of possible values. In a third case, say elevation for example, data may be
numerically continuous, and as such any real number within a range of values may exist.

Raster formats have a number of advantages and disadvantages. One major
advantage is that a large amount of digital data are gathered in raster format. For example,
remote sensing satellite images are collected and stored in raster format, as are digital aerial
photos, or a scanned topographic map. Further, because of the quantitative nature of raster
images where each cell contains numerical information, they are considered infinitely more
computationally powerful and can be treated as a large matrix with the number of cells
equal to the number of rows multiplied by the number of columns. This structure allows for
more advanced processing and manipulation capabilities than the vector object model.

Rasters however also have a number of disadvantages. Because rasters are
essentially square tiles representing a round surface, they inherently become distorted in
small-scale system modelling (Longley et al, 2001). Because rasters are of fixed resolution,
and typical classified into mutual exclusivity discrete classes, they tend to generalize the
true heterogeneous nature of the system attributes and therefore are highly sensitive to
issues of scale. Other problems relate to the fixed resolution of raster cells, as there is a
high likelihood that a given cell in the system model may occupy the region of more than
one class or theme creating the need for more advanced rule-based classification schemes.
Finally, rasters may be disadvantageous in that they require significantly more computer
storage space for storage and are slower to process.

The size of cell is arbitrary and could be expected to increase the distributed nature
of hydrologic modelling. However, given its data shortcomings, the vector model has
tended to dominate GIS usage to date. Much more environmental data (soils, land use,
drainage networks and catchments, etc) are currently available in vector format, so this
research has focused on this approach. The interested reader may however reference topic
related to uncertainty propagation in raster models by Heuvelink (1998) and Zhang et al,
(2002).



2.3.2 Vector Based GIS

The vector or object model of GIS also has certain advantages and disadvantages.
Like the raster model, the vector model is a spatial model structure that attempts to describe
geographical phenomena. The vector model is often referred to as the object model because
of its superior ability to represent geographical objects. In the vector model, an object is
defined according to a hierarchy of topologically related geometry. A given entity may be
defined by a set of points or nodes, when connected these nodes form a set of lines or arcs.
Finally arcs may be joined to form a set of polygons (see Figure 2.2). Using this procedure,
the shape of any object can theoretically be modeled given enough point, line and area

information.

Figure 2.2. A vector data model of the Duffin’s creek watershed depicting land use.

Topology in the vector model is stored in a series of hierarchical tables. Nodes are
stored according to the x and y coordinates of each node with additional digitized points
rendering fidelity to boundary and line shapes. Other topological information such as
polygons to the left and right of a source polygon, or polygons that share a single arc as a
boundary may also be defined (Longley et al, 2001).

Vector models have an advantage over rasters in that they are scale independent
and, therefore, require much less information to define a given object to a comparable level

of precision. This allows for much less of a demand on computer storage and computing
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power. Vector models however are more limited in terms of mathematical processing and
are considered less powerful than rasters in this respect. Vector models also have one
distinct disadvantage in that because of their scale properties, maps with a fixed level scale
may be subject to misrepresentation from highly precise yet inaccurate vector
representation. This may cause further errors and uncertainties when vector models are
subject to analysis such as overlay as over-precision causes the formation of undesirable

sliver polygons and other problems related to logical consistency.

24 Model Hierarchy and Inheritance

A GIS on its own is a model of spatial relationships capable of performing complex
analysis. The analytic capabilities of a GIS vary depending on the complexity of the
software. However most common GIS systems are capable of at least performing
rudimentary spatial analysis based on the topological relationships of the points, lines and
polygons. Algorithms used for the spatial analysis of points, lines and polygons are
typically programmed within the primar}./ functionality of the GIS. While the details of
these algorithms are beyond the scope of this research, in a general sense they are based on
fundamental geometry and set theory including the concepts of intersection, union,
proximity, trigonometry and distance.

While GISystems are most often capable of powerful analysis, in order to extend
the functionality of a GIS, the model structure is extended through integration with the
external model (see Figure 2.3). Once this occurs, the limits of what constitutes GIS model
or external model factors become more difficult to define as the lines between the external
model and the GIS grow fuzzy dependent upon the degree of coupling. The extending of
GIS functionality through the incorporation of external models introduces a concept we
will define as inheritance whereby, the GIS and the external model inherit parameters and

variables associated with each independent model structure.
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Figure 2.3. During coupling of GIS and external models, model factors such as parameters, variables and
attributes are inherited by the GIS and external model concurrently.

2.5 Coupling GIS and Hydrological Models

The concept of coupling GIS and hydrological mathematical models has been
discussed in detail by Sui et al. (1999). They propose four classes of coupled GIS
hydrological models including a GIS embedded within a hydrological model, a
hydrological model embedded within a GIS, loose coupling and tight coupling (Figure 2.4),

each with different advantages and disadvantages.

2.5.1 GIS Embedded within a Hydrological Model

In this first case, modellers attempt to embed GIS functionality within a pre-existing
hydrological model. Here, the use of GIS is primarily limited to cartographic visualisation.
This technique has the advantage of allowing developers freedom of design in that,
implementation of the coupling strategy and design of the hydrological component is not
dependent or limited by GIS data structure. The limitation, however, is that visualisation

and data management capabilities of these packages do compare to the potential presented
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by stand-alone GIS systems, the advantages of which have been outlined by Singh (1996)
and discussed earlier in this chapter. Further, programming efforts required to achieve this
coupling strategy are seen as intensive and occasionally redundant. Some examples of this
approach include a variety of the HEC series of models developed by the US Army Corps
of Engineers, the LDMS system as well as the application MODFLOW (Sui et al., 1999),
the MIKE-SHE model, (Feyen et al,, 2000) and automated mapping and facilities
management AM/FM (Shamis, 2000).

Hydrological GIS
Modeling
. Hyvdrological
GIS Modeling

A B

GIS
« > GIS
» « -
Hydrological  Statistical
Hyvdrological « »  Statistical Modeling Tools
Modeling Tools

C D

Figure 2.4. Coupling strategies for the integration of GIS and hydrological modelling. Source:, Sui et al., 1999.

2.5.2 Hydrological Models Embedded within a GIS

As a result of the drive to improve thc; analytical capabilities of a GIS over the last
10-15 years, many software vendors have introduced stand alone GIS packages with a
variety of hydrological application embedded within. One example of this includes the
Environmental Systems Research Institute’s (ESRI’s) ArcHydro. While these modules take

advantage of the suite of collection, storage, analysis and visualisation capabilities of
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commercial stand alone GIS packages, the hydrological functionality is often criticized in
that it, does not often conform to the set of long-standing BMP’s associated with
conventional hydrological modelling. This is especially true in the case of issues relating to
model calibration and validation where often models of this type must be calibrated outside

of the existing model (Sui et al., 1999).

2.5.3 Loose Coupling

The loose coupling approach typically invoives the linking of stand-alone GIS package
such as ArcView, IDRISI, GRASS or Arc INFO and a stand alone hydrological modelling
package such as TR-55, HEC, OTTHYMO, and potentially a statistical package STATA,
SPSS, STATISTICA through some common interface. Model data is integrated through
data exchange where output from one model becomes the input to another model (Figure
2.3). In the loose coupling approach inheritance of model parameters and variables is less
strictly defined as models are still functional as stand-alone packages and the paths of
model input and outputs are still traceable and largely controlled by the user.

The advantage behind loose coupling is that intensive and often redundant
programming can be avoided while maintaining the full potential of each stand-alone
package. Disadvantages, however, are that data exchange between model inputs and
outputs is highly prone to errors associated with the manipulation and conversion of data
formats and the tedious exchange of data. This approach, however, has been supported as
the most feasible for the majority of investigators as programming requirements are
considered minimal and less time consuming (Sui et al., 1999).

Because loose coupling is the most popular method for the above mentioned

reasons, numerous examples exist some of which include a study by Frankenberger et al.,
where the GRASS GIS package was linked with TOPMODEL to examine the effects of
soil heterogeneity in a small watershed. As well, Storck et al. (1998) is another example
where the Distributed Soil Hydrology Vegetation Model (DHSVM) was loosely coupled
with GIS package to provide pre and post-processing of model dependent variables to

examine the effects of land surface change. Further, numerous examples exist which utilize
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GIS in conjunction with the AGNPS model such as Yagow (1997), Al-Smadi (1998) and a
recent study by the TRCA (2003).

2.5.4 Tight Coupling

Finally, the tight coupling approach is utilised when hydrological models, a stand-alone
GIS and perhaps statistical packages are strictly integrated with each other through custom
programming interfaces. This allows users to develop custom functionality and provide
proprietary user interfaces. Historical limitations of this strategy stem from the
programming languages used not often being powerful enough to maintain total and
desirable functionality of software packages, resulting in less sophisticated hydrological or
GIS functions. This, however, is changing through the evolution of software and
programming languages becoming more and more component object model (COM)
compliant.

Through COM, many of even the most complex models can be made available as
subroutines in the form of DLL’s or dynamic link libraries, as well as ADQO’s or Active X
data objects. An example of a GIS platform that readily adopts COM standard is the new
suite of GIS products associated with ESRI’s ArcGIS platform. Through this platform
developers have the opportunity to program in many of the most powerful and popular
languages such as or visual basic (VB), or visual basic for applications (VBA), C, C++ and
Visual C, as well as incorporate any COM compliant scripting for expansion of the
analytical or performance capabilities of the GIS. Some examples using the tight-coupling
approach include BASINS, a tightly coupled GIS hydrological model developed within
ArcView as well as the new ESRI ArcHydro platform.

While literally hundreds of examples of integrated GIS/hydrological models exist
(see Tsihrintzis et al, 1996), few have outlined how best management practices established
for system modelling are extended or simply viewed within the context of GIS. In the next
section, the BMP’s outlined in the first chapter are put in the context of GIS-based system

modelling.
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2.6 Geographic Information Best Management Practices

Like any model, GIS allows for various representations or conceptualization of reality and
inherent in this is the notion that GIS permits a certain number of hypotheses regarding the
system of interest. For example, a model may be more accurate if it takes into
consideration the distributed nature of geographic versus lumped data. Like any tool, the
application of GIS requires certain assumptions on the part of the user. For example, how
does the user know that the information presented within a GIS is accurate or more
importantly, how will the assumptions made in applying a potentially inaccurate GIS
model affect the outcome of spatial decisions? GIScience is geared towards the study and
management of these and other issues through the scientific investigation issues concerning
the creation, handling, storage and use of geographic information (Longley et al. 2001).
While the notion of GIScience has been presented in a variety of different specific as well
as general contexts, perhaps an appropriate definition of GIScience would be the scientific
pursuit of best management practices concerning the identification, transfer and application
of spatial information in support of spatial analysis and decision-making.

In 1996, the Unites States University Consortium for Geographic Information
Science (USCGIS) held an assembly to determine the most important issues facing the

study of GIScience. These topics include:

Cognition of geographic information

Spatial data acquisition and integration

Spatial analysis in a GIS environment

Interoperability of geographic information

Distributed computing

The future of spatial data infrastructure

Uncertainty in geographic data and GIS-based activities
Extensions to geographic representations

Issues of scale

GIS and society
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The remainder of this research will focus primarily on issues of uncertainty in geographic
information and geographic based activities and to a certain degree how uncertainty in data
affects spatial analysis in a GIS.

Previously, the notion was emphasised that GIS is becoming less a means of
providing support to traditional or less spatial hydrological modelling and is now evolving
into the primary modelling environment for hydrological systems. While the evolution of
GIScience has provided strong support for development of the best management practices
for spatial data, in the absence of a clearly defined set of criteria, the notion that GIS for
hydrology should adhere to already established modelling best management practices
seems to be a logical step. This is examined in the following through reference to BMP’s

identified for hydrological models in the previous chapter.

e  Models are often the most available alternative for analyzing complex resource
problems.

e Models have the potential to provide even greater benefits for future water resource
decision-making

In the case of GIS, the diversity of applications is nearly limitless. It has been said that on
the order of 80-90 percent of all data is spatial in one context or another and, therefore, the
use of a model specifically evolved to deal with the complexities of spatial data seems a
reasonable application especially given the shear quantity of data involved in spatial
decision making. Further, it was previously noted that hydrological data is not only
complex but is primarily considered spatial by nature. While diversity of applications are
too numerous to discuss at present, the topic has been examined by Longley et al. (2001)
where the variety of GIS applications can be classified according to the five M’s including

mapping, measurement, monitoring, modelling and management.

o  Water resource models vary greatly in their capabilities and limitations and must
be carefully selected and applied by knowledgeable professionals. Selecting
appropriate procedures for analyzing a particular problem is a major part of the
modelling activity

o Selection of mathematical models for regulatory applications requires a thorough
understanding of the capabilities and limitations of the available models
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e Proper development of models requires modellers that are well trained in the
underlying physical principles of the environmental system as well as in the
computational procedures for modelling

The availability of GIS technology has become increasingly decentralized over the last 15
years. This has transformed the application of GIS models from what was once the domain
of experts to a now relatively commonplace activity (McKendry, 2000). In this respect, the
novice user can now accomplish what were once complex analysis tools with the press of a
button, and with a complete disregard for the applicability of the results.

The ability of GIS to provide convincing, if not completely misleading information,
should not be neglected/overlooked and the ability to properly interpret information from a
GIS can be twofold. Spatial data, like any data is subject to various degrees of uncertainty
and, therefore, no spatial model stored within a GIS should be considered to be “etror free”
(Heuvelink, 1998), although, naivety on the part of the user often perceived it as such. In
this respect, the unskilled user may be prompted to make spatial decisions based on
incomplete knowledge of the model outcome.

Additionally, in many cases the result of modelling in GIS consists of at least one if
not many maps. The ability of the GIS to provide interesting and informative visualisation
of model processes has also been discussed as an advantage over traditionally hydrological
modelling. The ability of maps, however, to convey inappropriate spatial information is
significant as maps are considered a cognitive media strongly capable of communicating
spatial information (Harely, 1990; Wood, 1992; Tyner 1982; Henrickson, 1975). In this
respect, the unskilled interpreter may become victim to performing decisions on a spatial
miscommunication of information.

Finally, the GIS user should not be in a position to suggest a course of actions based
on the results of data analysis beyond his or her ability to effectively interpret. Some
aspects of spatial data are, however, complex and difficult to interpret even with the
support of quantitative measures of data accuracy and completeness. In these cases, the
user should have enough experience to impart wisdom about those aspects of the data,
which cannot be further measured. This wisdom, in the case of hydrological modelling is

often attributed to engineering judgement or expertise. In this respect, the appropriate
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judgement should come from a user possessing ample geographic expertise or judgment

and may be defined as “Geographers Judgment.”

e Mathematical models should be based on a fundamental representation of physical
mechanisms and incorporate, to the extent possible a state of the art understanding
of the problem.

Model structures within a GIS are often supported in a hierarchical fashion in part by
other physical models. As is often the case with hydrological models, the given input to
one model is often necessarily the output of another model (Beck, 1991). In GIS, as
previously noted, the mathematical relationships which define model structure and
functionality will be dependent on the way hydrological modelling will coupled with the
GIS the type of hydrological structure, and the degree of inheritance. In most cases, the
hydrological functionality embedded within a GIS will be inherited from external model
structures and in this respect ought to be the most up-to-date and representative hypothesis
of the appropriate physical relationships. In the case where spatially specific processing is
required to execute the model, the same should apply to the algorithms that define the
spatial processing governed by the GIS.

o Models used for regulation applications must be subject to a two stage confirmation
with field data consisting of 1) Calibration, where the parameters of the model are
estimated to allow a good match between the model predictions and an observed
field data set; and 2) verification where the model is compared to an independent
data set without further modifying the parameter values and relationships in the
model.

o Comparison of the model predictions and observed field data as part of the
confirmation process should include qualitative graphical comparisons and if
appropriate quantitative measures of the goodness of fit.

While intuitive to hydrological modelling the processes of calibration and verification
may not be directly obvious to the GIS user. In an ideal environment, spatial data, which
has been processed, must be subject to an extensive process of ground truthing. This may
occur as part of the data acquisition phase or may in part be validated at later stages of data

processing and manipulation. In cases where data is gathered through processes of remote
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sensing often, data portrayed in the GIS is verified on the ground. For example, an air
photo may provide data for a GIS on vegetation and/or land use. In cases where the
information entered into a GIS is subject to interpretation, randomly selected sites are
validated through a series of field procedures. Ideally, metadata is then recorded which
documents the reliability of the interpreted data.

In other cases, data within the GIS may be interpolated. This procedure involves the
field measuring of some attribute such as soil at particular points within the area of interest.
These points are then entered into the GIS and through geostatistical procedures; the points
are interpolated into a continuous field. This process is also subject to calibration and
validation. Once the resulting field of data has been interpolated, randomized selections of
points within the study site that are estimated as part of the interpolation procedure are
verified through a series of field measurements and investigations. In some cases the model
may be calibrated through additional statistical techniques or abandoned in favour of
another model. Unfortunately, confirmation of spatial data is often not performed may be a

source of error that warrants documentation.

o Sensitivity and uncertainty analysis of environmental models should be performed
to provide decision makers with an understanding of the level of confidence in
model predictions and to identify key areas for future study.

One of the most intensively researched fields in GIScience is in developing methods for
understanding the effects of uncertainty and uncertainty propagation within spatial data.
Because of the recent dependence of hydrological models on GIS, the exploration of the
affects of uncertainty as well as the sensitivity of the model output to uncertainty in model
input is the subject of significant research and is the focus of the remainder of this thesis.
Because significant research has been focused on the quantifying, handling and minimizing
of spatial uncertainty in GIS, and hydrological models separately, the integration of GIS
with hydrological models should also war;ant that these uncertainties are taken into
consideration in the overall uncertainty and sensitivity analysis of the model output.

Aside from placing GIS within the context of system modelling BMP’s there are other
technical and philosophical challenges related to the coupling of the two approaches. The

final section of this chapter will be devoted to this topic.

39



2.7 Challenges of GIS and Hydrological Model Integration

Despite the numerous advantages of integrating GIS with hydrological modelling,

there exist a number of challenges in linking the two approaches.

2.7.1 Technical Challenges

Providing an effective set of tools to the environmental modeller is paramount to
the evolution of modelling practice. While the integration of GIS with hydrological
modelling certainly is aimed at facilitating this notion, the technical challenges are often
great. As mentioned earlier in the chapter, various advantages and disadvantages with
respect to integration strategies are often technical in nature and a primary inhibition to
using GIS in modelling are the difficulties presented in integrating an external model with a
GIS (Karimi et al, 1996). Further, since the interfacing of various standalone programs
requires in many cases the development of additional programs to accomplish the
integration task, a human element is introduced which can be the source of a large degree
of error and uncertainty where data transfer or integration is concerned. This challenge
leans towards a need for a more consistent and powerful means of automating integration
tasks (Tsihrintzis et al, 1996).

Karimi et al. (1996), discuss and compare the various technical challenges in the
loosely coupled versus tightly coupled strategy with respect to the speed of data transfer,
the level of GIS specificity, and the level of integration. The speed of data transfer is an
important challenge as many different data are passed through separate models and model

structures often requiring a large amount of computing power.
GIS specificity deals with transferability or dependency of the hydrological
component on single GIS platform, limiting the broadening of the GIS application through

the introduction to a variety of platforms with varying analytical capabilities.
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Finally, the level of integration deals with the synergism of all hydrological and
GIS components and models. Conclusions of this study indicated that tight coupling was
preferential to loose coupling in addressing the previously mentioned issues. Although, the
limitations of GIS programming made successful coupling difficult. This aspect, however,
has evolved since the study was published and COM technology has opened the door to
new integration capabilities.

While various technical challenges to integrating GIS and hydrological models
exist, perhaps one of the most significant challenges is the tendency for individuals to focus
on the technical challenges as opposed to other more conceptual or philosophical

limitations.

2.7.2  Concepts of Space and Time

Sui et al, (1996), have identified issues concerning the separate ontology of GIS and
traditional modelling, a philosophy also discussed by Clark (1998). In the classification of
hydrological models, it was noted that depending on how space and time are dealt with, a
model can either be stochastic or deterministic and lumped or distributed. The GIS model
structure on the other hand adopts a layer-based approach where the representation of space
and the associated analytical model structure is limited to a series of map layers occupying
the same space. As a result of this, space within a GIS is conceptualized as a geometrically
indexed representation and simulation of time is limited in conceptualization to discrete
slices (Sui et al, 1996). Because of these differences, integration of hydrological models
with GIS must be conceptually limited requiring the future development of coupling to

address issues surrounding varying conceptualizations of space and time.

2.7.3 Data Availability

Also touched on earlier in this chapter is the notion that GIS provides numerous
advantages to the design of geographically distributed hydrological models. While the

power of GIS lies in the ability to spatially manage higher degrees of resolution and
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consequently, integrate higher degrees of heterogeneity and spatial variation of system
attributes, high-resolution GIS data requires highly accurate data acquisition methods.
Unfortunately, the current power of precision modelling available with GIS exceeds the
standards of available field data resulting in the simulation of highly detailed system
attributes from coarser, less variable but more accessible field data. In this respect, the
evolution of hydrological modelling is limited by the availability of spatially accurate GIS
field data. Tsihrintzis et al, (1996), suggests that as the use of GIS increases, spatial
information should also be readily available and local authorities should establish
centralized data banks providing the most up-to-date and compatible stores of digital maps,
remote sensing images and spatial metadata.  The availability of such data is also
consistent with improvements in the collection and processing of remotely sensed imagery,
which is vastly becoming a superior means of data collection and quickly replacing

extensive field analysis.

2.7.4 Handling Uncertainty

Finally, of great importance to the integration of GIS and hydrological models is the
control and communication of uncertainties. As is explored in detail in the next chapter,
every stage involved in the integration of GIS with hydrological modelling is potentially
full of uncertainties. While uncertainties will never be fully eliminated from modelling and
while quantifying and addressing all possible uncertainties is highly unlikely, Sui et al,
(1996) have proposed a two-tiered approach for dealing with uncertainty in coupled
models. In the first case, it is proposed that while there is a proliferation of statistical
models available for the analysis and quantification of uncertainty, there are currently no
techniques in wide practise which address issues of imprecision and incompleteness.
Although, evidence theory and fuzzy set theory have been suggested as providing a
significant amount of potential with respect to these problems (Sui et al, 1996).

The second issue surrounds the method of visualisation and communication of
uncertainty. Numerous methods in the cartographic literature such as the use of Epsilon

error bands as well as manipulation of primary graphic elements such as shape, hue, value
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saturation and texture can be employed. These cartographic techniques have a long-
standing history and numerous publications exist on the use of these techniques in

cartographic communication.
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Error, Uncertainty and Sensitivity CHAPTER 3

Paramount to investigations of model structure, data structure and inheritance, is the
concept of uncertainty. All models, whether they are geographic or mathematical are
derived ultimately from a mental models or a simplified conceptualization of some system
of interest. In the case of GIS, these models conceptualize space and in the case of
mathematical system modelling they conceptualize the physical functions of a system and
indirectly time as many of these systems are inherently time dependent. Further
conceptualization of the world is largely biased by experiences and influences. While
knowledge of a system can over time improve through observation and experimental
inquiry, knowledge will never be perfect and, thus, explanations of systems of interest will
contain inherent uncertainty.

This chapter reviews the concepts of error, uncertainty and sensitivity within
hydrological modelling in a geographic environment. The following sections review
sources of error and, consequently, causes of uncertainty within spatial and aspatial
systems. Aspects of model structure uncertainties and model factor uncertainties relating to
positional and attribute uncertainty are discussed. The final sections introduce methods for
quantifying and dealing with uncertainty in data in the form of global model uncertainty

and parameters specific sensitivity analysis.

3.1 Uncertainties and Error

Uncertainty is induced ultimately from our abstraction of reality and since it is impossible
to conceptualize a perfect representation of the world, introducing uncertainty about it is
inevitable (Longley et al, 2001). Inherent in the concept of uncertainty is the notion of
error. The process of materializing an abstraction of a system in the form of a model (map
or mathematical system) will contain error or a certain number of inaccurate assumptions,
misconceptions or generalizations about that system. While error and uncertainty are often

discussed as synonyms within the literature, this is not the case and a drawing a distinction
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between the two is necessary. Heuvelink, (1998), defines error as the deviation between

reality and our representation of reality, and draws on the following example to illustrate.

Let the true value of some attribute at a location x be a(x), and let our approximation of
that value be b(x) then the error or deviation firom reality v(x) is described as the arithmetic
difference berween a(x) and b(x) such that v(x) = a(x) — b(x). The error v(x) is not known
exactly and but we should have some knowledge about its range or distribution of values
that it is likely to take. For example, we may know that the chances are equal that v(x) is
positive or negative, or we may be 95% confident that v(x) lies within a given interval.

Building knowledge about the value or range of values of v(x) is the subject of defining
what is known as an error model. This will be discussed in further detail later in this
chapter but for now it simply acknowledged that error can be considered as a deviation
from reality and since we can not know the deviation exactly it may be preferable to
describe it stochastically as opposed to deterministically.

The term uncertainty should not be considered the same as error although the two
are tightly related. Given that error can be defined as the deviation from reality, then
uncertainty may be thought of as a lack of confidence as to whether something in fact
deviates from reality or rather the degree with which something deviates given that perfect
simplification is impossible. Put another way, the stochastic nature of uncertainty may
justify its definition as being the probability that something is incorrectly represented.

The term uncertainty has been used under numerous contexts to represent a
generalized description of data quality. Longley et al (2001), note distinctions between
types of uncertainty including ambiguity in which various perspectives established by a
variety of individuals on a common element may not share the same definition leading to
an indefinite assignment of properties or other identifying features. Further, it was noted
that ambiguity is often introduced under circumstances where imperfect indicators of a
phenomenon are used to describe or identify an entity as opposed to the entity itself. To
draw an example from the SCS-method, the set of soil types initially identified in the
1950°s by Musgrave, (1955) and used in conjunction with local land use classes for the
determination of relevant Curve Number are classified as 4 (A,B,C.D) mutually exclusive
hydrological soil groups (HSG’s). Although various physical soil types have been
identified to loosely correspond to each soil class (see Chapter 4) the HSG remains an

ambiguous classification and is largely used as a generalized measure for the hydraulic
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conductivity of a broad category of soils where class “A” has the highest propensity for
infiltration while class “D” is the most resistant. The classes are not assigned using any
quantitative measures, and the data used to support the initial class separations by
Musgrave, is not described in the literature. In this respect the HSG soil classification
scheme is a broad and ambiguous generalization, loosely based on local soil types.
Vagueness, is another type of uncertainty relating to classification of entities within
a system. While it is commonplace to take a series of discrete observations about a system
of entities and transform or interpolate these observations into a generalization of an area,
this raises questions about the validity of boundary determination among classes of entities
whose class assignment is fuzzy at best. In the hydrological context, this may relate to the
determination of areas of influence for a series of point estimations of rainfall as is often
accomplished through the assignment of Thiessen polygons (Thiessen, 1911). While
Thiessen polygons are used to discretely identify the areas influenced by a series of points,
the degree of discreetness conveyed in this type of tessellation can be misleading as the
true spatial properties of the phenomena being tessellated is not known. To draw a further
example and building on the previous example illustrating the ambiguous nature of the
HSG, the degree of heterogeneity associated with soil makes the classification of soil into
discrete classes extremely challenging. Consequently, a great deal of scepticism. with
respect to the reliability of soil classes as well as the confidence placed in the relevance of

boundaries displayed in soil maps is often wrought with uncertainty.
3.2 Sources of Error and Uncertainty

Error derived at one stage of a models conceptualization may directly influence
how error is introduced through other sources of the models abstraction. For example, scale
is an important aspect of designing any spatial model and choice of a particular scale of
observation directly influences the degree ot: spatial generalization within a system. This
generalization can then lead to other sources of spatial error resulting from generalization
which can again lead error in positional inaccuracy, attribute inaccuracy and so on. This

process known as error propagation, is the primary source of uncertainty and derived from
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the abstraction of GIS based hydrological models the process of which is mapped in Figure
3.1

One of the reasons identifying sources of model uncertainty is challenging is that
identifying all sources of uncertainty quantitatively involves a comprehensive
understanding of error propagation and consequently a complete understanding of the
lineage in the models development, model abstraction, parameter estimation, data capture,
measurement and analysis as well as storage, transfer and manipulation. This is further
complicated by the notion that while identification of some of the error within a model may
be possible, it is difficult if not impossible to quantify this stochastically in totality through
ordinary statistical procedures.

Figure 3.1 divides the propagation of uncertainty into four levels of abstraction. The
first relates to the way in which in which a phenomena of interest is initially perceived.
This is followed by a conceptualization phase during which physical relationships are
mathematically identified effectively assigning a model structure to the phenomena of
interest. The abstraction of the entity is then fulfilled through spatial and a-spatial attribute
assignment. Each of these stages coincides with a certain degree of abstraction. As a result
error is introduced from a number of different processes that then in turn propagate
throughout the model. The specific types and sources of error leading to propagation within

the model are the subject of the following section.

33 Uncertainty and Error from Interpretation and Abstraction

3.3.1 Interpretive Uncertainty

It was proposed in the first chapter that all models begin as mental models or
conceptualizations of the world. This may materialise in the case of a system governed by
laws and physical relationships as a mathematical model or may materialize in the form of
map, digital or otherwise. The ability to conceptualize the world around us is based on
experiences and culture and is predicated by our current state of knowledge about the world
and the laws that govern it. This is further influenced by the fact that we can observe so

little of the earth directly and are reliant on a host of methods for learning about its other
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parts (Longley et al, 2001). As a result, bias is inherent in any abstraction process. We
interpret the world with a certain perspective and, in so doing, we introduce uncertainty
into our mental image of the way the world works. This error leads to what can be

identified as interpretive uncertainty.

3.3.2  Abstraction Uncertainty

Abstraction uncertainty is the uncertainty introduced by imperfect conceptualization
of the world. Ideally systems could be conceptualized comprehensively enabling fidelity
with the reality they represent. However, knowledge is incomplete and, therefore, our
abstraction of systems will ultimately be based on incomplete knowledge and is inherently

linked to ideas of ambiguity and vagueness already discussed.

34 Model Uncertainty

Dealing with error in model structure is a complex problem and one that is normally
avoided through refinement of confidence in other sources of error such as the estimation
of model parameters and increased accuracy in measuring model attributes. Model
structure was defined in chapter one as a group of hypotheses consisting of a set of general
laws L;, L, ...L, and a set of statements pertaining to empirical circumstances C;, C>,...C,,.
As discussed, a model is an abstraction of reality and in the absence of a perfect
knowledge, no abstraction (which is predicated on simplification) can be without error or
departure from reality. This error introduced with the application of model structure,
manifests itself in what is identified as model structure uncertainty.

In Figure 3.1, opposing views are presented for both GIS and again for hydrological
modelling. In the GIS case, two opposing model structures, the raster or field model, and
the vector or object model. In the hydrological case, two structures are presented largely
adopted as a means of computing runoff from a given mass balance. In the first case, the

Horton physically-based infiltration model is depicted as one model structure while the

other, the empirically based SCS-curve method is presented as an alternative. In either
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Figure 3.1. Error and consequently uncertainty is introduced into GIS, hydrological models, and coupled

models through various levels abstraction. Abstraction exists as abstraction from reality, abstraction of model

structure, spatial abstraction and, a —spatial abstraction.
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case, both model structures are equally applicable in a number of cases. However, both
alternatives contain uncertainty as a result of diverse abstraction.

As a means of dealing with uncertainties in model structure, Beck (1991), suggests
that given the ability to reduce or quantify uncertainty in other sources of error, uncertainty
in model structure can be dealt with through precise verification (validation) of the model,
a process discussed in Chapter 1. In this respect, it is necessary to note that in validating the
model, there is no control for error or uncertainty in model structure, nor is there any
attempt to quantify that uncertainty. However, in testing the ability of the structure to be
validated, there is an increase in the confidence in a hypothesis that the model is a
reasonable representation of reality.

The notion that model validation provides a means of reducing uncertainty in model
structure has been criticized. It has been recognized that the greater the number of
parameters involved in defining model structure, the greater is the likelihood in achieving
an acceptable model calibration (Aitkin, 1973). Beck, (1991) however, reiterated earlier
findings by O’Neil, (1973) suggesting that, in adopting a more complex model, the need is
inherent to determine more variables each having an associated uncertainty and, thus,
increasing the likelihood of error being introduced into the model.

Issues of uncertainty in model parameters have also been discussed by Beven et al.
(1992). Here, it is identified that in a given calibration exercise it is highly likely that a
number of correct parameter values may be chosen which provide an equally favourable set
of model outcomes. It was also noted that these problems tend to get worse with complex
models containing a large number of parameters.

Assuming that parameter uncertainty can be dealt with, the remaining error in the
underlying physical abstraction defining the structure of a model is suggested to be a
philosophical debate that may be overlooked in the urgency of reaching a decision (Beck,
1991). Inherent in this argument is the application of the precautionary principle, whereby
in the absence of a clearly better understanding of the problem, one is obligated to draw
upon an existing hypothesis until evidence supports a more suitable prediction. This has
been further asserted by Lei (1996) who suggests that unless disproved through

observation, the uncertainty in model structure is negligible or at the very least liveable.
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3.5 Scale

Scale is an important component of uncertainty and error propagation in models.
Often, the chosen scale for a model is necessarily a tradeoff between the level of spatial
resolution needed to reasonably represent the processes of interest and the degree of
manageable detail. Therefore, the scale at which data are collected, stored, manipulated,
visualized and displayed will determine the level of generalization in the data. This

ultimately will lead to other sources of error and uncertainty associated with generalization.
3.5.1 Soil Generalization

Various authors have examined the role of scale-based generalizations on GIS-
based hydrological modelling. Liang et al, (2001) demonstrated the importance of detailed
soil information for the simulation of large scale Global Circulation Modelling (GCM)
while Brath et al (2003), discussed the effect of soil resolution on infiltration excess
predicted by a distributed SCS-Curve Nﬁmber on peak flows, finding that prediction of
lower peak flows is more sensitive to the scale with which the Curve Numbers are
resolved. Zhu et al (2001) examined the effects of high-resolution soil data on measured
hydrological and ecological responses of a catchment identifying that modeled responses
such as peak runoff and net photosynthetic activity of forested areas are sensitive to the
spatial detail of soil when a lumped model is used but increased soil detail has less of an

impact on model performance when a distributed approach is used.
3.5.2 Rainfall

Various authors have also examined the role of rainfall heterogeneity and
distribution on watershed response. Arnaud et al., (2002) investigated the effects of rainfall

resolution on a 2000 km® densely monitored area surrounding Mexico city and found that

lumping rainfall as opposed to using a distributed field led to problems in model
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calibration. Koren et al. (1999), examined the effect of precipitation data at different scales
on lumped runoff modelling and found less surface runoff and greater evapotranspiration at
larger scales as well as noting that scale issues were the primary cause for reduction in
runoff prediction. Shah et al, (1996) investigated the effects of distributed versus lumped
rainfall on an experimental catchment finding under ‘wet’ conditions, good predictions of
runoff can be obtained with a spatially averaged rainfall input. However, for ‘dry’
catchment conditions, the runoff prediction errors are seen to be considerably larger than
for the ‘wet’ case, suggesting that there is interaction between the spatial variability in
rainfall and the spatial distribution of soil moisture which controls runoff production.

Many authors have examined the relationship between the heterogeneity of rainfall
input and the density of rain gauges. For instance, Faurier et al., 1995 examined the effect
of high-resolution rain data gathered from a densely sampled small catchment with an area
of 4.4 ha and concluded that the spatial pattern of rainfall data captured at higher resolution
has a measurable impact on predicted runoff. Because rainfall is highly spatially variable,
especially in climates subject to frequent brief localized downbursts, rainfall estimated
using a single rain gauge for a catchment can not reasonable represent the heterogeneity of
rainfall processes within a system resulting in significant errors in model prediction. For
example, Mustzner, (1991) suggests that achieving runoff predictions of greater than 20%
of the known values for a given time period may not be possible when using a single rain
gauge. The effects of the spatial and temporal resolution of rainfall was discussed in detail
by Lei (1996), who found it was apparent after a review of a number of studies, even for
small catchments with a relatively high density of rain gauges errors in runoff prediction
ranged from 20 —300%. Further, Lei also suggests that it is not reasonable to expect that
better than 20 percent accuracy can be achieved in predicting runoff when only a single

rain gauge is used to define precipitation for a catchment.
3.6 Spatial and A-Spatial Uncertainty
The National Committee for Digital Cartographic Data Standards (NCDCDS, 1988)

has identified five types of error and uncertainty related to objects including positional

accuracy, logical consistency, attribute accuracy, completeness, and lineage.
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3.6.1 Logical Consistency

Logical consistency essentially relates to a lack of conveyed consistent logical
features and represented topological relationships among entities. Often the result of
positional errors, objects with poor logical consistency will often convey erroneous
meaning about their intrinsic relationships. For example, errors in positional accuracy in
streets that meet at a corner may over or undershoot one another offering a misimpression
about the reality of a transportation network. Alternatively, separate and discrete objects
may in fact overlap or share boundaries giving the impression of a unified structure where
in reality separate and discrete entities in fact exist. Maintenance of logical consistency
can, therefore, be managed through verification of topological relationships and procedures
used in the management and documentation of logical consistency within spatial databases
have been discussed at length by Servigne et al (1999), as well as Guptil and Morrison
(1995).

3.6.2 Positional Accuracy Defined

Spatial uncertainty exists where error about an object is directly related to the
accuracy of its position in space. Assuming that spatial features within a system are
uitimately discrete entities and assuming further that one has the ability to investigate this
discreteness with infinite scale. Consequently, infinite precision then given an infinite
number of observations and a hypothesis can be drawn where the discrete spatial nature of
a set of objects could be realized with perfect accuracy. This is however completely
tmpractical and even if a set of entities could be observed independent of the scale of
observation, it is likely that upon closer inspections many entities would exhibit a
continuous transition and would likely not bé discrete at all. As such, it could be argued
that the degree of discreteness in set of objects is a scale-dependent property and, as such,
when we record position of entities at a given scale into a digital representation, a process
known as data modelling (Goodchild, 1989), those positions are subject to error or

deviation from reality as the true positions of a given object is not known. How we
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represent or rather where we represent entities within the spatial realization of a system is,
therefore, subject to positional inaccuracy or error.

Assessment of error in position or the positional accuracy in vector data begins with
the measurement of points since the positions of points in space are subject to numerous
sources of random and systematic error (Zhang et al, 2002). In the vector object model,
polygons are defined from the position of a set of arcs (or lines), and the position of lines is
inherited by the location of a set of points used to define the extend of the line. Error in the
location of points then will be inherited by lines and, consequently create uncertainty in the

geometrical representation of polygons (see Figure 3.2). This geometrical uncertainty often

vy

Figure 3.2. Error describing the position of a point can be described stochastically using a mean and
variance. Error in points is inherited by lines and consequently affects the geometry of polygons. Source:
Longley et al, 2001.

translates to errors in attributes derived from the spatial properties of features. For example,
many attributes used in hydrological modelling are directly dependent on the analytical
results of position dependent measurements within the GIS such as area, perimeter,
elevation and slope. Other important aspects may include proximity to regions of influence
or the area of influence associated with rain gauges and determined from a Thiessen
polygon or other such interpolation procedure, which are largely dependent on the
measured distance between two points in an area. As such, many uncertain attribute values
inherited by the hydrological components of coupled models are directly related to
positional errors within the GIS.

Various authors have examined the influence of the stochastic nature of points on

the propagation of positional error in higher objects such as lines and polygons (Zhang et
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al, 2002; Shi et al., 2002), most of which are largely related to the concept of epsilon error
bands, (Shi, 1998; Perkal, 1956) where the error in the position of lines is expressed based

on the probability of its actual location occupying a region around its assumed position.

3.6.3 Statistical Measures of Positional Accuracy

The error in points is often determined through comparison with errors in known
locations of at least three times the accuracy (Zhang et al., 2002), and is often quantified
using descriptive statistics. Some of the descriptive statistics used to describe this error
include the sample mean error, the Root Mean Square Error (RMSE), the standard
deviation of error, the mean displacement and the standard displacement. The first three
statistics are used to approximate error in the X and Y coordinates separately where, the
mean error, RMSE and standard deviation of error in X and Y is independently represented

by :

m,= I/nZe,- | 3.1
RMSE,=(1/n Zeﬁ)’” (3.2)
Std, = [1/n2(e,-me)2]”2 (3.3)

where,

e; is the difference between an error prone point, in the X or Y coordinate,
and a known point of higher accuracy and
n is the sample size.

The mean displacement and standard displacement differ from previous measures

as they consider error in both the X and Y simultaneously as:

M= [mx)’ + m(y)’]"” (3.4)
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Sais = [stax(xy’ + stdy(y)’]" (3.5)

where:
my(x) and m,(y) represent the mean error in the X and Y coordinate of a
series of points and
stdx(x) and stdy(y) represent the standard deviation in error from a series of
points again when compared to a series of points of known and higher
accuracy.

In cases where the error in the position of points is purely random, the error in a
point can be conceptualized as a set of circular bands represented by a series of standard
displacements about a central location where 99.9 percent of all error theoretically occurs
within three standard displacements assuming the error is normally distributed. However,
as is often the case, error in points is not purely residual random error and is largely
systematic or relative thus error bands for a point more closely approximate an ellipse.

Extending this to the concept of error regions for a line would follow the same
logic. Given that error in the points that define a line is random an error band would be
formed around the line evenly being the same width on either side of the line and circular
at the end. However, given that the error is partly systematic, the regions around the line

will be distorted (Figure 3.3).

Figure 3.3. Error bands delineating positional error in points and lines under systematic as well as stochastic error can be conceptualized
as an ellipse as opposed to a circle. Source: Zhang et al, (2002).
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3.6.4 Sources of Positional Uncertainty

Numerous sources of positional error are known to occur during stages of data
capture, data manipulation. In the case of data capture, data for GIS-based hydrological
models comes from various sources. Model attributes such as land use and soil type are
often digitised from pre-existing paper maps, or scanned into digital form or constructed
from measured field data. In all cases, the input of positional information concerning
features of interest is subject to numerous sources of error such as measurement error either
from poor field practices, or the tolerances of field and lab equipment. For example, a
digitizer will only enter data as accurate as the person who is taking the measurements.
Further, a GPS receiver can only provide digital information to within a specified margin
of error. If secondary sources are being used, certainly error was introduced during its
creation that will undoubtedly be transferred to the new application. In many cases,
remotely sensed (RS) data are used to create digital GIS files on land use and perhaps soil.
Because RS data is in raster form, to be used with a vector model, it must be processed into
a vector format, consequently, introducing positional errors in addition to those associated

with the capture process, its scale and resolution.

3.6.5 Lineage and Completeness

Aspatial uncertainty refers to sources of error that are not directly influenced by
spatial error and include attribute accuracy, completeness and lineage. Completeness refers
to degree to which data of interest include all relevant information. For example are all
objects in a theme present? Has all data been classified exhaustively into a series of
relevant and exhaustive categories. Lineage on the other hand refers primarily to the history
of a data source. For example, was the data in a vector theme digitized by hand? What
inappropriate projections were used or, are the data a product of numerous sources each
with separate levels of accuracy.

Often it is assumed that error within various layers of a GIS are independent.

However, this is strongly influenced by the lineage of the data. Goodchild (2002) suggests:
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...geographic data is often derivative in the sense that many stages of processing.
interpretation, compilation and transformation occurred between the initial stage of
measurement and the final product.

Understanding lineage means comprehending the history of data and, thus, its potential

uncertainties.

3.6.6 Attribute Accuracy Defined

Attribute accuracy deals fundamentally with error in the aspects of objects that are
separable from the descriptions of the positions of those objects (Zhang et al, 2002).
Although arguably the position of objects in and of itself can be considered an attribute,
attributes of objects more often deals with the properties associated with entities. Typically
attribute error is discussed in terms of the accuracy and precision with which values of a
property are associated or defined for an object. Attributes for an object may be associated
with a set of nominal properties as in the case of distinguishing between a house or a
school in an urban model or may distinguish between soils and land uses such as the
Hydrological Soil Grouping or (HSG) classification scheme or in distinguishing land uses
such as agriculture versus woods in the case of a hydrological application. If properties of
objects are defined in such a way as having rank, any number of ordinal attributes may be
considered or, in the case of quantitative or continuous attributes such as elevation or soil

moisture, values may be any real number within a logically acceptable range.

3.6.7 Sources of Attribute Uncertainty

In many cases, attribute uncertainty may be related to the process of membership
classification where attribute accuracy refers to the degree with which an object is correctly
classified. In this case, the vagueness of class assignment discussed earlier, can have an
effect on the attributes associated with a particular entity that is given membership in that

class. Uncertainty of this sort is often related to errors of omission and errors of
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commission where objects classified based on properties are left out of an appropriate class
or added to an inappropriate class, respectively.

Errors associated with data capture are introduced through imprecise digitising of
paper-based data, imprecise data entry by individuals populating a database, or imprecise
measurement of properties by field or lab persons and equipment. There are numerous
sources of attribute accuracy which like positional accuracy, are related to the processing or
manipulation of data. For example, the classification of data from RS imagery into various
land use classes is often error prone and imprecise. Various authors have discussed these
issues in detail. The interested reader may refer to Longley et al, 2002) Zhang et al, 2002;
Shi et al, 2002; Heuvelink, 1998; Lodwick et al, 1990 and Goodchild et al, 1989)

3.7 Sensitivity Analyses and Uncertainty Analysis

The term uncertainty analysis may be related to error propagation (Heuvelink,
1998), error modelling (Goodchild et al., 1992) or geographical error analysis (Lodwick et
al., 1990) within the literature. Conceptually, uncertainty analysis can be considered a
quality test for a particular model and its input data by consideration of all quantifiable
sources of error simultaneously (Crosetto et al., 2001). Sensitivity analysis (SA), often
referred to as error analysis (Heuvelink, 1998), quantification of error contribution (Arbia
et al., 1998), or geographic sensitivity analysis (Lodwick et al, 1990), can be defined as the
study of all information flowing in or out of a model (Saltelli et al, 2000). More specifically
however, SA refers to one or a series of processes carried out in order to identify how much
total (global) model uncertainty can be attributed to the uncertainty associated with each
individual model factors including, all model parameters, inputs, variables, attributes, and

outputs.

3.7.1 Usefulness of Sensitivity Analysis

There are numerous reasons to perform a sensitivity analysis. Saltelli et al, (2000)

offers the following reasons:
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To identify if a model resembles the system or processes under study

e To identify the model factors that mostly contribute to the output variability
of the model and which may require additional research to strengthen the
knowledge base.

e To identify the model parameters that are insignificant and, that can be
eliminated from the model.

e To identify if and which group of factors interact with each other
To identify if there is some region in the space of the input factors for which
the model variation is a maximum and

o To identify the optimal regions within the space of the factors for use in a
subsequent calibration study.

It is intended that through application of UA and SA in this study that further
knowledge can be gained as to the applicability of GIS and SCS based hydrological models
as predictive tools for hydrological responses to land use change. Further, it is intended
through sensitivity analysis of identifiable sources of uncertainty in the model, that an
overall measure of importance for the model factors examined will be produced. This,
subsequently, provides an indication of areas requiring further research or more careful

attention prior to model application.

3.7.2  Methods for performing UA and SA

Uncertainty Analysis

While a variety of methods for uncertainty estimation exist within the literature (see
Helton, 1993 for a review), the most popular methods for analysing total model (global)
uncertainty are those related to the Monte Carlo simulation (MC). The Monte Carlo
simulation is belongs to the family of global uncertainty methods often grouped under the
auspices of “sampling-based techniques™” ‘all of which involve the generation and
exploration of uncertain from analysis inputs to analysis results (Helton, 1993). The goal of
these types of analysis is essentially an understanding of the how uncertainty in a model
output will depend on the combined uncertainties of model inputs. The term input in this
case however should be used loosely as depending on the analysis this could potentially be

applied to all model factors by the definitions established in Chapter 1. Typically a MC
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analysis relies on the repeated sampling of model factor values according to some sampling
strategy and the computation of model outputs. The number of iterations (trials) used in a
MC analysis reflect the complexity of the model, the number of factors, their stochastic
properties and typically is reflected in the sample size necessary for insuring statistical
significance of the simulation results.

While numerous other UA methods have been differentiated from MC analysis
within the literature, these methods are fundamentally no different in application but differ
largely in the sampling strategy used. While random sampling is the most common method
used, Campolongo et al (2000) differentiate between numerous sampling strategies
including stratified sampling, latin-hypercube sampling and simple random sampling, all of
which are unique sampling methods used in conjunction with the MC approach.

Justification for use of different sampling strategies may be made in cases where
the sampling space of model factors necessitates a more complex strategy to insure that that
the number of trials used in a simulation is statistically representative of the overall
sampling space. For example, stratified random sampling differs from simple random
sampling in that the sampling space is divided into a series of disjointed strata within which
a random sample is obtained whereby the likelihood of a unified coverage of the sampling
space is increased. Latin Hypercube Sampling, considered a special case of stratified
sampling, divides the range of model factors into N equal intervals of marginal probability
whereby a sample set is created by drawing one observation from each interval (Saltelli et
al, 2000).

The use of one sampling over another will have an impact on the outcome of the
analysis and should be justified based on the type of model and the number of parameters.
For example, in a study by Yuh et al, (2001), examined various sampling strategies used to
evaluate uncertainty in an event-based distributed rainfall-runoff model. Strategies used
included a simple random MC approach, the Latin-Hypercube strategy (LHS),
Rosenbleuth’s Point Estimation Method (RPEM) and the Harr’s Point Estimation Method
(HPEM). Results indicated that the LHS strategy required only ten percent of the number
of trials to produce similar results to the simple Monte — Carlo method but that the other
two methods produced results suggesting that they are not suitable methods where small

numbers of model parameters are used for calibration.
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Other sampling strategies focus on the series of methods including those related to
Markov Chain sampling (Gilks et al., 1996), include the Metropolis sampling method
(Metropolis et al., 1953) have also been widely applied within the literature as a means of
evaluating uncertainty among equally effective parameters sets. This application was
demonstrated in a study by Mailhot et al. (1997), where a Metropolis based MC analysis to
examine the effects of data uncertainty on a lumped catchment model created using the
Storm Water Management Model (SWMM). This study identified the Metropolis MC
approach as a useful approach for evaluating acceptable parameters used in model
calibration given uncertainties in calibration data. Further, in a study by Kuczera and
Parent (1998), the Metropolis MC method was compared to importance sampling, a
strategy demonstrated in a paper by Beven and Binley (1992) on the Generalized
Likelyhood Uncertainty Estimation (GLUE) technique, another Monte Carlo based
technique for examining uncertainty in parameter calibration sets. Results identified that
the Metropolis method produced better results with fewer sampling trials when compared
with the GLUE method.

The Monte Carlo method of uncertainty analysis is the most popular means of
performing global model uncertainty. While a highly diverse set of sampling algorithms
exist, should be applied with caution as these methods can have significantly different
results. Care should be taken to justify the application of a more complex method over
simplest methods, especially when a small number of parameters are being examined and

computing power is not of crucial concern.

Sensitivity Analysis

Pure sensitivity analysis has been classified into two generalised methodological
approaches being local SA or global SA, where local SA measures typically involve a
concentration on the localized impact of a single factor within a model. The use of local
sensitivity analysis is, however, primarily carried out through the computation of partial
derivatives of model output functions with respect to small changes in model input.

Applications are often used to solve problems of chemistry and physics, and are used to
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solve issues such as the inverse problem which relates to the back calculation of kinetic
constants for outputs whose measurements are not directly measurable (Saltelli, 2000).
Global sensitivity analysis is primarily concerned with the process of apportioning a
model’s total output uncertainty to uncertainty in a models input factor in order to ascertain
those input factors which contribute most to the overall uncertainty of the model. Saltelli

(2000) has defined global uncertainty analysis based on two properties:

e The global property, including the influence of scale and shape where the
sensitivity of estimates of individual factors incorporates the effect of the
range and shape of their probability density functions and,

e Multidimensional averaging where the sensitivity estimates of individual
factors incorporates the effect of the range and the shape of their
probability density function.

With respect to global sensitivity, numerous methods have been reviewed by Saltelli,
(2000) and Hamby, (1994) and are described in the literature. Such techniques include
ANOVA and other variance-based techniques, the use of bootstrap (Archer et al, 1997),
non linear methods (Sobol, 1993) the Fourier Amplitude Sensitivity Test or FAST, (Cukier
et al, 1979); Extended FAST, (Saltelli et al, 1999), as well as a series of one at a time
(OAT) approaches (Daniel, 1958). While there are multitudes of applications of sensitivity
and uncertainty analysis within modelling in general, a comprehensive review is largely

beyond the scope of this thesis.
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3.8  Application of UA and SA to GIS and Hydrological models.

Numerous applications of sensitivity and uncertainty analysis have been performed
in the fields of hydrology, although, to a lesser extend in GIS and include the application of
OAT techniques, local measures of sensitivity as well as variance based methods.

The one-at-a-time approach (OAT) is the simplest class of techniques used in
performing SA. In standard OAT designs, the impacts on model output are observed
through changing each model factor in turn. Typically nominal values for all model factors
are taken from the literature or derived in situ . The combination of all nominal model
factors is considered the control scenario and is either represented by the midway of two
extreme values for each factor (Campolongo et al, 2001), or in some cases represents the
combination of factors used to achieve a best fit for the calibration/validation of a model of
interest. The factors are then adjusted about the range of extreme values and the
corresponding model response is “mapped” for each factor independently. While OAT
designs do not allow for an investigation of the interaction between model factors
(Campolongo et al, 2001), they are a useful means of sensitivity analysis where the purpose
of the analysis is to perform screening for more complex analysis or when it is expected
that random error is small compared to systematic error within model factors.

Some examples of OAT analysis applied to hydrological models include those of
Ibbitt, (1972) who examined the effects of random data on a conceptual rainfall-runoff
model finding that random errors caused no significant change in parameters values while
systematic bias as a result of missing data could be considered as the cause of variability in
final parameter values. Singh et al, (1976) and Singh, (1977) used a one at a time approach
to examine the sensitivity of linear and non-linear rainfall-runoff model structures to
systematic errors in rainfall. Findings included that while the behaviour of watersheds are
commonly accepted to be non-linear, systematic errors in rainfall tended to overpower the
robustness of non-linear systems suggesting the use of linear models would be preferable in
some cases. This was expanded on in the latter study where five linear and non-linear
models were compared. Findings suggested that a perfectly identified non-linear model

cannot be uniformly better than an optimally identified linear model when error in rainfall
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is considered, but that the degree of non-linear behaviour of the system will very the
rigidity of the conclusion. Paturel at al, (1995) also utilised OAT sensitivity to examine the
effects of systematic and random errors on model inputs to a simplified catchments model
and found that under various circumstances systematic as well as random error tended to
amplify the response of peaks and troughs but that these effects did not magnify over
longer time periods. However, the errors were mimicked in model output such that optimal
solutions could be achieved through calibration.

The use of local sensitivity analysis has also been used in a number of cases to
examine models associated with evaporation estimation. Approaches of this type evaluate
sensitivity of model factors through calculation of rates of change of model outputs based
on small changes in each model factor. Typically, these approaches do not attempt to
derive sensitivity estimates for more than first order interactions due to difficulties in
deriving the first order partial derivatives of the system known as the Taylor series
(Campolongo et al, 2001).

A number of studies utilizing this method have however been applied to a variety of
sensitivity studies within the hydrological context. McCuen, (1974) used a First order
Taylor local sensitivity method to examine the effects of variation in meteorological factors
on evaporation estimates produced in conjunction with three evaporation estimation model
structures including the Fractional Factoral Method, the Weather Bureau Method and the
Penman model. Studies indicated that evaporation estimates resulting from measurement
error in meteorological factors were significant and that use of the Penman model was less
sensitive to these errors and preferable to the other two.

Saxton (1975) also utilized the First order Taylor method to evaluate sensitivity of the
combined aerodynamic-energy budget method for estimating evapotranspiration. Results
indicated that the model was most sensitive to errors in net radiation. Beven, (1979)
performed sensitivity analysis of the Penman-Montieth equation on actual
evapotranspiration using also using the First order Taylor indicating that the Penman-
Montieth method is sensitive to values of aerodynamic and canopy resistance parameters
which introduce influences of vegetation type into predictions more than climate

parameters. Finally, a First order Taylor was used by Piper, (1989) to examines the
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sensitivity of input errors on the Penman-Montieth equation suggesting that this model was
most sensitive to temperature.

While there have been some recent attempts at application of sensitivity and
uncertainty analysis on GIS-based models, these have been largely non-comprehensive and
fail to address sensitivity / uncertainty in a way appropriate to addressing the needs of
successful coupling of GIS-based hydrological models. While Lodwick et al, 1990
examined the numerous potential sources of uncertainty involved in map operations, this is
primarily applicable to aspects of site suitability assessment and tended to focus
exclusively on raster operations. Mendicino et al, 1999 provides a sensitivity analysis of
specific GIS procedures but concentrates primarily on sensitivity of multiple algorithms in
the approximation of a single attribute. Mckenney et al., (1999) conducted an OAT
sensitivity analysis on a multiple scales within a GIS solar radiation model. However, input
specific sensitivities were not exhaustively dealt with.

One very promising comprehensive UA/SA analysis has been proposed and
demonstrated by Crosetto et al., (2000), Crosetto et al., (2001). These studies emphasise the
use and benefits of performing UA and SA in conjunction with spatially based GIS
modelling and suggest the use of a stepwise method for SA. The method, based on an
approach suggested by Crosetto et al, (2001), is augmented to support the complexities
associated with performing sensitivity analysis on GIS based models. After identifying a
suitable test site as well as sources in the model that could contribute to overall uncertainty,
a global UA is performed utilising a simple MC approach and suitably determined error
models for each factor of concern. The list of model factors is then analyzed in
combination with the results of the MC and an OAT screening test proposed by Morris
(1991). Once important model factors are determined through application of the screening
test, a more complex variance-based SA approach is then applied to compute the first and
n™ order interactions, without concern for lack of computing power. In the earlier study,
the use of a screening test was not necessary as the model considered was dependent on a
small number of factors however, in the later study a series of fifteen model factors were
first ordinally ranked using the OAT screening test of Morris (1991). This followed with
the application of the Extended FAST technique and an analysis of first and n™ order

sensitivities.
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The use of this approach suggests a promising framework for performing
quantitative SA on GIS based hydrological models. However, in many cases error models
for many of the model factors are assumed (necessarily) using expert judgment. This may
be easier to do for model factors associated with physically-based modelling as parameter
values can more easily be bounded however. In the case of empirically based models such
as the SCS-curve number method, model parameters are representative of the combined
effects of numerous physical processes and more analytical methods may be necessary for
the provision of suitable error model definition. In the following chapter on methodology,
the approached outlined by Crosetto et al (2000; 2001) is suitably adapted to applications
dealing with vector GIS and the SCS-Curve Number method. A MC approach in
combination with descriptive spatial statistics will also be used to determine a suitable error
model for the SCS-Curve Number as a result of spatial error in soil boundaries and
ambiguity of soil and land use classes. The results of this will be used in conjunction with
other appropriately identified error models and the stepwise approach previously described
will be utilized to perform a combined UA/SA on a GIS-based hydrological model
developed using a revised SCS-Curve Number Method.
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Methodology and Case Study CHAPTER 4

In the introduction as well as in sections 3.1-3.2, it was identified that the SCS-
Curve Number technique is used as a core model structure for a number of different
predictive hydrological models. The SCS method has further been utilised in a number of
models that rely on GIS systems for managing model attributes and data input. Various
methods for recognizing potential uncertainties in the application of this approach have
been identified in the previous section. Identifying how these uncertainties impact model
performance is an important process for evaluating the model as a predictive tool. The
following case study and accompanying methodology will examine various approaches that
can be used for determining the implications of uncertain data when used in conjunction

with a GIS based Curve Number approach to hydrological modelling.

4.1  Procedure for Performing Uncertainty and Sensitivity Analysis

Reasons for performing UA/SA have been discussed as a commonly accepted BMP
for hydrological modelling in Chapter 1, and have been proposed as a necessary BMP for
hydrological models that rely on GIS procedures in Chapter 1l. Further, in the previous
chapter, the specific motivations for performing UA/SA have been reviewed in conjunction
with various methods and their relative advantages and disadvantages. In this Chapter, a
series of methods for performing UA /SA on GIS based hydrological models is introduced
as well as the modelling methodology for use in the case study described in Chapter 5.

Saltelli et al, (2001) and Crosetto et al, (2000; 2001) outline a useful procedure for
performing sensitivity analysis of spatial modelling based on GIS. The procedure utilizes a
combination of global model uncertainty analysis in the form of a comprehensive Monte
Carlo simulation in combination with OAT-based screening test and a quantitative n™ order
extended FAST (Saltelli et al, 1999), to identify total model uncertainty and quantify that
uncertainty by partitioning it to each model factor and its n™ order interaction for which a

suitable error model has been identified (see Figure 4.1).
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Figure 4.1. Illustration of a comprehensive series of steps for performing an uncertainty and global sensitivity
analysis on GIS-based hydrological models. Source: Crosetto et al, (2001)
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The procedure is performed according to a series of steps (Crosetto et al 2001),

including:

o A, Identification of an appropriate test area
B, Development of the model

e C, Identification of areas of model factors that are likely to
contribute to the total model uncertainty.

e D, Development of an appropriate stochastic error model for each
identified factor of interest capable of generating a series of distorted
realizations.

e E, Performance of a pre-assessment in order to determine major
sources of sensitivity

e F, Performance of global model uncertainty analysis.

e G, Performance of a detailed sensitivity analysis.

These steps offer a suitable methodology to follow for the demonstration of the case
study. While some steps will be altered to suit the needs of the investigation, the
methodology used is discussed throughout the remainder of this chapter according to the

various steps identified in the previous procedure.

4.1.1 Identification of the Test Site

In identification of suitable test site, the investigator must give careful thought as to
whether the chosen site represents a suitable system for performing the investigation. In
such cases, it is highly desirable to have a test site that is representative of the larger
environment of interest but also small enough so as not to impose unnecessary complexity.

The environment chosen for the case study is the Duffins Creek Watershed (Figure
4.2) The site is considered suitable for a number of reasons including its proximity to the
greater Toronto area (GTA) and the availability of land use and soil data. Further, the
Duffins Creek watershed is the subject of a number of other studies supporting the
development of predictive and descriptive models for management purposes.

The Duffins Creek watershed is located within the north-eastern limits of the GTA
and extends from just north of the community of Whitchurch-Stouffville, south to Lake

Ontario. The majority of the watershed lies within the regions of Durham and York.
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Figure 4.2. The Duffins Creek watershed with associated tributaries. The Reesor Creek sub-watershed is

identified in the top left corner in yellow as are associated rain and stream, gauges. Adapted from: TRCA,
2003b.

Populated centres within the watershed include the communities of Whitchurch-Stouffville,
Markham, Uxbridge, Pickering and Ajax (TRCA, 2003b).

Land use within the Duffins Creek watershed remains primarily agricultural
(TRCA, 2003a) with approximately 50 percent of land currently in public ownership
(TRCA, 2003b). Land use within Duffins Creek is however changing rapidly as numerous
pockets of urban and commercial development are beginning to emerge and recent

population growth statistics for the area suggest that pressure for development will likely
continue for the next 25 years (TRCA, 2003b.)
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Physiographic characteristics within the northern extent of the Duffins Creek watershed is
dominated by the Oak Ridges Moraine, an area typified by a higher elevation than other
areas of the watershed and consisting of glacial deposits consisting of sand, till and gravel.
The central regions of the watershed are represented by the Halton Till plain and are
typified by a physiography of rolling hills and stream valleys. Soil in this region is a
mixture of agriculturally valuable loams as well as some surficial clay deposits within
proximity to the communities of Whitchurch-Stouffville and Clarimont. The southern
portions of the Halton Till plain consist of steeper gradients corresponding to the historical
shoreline of glacial Lake Iroquois. The remaining bottom third of the watershed is
considered to be part of the glacial Lake Iroquois plain where soils are typified by various
mixtures of sand, silt and clay.

Duffins Creek has a number of significant tributaries, including Reesor Creek,
Stouffville Creek, Wixon Creek, Whitevale Creek, Major Creek, Urfe Creek, Brougham
Creek, Ganatsekiagon Creek and Mitchel Creek. Annual flow characteristics within the
watershed are considered to be the last in the GTA that are typical of an agricultural as
opposed to an urban watershed (TRCA, 2003b). Each sub-watershed within Duffins Creek
is subject to local and regional characteristics and contains a variety of flora and fauna
described at length by the TRCA, (2003a,b).

Given the complexity of modelling the entire Duffins Creek watershed, it was decided
for the case stud that a portion of the overall watershed corresponding to the Reesor Creek
and Stouffville Creek sub-watersheds would be modeled as a suitably representative test
site (see Figure 4.2).

This particular area was chosen for three reasons:

¢ A reasonable stream gauge and precipitation record was available for a three-year
time span.

e The land-use and soil characteristics were representative of the overall watershed
and possessed pervious rural as well as impervious urban land use characteristics.

e A more complex model had been already been developed without sensitivity and
uncertainty analysis for the same sub-watershed, the results of which were available
for comparison.
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4.1.2  Model Development

As identified in Chapter 3, there have been numerous hydrological models that rely
on the SCS-Curve Number technique as a primary model structure used in the prediction of
surface runoff. The SCS-Curve Number technique is frequently used in conjunction with
GIS-based hydrological models such as the AGNPS model (TRCA, 2003; Al-Smadi, 1998;
and Yagow, 1997), the OTHYMO model and XSRAIN, (Correia, 1998) and, is a popular
model structure adopted for use with GIS loosely coupled models for a number of reasons

including:

The model’s simplified structure

The relative availability of spatially distributed land use and soil data

The lack of field work required and

The relative ease in loosely coupling the Curve Number structure with GIS output

The SCS-Curve Number technique was developed largely as a response to the United
States 1935 Soil Conservation Act as well as Flood Control Act of 1936 and was largely
developed over a period of 20 years between 1930 and 1950. Based on the analysis of
empirical data gathered throughout experimental catchments throughout the United States,
the SCS-Curve Number technique was developed to provide engineers with a simplified
means of estimating runoff excess from a watershed given a measurable amount of rainfall,
a set of identifiable soil classes and a dominant classification of land use types.

The SCS-method is applied using a set of empirically derived relationships equating

rainfall depth to excess runoff where:

Q= (P-Ia)’/(P-In) + S 4.1)
and: S = 254(100-CN)-CN 4.2)
and: Ia = $"% “4.3)

Q = depth of runoff

P = depth of incoming precipitation

Ia = Initial abstraction losses

S = The amount of soil water storage available
CN = The SCS- Curve Number
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Cover Description Curve Number for Hydrological Soil Groups

Cover Type Treatment Hydrologic Condition A B C

Fallow Bare Soil - 77 86 91 94

Crop Residue Poor 76 85 90 93

Cover (CR) Good 74 88 83 90

Row Crops Straight Row Poor 72 81 88 91

(SR) Good 64 75 82 85

SR +RC Poor 71 80 87 90

Good 64 75 82 85

Contoured (C) Poor 70 79 84 88

Good 65 75 82 86

C+CR Poor 69 78 83 87

Good 64 74 81 85

Table 4.1. The SCS-curve number procedure relies on a set of curve numbers relating rainfall to
runoff for a variety of soil and land use classes. Source: Mayes (2001).

The SCS-Curve Number parameter is the only parameter that needs to be identified
in order to apply the model. Curve Numbers (CN’s), are typically derived from a series of
tables (see Table 4.1) relating ranges of Curve Numbers to various local combinations of
soil corresponding the HSG soil classification ‘
scheme and local land uses. Curve Numbers are based on empirical data derived from long
periods of observation about the rainfall-runoff relationships throughout numerous
experimental catchments each expressing a particular soil and land use combination that is
depicted in the CN lookup table. The empirical procedure used is dependent on the
derivation of a rainfall-runoff curve for a single catchment during its peak seasonal rainfall
event. The CN is established through fitting empirically derived rainfall-runoff curves from
the experimental catchment with a series of CN curves based on Equation 4.1.

Although these methods can theoretically be applied to any catchment for the
empirical derivation of a catchment specific Curve Number, this is seldom done as it
defeats the underlying simplicity for which the CN lookup method was created. Further,
the empirical approach relies on the gathering of a number of years of data. This is
necessary as correct approximation of representative rainfall-runoff relationships depends

on empirical data for a catchment’s maximum seasonal rainfall. Further, in theory, the
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empirical approach can only be performed on catchments with homogenous soil and land
use features, a highly unrealistic assumption.

While land use types depicted in CN lookup tables are for the most part ambiguous
numerous classes exist which represent a broad range of anthropogenic and natural cover
types. Soil type variation however, is restricted to four macro categories of soils known as
the Hydrological Soil Grouping classification (HSG) as introduced in Chapter 3. The HSG
is divided into four categories A, B, C, and D, which are loosely associated with the

following descriptions (Mayes, 2001).

A= deep sand, deep loess or aggregated silts

B=  shallow loess or sandy loam

C= clay loams, shallow sandy loams, soils low in organic
content or clay soils

D= soils the swell upon wetting such as heavy plastic clays or

saline soils.

In order to facilitate simplicity without sacrificing validity, the proposed model
subscribes to a number of approaches that have been reviewed in Chapters 2 and 3. The
model consists of two components, a GIS watershed model utilizing soil and land-use data
as well as a mathematical mass balance hydrological component which will rely on certain
model parameters identified through GIS analysis. The mathematical component of the
model is loosely coupled with the GIS and is developed through the Microsoft Excel
environment. The Excel environment offers a number of advantages including the ease
with which data exchange can be facilitated between the mathematical model and the GIS,
its user friendly environment and its compatibility with other software used for more
advanced analysis.

The mass balance approach adopted in this research uses a simplification of a two-
tiered rainfall-runoff model originally developed in 2000 by Clarifica consultants. The
model was initially developed for analyzing future development scenarios within
watersheds in the GTA and has been adopted by the Toronto and Region Conservation
Authority as a predictive tool. The hydrological rainfall-runoff model uses a single table

and is dependent on the input of daily averaged pan evaporation and precipitation data for
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continuous simulation as well as measured daily average streamflow for calibration and
validation.

Continuous stream gauge data from the test site was used for the period of April to
October 1997 and 1998 and 2000. The time period selected was a function of the available
data, data quality and correspondence with available continuous precipitation and
evaporation records. While the streamflow data were considered good quality and were
continuously available for longer time periods, these were limited by the availability of
rainfall records that coincided with stream records.

Streamflow was measured at TRCA station number 02HCO039 just south of the
confluence between Reesor and Stouftville Creeks at the southern tip of the study site (see
Figure 4.2 and Appendix III). In order for a logical comparison to be made with rainfall
data, the measured streamflow in cubic meters per day was converted to an average excess
depth over the sub-watershed area, which produced a continuous series of daily average
excess depth in millimeters.

Two continuous rainfall records from Buttonville airport and Cherrywood
meteorological station were available from January 1997 — January 1999 and January 2000
to December 2000. Unfortunately, due to the lack of monitoring for meteorological
variables, neither of these stations are within a suitable distance to the study site. Further,
the Cherrywood station, although closer to the site, was not used as it was previously
shown to produce poor results when used in a similar modelling approach while, rainfall
events measured at the Buttonville rainfall station was shown to conform reasonably well
with peak flow events when plotted against the corresponding stream gauge (Clarifica
2002).

Evaporation records for the time series were retrieved from Clarifica (2002) and
were originally taken from pan evaporation records. According to Clarifica, historical lake

evaporation data were only available at three southern Ontario stations:

¢ Hamilton RGB station (in Burlington)
e Lindsay Frost, and
e Peterborough (Trent University)
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The Hamilton station contained data from 1986 to 1996 and was the closest to the study
area however, operation of all three stations ceased as of 1996. In order to derive an
approximate measure of daily potential evaporation, an averaged seasonal evaporation
function was derived by Clarifica and used to produce evaporation data for the period of

calibration from 1997 to 1998. The algorithm used produces a seasonal trend based on
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Figure 4.3 Average evaporation estimates and corresponding sine function used to extract daily evaporation
estimates. Source: Clarifica 2002.

average values collected during operational periods for which a sine-function curve (Figure
4.3) is derived and from which daily average evaporation for the period of study was
extracted and used as model input (Appendix IV).

The research model uses a mass balance approach and calculates runoff from
precipitation falling on impervious and pervious areas separately (see Figure 4.4, 4.5).
Precipitation falling on impervious areas can be divided into two types, directly connected
and indirectly connected impervious areas. An area that is directly routed to streamflow
such as a drainage ditch or other storm water infrastructure is considered to be a directly

connected impervious area since conceptually this input is channelled directly to
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Figure 4.4. Precipitation entering a system and falling on impervious surfaces may be either directly or
indirectly connected to streamflow.

streamflow and, there are no further losses to this input prior to it exiting the system.
Directly connected impervious areas are typically indicative of an urban landscape and
precipitation falling within this type of a catchment is intentionally and quickly routed
directly to local natural surface waters by way of conduits or storm drains. Precipitation
falling on directly connected surfaces is quickly routed away so as not to impose a hazard
or, otherwise impact the daily activities of the urban community. Runoff from urban
infrastructure is typically not subject to any losses prior to being introduced into the natural
environment thus precipitation falling on directly connected impervious areas, is assumed

to be converted directly to runoff.
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Figure 4.5. The rainfall-runoff model uses a two-tiered approach for computing runoff from pervious to
impervious areas separately.

Precipitation falling on impervious areas can also be routed to pervious areas by
flowing off a rooftop or sidewalk and onto a lawn or other previous area. Precipitation that
falls on impervious surfaces is routed to pervious areas is said to be falling on indirectly
connected impervious area. For precipitation falling on indirectly connected impervious
area, it is assumed that this in turn is directly added to the input precipitation falling onto
pervious areas and, is subject to corresponding losses from those areas. It is assumed that in
a typical urban watershed, approximately 75% of the impervious area is considered directly
connected while, 25% is considered indirectly connected.

Precipitation falling onto a surface prior to becoming runoff is subject to losses in
the form of interception from vegetation, storage in surface depressions and losses to the
atmosphere in the from of evaporation. Collectively, the combination of depression storage
as well as interception by vegetation are known as initial abstraction losses and, are a

necessary parameter for use in application of the SCS procedure. The SCS method
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provides a formula for estimating the quantity of initial abstraction for a system based on
equations 4.2 and 4.3. The approach described by Clarifica (2000), as well as the approach
adopted in the case study however, uses an adjusted SCS procedure in that, published
physical estimates for both depression storage and interception loss from pervious and
impervious areas respectively are used to derive values for initial abstraction within the
study site. The basis behind this follows the assumption that physical values should be used
in cases where feasible over and above empirical estimates.

It is assumed that water falling on impervious areas is subject to initial abstraction
losses in the form of depression storage only, as strictly impervious area is considered
paved and free of all naturally occurring vegetation. Once depressions in pervious areas are
filled they are subject to further losses in the form of evaporation. Runoff is assumed to
occur when the rate of input to impervious areas in the form of precipitation exceeds the
capacity to be stored as depression storage or lost to evaporation over the study’s time
increment. In the case of indirectly connected impervious areas, a fraction of the runoff
generated from impervious surfaces is routed to pervious areas is considered part of the
input to pervious areas.

In the research model, precipitation falling on pervious surfaces is converted to
runoff through the use of the SCS-method identified in Equations 4.1- 4.3. Through the
application of this method, precipitation falling on pervious areas has the opportunity of
being subject to losses in the form of initial abstraction as well as being stored in the soil as
soil moisture. The total amount of available soil moisture storage for pervious area (), is
calculated using Equations 4.1 and 4.2. and, is based on the Curve Number defined for the
area. Like impervious surfaces, runoff from pervious areas is assumed to occur when
precipitation exceeds the storage capacity of the soil as well as the maximum potential
initial abstraction consisting of both depression storage and interception losses by surface
vegetation. In order for runoff to be generated from pervious surfaces, the amount of
precipitation falling in a given day must also exceed the amount of moisture lost from the
system due to evaporation. Total runoff calculated for the study site is a function of daily
runoff produced from both pervious and impervious areas. Full details on the mass balance

procedure and an example of the spreadsheet, are described in Appendices I and II.
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The GIS model was developed using the ArcGIS 8.2 platform created by the
Environmental Systems Research Institute (ESRI). For simplicity, data within the GIS was
developed using a vector model structure. All the spatial data for the study site was
provided by the Toronto and Region Conservation Authority, under a Memorandum of
Understanding (2001) with Ryerson University. The data had been digitized from a number
of sources including city plan maps, soil maps as well as land-use and vegetation maps, and
conformed with the current data standards of the TRCA. Data sources were of diverse
lineage, having a variety of map projections and input was controlled by a number of users
suggesting that sources of positional error in data were of an independent nature. GIS data
layers of the Duffins Creek watershed were provided by the TRCA and included such
themes as watershed boundaries, soil types, land use classification, surface hydrography
and transportation networks. Of these themes, the soil type and land use data was
considered the most important for the study.

Each polygon in the soils data was classified according to the HSG soil
classification as well as being identified as either clay, clay loam, organic, sand, sand loam
and variable soil types (see Table 4.2). Soil types described as “variable” and “organic” by
the TRCA were associated with the HSG class of “B’ or soils having good drainage and
consisting of shallow loess and sandy loams (Mayes, 1998). Further, each polygon in the
land use theme provided by the TRCA was classified as agriculture/rural, meadow, urban,
urban open space, federal airport lands, forest or wetlands. The attributes of each polygon
also classified each area as either previous or impervious respectively. In most cases,
impervious areas corresponded to the urban land use classification although some

exceptions did exist.
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Soil Types Classifications of the Duffins Creek Watershed and Published Descriptions of the Soil
Types Corresponding to the HSG Classification Scheme

TRCA Soil Types Corresponding HSG HSG Classification (Mayes. 1998)
Clay D A | Deep Sands, Deep Loesses, Aggregated Soils
Clay Loam C B | Shallow Loess and Sandy Loams
Organic B C | Clay Loams, Shallow Sandy Loams, Soils Low in
Sand A Organic Matter, Soils High in Clay
Sand Loam B D | Soils that Swell Significantly When Wet, Heavy
Variable B Plastic Clays, Saline Soils

Table 4.2. Soil Classes used by the TRCA and corresponding HSG soil classifications.

Watershed parameters used by the mathematical model developed using the Excel
platform are derived using a GIS analysis followed by an export of relative information to
the Microsoft Excel environment for use with the mathematical model. The necessary
parameters used by the model and determined using the GIS are the total area of the
watershed, the total impervious area and the SCS-Curve Number. In order to derive these
parameters, three layers of GIS data are necessary including, the watershed boundary, a
soils layer and a land-use layer. The first step of the process involved isolating the GIS data
relevant to the test area. This was achieved through the application of a series of GIS
procedures. First, the database corresponding to the sub-watersheds theme was activated
and updated by adding new field. The three sub-watersheds corresponding to the test site
were then selected using an on screen selection method. The shape records in the
corresponding sub-watersheds database now activated through the selection procedure
were then updated under the new field with a singe value “1.” Each of the polygons
corresponding to the three sub-watersheds within the test site were then merged into a
single polygon identifying the area of interest. This was achieved using the Dissolve
function that merges all selected polygons having equal field values into a single shape.
The soil and land use themes for the test site were then isolated from the entire watershed
by using the Clip function. This procedure is used to create a theme by removing all
information in one theme that falls outside of the boundary identified in another theme.
Using the boundary theme created for the test site, the Clip procedure was applied to the
Duffins Creek soil and land use themes provided by the TRCA such that soil and land use
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pertaining only to the test site was isolated into two new themes (see Figures 4.6, 4.7).
These themes were then used to extract model parameters.

The extraction of total area was achieved through a simple area analysis of the
watershed boundary and corresponded to an area of 3264.73 ha. The land-use theme
provided by the TRCA identified each land use polygon as consisting of pervious or
impervious area. Total impervious area for the test site was derived by performing an area

analysis on each polygon in the land use theme.
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This was performed by first selecting polygons identified as impervious by the TRCA. The
selection procedure was performed by entering a query procedure using an SQL statement
in ArcGIS. The total area for each impervious polygon was summarized, the results of
which indicated a total impervious area for the test site equal to 146.91 ha or approximately
4.55 percent of the total area.

Identification of a lumped CN was not as straight forward. In order to determine the
CN for the test area, a CN must be identified which represents the overall soil and land use
characteristics of the study site. This was determined using a GIS overlay procedure. The
soil and land use maps for the test area were combined using an Overlay procedure which
resulting in a continuous and exhaustive set of polygons identifying where each unique soil
type and land use co-occurred in space. The various land use characteristics provided by
the TRCA however did not correspond directly to the land use classes used to identify
Curve Numbers in available SCS lookup tables. In order to identify appropriate CN values,
the land use classes provided by the TRCA were cross referenced with the range of similar
classes identified through a survey of pubiished Curve Number lookup tables. In all cases,
however, numerous classes within published SCS-Curve Number lookup tables could, in
theory, correspond to each of the TRCA land use classes. This necessitated the creation of
a range of CN’s which could be associated with each TRCA land use and associated HSG
class. For example, the TRCA land use class of agricultural can in theory represent a wide
diversity of cover types a few of which are depicted in Table 4.1. This results in a large
range of potential CN’s that could in theory correspond to the TRCA land use class of
agriculture. Further, the TRCA land use class of Wetland without further field
investigations could also be associated with a series of SCS-classes corresponding to
forested and non-forested wetland (see Table 4.2).

Once a satisfactory lookup table was created, a CN was associated with each
polygon record created using the overlay procedure and based on its relevant soil-land use.
This was achieved by referencing each record’s attributes followed by a cross-referencing
of the appropriate CN range in the lookup table (Table 4.3), and assigning the median CN

value to the corresponding record. Once this process was completed, an area analysis was
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performed on each individual polygon using the GIS. An area weighted average technique
was then applied by multiplying the proportion of area for each unique polygon by its
associated CN and summing across the entire set of results for each polygon. This resulted

in a lumped CN value for the test site equal to 80.08.

Appropriate CN Ranges Corresponding to TRCA Land Use Classes
: LAND . SCS-LAND USE(S) A B C D
\ Agricultural Rural Agricultural (Various) T 4 6-77 35-86 70-91 80-94
Meadow Meadow (Various) 30-68 58-79 71-86 78-92
Forest Forest (Various) 25-36 55-60 70-73 77-79
Federal Airport Lands Meadow (Various) 30-68 58-79 71-86 78-92
Urban Residential 1/8-1 Acre Lots 51-77 68-85 79-90 84-92
Urban Open Space Urban Open Space (Various) 39-49 61-69 74-79 80-84
Wetlands Wetland (Forested and Non-Forested) 45-49 66-69 77-79 83-84

Table 4.3. Lookup table identifying appropriate ranges of CN’s based on all SCS land use classes
potentially associated with land use classes identified by the TRCA.

Two sources are used to define the maximum accepted values for initial abstraction
in pervious and impervious areas. Clarifica (2002) defines the maximum initial abstraction
values for pervious and impervious areas within the Duffins Creek watershed to be § mm
and 0.8 mm, respectively while Viessman et al., (1974) defined maximum depression
storage values for pervious and impervious areas to be 0.403 inches (10.23 mm) and 0.093
inches (2.36 mm), respectively. Further Viessman et al (1974) identify maximum
interception losses for pervious areas to be approximately 0.03 inches (0.762 mm). It was
assumed that the values for depression storage as well as interception loss presented by
Viessman et al (1974) and Clarifica (2002) were the best physical estimates of a range of
initial abstraction losses for impervious and pervious areas within the study site. In order to
define a reasonable maximum value, the average of values identified by Clarifica and
Viessman was calculated and the average of the two values established the upper range of
initial abstraction for pervious areas equal to 9.9 mm and impervious areas equal to 1.6

mmi.
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4.1.3 Areas of the Model likely to Contribute to Uncertainty

While all sources of data contribute some uncertainty to a model’s performance,
understanding how this uncertainty arises within the data can significantly aid in the
identification of those factors which will likely impact model performance the most. The
methodology behind this process deals primarily with an understanding of the lineage
behind the data of concern.

Geographic data in this study is extracted from secondary data sources identifying
soil and land-use within a selected study site and then analyzed within a GIS environment.
The results of this analysis identify various model parameters that are used in conjunction
with a mass-balance hydrological model. Because the chosen model structure is based on
the SCS-Curve Number approach, the Curve Numbers identified in conjunction with the
GIS analysis is based on the local soil and land-use conditions, and therefore, is a reflection
of the quality of soil and land use data analyzed and visualized within the GIS
environment.

The HSG classification of soils into discrete classes has been under criticism within
the literature since Musgrave (1955), first proposed the classification in the U.S. Yearbook
of Agriculture. Further, assignment of local soil variation to hydrological groups specified
as part of the HSG for use with the SCS method has been based largely on published
criteria that are subjectively interpreted and applied loosely by soil scientists (Neilson et al,
2002). Further, the abstraction of land uses to various cover types also introduces error
through the generalizations associated with classification and the ambiguity with which
local authorities identify their land uses. Consequently, there is a high probability that an
individual who is applying procedures outlined by the SCS rainfall-runoff method and not
intimately familiar with the local landscape characteristics of a study site, will not likely be
able to differentiate between the SCS classeé and local land classification schemes. This
results in a wide range of CN’s that can be identified for any one soil-land use
combination.

Digital models of soil and land use are based on a number of data sources such as

field surveying, air photographs and preexisting soil maps. In this respect, issues of
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uncertainty may also be exacerbated through positional and classification inaccuracies as a
result of problems with data capture. Further it is quite feasible that the mixed lineage of
the land use and soil data has created data sets that encompass contrasting levels of
uncertainty. The identification of Curve Numbers for the study site is dependent on the
results of GIS overlay procedures as previously described in section 4.1.2. The result of the
Overlay procedure is a composite map reflecting a continuous but varying theme of
polygons reflecting the combination of soil type and land use (see Figure 4.8). Given the
mixed lineage of source data for the soil and land-use themes, boundaries identifying
classes of each theme will likely be subject to positional uncertainty possible the result of
poor field techniques, air photo interpretation or the inherent vagueness associated with the
class boundaries of natural physiographic phenomena.

While the ranges of initial abstraction values for the case study have been derived
using published physical estimates, these values possess a large degree of inherent
generalization in that they are do not take into consideration any local field measurements,
and are based on widely spread geographical surveys the validity of which to the current
test site could easily be questioned. In this respect, it is likely that the range of acceptable
values for impervious and pervious initial abstraction is the source of considerable
uncertainty in the model.

The model inputs identified in Section 4.1.2 are also subject to a large degree of
both spatial and attribute uncertainty. Attribute error for the precipitation will likely be
introduced through the degree with which the rain gauge used can accurately measure
volume of precipitation over a particular unit of time. Given that data available is also in
average daily values, uncertainty is also likely to be introduced as; precipitation is known
to be much more temporally variable then can be accurately depicted in a twenty-four hour
time period (see Section 1.3.2). Estimating potential evaporation from a series of pan
evaporation networks is also a known source of uncertainty. Further, pan evaporation was
reconstructed from previously recorded time periods using a curve fitting technique as
discussed in Section 4.1.2, representing a considerable source of uncertainty in the data
quality. Error in model input data is also introduced as a result of the distance the

precipitation and the evaporation monitoring stations are from the study site.
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While the range of uncertainties in loosely coupled modelling procedures is highly
diverse, it is relatively improbable that all sources of uncertainty within a SCS-Curve
Number and GIS-based hydrological model can be identified. This would require a
significant quantification of historical error propagation as well as the computation of
numerous multidimensional joint distributions for which the estimation of numerous first
and second order moments could be realized. In this respect, a series of measurable or at
least justifiable sources of error are identified which, based on discussions throughout the

literature review, undoubtedly contribute to uncertainty in the overall model.
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Figure 4.8 Map of curve numbers for each soil and land use combination within the study
area. As can be seen from the attached frequency table, dominate CN’s lie within a range of
52 — 58. Values in this range are consistent with agricultural land having reasonably good
drainage.
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4.1.4  Error Model Development

The definition of the distributions used to characterize uncertainty is, in many ways, the
most important single part of sampling-based uncertainty and sensitivity analysis (Saltelli
et al, 2001.) In the case study, information on the lineage of the data described in
subsection 4.1.3, is used in conjunction with a series of methods to identify appropriate and
justifiable error models for use with the uncertainty and sensitivity analysis.

Establishing the error models associated with a particular model factor can involve

three basic approaches.

. a priori knowledge
. expert judgment or rule-of- thumb
] estimation procedures.

In the first case, the first and second order moments of an error distribution as well as the
appropriate probability distribution function (pdf), (Guassian, Uniform etc) may be
identifiable through published estimates. The validity of second hand information however,
is dependent on the source of data, its lineage, and may be subject to scrutiny dependent
upon the conditions or applications used to determine relevant statistical information.

In the second case, expert judgment or rule-of-thumb may be used to constitute a
formalized estimate of a suitable error model. The application of a rule-of-thumb approach
can be subject to scrutiny however; this approach is often necessary in cases where in depth
knowledge of the ranges and distributions of model factors is absent, or when UA/SA is
considered to be an exploratory exercise. Further, as long as ranges are not considered
unreasonable, the establishment of error models through application of expert judgment can
lead to considerable insights into the behavior of the system in question (Saltelli et al
2001.)

When expert judgment is applied, the use of the assumption of normality is often
used when first and second order moments characterizing a factors uncertainty are known,
but further information on its statistical distribution is not. This assumption is most often

justifiable based on the conditions of the central limit theorem (CLT) where, randomly
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influenced errors of significant sample size subscribes to a Gaussian or Normal pdf
(Heuvelink, 1998). In cases where first and second order moments describing uncertainty
in a model factor are not known, the use of a uniform or log normal distribution may be
assumed and physical plausibility arguments may be used to establish appropriate ranges
(Beven and Binley 1992; Saltelli et al, 2001). While care must be taken when using expert
judgment to assign an appropriate distribution for a model factor, some liberties may be
taken as; the results of UA/SA are typically more sensitive to the range of uncertainty
identified as opposed to the particular distribution (Crosetto, 2001).

In the final case, quantitative statistical procedures can be used to directly estimate
the uncertainty for a particular model factor. This procedure is the most rigorous of the
three and should be used where constraints permit. While a variety of methods exist for
quantitatively deriving error estimates, the simples of procedures would involve the
comparison of an error prone data set (the experiment), with that of a controlled data set
(the control) for which all known sources of error contributing to uncertainty can be
removed have been removed. Once a significant number of realizations of experimental
and control data have been iterated so as to preserve statistical significance, the difference
between each realization of controlled and experimental data is the error leading to
uncertainty in the experiment. As an example, lets assume a scenario in which two tipping
bucket rain gauges are set up so as to measure precipitation from a single event. It can be
assumed that without proper calibration, tipping buckets are sensitive to error in the volume
of precipitation measured as a result of between tip wetting losses as small amounts of
water adhere to the surface of the bucket as well as between tip evaporation. Given the
assumption that both buckets are subject to the same errors prior to calibration, if one
gauge is calibrated and the other left uncalibrated, then the difference in volume of
precipitation measured for each event captured by the two gauges should be representative
of the error in the gauge due to the previously described losses. This error than can be

described statistically through calculation of its mean and standard deviation.
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Initial Abstraction

As previously mentioned, in cases where an error model cannot be quantified and a
range of values is present, often a uniform distribution is assumed. Thus, error models for
the range of values corresponding to initial abstraction for pervious and impervious areas
were identified as approximating a uniform distribution having a range of 0-9.15 and 0-1.6

mm, respectively.

Precipitation

It is reasonable to assume that measurement error of rain gauges combined with the lack of
any gauges within the test site and the overall distance of the rain gauge -from its
geographical centre, will contribute to the overall error in the rainfall time series.
Unfortunately, estimating the effect of distance and lack of appropriate gauge densities
with respect to the study site is very difficult. Thus, an error model was necessarily
assumed which attempts to capture error caused by measurement inaccuracies of the rain
gauge. This is a reasonable identifiable source of error and one that has a generally
accepted maximum error margin of +/- 10% (Lei 1996). This 10% error can be related to a
miscalibration of the rain gauge, wetting losses associated with a tipping bucket apparatus
or between-tip evaporation of water in the tipping bucket. This percentage estimate
however does not provide us with a first and second order moment of rainfall error and
thus, an assumed value is used which approximates the error in measurement equal to a
standard deviation of plus or minus 0.215 mm/day from daily value.

Due to logistical reasons, some of the apparent sources of uncertainty identified in
the previous section was not incorporated into the determination of the error model for
precipitation. Some of these concerns included the distance of the rain gauge from the
study site as well as the positional accuracy of rain gauges. Given more appropriate data,
the uncertainty due to any or all of these concerns could be identified, or at least

approximated using the following techniques.
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The case of distance from the study site can be examined if a number of gauges in a
particular area that is likely to be exposed to the same synoptic rain events given an
identifiable lag period. In this case a rainfall time series for a single event recorded at a
series of gauges could be identified by equating peak rainfall within the acceptable lag
period. The distance between each gauge and its nearest neighbour could then be calculated
and the difference values for each paired gauge could then be divided by the respective
distance between gauges. The average value could then be calculated for each paired gauge
for a single event. A set of data for a series of events could then examined and analyzed for
a mean and standard deviation. This would then represent the mean and standard deviation
of rainfall uncertainty per average unit distance between gauges, and these values in
conjunction with a suitable distribution could be used to produce a set of error prone
rainfall values based on distance from an ideal location.

Of course this simplifies the relationship somewhat as it assumes a suitable lag
period could be determined so as to equate rainfall peaks recorded at each gauge. This also
ignores complications of elevation and orientation of one gauge with respect to another as
rainfall is known to be directionally variant in space as well as variant with respect to
elevation. Some of these factors could however given enough investigation be accounted
for using a weighting function.

In the case of the positional accuracies of the rain gauge, it is suggested that this
will only be of concern when a number of gauges is being used to identify an average
rainfall for an area such as is performed through the use of a Thiessen polygon weighted
average technique. The Thiessen polygon technique is performed by first tessellating each
point representing a rain gauge into an area of influence for that point, essentially
delineating all area closest to a single point than to all other points. Once this is performed
then the proportion of total area belonging to each gauge is used to weight the recorded
rainfall value for each time step. Finally the average rainfall value is calculated by
summing across all values for each time étep calculated for each rain gauge and its
corresponding area of influence.

It is hypothesised that in cases where there may be considerable positional error
associated with the location of each rain gauge that the uncertainty introduced into rainfall

by uncertainty in the polygon tessellation will resulting from uncertainty in point locations.
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Assuming the positional error associated with each gauge is calculated based on field
measurements than a number of error prone realizations of the location of each gauge can
be simulated. For each simulation the corresponding Thiessen polygons can also be
realized. Assuming a number of these realizations are calculated, the proportional areas for
each polygon may well change slightly based on the positional uncertainty of each gauge.
The uncertainty this contributes to rainfall can then be simulated using a Monte Carlo
approach. Once a number of area proportions are recorded for each error prone Thiessen
polygon realization, each realization can be associated with a number in chronological
order from 1 to N realizations. The MC simulation could then choose according to a
uniform distribution about the range of numbers (1 to N) a set of error prone polygon
proportions according to a user defined number of trials. In each case the proportions could
be used in conjunction with measures or simulated rainfall at each respective gauge to
come up with an error prone realization of a Thiessen weighted average rainfall value. The
number of realizations is then equal to the number of steps in a rainfall time series and
could then be used as an error prone rainfall input to a rainfall-runoff model. Thiessen
based modelling following this type of approach could also be used in assessing the
uncertainty of any point-based observations related to the model such as evaporation

estimates.

Evaporation

Again with the evaporation measurements it is logical to assume that error is
introduced by distance from the site and microclimate variation at the location of the
evaporation pan as well as the deviation from actual values by relying on values extracted
from climate reconstruction. Like the rainfall, however, estimating an error model based on
these contributions is very difficult. Literature, however, suggests that pan evaporation
values when used to predict potential evaporation for a region are typically subject to a
maximum error of 10 % (Chin et al, 1995). Again, due to the lack of published first and

second order moments describing predictive error, the corresponding error model for
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evaporation was assumed to have zero mean and plus or minus one standard deviation of
0.003 mm/ day.

Due to logistical limitations, the uncertainty associated with the curve fitting
technique was not hypothesized as part of the evaporation error model. This could in theory
be done however if a number of days during each month were sampled for evaporation
using a pan evaporation station within the test site. Once a suitable number of days were
sampled then the difference between the sampled values and the extracted values could be
calculated. The mean and standard deviation could then be derived from the differences
and used in conjunction with a suitable distribution to describe and error model for that

particular source of uncertainty.

Curve Number

In order to identify a probability distribution function for the SCS-Curve Number,
two random processes were considered. The first random process concerned the association
of a particular Curve Number to a given soil a polygon entity within the GIS. Because of
the ambiguous classification of specific land use classes in the SCS-method, a given user
could in theory associate any number in a range of Curve Numbers that would loosely
correspond to a particular local land use classification scheme. Secondly, an additional
source of error identified relates to the spatial properties of the soil classes. Soil
classification is vague and can be misleading as classes are not mutually exclusive and
spatial boundaries of classes as illustrated in soil maps are often subject to considerable
positional error and misinterpretation. In order to determine the effect of these sources of
error on Curve Number assignment to each polygon within the GIS the following
procedure was utilised. However, if the position of soil boundaries is uncertain, then the
results of the overlay procedure used in Section 4.1.2 will also produce uncertain results
with respect to the soil classes identified in conjunction with each land use polygon. In
order to identify a CN model that reflected this uncertainty, it was necessary to produce a

GIS record set that reflected the uncertainty of soil types that corresponded to each land use
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type as well as the range of CN’s used to define each land use class given a particular soil
land use combination.

The range of CN’s identified in the lookup table can be used to model uncertainty
resulting from ambiguity in land use classification. In the lookup table, TRCA land use
classes are associated with a range of potential CN’s such that an appropriate CN could be
derived for model calibration. As previously discussed, the median CN value of the
corresponding range was assumed for each soil and land use combination. This was
followed by the application of a weighed averaging of each polygon and its respective CN
value to come up with a single representative parameter estimate. However, given the
uncertainty in ambiguous land use classification, it is assumed that each value in the range
of CN’s identified for each TRCA land use could potentially be associated with each land
use and soil combination. Given this assumption, the selection of an appropriate CN for
each record could be associated using a randomized process whereby for each soil and land
use combination, a CN value could be randomly selected from the range of values in the
associated lookup table. The weighted average CN value could then be calculated for the
study site and the process could be repeated a user defined number of times as part of a MC
simulation. The data set produced could then be analyzed statistically to identify the mean
and variance of the CN values. This in turn would describe the error model for the CN’s
based on ambiguity of land use classification, but would ignore any uncertainty in soil
boundary determination.

In order to assess the effect of uncertainty in soil boundaries it is assumed that if the
location of soil boundaries in the soils layer are uncertain, then the area of each polygon
used to delineate each of the four HSG soil classes will also be uncertain. In this respect,
the classes of soil associated with each land use type in the GIS overlay procedure
described will also be uncertain, as the true area associated with each HSG class is not
known. One way to approximate this uncertainty would be to identify a region of
uncertainty based on positional inaccuracies in soil boundaries based on comparing
positions of boundaries in the GIS with those measured in the field. As discussed in
Chapter 3, the boundaries of polygons are often identified using a series of points.
Therefore, the positional error in point measurements can be extended to polygon

boundaries and consequently be used to infer uncertainty in areas. However, because the
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measurement of the true locations of soil boundaries would require more time and
resources that the current study allowed for, the positional accuracy of boundaries within
the data set is generalized through the assessment of positional error of a more easily
verifiable data set. For this purpose, verification of positional error within the study data
was measured based on the locations of a series of street intersections corresponding with
the transportation network theme provided by the TRCA. It is necessarily assumed in this
case that any error detected in the position of points in the streets layer is representative of
point error in other themes. Justification of this lies in the assumption that sources of error
leading to positional inaccuracies in the digitizing of the streets layer will also have a
similar effect on the digitizing of information from other sources.

The location of 30 street intersections corresponding to the test site was recorded in
the field with a Trimble hand held GPS receiver set to record in UTM coordinates
corresponding to a NAD 83 projection. Typically positional error is determined for a given
point or points through comparison to a set of points whose locations are known to at least
three times the accuracy (Zhang et al., 2002). Given that at least some of the primary
sources of data used to create the GIS files are derived from soil and topographic maps,
with various projections and unknown lineage, the GPS is assumed to be at least three
times as accurate in measuring the locations of points as the digital GIS data. In order to
increase accuracy, the GPS receiver was also set to record each location 200 times and

output the average of the value to a stored waypoint.
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As can.be seen from Figure 4.9, the measured points are displaced by a
considerable amount. Further analysis of the data using the mean displacement statistic

described in Equation 3.4, indicated that the layers were biased by what seems to be a
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Figure 4.9 Co-display of field sampled points using a hand held GPS and the corresponding streets file layer
for the Reesor and Stouffville creek sub-watersheds. Results of a mean displacement statistic indicate a
potential systematic error of 229 m.

systematic error of 229.7 m (see Appendix VI). While easily correctable, systematic
positional error in this case is assumed to proliferate through other data layers and is used
as a standard for positional error in boundaries within the GIS data. This does not suggest
that error of this type should could not be easily corrected, but that this type of an error
when not identified using ground-truthing techniques could and does go unrecognized. This
may especially be true in the case of boundary determination for objects such as soil
classes whose boundaries are notoriously vague and difficult to validate using field

techniques. Based upon this assumption, it is highly probably that error of this type could
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go unnoticed and therefore be allowed to propagate through various types of application
and analysis.

In order to model the uncertainty in soil boundaries using error identified for the
streets layer, the Buffer function was applied using the GIS to approximate a maximum
region of uncertainty corresponding to 229 m for each soil class in the soils layer. This had
the effect of producing a number of overlapping regions of uncertainty where more than
one soil type could theoretically occur. In order to assess the regions where a particular
land use class overlaps with uncertain soil regions, an Overlay procedure was used similar
to that described in Section 4.1.1. Because regions of uncertainty in the soils layer had been
modeled using the Buffer procedure, the results of the overlay produced records where each
land use class co-occurred with the set of possible soil classes (see Figure 4.10), such that
up to four soil classes could be identified as corresponding to a single land use for each
polygon.

In order to model the effects of the uncertain soil regions in conjunction- with the
ambiguous land use classes, it was assumed that each soil type co-occurring with a land use
class for a single polygon had an equally likely chance of occurring in that particular
region. While this assumption could have been theoretically improved given further
information on the probability of a particular soil type occurring in a given area, the
absence of this information necessitated a more simplified approach.

The error model for the curve number based on uncertainties in land classification
and soil boundaries was then evaluated using a MC technique written in VBA (see
Appendix V). This first involved the exporting of the polygon records produced using the
Overlay procedure to Microsoft Excel in conjunction with the CN lookup table discussed
previously. The record in the record set produced using the Overlay procedure identifies
each land use class and a set of soil classes that potentially occurred within each
uncertainty region. For every record, the MC program identifies each soil class associated
with a particular land use type and chooses one at random. Once this is done, the program
then identifies the land use class for the same record and using that class in conjunction
with the randomly identified soil type, references an appropriate range of CN’s in the

corresponding lookup table. One an appropriate range is identified; the program randomly
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Figure 4.10. Result of combining the clipped and buffered soil layer with the land use layer in
ArcGIS.

assigns a CN value based on the appropriate range to the corresponding record in the

record set. After this has been repeated for each record, the
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corresponding CN’s are multiplied by their corresponding proportion of total area. The
weighted average random CN is then calculated by summing the values across the entire
record set and this value is exported to an output file. This procedure is consistent with a
single trial of the MC approach. Once this has been completed for a user-defined number of
trials (15,000 in this case), the first and second order moments describing the CN error
model summarized resulting in a mean CN of 66 and a standard deviation of 3.1. It was
also assumed for simplicity that the set of CN’s produced using the MC procedure

corresponded to a normal distribution.

4.1.5 Screening Sensitivity Analysis

The application of sensitivity analysis on many model factors is often time
consuming and in cases where numerous model factors are used in conjunction with
complex model structures, application can be very computationally demanding. In order to
minimize computation time in cases when many model factors are being evaluated, the use
of what has been referred to as a screening test (Saltelli et al, 2001) is recommended. The
screening process is typically used to provide an ordinal ranking of model factors such that
the top few most influential factors can be evaluated using the more rigorous and
quantitative techniques. In this instance, certain non-influential model factors can be
identified early in the process.

The method of screening test used depends on the nature of the study however the
method recommended and applied by Crosetto et al, (2000; 2001) is the method of Morris
(1991). The Morris method represents what can be referred to as a variance-based OAT
approach in that, model factors are varied one at a time with all other factors constant. An
ordinal ranking is then established based on the relative influence each factor has on the
total variance of the model output.

While straightforward in its approach, the method of Morris will not be used in the
case study and is replaced by a more traditional OAT method. The primary motivation for
this is that the model used in the case study is fairly simple and straightforward. As well,
the number of model factors is low to begin with such that the computational efficiency is

not a concern limiting the performance of more quantitative methods. Further, the method
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of Morris, while an OAT technique, does not allow the user to visualize the effects of
perturbations on model factors by means of any graphical analysis. Traditional OAT
techniques on the other hand, typically record the outcome of each perturbation.
Consequently, the use of the Morris screening test results in less information that can be
visualized by the user and thus, interpretation of the outcome of the procedure is limited.

In order to identify those model factors that may be most influential in contributing
to model output uncertainty, as well as to interpret the range of model response to
perturbations in each factor, an OAT procedure is performed as part of the case study. This
test is modeled after similar applications discussed in Chapter 3, where each model factor
is adjusted in the positive and negative direction by a small percent error relative to its
calibrated value. For each step, the resulting model output is visualized by means of

graphical analysis. This information is then used to support more complex analysis.

4.1.6 Global Uncertainty Analysis

Execution of the global uncertainty analysis is performed in the case study using a
global Monte Carlo simulation. This approach has been applied in various hydrological
modelling applications reviewed in Section 3.8, and forms the basis for the identification of
joint uncertainty in CN estimation as described in Section 4.1. Further, the MC analysis
forms the basis of similar GIS sensitivity studies using Crosetto et al.’s (2001)
recommended stepwise method, and is necessary as the chosen methods for performing
sensitivity analysis discussed in the next section can only be performed in conjunction with
a Monte Carlo approach. The Monte Carlo approach is considered a popular method over
other approaches largely as a result of the simplicity of execution. The Monte Carlo
procedure is applicable irrespective of model complexity. In this respect, the method has
been dubbed a “black box” where simulation can occur regardless of the nature of the
dependency relationships of model factors.

The Monte Carlo method is based on the generalized expression of total model

uncertainty described through the function of a simplified system equation where

Y = f(X1,..X5..X0), 3.5)

104



In this case, the variance in model output Y, is a function of the total system response to a
series of variances in model inputs, Xj...Xn. The Monte Carlo procedure using a series of
stochastic model factors executes a user defined series of random trials where, a set of
values for each factor is selected for every trial according to the first and second order
moments as well as the corresponding probability distribution function identified for each
factor. The corresponding model output then consists of one or more values for each model
output based on the values chosen for each model factor corresponding to the number of
trials. The overall model uncertainty is then described through statistical analysis of the
first and second order moments derived from the output series.

The Monte Carlo analysis used in conjunction with the Case Study is performed
using the proprietary software SimLab. This software, not yet currently available has been
developed by members of the European Union’s Joint Research Center (JRC) applied
statistics (APPST) research group which functions under the Institute for Protection and
Security of the Citizen (IPSC). The software was given to the author through a
memorandum of understanding as a means of supporting the research contained within this
study. The SimLab software is useful as it is designed to work in conjunction with
Microsoft Excel such that all data input and output is contained within the Excel
environment. In this respect, the types of models that can be analysed using SimLab, are
limited only by that which can be designed within the Excel environment.

Once appropriate error models have been identified through methods discussed in
Section 4.1.4, the first and second order moments are specified for each model factor in
conjunction with an appropriate probability distribution function and the set of error
models for identified for each factor can then be saved as a SimLab profile for future use.
Once an appropriate profile has been created, the user must choose to execute the
simulation in conjunction with an external model designed in the Excel environment. The
user enters the appropriate path where the Excel model is located into the SimLab
environment and then specifies the number of trials for the Monte Carlo procedure. Once
initiated, SimLab scans the Excel file associated with the model of interest for a table
called “Inputs.” Once located, a series of error prone values for each model factor is

created starting in row one of the table and each factor occupying a single column in the
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same order as the factors are identified in the error model profile. The number of records of
error prone data produced coincides with the number of user-defined trials. The user then
passes the data through the model and stores the series of output values in a table called
“Outputs.” Once saved, the user then exits the Excel environment and SimlLab continues
with further analysis. The user can then perform further analysis within the SimLab
environment or continue to analyse the results of the procedure within the Excel

environment by performing graphing procedures or descriptive statistics.
4.1.7 Detailed Sensitivity Analysis

The extended FAST (Saltelli et al., 1999) is one of a series of sensitivity techniques
known as a variance-based method as their result is to quantitatively partition the total
variance identified through the global uncertainty analysis to each model factor based on its
relative sensitivity. The basis of the extended FAST approach is a transformation that
converts a multidimensional integral over all the uncertain model factors to a one-
dimensional integral via a search curve that scans the entire parameter space. The scanning
is done so that each axis of the factor space is explored with a different frequency. A
Fourier decomposition is then used to obtain the fractional contribution of the individual

input factors to the variance of the model prediction (Saltelli et al. 2001).

Total variance in model output is related to all model factors such that:

V =2Vi + 2 Vi + 2 Vigm +...+ Vi k (3.6)

i<k <j<m

as:

Vi =VEYXi=x)] * *
Vi = VIE(YIXi=xi , Xj = x;)] = VIE(Y|Xi = x;)] = V[E(Y[Xj=x;)]

etc and, [E(Y|Xi = xi )] relates to the expected value of Y conditional on X; having a fixed
value of x;, and where the operator V[-] denotes a conditional variance. The first order

sensitivity index for the factor X; can then be denoted as:
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Si=Vi/V (3.7)

In cases where the interactive effects of inputs with respect to one another are not
negligible or at least have a measurable effect on model output uncertainty, an additional
sensitivity analysis that accounts for the total relational sensitivity Sy;, or “total sensitivity”
(Saltelli et al 1999; Sobol 1993) offers an analytical advantage to the extended FAST
technique.

The total sensitivity is defined as (Crosetto et al., 2001):

the sum of all indices (S; and higher orders) where X; is included, thus concentrating in a
single term all the interactions involving X;.

Given then a GIS coupled model with multiple factors X;, the sensitivity indices S;, Sti can
be used to provide a measure for both the isolated impact of X on the model output Y, as
well as the overall impact of factor X; through interactions between other model inputs on
Y and, consequently, a comparison between the two effects could also be investigated.

The total sensitivity index for a 3-factor model can then be described by the following

St =S1+S12 +Si3 +Si3
Sr; =S;+S12+ S5 +Si3 (3.8)
Sr3 =S3+Si3+ Sy + S

Where, Slz = V12/V, Slz3 = V123/V ves

In this case, the total model uncertainty can be related to the influence of either a single
factor or the result of that factor and its »™ order interactions with all other factors.

The extended FAST technique represents a particularly suitable approach for
application to the case study of this research. The technique is based on the results of a

Monte Carlo analysis approach and in this respect is suitable, as the Monte Carlo technique
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has been shown to be an appropriate and preferable method of model uncertainty analysis
for reasons identified in Section 4.1.6. The extended FAST is a preferential method for
performing sensitivity analysis in that; it is capable of calculating the n™ order interactions
between model factors representing a significant advantage over other variance-based
methods such as the ordinary FAST (Cukier, 1973). Further, this method has been shown
to be more computationally efficient than other variance based methods such as those of
Sobol (Saltelli et al, 2001), and requires relatively few trials of the Monte Carlo analysis to
produce reliable results, approximately 100 trials for each model factor (Crosetto et al,
2001). The extended FAST approach also represents a number of advantages over local and
differential based sensitivity analysis such as the first order Taylor as these methods are
more complex in their application and lack straightforward and effective methods for
determining higher order sensitivities among model factors. Further, problems often arise
in the appropriate determination of the Taylor series used to approximate the model often
having an effect on the estimates for the model expected value and variance (Saltelli et al,
2001). It is for all these reasons that the extended FAST technique has been identified as a
suitable method for application to GIS based modelling in previous studies reviewed in
Chapter 3 and is used to support the case study in Chapter 5.

The extended FAST technique is applied in conjunction with the uncertainty
analysis discussed in Section 4.1.6, and applied to the GIS based model discussed in
Section 4.1.2. Like the global uncertainty analysis, the extended FAST, is performed using
the proprietary software SimLab. Prior to initiating the Monte Carlo procedure the user can
specify one of a number of sensitivity procedures including the methods of Morris, (1991)
as well as the normal or extended FAST procedure. At this point, the use must also specify
the number of trials to be used with the uncertainty procedure. Once data from the Monte
Carlo procedure is stored, SimLab then scans the relevant Excel file for a table identified as
“Output”, the software then uses the output series in conjunction with the input data
generated as part of the Monte Carlo procedure and stored in the corresponding Excel table
identified as “Inputs”, to compute both the first and total order sensitivity values for each
model factor the results of which can then be visualized in SimLab by way of pie graphs or

data plots.
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Case Study Results CHAPTER 5§

5.1 Model Calibration and Validation

The model was subject to a two-stage calibration and validation procedure. Model
calibration occurred during the wet weather period from 1997-1998 and validation
occurred during the wet weather period for 2000 (see Figures 5.1 — 5.3). The initial
parameter estimated for the SCS-Curve Number was taken from the weighted average
Curve Number calculation procedure outlined previously and corresponded to a value of
80.01 for the study area. The initial parameter calibration values for initial abstraction for
pervious and impervious areas were chosen to be half the theoretical maximum for
pervious (4.75) and impervious areas (0.8), respectively. Final calibration values of these
parameters used to achieve the best model performance were 0.35 mm and 4 mm for initial
abstraction from impervious and pervious areas. The final Curve Number value of 71.5 was
also used. Other parameters based on the area of the study site as well as the fractions of
impervious area directly connected were not manipulated during the calibration. The
parameters used were then adjusted by small amounts in the positive and negative direction
one at a time until the lowest possible percent error with respect to the measured
streamflow was achieved on a seasonal and monthly basis for the calibration period.

In both the calibration years and the validation year, models predicted to within 15
percent of the measured streamflow and was equal to 14% and 0% for the calibration years
and 2% for the validation year (see Table 5.1). Monthly results were more variable, and
ranged from 2.4-139% and 4-56% for calibration years and 13% to 83% percent for the
validation period. In all cases, more than half of all monthly values fell within 25% to 35%
of the measured streamﬂow.

One of the goals of this thesis was to produce a model with performance reasonable
enough to justify the model structure and to allow for further testing of the effects of
uncertainty. Given numerous problems identified with respect to the use of a single rain
gauge and in general the spatial variability of precipitation, the results achieved with the

calibrated model were viewed as meeting these expectations.
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Figure 5.1. Calibration results for the 1997 period including daily average precipitation as
well as daily average measured and predicted streamflow.
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Figure 5.2. Calibration results for the 1998 period including daily average precipitation as
well as daily average measured and predicted streamflow.
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Figure 5.3. Validation results for the 2000 period including daily average precipitation
as well as daily average measured and predicted streamflow.

Year May June July August Sept. Oct Total
1997 -2.4 8.0 139.0 55.0 37.0 -21.0 14.0
1998 -6.0 -22.0 56.0 4.0 -21.0 -10.0 0.0
2000 13.0 -30.0 83.0 -24.0 -18.0 -68.0 -2.0

Table 5.1. Percent error between predicted and actual values for each year of model simulation.
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5.2 One-At-A Time Sensitivity Analysis

Prior to performing the global uncertainty analysis and parameter-specific
sensitivity analysis or extended FAST, a generalized pre-assessment of sensitivity was
computed for all model parameters using an OAT analysis that introduced a systematic
error in parameter estimates and graphed this against percent error introduced in modelling
results. |

Model parameters which directly affected model output included precipitation,
evaporation, total area, the total pervious and impervious area and corresponding fractions
of pervious and impervious area, the total directly and indirectly connected impervious
area, the initial abstraction values, and the SCS-Curve Number. To proceed with the
analysis, a VBA script (see Appendix VII) was created that systematically altered each
model parameter individually by an error of one percent from increments of —100% to —
30% and 30% — 100% percent of its calibrated value and, 0.5 percent increments between —
30% and 30% of its calibrated value in order to evaluate the effect of smaller error imposed
around the baseline calibrated values.

In some cases, however, it was not practical to evaluate systematic error up to 100
percent as this would result in parameter values outside the acceptable or possible
boundaries. For example, the Curve Number value used to calibrate the model had a value
of 72 and the corresponding systematic error did not exceed approximately 38% that would
correspond to the maximum possible Curve Number of 100. A CN in excess of this would
physically imply that a fixed depth of precipitation could be translated to a greater depth of

runoff. Results of the analysis are depicted in the following tables.
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Figure 5.4. Response of the model to a systematic error of plus or minus 100% of the calibrated value
for initial abstraction in pervious areas.
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Figure 5.5. Response of the model to a systematic error of plus or minus 100% of the calibrated
value for initial abstraction in impervious areas.
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Figure 5.12. Response of the model to a systematic error of plus or minus 100% of the calibrated

value for total indirectly connected impervious area.
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Figure 5.13. Response of the model to a systematic error of plus or minus 100% of the calibrated

value for the fraction of impervious area directly connected.
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Figure 5.14. Response of the model to a systematic error of plus or minus 100% of the calibrated

value for the fraction of impervious area indirectly connected.
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Systematic error bias in precipitation was shown to be fairly linear within the -100% to 0%
error range such that a systematic bias of —100 percent resulted in a predictive error of
approximately 100 percent. When positive error was applied however, the model
responded in a non-linear fashion such that for a 100 percent error bias in rainfall more
than a two hundred percent error is realized. This indicates the higher sensitivity of the
Curve Number technique to positive rainfall error versus negative.

Evaporation contrasted sharply with rainfall however in that error increases
logarithmically in the negative direction from approximately -6 to —100 percent. Error in
the positive direction had no response in the model past the ~6 percent point. The zero
response in the model can be explained by the invariance in model response after
evaporation increased to the point where the losses imposed accounted for all input to the
system.

Total area showed very little response except in the very extreme negative bias case
where error sharply increased as a result of available sources of losses such as soil moisture
storage and initial abstraction approach zero. Results for the other area parameters showed
very similar results where total impervious and pervious areas gradually increased or
decreased in predictive error with corresponding increases and decreases of systematic
bias. The results indicated a sensitivity of plus or minus approximately 25 percent and 75
percent respectively for corresponding systematic error of plus and minus 100 percent.
Given that impervious area only accounts for approximately 5 percent of the total area with
95 percent of the area being pervious, results support the fact that the watershed model is
more sensitive to impervious areas as opposed to pervious.

The fractions of directly and indirectly connected impervious areas demonstrated a
similar and non-descriptive pattern. However, the model was shown to be approximately
10 times more sensitive to the fraction of directly connected impervious area as a
maximum systematic error resulted in a ten percent predictive error for the directly
connected impervious portion versus only one percent for the indirectly connected
impervious.

Perhaps the most significant results of the OAT analysis were for the Curve

Number parameter where, for negative bias the values in model error gradually dropped off
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to approximately —90 percent in model error. While after approximately 2 percent positive
bias, the model error rose dramatically. This indicates that in cases where high infiltration
and high soil moisture storage is available the SCS method is less sensitive. However, as
Curve Numbers increase towards a theoretical maximum sensitivity drastically increases
such that a 37 percent bias in Curve Number (from a CN of 70 to 100) error in model
predictions rose by in excess of 400 percent.

This has interesting consequences for studies in which Curve Number models are
used to predict future runoff as a result of changing land uses. Typically, once a given
model is calibrated, the Curve Number identified for the area is used in conjunction with an
adjustment table which provides a means of predicting a CN given an increase in predicted

CN based on current conditions CN and a future increased percent imperviousness scenario

(see Figure 5.16).
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Figure 5.16. Composite CN graph for calculating an adjusted CN based on a predicted increase in total
impervious area resulting from urbanization or other developments. Source: Mayes, 2001.

It was determined through quantitative and stochastic means that the error
associated with the derivation of a lumped Curve Number within the study site as a result
of uncertain soil boundaries as well as vagueness in land use classification had a mean of

66 and a standard deviation of 3.1. In most cases, this error would be seen as small and
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somewhat insignificant, however, this may not be the case if future development scenarios
are concerned.

Assuming a future development scenario where percentage impervious area within
the test site is expected to increase by a factor of 55%, this would produce a composite CN
of approximately 86% (see Figure 5.16). Given that the CN used to predict the future
development scenario had a standard deviation of plus or minus 3.1, the resulting
composite CN will be subject to the same error as it is dependent on the first value for its
determination.

If this new value of CN equal to approximately 88 is put into the model, results of
the OAT sensitivity analysis demonstrated that a CN of 88 is approximately equal to the
calibration parameter plus approximately 25.5 percent. The model in this range is has also

been shown to be much more sensitive to small changes in CN (see Figure 5.17). Thus a
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Figure 5.1.7. Assuming a standard deviation is carried forward in the calculation of a composite CN from
an existing value, error in predictions could result in the order of —38% and +120% when considering
three standard deviations.
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standard deviation of plus or minus 3.1 at this range can produce much higher predictive

errors than at the lower value of 70, up to a maximum of approximately 120 percent.

53 Global Uncertainty

The global Monte Carlo analysis was performed using the statistical package
SimLab. The procedure was performed for 500 trials or approximately 100 trials for every
model factor being evaluated in the corresponding SA as recommended by Crosetto et al.,
(2001). In order to perform the Monte Carlo simulation using the error model estimates for
rainfall previously discussed, a specialized procedure was used to accommodate the
rainfall.

In order to reduce the potential for a left skewed rainfall time series, a synthetic
rainfall time series was generated using a Monte Carlo simulation and using an exponential
rainfall distribution in combination with the measured mean and an approximated standard
deviation from the measured wet weather time series. The resulting synthetic rainfall
generation was then assumed to be representative of a wet weather time series for the study
site. This was then used as input to the model in conjunction with a daily error adjustment
based on the calculated error value. The error value was generated using a normal
distribution with a mean of 0 and a STD of 0.215 mm per day that corresponded to the
assumed measurement error associated with precipitation.

Results of the Monte Carlo indicated an extremely left skewed distribution despite
attempts to standardise rainfall values (Figure 5.18). Statistical analysis of model output
indicated that when all values are considered the corresponding model uncertainty has a
mean of 0.65 and a STD deviation of 0.96 mm. The overall model uncertainty then can be

interpreted as accurate to within plus or minus a daily average excess rainfall of 0.96 mm.
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Figure 5.18. Results of the global uncertainty MC analysis. Note: Bin relates to the VBA command
used to identify histogram classes in Microsoft Excel. .

5.5 Extended FAST

After the completion of the Monte .Carlo simulation, the extended FAST was
calculated using the sensitivity analysis software package SimLab. Graphical Results are
depicted in Figure 5.19. Results of the corresponding extended FAST indicated that for
first order analysis, the model was most sensitive to initial abstraction estimates followed
by evaporation, the CN estimates, precipitation and initial abstraction for pervious areas.

For total indices, most sensitive was the initial abstraction from impervious areas, followed
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by initial abstraction for pervious areas, precipitation, evaporation and finally the Curve
Number. While it may seem reasonable for precipitation and evaporation to be highly
sensitive, the much larger sensitivity of the initial abstraction estimates are somewhat
surprising, this can be explained by the large range of possible values accepted as feasible
for the initial abstraction estimates. This wide range of uncertainty in many ways can be

related to the lack of more precise field data concerning losses as a result of depression
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Figure 5.19. Results of the first and n™ order extended FAST sensitivity analysis. Note, gray area in the first
pie graph indicates the proportion of sensitivity that can be attributed to additional n” order interactions.

storage and interception loss. While again somewhat surprising, the low total sensitivity
rank of the Curve Number can largely be attributed to the relatively narrow range of errors
predicted by the Monte Carlo simulation (plus or minus approximately 3 STD) compared
to the overall ranges of the 1A values. Further, given the results of the OAT analysis, SA
demonstrated the lower sensitivity of the model to small changes in Curve Numbers within
the agricultural land use range of 65-75. Finally, the extended FAST has demonstrated the

overall sensitivity of the model to small changes in precipitation and evaporation. This is
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apparent when first and nth order sensitivities are considered. It is likely that these model
factors may prove more sensitive if errors due to rainfall and evaporation temporal

aggregation, and distance from the study site were considered.
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Conclusions and Recommendations CHAPTER 6

The goal of this research is to quantitatively demonstrate the effect of uncertainties
arising from the use of spatial data in hydrological models in conjunction with GIS. Results
have shown that in lumped models, error predictions resulting from uncertainty in
geographic data can be somewhat small as a result of spatial averaging but that even small
variations can have measurable effects when future scenarios are concerned. This is largely
due to the increased sensitivity of Curve Number techniques for land uses undergoing
transformation from agricultural landscapes to a more urban land use classification.

Through the use of the extended FAST technique it is demonstrated that model
parameters causing the largest influence to total model uncertainty include those used to
approximate initial abstraction losses. This suggests that more field research on the
physical ranges that contribute to initial abstraction in urban and non-urban environments
are needed if similar revised SCS-procedures are used. Further, although not surprising, it
was shown that even small errors such as those associated with the measurement of climate
input data can have a significant influence on model output even when n™ order
interactions as well as issues concerning the lack of reasonable meteorological data are not
considered.

While sensitivities due to scale were not examined in this research it is
recommended that this be an area for future study. Specifically, where the derivation of a
representative Curve Number is concerned. While the Curve Number in this case was
shown to have rather small uncertainty, it is hypothesised that if a more distributed
approached is taken, the lack of spatial averaging may produce larger degrees of
uncertainty in the estimate of the Curve Number. Further, selection of an optimally scaled
hydrological response unit will also be of consideration.

Due to practical implications only a small number of GIS related uncertainties were
examined in this thesis. It is recommended that future research support the identification of
stronger methods for determining the effect of GIS operations on the derivation of model
outputs. This is especially recommended in the case of continuous modelling, as simulation

of uncertainty for precipitation during periods of zero or near zero precipitation is difficult
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as propagating error for these periods often results in the error prone realization of days
exhibiting negative rainfall.

Finally, the distance of rain and evaporation gauges, the aggregation of input data
into daily average values and the positional accuracies in rain and evaporation stations all
are likely sources contributing to model uncertainty. It is suggested that future
investigations adopt some of the scenarios described in Section 4.1.4 for evaluating the

contribution of these factors to uncertainty in model data.
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APPENDIX 1 Detailed Model Discussion

Date Column A:
Time series in days ranging from April 1, 1997 to Oct 31 1997 for the calibration period
and for the periods between April — October and from 1997-2000 for the entire input time

series.

Measured Streamflow Column B:
The measured streamflow collected by HYDROMET station 02HC309 for Reesor Creek
just south of confluence with Stouffville. Measured values are for daily

average m'/s.

9 Day Minimum Column C:

This Column calculates the nine day minimum value of discharge used for separating the
baseflow from the runoff. The formulas used to calculate the nine day minimum returns
the minimum value for the range of daily values from the previous six days, the current
day and two days after the current day. For example, if the current day is April the 7, the
formula for April 7, returns the minimum average daily streamflow from April 1 — April

9. Values are for daily average m’/s

Q Baseflow Column D:

This Column returns the baseflow for the day by taking the minimum of the lesser of the
average value for the values in Column C ranging from four days previous to the current
day to four days after the current day or the value for the current day.

As an example, the baseflow for April 5* would be calculated by returning the minimum
value of either the average of Column C from April 1 to April 9 or the value of Column C

for the current day. Values are for daily average m'/s



Runoff Column E:
The runoff in Column E is calculated by taking the measured streamflow for each day in
Column B minus the baseflow value for the same day calculated in Column D (B-D).

Values are in daily average m’/s

Precipitation Column F:

The precipitation data used is the measured daily average precipitation in average mm/day.
Of the three initial datasets, rainfall data from Buttonville airport was found to be the most
suitable in that it was geographically close to the watershed geographically. Further, time-
series rain data was shown to graphically coincide with peaks in streamflow.

Evaporation Column G:

Pan evaporation data from Hamilton Harbor was utilized as a potential evaporation input
to the model. This site was largely chosen out of necessity, as no other station data were
available for the associated rainfall runoff time periods. Evaporation is in average daily

mm of evaporation.

Balance for Impervious Areas

The balance for impervious areas is more simplified than that for pervious areas. Input in
the form of precipitation is assumed to be lost due to initial abstraction in the form of
depression storage where it can either be further lost to evaporation or become part of the
runoff. In the case where input which surpasses storage in depressions or losses to
evaporation, surplus water can be directly routed as stream runoff from areas which are
directly connected or indirectly routed to pervious areas for impervious areas which are
not directly connected to streamflow. In this case, indirectly connected runoff is
considered routed to pervious areas and becomes part of water input to pervious areas.
The percent of runoff which is routed directly to streamflow is calculated using the
watershed parameter value representing the total fraction of impervious area within the
entire study area (FimpA = 0.0455 or 4.6 percent of the total area). The total amount of
area which is considered directly connected impervious uses a rule-of-thumb approach

assuming approximately 75 percent of developed impervious areas is usually considered
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directly connected. This is represented by the watershed parameter value (FImpADC) or
Fraction of Impervious area directly connected which = 0.0335, 3.4 percent of the total
watershed area or approximately 75% of the total impervious area. The remaining fraction
of impervious area indirectly connected is calculated by taking the total impervious area
minus the total impervious area directly connected which leaves approximately 1.2% of
total area (39 ha) as indirectly connected impervious area. Other assumptions made about
the water balance for impervious areas are that water losses to evaporation only occur over
a day for water which has initially been lost (stored) as initial abstractions. Further, the
only available initial abstraction losses in pervious areas are those which are the result of
depression storage. In impervious areas, a rule-of-thumb is used for calculating the
maximum depression storage which the average value for the entire impervious proportion
of the watershed and is equal to 0.8mm. The balance accounting for this process is as

follows:

Dstor_avail_beg Column I:

This represents the total amount of abstraction storage available at the beginning of the

day and is equal to the remaining depression storage left at the end of the previous day. The
abstraction loss or depression storage in impervious areas at the end of the day is accounted
for in Column O or Dstor_avail end. For example, the value of Column I for

April 2 equals the value of Column O for April 1st.. Values are in mm

Water Prev_day Column J:

This Column represents the total amount of water left in depression storage at the end of
the previous day. The amount of water left in depression storage at the end of the day is
accounted for in Column N or Water Final day. For example, the water left in storage at
the beginning of April 2nd will equal the water left in storage at the end of April 1st. This
will also be a maximum represented by the watershed parameter IA_Imp Max or
maximum amount of abstraction loss averaged over the study area in mm. In this case, the
value is equal to 0.8mm. The value of 0.8 mm is considered a standard value of abstraction
losses over impervious areas. Thus, at no time can the water stored in abstraction exceed

this depth, as it would become runoff.
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Watercapt_cur_day Column K:

The water captured over the current day represents the amount of water captured as initial
abstraction loss for a given day. This is dependent on the amount of incoming
precipitation for a given day as well as the amount of storage available. In the case, that
incoming precipitation is greater than the amount of storage available as specified in
Column I, then the value captured will be the remainder of storage available in Column 1.
However in the case that the amount of incoming precipitation is not greater than the
storage available in Column I, then the amount of water captured will equal the incoming
precipitation. At no time can the amount of water captured for a given day exceed the

maximum storage available or 0.8 mm for impervious areas. Values are in mm.

Water Tot_day Column L:

The values in this Column represent the total water captured for the current day. It is
calculated by adding the values in Column J and Column K. At no point can the total
water captured into storage exceed the maximum abstraction of 0.8 for impervious areas.

Values are in mm.

Water _loss Evp Column M:

This Column calculated water lost to evaporation that has been initially abstracted. If the
value for potential evaporation over the day in Column G is greater than the total water
captured for the day in Column L then the value will equal the total water captured for the
day in Column L. If the value for potential evaporation in Column G is less than the total
amount of water captured for the day in Column L then the value returned in this Column
is equal to the value for potential evaporation. Values cannot exceed the maximum initial

abstraction storage of 0.8 for impervious areas. Values are in mm.

Water_Final_day Column N:
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The value in this Column represents the total amount of water left in abstraction storage at
the end of the day. This value is equal to the total amount of water captured for the day in
Column L minuswater lost to evaporation represented by Column M. Values are in mm and

cannot exceed the maximum value of 0.8mm.

Dstor_avail_end Column O:
This Column represents the amount of initial abstraction storage available at the end of
the days balance. It is calculated by taking the maximum storage value of 0.8 minus the

value for Column N. Values are in mm.

Runoff from Pervious Areas

RO _Imp Column P:
Runoff for impervious areas is calculated in Column P by returning the total amount of
precipitation in mm in Column F minus the total amount of water captured in Column K.

values are in average mm/d.

RO_vol_DCImp Column Q:

This Column represents the total volume of runoff generated for each day (d) from directly
connected impervious areas in m’. This total runoff is computed using the depth of input
which exceeds the depth of initial abstraction in mm/1000 to give the value in meters and
multiplied by the total area of the watershed that is considered impervious. The value is
computed by taking the depth of runoff from Column P multiplied by the total watershed
area which is directly connected impervious (A_DCImp = 109.37 ha) * 10000 to return the
value in m’. The formula is then:

Column P (mm)/ 1000(mm/m)*A_ACImp (ha)*10000(m2/ha) = Average discharge in m’/d.
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RO _vol/s_DCImp Column R:
This Column represents the average daily discharge from directly connected impervious
areas per second. It is calculated by taking the value in Column R in Average m*/day

divided by 86400 s/day. Values are in average daily discharge in m'/s.

RO _vol _IDCImp Column S:

This Column represents the total runoff volume generated from indirectly connected
impervious areas. It is computed similar to the values for directly connected impervious
areas only the area value is represented by the total area in the watershed which is
considered indirectly connected impervious area or (A_IDCImp = 39.2 ha) The formula is
then: Column P (mm)/1000(mm/m)*A_AIDCImp (ha)*10000(mz2/ha) = Average discharge

in m?¥/d.

RO vol/s_IDCImp Column T:
Similar to the value in Column R for directly connected impervious areas, the value in this
Column equals the value in the previous Column/ 86400 s/day. Values are in average daily

discharge in m’/s.

Input to Pervious Areas

Pervious Input Column U:

Input to pervious areas is a function of the total runoff from indirectly connected
impervious areas as well as the depth of precipitation falling in pervious areas. As the depth
of rainfall falling in pervious areas is assumed to be uniform throughout the watershed this
is equal to the depth of rainfall in Column F. The amount of water routed to pervious areas
from impervious areas in mm is equal to the fraction of total impervious area directly
connected (F_ImpADC = 0.0335 percent of watershed area) multiplied by the depth of
runoff generated for the total amount of impervious area in the watershed (Column P).
Thus the formula is [RO_Imp (mm)*F_ImpADC (%ha)] + Column F (mm) = Total depth

of input to pervious areas (mm)
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Pervious Areas

The water balance for pervious areas is very similar to the water balance for impervious
areas in the manner it treats the balance of abstraction losses. However, initial abstraction
losses in pervious areas are not only a product of depression storage but area also a
function of initial infiltration and interception losses as a result of vegetation. Further, the
fundamental difference between losses in pervious vs impervious areas is that a significant
amount of moisture can be stored in the unsaturated zone of the soil horizon. The amount
of water which can be stored is a function of the type of soil, its porosity, depth and the
type of vegetation on the surface of the soil. These parameters and others make balancing
the amount of loss to soil moisture storage difficult. The rainfall runoff equation developed
by the Soil Conservation Service has developed a rainfall runoff equation which related the
physical land conditions and their influence on the rainfall runoff relationship by use of a
curve number (CN). This curve number, is used in conjunction with Equations 1 and 2 as
well as with the initial abstraction (IA) loss balance to calculate the amount of soil
moisture storage for a given area as well as to compute the rainfall runoff mass balance for

pervious areas. This is achieved through the following steps within the simplified model.

IA_avail_perv Column V:

This represents the total amount of initial abstraction storage available at the beginning of
the day and is equal to the remaining initial abstraction storage remaining at the end of the
previous day. The abstraction loss or in pervious areas at the end of the day is accounted
for in Column AC or IA_avail_end. For example, the value of Column V for April 2nda= the
value of Column AC for April 1s. Values are in (mm) and cannot exceed the maximum
initial abstraction loss for pervious areas specified as a model parameter

where, IA_Perv_Max = maximum initial abstraction losses over pervious areas = 8 (mm).

Water prev_day Column W:
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This Column represents the total amount of water left in initial abstraction storage at the
end of the previous day. The amount of water left in storage at the end of the day is
accounted for in Column AB or Water Final day. For example, the water left in storage at
the beginning of April 2nd will equal the water left in storage at the end of April Ist. This
will also be a maximum represented by the watershed parameter [A_Perv_Max or

maximum amount of abstraction loss averaged over the study area in (mm)

Watercapt_cur_day Column X:

The water captured over the current day represents the amount of water captured as initial
abstraction loss for a given day. This is dependent on the amount of incoming input from
precipitation and runoff from indirectly connected impervious areas (Column U), for a
given day as well as the amount of initial abstraction storage available. In the case, that
input is greater than the amount of storage available specified in Column V, then the value
captured will be the remainder of storage available in Column V. However in the case that
the amount of incoming precipitation is not greater than the storage available in Column V,
than the amount of water captured will equal the input specified in Column U. At no time
can the amount of water captured for a given day exceed the maximum storage available

for pervious areas. Values are in mm.

Water_Tot_day Column Y: _

The values in this Column represent the total water captured for the current day. It is
calculated by adding the values in Column W and Column X. At no point can the total
water captured into storage exceed the maximum abstraction of 8 mm for pervious

areas. Values are in mm.

Water_loss_Evp Column Z:
This Column calculates water lost to evaporation that has been initially abstracted. If the

value for potential evaporation over the day in Column G is greater than the total water
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captured for the day in Column Y than the value will equal the total water captured for the
day in Column Y. If the value for potential evaporation in Column G is less than the total
amount of water captured for the day in Column Y, then the value returned in this Column
is equal to the value for potential evaporation. Values cannot exceed the maximum initial
abstraction storage of 8 mm for pervious areas nor can they exceed either the amount of

water in initial abstraction or the potential evaporation for the day. Values are in mm.

Water_loss_Inf Column AA:

This Column represents the depth of water initially lost to abstraction losses which will
infiltrate over the course of the day. This is dependent on whether there is water left in
storage after evaporation has occurred. The values in this Column are calculated using the
calibration parameter IAPerv_Inf. This parameter described the amount of water depth in
initial abstraction which will infiltrate over the day as a fraction of initially abstracted
water depth which remains after evaporation. If there is more water in storage then can be
removed as a result of evaporation then the remaining value is multiplied by the fraction
of the remainder that will infiltrate divided by 100. The amount that returns equals the
depth of abstraction storage which will infiltrate at the end of the day. The formulae for
this is: Water_Tot_day (mm)- Water_loss Evp (mm)]*IAPerv_Inf(%)/100 =

Depth of initially abstracted water lost to infiltration in (mm)

Water_Final_day Column AB:

The value in this Column represents the total amount of water left in abstraction storage at
the end of the day. This value is equal to the total amount of water captured for the day in

Column Y minus water lost to evaporation represented by Column Z and minus any water
remaining in initial abstraction loss that infiltrated as specified in Column AA. Values are

in mm and cannot exceed the maximum value.

IA_avail end Column AC:
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This Column represents the amount of initial abstraction storage available at the end of
the days balance. It is calculated by taking the maximum storage value of for

pervious areas minus the value for Column AB. Values are in (mm).

Runoff From Pervious Areas
Runoff from pervious areas is initially calculated as the depth of input which is remains
after initial abstraction losses. This is achieved using the area weighted average curve

number for the study area as defined in the first section and equations 1 and 2 where:

RO _Per Column AD:

Is calculated as:

IA=U-X)2/(U-X)+S

And:

S =254 *(100 — CN)/CN

Where:

IA = initial abstraction losses for pervious areas (mm)

U = Column U or amount of input to pervious areas (mm)

X = Column X or the depth of initial abstraction available (mm)
S = Amount of soil moisture storage in (mm)

CN = the area weighted curve number for the study site = 81

RO _vol Perv Column AE:

This Column represents the volume of runoff from pervious areas generated for the total
pervious area in the study area. It is calculated by taking the depth of runoff for pervious
areas calculated in Column AD in mm/1000 to give a value in m and multiplying it by

the total area in the watershed that is pervious A _Perv =3117.8 (ha)*10000 to convert it

to a value of (m?) giving a final value of Average (m'/day).

RO _vol/s_Perv Column AF:

XiX



This Column simply divides the value in the previous Column by 86400 (s/day) to return a

rate of daily average (m'/s).

Total Runoff

Throughout the mass balance the amount of abstraction losses have been calculated as a
depth in mm for impervious and pervious areas separately. The amount of runoff for each
has also been balanced separately as depth followed by a conversion to volume based on
the areas of directly connected impervious, indirectly connected impervious and pervious

area. The final three Columns calculated total runoff by adding these values for each day.

RO Column AG:

This Column adds the depth of runoff from directly connected impervious areas in Column

P to the depth of runoff generated from pervious areas in Column AD. Values are in mm.
RO _vol Column AH:

This is similar to the previous Column but instead ads the daily volume runoff for directly
connected impervious areas and pervious areas in Columns Q and AE respectfully. Values
are in (m¥/day).

RO_vol/s Column Al:

This final Column returns a value in daily average (m*/s) by dividing the value in Column

AH by 86400 (s/day).
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APPENDIX I

Spreadsheet Water Balance

Date T Streamiflow | I | Runoff [ Precptaton | Evaporation | Predicted Ref |
0.24
01-Apr-97 1.15 #REF! 1.15 0.00 2.153 0.00
02-Apr-97 1.38 #REF! 0.30 1.08 0.00 2.185 0.00
03-Apr-97 1.44 #REF! 0.30 1.14 0.00 2.216 0.00
04-Apr-97 1.38 1.15 0.30 1.08 0,00 2.248 0.00
05-Apr-97 1.27 1.15 0.30 0.97 2.00 2.279 0.02
06-Apr-97 1.43 0.79 0.30 1.13 2.40 2.311 0.03
07-Apr-97 1.21 0.55 0.30 091 0.20 2.342 0.00
08-Apr-97 0.79 0.51 0.67 0.12 1.20 2.374 0.01
09-Apr-97 0.55 0.48 0.55 0.00 0.00 2.405 0.00
10-Apr-97 0.51 0.48 0.51 0.00 0.00 2.437 0.00
11-Apr-97 0.48 0.48 0.48 0.00 0.00 2.468 0.00
12-Apr-97 0.56 0.48 0.48 0.08 8.00 2.500 0.19
13-Apr-97 0.73 0.48 0.48 0.25 2.60 2.531 0.03
14-Apr-97 0.62 0.48 0.47 0.15 0.00 2.563 0.00
15-Apr-97 0.53 0.48 0.47 0.06 0.00 2.594 0.00
16-Apr-97 0.54 0.48 0.47 0.07 1.60 2.624 0.02
17-Apr-97 0.56 0.46 0.46 0.10 0.00 2.653 0.00
18-Apr-97 0.49 0.46 0.46 0.03 0.00 2.683 0.00
19-Apr-97 0.46 0.46 0.45 0.01 3.40 2.713 0.04
20-Apr-97 0.51 0.44 0.43 0.07 0.00 2.742 0.00
21-Apr-97 0.48 0.43 0.42 0.06 0.00 2.772 0.00
22-Apr-97 0.44 041 0.41 0.04 0.00 2.802 0.00
23-Apr-97 0.43 0.39 0.39 0.04 0.00 2.831 0.00
24-Apr-97 0.41 0.36 0.38 0.03 0.00 2.861 0.00
25-Apr-97 0.39 0.34 0.37 0.02 0.00 2.891 0.00
IMPERVIOUS AREAS

Dstor_avail_beg | Water_Prev_day | Watercapt_cur_day | Water_Tot_day | Water_loss_Evp| Water_Final_day | Dstor_avail_end

0.8
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
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o000 0O
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0.35
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0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
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~ RUNOFF IMPERVIOUS

IRO |mp|R0 vol DCImpIRO volls DCImpIRO vol |DCImp|R0 volis_IDCImp Pervious lnput
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COO0OO0OO0O0 00 WOOWNOOODODWO 2NOOOO
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(=N eleNol
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o 0
0 0
0.021041797 606.00375
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0 0
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0 0
0 0
0 0
0.0975657422 2809.65375
0.028693359 826.36875
0 0
0 0
0.015940755 459.09375
0 0
0 0
0.038895443 1120.18875
0 0
0 0
0 c
0 0
0 0
0 0

COOO

0.007013932
0.00871428
0
0.003613238
0

0

0
0.032519141
0.009564453
0

0
0.005313585
0

0
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2.01856214
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0.2
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0

0

0
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0
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0

0
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] 0
2.01856214 2.01856214
2423062053 2.423062053
0.2 0.312249922
1.209562314 1.209562314
0 0

0 0

0 0

3 3
2.499615596 3
0 0.468917159

[ o]
1.614062227 1.614062227
o o

0 0

3 3

0 0.287382034

0 0

0 0
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0
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0
0 0
0 0
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0 o]
0 0
0 0
0 0.500384404 2499615596
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0 0 3
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0 1} 3
] o 3
4] 0 3
0 0.287382034 2.712617966
0 0 3
c 0 3
] 0 3
0 0 3
] 0 3
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RUNOFF PERVIOUS

TOTAL RUNOFF

RO_Per | RO_vol_Perv | ‘RO_volls_Perv RO RO_vol |RO_volis|
0 0 0 0.0 0 0
0 0 0 0.0 0 0
0 0 0 0.0 0 0
0] 0] 0 0.0 0] 0
0 0] 0 0.0 1818.01125 0.021042
0 0 0 0.0 2258.74125 0.026143
0 0 0 0.0 0 0
0] 0 0 0.0 936.55125 0.01084
0 0 0 0.0 0 0
0 0 0 0.0 0 0
0 0 0 0.0 0 0

0.249057 7765.148573 0.089874405 0.2 16194.10982 0.187432

0.00016 4.980641196 5.76463E-05 0.0 2484.086891 0.028751

0 0 0 0.0 0 0
0 0 0 0.0 0 0
0 0 0 0.0 1377.28125 0.015941
0 0 0 0.0 0 0
0 0 0 0.0 0 0]

0.001901 59.2774849 0.000686082 0.0 3419.843735 0.039582
0 0 0 0.0 0 0
0 0 0 0.0 0 0
0 0 0 0.0 0 0
0 0 0 0.0 0 0
0 0 0 0.0 0 0
0 0 0 0.0 0 0
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APPENDIX III

Daily Streamflow

| Date |Streamﬂow|

01-Apr-97
02-Apr-97
03-Apr-97
04-Apr-97
05-Apr-97
06-Apr-97
07-Apr-97
08-Apr-97
09-Apr-97
10-Apr-97
11-Apr-97
12-Apr-97
13-Apr-97
14-Apr-97
15-Apr-97
16-Apr-97
17-Apr-97
18-Apr-97
19-Apr-97
20-Apr-97
21-Apr-97
22-Apr-97
23-Apr-97
24-Apr-97
25-Apr-97
26-Apr-97
27-Apr-97
28-Apr-97
29-Apr-97
30-Apr-97
01-May-97
02-May-97
03-May-97
04-May-97
05-May-97
06-May-97
07-May-97
08-May-97
09-May-97
10-May-97
11-May-97
12-May-97
13-May-97

1.15
1.38
1.44
1.38
1.27
1.43
1.21
0.79
0.55
0.51
0.48
0.56
0.73
0.62
0.53
0.54
0.56
0.49
0.46
0.51
0.48
0.44
0.43
0.41
0.39
0.36
0.34
0.64
0.50
0.41
0.36
0.35
1.36
0.95
0.61
0.72
0.47
0.44
0.66
0.67
0.52
0.70
0.52
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14-May-97
15-May-97
16-May-97
17-May-97
18-May-97
19-May-97
20-May-97
21-May-97
22-May-97
23-May-97
24-May-97
25-May-97
26-May-97
27-May-97
28-May-97
29-May-97
30-May-97
31-May-97
01-Jun-97
02-Jun-97
03-Jun-97
04-Jun-97
05-Jun-97
06-Jun-97
07-3un-97
08-Jun-97
09-Jun-97
10-Jun-97
11-Jun-97
12-3Jun-97
13-Jun-97
14-Jun-97
15-Jun-97
16-Jun-97
17-Jun-97
18-Jun-97
19-Jun-97
20-Jun-97
21-Jun-97
22-3un-97
23-Jun-97
24-Jun-97
25-Jun-97
26-Jun-97
27-Jun-97
28-Jun-97
29-Jun-97
30-Jun-97
01-Jul-97
02-Jul-97

0.40
0.52
0.54
0.47
0.41
0.40
0.38
0.34
0.31
0.31
0.29
0.28
0.28
0.26
0.22
0.23
0.26
0.25
0.24
0.23
0.21
0.19
0.17
0.18
0.19
0.19
0.20
0.21
0.21
0.22
0.22
0.21
0.22
0.27
0.27
0.28
0.32
0.29
0.32
0.94
0.42
0.77
0.52
0.37
0.31
0.27
0.24
0.23
0.23
0.21
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03-Jul-97
04-3ul-97
05-Jul-97
06-1ul-97
07-3ul-97
08-Jul-97
09-Jul-97
10-Jul-97
11-3ul-97
12-Jul-97
13-3Jul-97
14-Jul-97
15-Jul-97
16-3ul-97
17-3ul-97
18-Jul-97
19-Jul-97
20-Jul-97
21-3ul-97
22-Jul-97
23-Jul-97
24-3ul-97
25-Jul-97
26-Jul-97
27-Jul-97
28-Jui-97
29-Jul-97
30-Jul-97
31-Jul-97
01-Aug-97
02-Aug-97
03-Aug-97
04-Aug-97
05-Aug-97
06-Aug-97
07-Aug-97
08-Aug-97
09-Aug-97
10-Aug-97
11-Aug-97
12-Aug-97
13-Aug-97
14-Aug-97
15-Aug-97
16-Aug-97
17-Aug-97
18-Aug-97
19-Aug-97
20-Aug-97
21-Aug-97

0.22
0.24
0.20
0.20
0.27
0.27
0.42
0.27
0.24
0.21
0.18
0.16
0.18
0.18
0.18
0.16
0.16
0.14
0.21
0.19
0.15
0.13
0.15
0.13
0.13
0.15
0.13
0.12
0.12
0.12
0.13
0.14
0.12
0.12
0.12
0.12
0.11
0.11
0.11
0.14
0.15
0.27
0.18
0.29
0.34
0.25
0.20
0.16
0.19
0.41
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22-Aug-97
23-Aug-97
24-Aug-97
25-Aug-97
26-Aug-97
27-Aug-97
28-Aug-97
29-Aug-97
30-Aug-97
31-Aug-97
01-Sep-97
02-Sep-97
03-Sep-97
04-Sep-97
05-Sep-97
06-Sep-97
07-Sep-97
08-Sep-97
09-Sep-97
10-Sep-97
11-Sep-97
12-Sep-97
13-Sep-97
14-Sep-97
15-Sep-97
16-Sep-97
17-Sep-97
18-Sep-97
19-Sep-97
20-Sep-97
21-Sep-97
22-Sep-97
23-Sep-97
24-Sep-97
25-Sep-97
26-Sep-97
27-Sep-97
28-Sep-97
29-Sep-97
30-Sep-97
01-Oct-97
02-Oct-97
03-Oct-97
04-Oct-97
05-Oct-97
06-0Oct-97
07-0Oct-97
08-Oct-97
09-Oct-97
10-Oct-97

0.32
0.28
0.24
0.23
0.23
0.22
0.27
0.27
0.24
0.23
0.24
0.22
0.22
0.20
0.19
0.24
0.32
0.21
0.20
0.35
0.45
0.30
0.28
0.24
0.25
0.23
0.24
0.25
0.25
0.29
0.26
0.23
0.22
0.21
0.29
0.31
0.27
0.25
0.35
0.32
0.27
0.27
0.27
0.26
0.24
0.24
0.21
0.22
0.24
0.25
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11-Oct-97
12-Oct-97
13-Oct-97
14-Oct-97
15-Oct-97
16-0ct-97
17-Oct-97
18-Oct-97
19-Oct-97
20-0ct-97
21-Oct-97
22-0Oct-97
23-Oct-97
24-0ct-97
25-Oct-97
26-0ct-97
27-Oct-97
28-0ct-97
29-0ct-97
30-Oct-97

31-Oct-97

01-Apr-98
02-Apr-98
03-Apr-98
04-Apr-98
05-Apr-98
06-Apr-98
07-Apr-98
08-Apr-98
09-Apr-98
10-Apr-98
11-Apr-98
12-Apr-98
13-Apr-98
14-Apr-98
15-Apr-98
16-Apr-98
17-Apr-98
18-Apr-98
19-Apr-98
20-Apr-98
21-Apr-98
22-Apr-98
23-Apr-98
24-Apr-98
25-Apr-98
26-Apr-98
27-Apr-98
28-Apr-98
29-Apr-98

0.25
0.24
0.25
0.26
0.24
0.24
0.26
0.27
0.24
0.25
0.25
0.28
0.27
0.27
0.28
0.29
0.68
0.47
0.41
0.35
0.33
0.95
1.02
1.13
0.84
0.69
0.60
0.57
0.56
0.55
0.47
0.50
0.45
0.44
0.41
0.41
0.77
1.55
0.85
0.64
0.64
0.54
0.48
0.44
0.48
0.51
0.47
0.42
0.38
0.38
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30-Apr-98
01-May-98
02-May-98
03-May-98
04-May-98
05-May-98
06-May-98
07-May-98
08-May-98
09-May-98
10-May-98
11-May-98
12-May-98
13-May-98
14-May-98
15-May-98
16-May-98
17-May-98
18-May-98
19-May-98
20-May-98
21-May-98
22-May-98
23-May-98
24-May-98
25-May-98
26-May-98
27-May-98
28-May-98
29-May-98
30-May-98
31-May-98
01-Jun-98
02-Jun-98
03-Jun-98
04-Jun-98
05-Jun-98
06-Jun-98
07-Jun-98
08-Jun-98
09-Jun-98
10-Jun-98
11-Jun-98
12-Jun-98
13-Jun-98
14-3Jun-98
15-Jun-98
16-Jun-98
17-Jun-98
18-Jun-98

0.36
0.36
0.37
0.39
0.43
0.41
0.36
0.34
0.34
0.33
0.32
0.98
0.66
0.48
0.39
0.35
0.32
0.30
0.28
0.28
0.27
0.25
0.24
0.23
0.22
0.19
0.21
0.20
0.16
0.19
0.18
0.18
0.19
0.33
0.37
0.24
0.21
0.20
0.20
0.19
0.18
0.18
0.17
0.46
0.32
0.36
0.32
0.27
0.26
0.25
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19-Jun-98
20-Jun-98
21-Jun-98
22-Jun-98
23-Jun-98
24-3un-98
25-Jun-98
26-Jun-98
27-Jun-98
28-Jun-98
29-Jun-98
30-Jun-98
01-Jul-98
02-Jul-98
03-Jui-98
04-Jul-98
05-Jul-98
06-Jul-98
07-Jul-98
08-Jui-98
09-3ul-98
10-Jul-98
11-Jul-98
12-Jui-98
13-Jul-98
14-)ul-98
15-Jul-98
16-Jul-98
17-Jul-98
18-Jul-98
19-Jul-98
20-Jul-98
21-Jul-98
22-Jul-98
23-Jui-98
24-Jul-98
25-Jul-98
26-1ul-98
27-3ul-98
28-3ui-98
29-Jul-98
30-Jul-98
31-Jul-98
01-Aug-98
02-Aug-98
03-Aug-98
04-Aug-98
05-Aug-98
06-Aug-98
07-Aug-98

0.25
0.25
0.25
0.25
0.27
0.29
0.26
0.54
0.36
0.30
0.28
0.35
0.32
0.24
0.21
0.32
0.28
0.25
0.67
0.39
0.33
0.28
0.22
0.19
0.19
0.18
0.15
0.20
0.23
0.17
0.14
0.i6
0.15
0.13
0.13
0.13
0.13
0.13
0.13
0.15
0.15
0.13
0.14
0.12
0.11
0.12
0.12
0.12
0.22
0.59
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08-Aug-98
09-Aug-98
10-Aug-98
11-Aug-98
12-Aug-98
13-Aug-98
14-Aug-98
15-Aug-98
16-Aug-98
17-Aug-98
18-Aug-98
19-Aug-98
20-Aug-98
21-Aug-98
22-Aug-98
23-Aug-98
24-Aug-98
25-Aug-98
26-Aug-98
27-Aug-98
28-Aug-98
29-Aug-98
30-Aug-98
31-Aug-98
01-Sep-98
02-Sep-98
03-Sep-98
04-Sep-98
05-Sep-98
06-Sep-98
07-Sep-98
08-Sep-98
09-Sep-98
10-Sep-98
11-Sep-98
12-Sep-98
13-Sep-98
14-Sep-98
15-Sep-98
16-Sep-98
17-Sep-98
18-Sep-98
19-Sep-98
20-Sep-98
21-Sep-98
22-Sep-98
23-Sep-98
24-Sep-98
25-Sep-98
26-Sep-98

0.31
0.37
0.50
0.28
0.22
0.19
0.19
0.19
0.19
0.16
0.18
0.15
0.14
0.16
0.18
0.22
0.88
0.38
0.30
0.24
0.21
0.21
0.19
0.16
0.15
0.24
0.20
0.19
0.17
0.16
0.21
0.18
0.18
0.16
0.16
0.15
0.17
0.15
0.39
0.33
0.20
0.19
0.18
0.21
0.21
0.20
0.17
0.16
0.17
0.21

Xxxi



27-Sep-98
28-Sep-98
29-Sep-98
30-Sep-98
01-Oct-98
02-Oct-98
03-Oct-98
04-Oct-98
05-Oct-98
06-0Oct-98
07-Oct-98
08-Oct-98
09-Oct-98
10-Oct-98
11-Oct-98
12-Oct-98
13-Oct-98
14-Oct-98
15-Oct-98
16-Oct-98
17-Oct-98
18-Oct-98
19-Oct-98
20-Oct-98
21-0ct-98
22-0ct-98
23-0ct-98
24-0ct-98
25-0ct-98
26-0ct-98
27-0ct-98
28-0Oct-98
29-0Oct-98
30-Oct-98
31-Oct-98
01-Apr-00
02-Apr-00
03-Apr-00
04-Apr-00
05-Apr-00
06-Apr-00
07-Apr-00
08-Apr-00
09-Apr-00
10-Apr-00
11-Apr-00
12-Apr-00
13-Apr-00
14-Apr-00
15-Apr-00

0.30
0.24
0.19
0.20
0.30
0.21
0.20
0.20
0.21
0.19
0.42
0.40
0.30
0.26
0.24
0.23
0.22
0.27
0.26
0.23
0.23
0.25
0.25
0.25
0.23
0.23
0.23
0.24
0.25
0.23
0.24
0.26
0.24
0.24
0.24
0.41
0.41
0.42
0.54
0.51
0.45
0.44
1.00
0.79
0.66
0.54
0.53
0.53
0.49
0.47
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16-Apr-00
17-Apr-00
18-Apr-00
19-Apr-00
20-Apr-00
21-Apr-00
22-Apr-00
23-Apr-00
24-Apr-00
25-Apr-00
26-Apr-00
27-Apr-00
28-Apr-00
29-Apr-00
30-Apr-00
01-May-00
02-May-00
03-May-00
04-May-00
05-May-00
06-May-00
07-May-00
08-May-00
09-May-00
10-May-00
11-May-00
12-May-00
13-May-00
14-May-00
15-May-00
16-May-00
17-May-00
18-May-00
19-May-00
20-May-00
21-May-00
22-May-00
23-May-00
24-May-00
25-May-00
26-May-00
27-May-00
28-May-00
29-May-00
30-May-00
31-May-00
01-Jun-00
02-Jun-00
03-Jun-00
04-Jun-00

0.47
0.44
0.43
0.41
0.56
2.41
1.66
0.91
0.64
0.51
0.45
0.42
0.40
0.37
0.37
0.38
0.39
0.35
0.34
0.34
0.32
0.32
0.31
0.31
0.63
0.50
1.63
4.59
1.12
0.74
0.58
0.50
2.08
1.11
0.76
6.59
0.51
0.74
1.25
0.78
0.59
0.49
0.44
0.40
0.37
0.37
0.34
0.43
0.35
0.33
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05-Jun-00
06-Jun-00
07-Jun-00
08-Jun-00
09-Jun-00
10-Jun-00
11-Jun-00
12-Jun-00
13-Jun-00
14-Jun-00
15-Jun-00
16-Jun-00
17-Jun-00
18-Jun-00
19-Jun-00
20-Jun-00
21-Jun-00
22-Jun-00
23-3un-00
24-Jun-00
25-Jun-00
26-Jun-00
27-Jun-00
28-Jun-00
29-Jun-00
30-Jun-00
01-Jul-00
02-Jul-00
03-Jul-00
04-3ul-00
05-Jul-00
06-3ul-00
07-Jul-00
08-3ul-00
09-Jul-00
10-Jul-00
11-Jul-00
12-3Jul-00
13-Jul-00
14-Jul-00
15-Jul-00
16-Jui-00
17-3Jul-00
18-Jul-00
19-Jul-00
20-Jul-00
21-Jul-00
22-3ul-00
23-Jul-00
24-3ul-00

0.31
0.40
0.35
0.30
0.29
0.30
1.15
0.97
4.26
1.64
1.72
0.87
0.68
0.65
0.61
0.51
0.57
0.53
0.48
0.42
3.45
1.15
0.77
0.56
0.64
0.72
0.53
0.43
0.96
0.94
0.58
0.45
0.41
0.37
0.36
0.39
0.34
0.29
0.29
0.77
0.64
0.76
1.08
1.31
0.66
0.50
0.43
0.40
0.37
0.35

XXX1V



25-Jul-00
26-Jul-00
27-3ul-00
28-Jul-00
29-Jui-00
30-Jul-00
31-Jul-00
01-Aug-00
02-Aug-00
03-Aug-00
04-Aug-00
05-Aug-00
06-Aug-00
07-Aug-00
08-Aug-00
09-Aug-00
10-Aug-00
11-Aug-00
12-Aug-00
13-Aug-00
14-Aug-00
15-Aug-00
16-Aug-00
17-Aug-00
18-Aug-00
19-Aug-00
20-Aug-00
21-Aug-00
22-Aug-00
23-Aug-00
24-Aug-00
25-Aug-00
26-Aug-00
27-Aug-00
28-Aug-00
29-Aug-00
30-Aug-00
31-Aug-00
01-Sep-00
02-Sep-00
03-Sep-00
04-Sep-00
05-Sep-00
06-Sep-00
07-Sep-00
08-Sep-00
09-Sep-00
10-Sep-00
11-Sep-00
12-Sep-00

0.33
0.30
0.31
0.32
0.31
0.32
0.32
0.61
1.09
0.59
0.42
0.36
0.33
0.50
0.54
0.70
0.55
0.91
0.93
0.61
0.47
0.43
0.40
0.37
0.36
0.36
0.33
0.33
0.32
0.70
0.51
0.41
0.38
0.40
0.37
0.30
0.28
0.28
0.28
0.32
0.33
0.35
0.30
0.29
0.28
0.29
0.29
0.34
0.85
0.61
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13-Sep-00
14-Sep-00
15-Sep-00
16-Sep-00
17-Sep-00
18-Sep-00
19-Sep-00
20-Sep-00
21-Sep-00
22-Sep-00
23-Sep-00
24-Sep-00
25-Sep-00
26-Sep-00
27-Sep-00
28-Sep-00
29-Sep-00
30-Sep-00
01-Oct-00
02-Oct-00
03-Oct-00
04-Oct-00
05-0Oct-00
06-Oct-00
07-Oct-00
08-Oct-00
09-Oct-00
10-Oct-00
11-Oct-00
12-0Oct-00
13-Oct-00
14-Oct-00
15-Oct-00
16-Oct-00
17-Oct-00
18-0ct-00
19-Oct-00
20-Oct-00
21-Oct-00
22-0Oct-00
23-0ct-00
24-0Oct-00
25-Oct-00
26-0ct-00
27-0ct-00
28-0Oct-00
29-Oct-00
30-Oct-00
31-Oct-00

0.44
0.84
1.04
0.64
0.49
0.43
0.39
0.37
0.44
0.41
0.60
0.54
0.46
0.41
0.39
0.36
0.34
0.35
0.35
0.35
0.36
0.41
0.40
0.44
0.46
0.44
0.41
0.41
0.39
0.37
0.37
0.37
0.38
0.37
0.36
0.36
0.37
0.36
0.39
0.36
0.35
0.35
0.37
0.37
0.40
0.43
0.38
0.37
0.37
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APPENDIX IV

Climate Data

|— Date "_LPrecipitationlEvaporationI

01-Apr-97
02-Apr-97
03-Apr-97
04-Apr-97
05-Apr-97
06-Apr-97
07-Apr-97
08-Apr-97
09-Apr-97
10-Apr-97
11-Apr-97
12-Apr-97
13-Apr-97
14-Apr-97
15-Apr-97
16-Apr-97
17-Apr-97
18-Apr-97
19-Apr-97
20-Apr-97
21-Apr-97
22-Apr-97
23-Apr-97
24-Apr-97
25-Apr-97
26-Apr-97
27-Apr-97
28-Apr-97
29-Apr-97
30-Apr-97
01-May-97
02-May-97
03-May-97
04-May-97
05-May-97
06-May-97
07-May-97
08-May-97
09-May-97
10-May-97
11-May-97

0.00
0.00
0.00
0.00
2.00
2.40
0.20
1.20
0.00
0.00
0.00
8.00
2.60
0.00
0.00
1.60
0.00
0.00
3.40
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.80
7.20
0.00
0.00
0.40
1.20
27.20
0.50
15.00
0.00
0.00
0.40
4.60
1.80
6.20

2.153
2.185
2.216
2.248
2.279
2.311
2.342
2.374
2.405
2.437
2.468
2.500
2.531
2.563
2.594
2.624
2.653
2.683
2.713
2.742
2.772
2.802
2.831
2.861
2.891
2.920
2.950
2.979
3.009
3.039
3.068
3.098
3.128
3.157
3.187
3.217
3.246
3.276
3.306
3.335
3.365
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12-May-97
13-May-97
14-May-97
15-May-97
16-May-97
17-May-97
18-May-97
19-May-97
20-May-97
21-May-97
22-May-97
23-May-97
24-May-97
25-May-97
26-May-97
27-May-97
28-May-97
29-May-97
30-May-97
31-May-97
01-Jun-97
02-Jun-97
03-3un-97
04-Jun-97
05-Jun-97
06-3un-97
07-Jun-97
08-Jun-97
09-Jun-97
10-Jun-97
11-Jun-97
12-3un-97
13-Jun-97
14-Jun-97
15-Jun-97
16-Jun-97
17-Jun-97
18-3un-97
19-Jun-97
20-Jun-97
21-3un-97
22-3un-97
23-Jun-97
24-Jun-97
25-Jun-97
26-Jun-97
27-Jun-97
28-Jun-97

4.40
0.00
0.20
6.10
0.60
1.80
2.20
0.80
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.60
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00
9.40
0.00
0.00
0.00
2.50
4.20
0.00
0.00
8.40
1.40
5.80
0.00

3.20
11.80
0.00
0.00
0.00
0.00

3.395
3.424
3.454
3.484
3.508
3.532
3.557
3.581
3.606
3.630
3.655
3.679
3.703
3.728
3.752
3.777
3.801
3.826
3.850
3.874
3.874
3.899
3.923
3.948
3.972
3.997
4.021
4.045
4.070
4.094
4.119
4.143
4.168
4.192
4.216
4,223
4.230
4.237
4.244
4.251
4.258
4.265
4.272
4.279
4.286
4.293
4.300
4.307
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29-Jun-97
30-Jun-97
01-Jul-97
02-Jul-97
03-Jul-97
04-3Jut-97
05-1ul-97
06-Jul-97
07-Jul-97
08-Jui-97
09-Jul-97
10-Jul-97
11-Jul-97
12-Jul-97
13-Jul-97
14-Jul-97
15-3ul-97
16-Jul-97
17-Jui-97
18-Jul-97
19-Jul-97
20-Jui-97
21-3ul-97
22-Jul-97
23-Jul-97
24-Jul-97
25-3ul-97
26-Jul-97
27-Jui-97
28-Jui-97
29-Jul-97
30-Jul-97
31-Jul-97
01-Aug-97
02-Aug-97
03-Aug-97
04-Aug-97
05-Aug-97
06-Aug-97
07-Aug-97
08-Aug-97
09-Aug-97
10-Aug-97
11-Aug-97
12-Aug-97
13-Aug-97
14-Aug-97
15-Aug-97

4.314
4.321
4.328
4.335
4.342
4.349
4.356
4.363
4.370
4.377
4.384
4.391
4.398
4.405
4.412
4.419
4.426
4.397
4.369
4.340
4.312
4.283
4.255
4.226
4.198
4.169
4.141
4,112
4.084
4.055
4.027
3.998
3.970
3.970
3.941
3.912
3.884
3.855
3.827
3.798
3.770
3.741
3.713
3.684
3.656
3.627
3.599
3.570
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16-Aug-97
17-Aug-97
18-Aug-97
19-Aug-97
20-Aug-97
21-Aug-97
22-Aug-97
23-Aug-97
24-Aug-97
25-Aug-97
26-Aug-97
27-Aug-97
28-Aug-97
29-Aug-97
30-Aug-97
31-Aug-97
01-Sep-97
02-Sep-97
03-Sep-97
04-Sep-97
05-Sep-97
06-Sep-97
07-Sep-97
08-Sep-97
09-Sep-97
10-Sep-97
11-Sep-97
12-Sep-97
13-Sep-97
14-Sep-97
15-Sep-97
16-Sep-97
17-Sep-97
18-Sep-97
19-Sep-97
20-Sep-97
21-Sep-97
22-Sep-97
23-Sep-97
24-Sep-97
25-Sep-97
26-Sep-97
27-Sep-97
28-Sep-97
29-Sep-97
30-Sep-97
01-Oct-97
02-Oct-97

7.00
0.00
0.00
0.00
15.70
16.40
5.60
0.20
1.60
0.00
0.00
1.20
0.00
0.00
0.00
0.80
0.00
0.00
0.00
0.00
1.60
14.00
0.00
0.00
0.00
16.80
0.80
0.20
0.00
0.00
0.00
0.00
5.00
0.00
4.40
1.00
0.00
0.00
0.40
0.00
6.00
0.00
0.00
0.60
13.00
3.00
0.00
1.80

3.527
3.485
3.442
3.399
3.356
3.313
3.270
3.228
3.185
3.142
3.099
3.056
3.013
2.971
2.928
2.885
2.885
2.842
2.799
2.757
2.714
2.671
2.628
2.585
2.542
2.500
2.457
2.414
2.371
2.328
2.285
2.249
2.213
2.177
2.141
2.105
2.069
2.033
1.997
1.961
1.925
1.889
1.853
1.817
1.781
1.745
1.709
1.672
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03-Oct-97
04-Oct-97
05-0Oct-97
06-Oct-97
07-Oct-97
08-Oct-97
09-Oct-97
10-Oct-97
11-Oct-97
12-Oct-97
13-Oct-97
14-0ct-97
15-Oct-97
16-Oct-97
17-Oct-97
18-Oct-97
19-Oct-97
20-Oct-97
21-Oct-97
22-Oct-97
23-0ct-97
24-Oct-97
25-Oct-97
26-Oct-97
27-Oct-97
28-Oct-97
29-Oct-97
30-Oct-97

31-Oct-97

01-Apr-98
02-Apr-98
03-Apr-98
04-Apr-98
05-Apr-98
06-Apr-98
07-Apr-98
08-Apr-98
09-Apr-98
10-Apr-98
11-Apr-98
12-Apr-98
13-Apr-98
14-Apr-98
15-Apr-98
16-Apr-98
17-Apr-98
18-Apr-98

1.80
0.00
0.00
0.00
0.00
0.00
1.20
0.00
0.00
0.00
0.00
0.40
0.00
0.00
0.00
0.00
0.00
0.00
0.80
0.00
0.40
0.00
0.00
16.00
9.40
0.00
1.80
0.00
3.40
7.40
5.40
0.00
0.00
0.00
0.00
0.00
4.20
0.00
0.00
0.00
0.00
0.00
2.00
0.20
19.40
15.00
0.00

1.636
1.600
1.564
1.528
1.492
1.456
1.420
1.384
1.348
1.312
1.276
1.240
1.204
1.182
1.160
1.138
1.116
1.094
1.072
1.050
1.028
1.006
0.984
0.962
0.940
0.918
0.896
0.874
0.852
2.153
2.185
2.216
2.248
2.279
2.311
2.342
2.374
2.405
2.437
2.468
2.500
2.531
2.563
2.594
2.624
2.653
2.683
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19-Apr-98
20-Apr-98
21-Apr-98
22-Apr-98
23-Apr-98
24-Apr-98
25-Apr-98
26-Apr-98
27-Apr-98
28-Apr-98
29-Apr-98
30-Apr-98
01-May-98
02-May-98
03-May-98
04-May-98
05-May-98
06-May-98
07-May-98
08-May-98
09-May-98
10-May-98
11-May-98
12-May-98
13-May-98
14-May-98
15-May-98
16-May-98
17-May-98
18-May-98
19-May-98
20-May-98
21-May-98
22-May-98
23-May-98
24-May-98
25-May-98
26-May-98
27-May-98
28-May-98
29-May-98
30-May-98
31-May-98
01-Jun-98
02-Jun-98
03-Jun-98
04-Jun-98
05-Jun-98

6.40
4.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.40
4.40
0.00
0.40
0.00
0.00
0.00
0.00
0.00
15.40
18.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.80
0.00
1.80
0.00
9.60
0.00
0.00
0.00

2,713
2.742
2.772
2.802
2.831
2.861
2.891
2.920
2.950
2.979
3.009
3.039
3.068
3.098
3.128
3.157
3.187
3.217
3.246
3.276
3.306
3.335
3.365
3.395
3.424
3.454
3.484
3.508
3.532
3.557
3.581
3.606
3.630
3.655
3.679
3.703
3.728
3.752
3.777
3.801
3.826
3.850
3.874
3.874
3.899
3.923
3.948
3.972
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06-Jun-98
07-Jun-98
08-Jun-98
09-Jun-98
10-Jun-98
11-Jun-98
12-Jun-98
13-Jun-98
14-Jun-98
15-Jun-98
16-Jun-98
17-Jun-98
18-Jun-98
19-Jun-98
20-Jun-98
21-Jun-98
22-Jun-98
23-Jun-98
24-3un-98
25-Jun-98
26-Jun-98
27-Jun-98
28-Jun-98
29-Jun-98
30-Jun-98
01-Jul-98
02-3Jul-98
03-Jul-98
04-Jul-98
05-Jul-98
06-3Jul-98
07-3ul-98
08-1ul-98
09-3Jul-98
10-Jul-98
11-Jul-98
12-3ul-98
13-Jul-98
14-Jul-98
15-Jul-98
16-Jul-98
17-Jul-98
18-Jut-98
19-3Jui-98
20-Jul-98
21-3ul-98
22-Jul-98
23-Jui-98

0.00
1.00
0.00
0.00
1.00
4.30
12.00
0.00
0.00
0.00
1.50
1.00
0.00
0.00
0.00
0.00
0.00
3.40
0.00
2.00
13.40
0.00
0.00
0.00
11.60
0.00
0.00
0.00
7.20
0.00
2.50
28.00
1.50
4.00
0.00
0.00
0.00
0.00
0.00
0.00
2.20
0.00
0.00
1.60
0.00
0.00
0.00
0.00

3.997
4.021
4.045
4.070
4.094
4.119
4.143
4.168
4.192
4.216
4.223
4.230
4.237
4.244
4.251
4.258
4.265
4.272
4.279
4.286
4.293
4.300
4.307
4.314
4.321
4.328
4.335
4.342
4.349
4.356
4.363
4.370
4.377
4.384
4.391
4.398
4.405
4.412
4.419
4.426
4.397
4.369
4.340
4.312
4.283
4.255
4.226
4.198

xliii



24-1ul-98
25-Jul-98
26-Jul-98
27-1ul-98
28-Jul-98
29-3ul-98
30-Jul-98
31-Jul-98
01-Aug-98
02-Aug-98
03-Aug-98
04-Aug-98
05-Aug-98
06-Aug-98
07-Aug-98
08-Aug-98
09-Aug-98
10-Aug-98
11-Aug-98
12-Aug-98
13-Aug-98
14-Aug-98
15-Aug-98
16-Aug-98
17-Aug-98
18-Aug-98
19-Aug-98
20-Aug-98
21-Aug-98
22-Aug-98
23-Aug-98
24-Aug-98
25-Aug-98
26-Aug-98
27-Aug-98
28-Aug-98
29-Aug-98
30-Aug-98
31-Aug-98
01-Sep-98
02-Sep-98
03-Sep-98
04-Sep-98
05-Sep-98
06-Sep-98
07-Sep-98
08-Sep-98
09-Sep-98

0.00
0.00
0.00
4.20
0.40
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
18.60
19.40
0.00
12.80
1.00
0.00
0.00
0.00
0.00
0.80
0.00
0.50
0.00
0.00
0.00
0.00
0.00
5.20
11.40
10.00
0.00
0.00
2.00
2.60
0.00
0.00
0.00
3.60
0.60
0.00
0.00
4.20
0.00
2.00
0.00

4.169
4.141
4,112
4.084
4.055
4.027
3.998
3.970
3.970
3.941
3.912
3.884
3.855
3.827
3.798
3.770
3.741
3.713
3.684
3.656
3.627
3.599
3.570
3.527
3.485
3.442
3.399
3.356
3.313
3.270
3.228
3.185
3.142
3.099
3.056
3.013
2.971
2.928
2.885
2.885
2.842
2.799
2.757
2.714
2.671
2.628
2.585
2.542
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10-Sep-98
11-Sep-98
12-Sep-98
13-Sep-98
14-Sep-98
15-Sep-98
16-Sep-98
17-Sep-98
18-Sep-98
19-Sep-98
20-Sep-98
21-Sep-98
22-Sep-98
23-Sep-98
24-Sep-98
25-Sep-98
26-Sep-98
27-Sep-98
28-Sep-98
29-Sep-98
30-Sep-98
01-Oct-98
02-Oct-98
03-Oct-98
04-Oct-98
05-Oct-98
06-0ct-98
07-Oct-98
08-Oct-98
09-Oct-98
10-Oct-98
11-Oct-98
12-Oct-98
13-Oct-98
14-Oct-98
15-Oct-98
16-Oct-98
17-Oct-98
18-Oct-98
19-Oct-98
20-Oct-98
21-Oct-98
22-0Oct-98
23-Oct-98
24-0Oct-98
25-0Oct-98
26-Oct-98
27-Oct-98

0.00
0.00
0.00
0.00
3.00
13.40
0.00
0.00
0.00
0.00
0.00
0.00
1.20
0.00
0.00
0.00
2.80
1.80
0.00
0.20
10.00
0.40
0.00
0.00
0.00
0.00
0.00
18.80
1.20
0.00
0.00
0.00
0.00
0.00
3.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.20

2.500
2.457
2.414
2.371
2.328
2.285
2.249
2.213
2.177
2.141
2.105
2.069
2.033
1.997
1.961
1.925
1.889
1.853
1.817
1.781
1.745
1.709
1.672
1.636
1.600
1.564
1.528
1.492
1.456
1.420
1.384
1.348
1.312
1.276
1.240
1.204
1.182
1.160
1.138
1.116
1.094
1.072
1.050
1.028
1.006
0.984
0.962
0.940
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28-Oct-98
29-Oct-98
30-Oct-98
31-Oct-98
01-Apr-00
02-Apr-00
03-Apr-00
04-Apr-00
05-Apr-00
06-Apr-00
07-Apr-00
08-Apr-00
09-Apr-00
10-Apr-00
11-Apr-00
12-Apr-00
13-Apr-00
14-Apr-00
15-Apr-00
16-Apr-00
17-Apr-00
18-Apr-00
19-Apr-00
20-Apr-00
21-Apr-00
22-Apr-00
23-Apr-00
24-Apr-00
25-Apr-00
26-Apr-00
27-Apr-00
28-Apr-00
29-Apr-00
30-Apr-00
01-May-00
02-May-00
03-May-00
04-May-00
05-May-00
06-May-00
07-May-00
08-May-00
09-May-00
10-May-00
11-May-00
12-May-00
13-May-00
14-May-00

0.60
0.00
0.00
0.00
0.00
0.80
2.20
4.80
0.20
1.80
5.40
11.40
0.00
0.20
3.20
0.60
0.00
0.00
0.00
0.00
0.00
0.20
0.00
32.00
6.40
0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.00
0.00
0.00
0.00
0.00
0.00
1.40
0.00
9.40
6.20
17.80
64.80
0.00
0.00

0.918
0.896
0.874
0.852
2.153
2.185
2.216
2.248
2.279
2.311
2.342
2.374
2.405
2.437
2.468
2.500
2.531
2.563
2.594
2.624
2.653
2.683
2.713
2.742
2.772
2.802
2.831
2.861
2.891
2.920
2.950
2.979
3.009
3.039
3.068
3.098
3.128
3.157
3.187
3.217
3.246
3.276
3.306
3.335
3.365
3.395
3.424
3.454
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15-May-00
16-May-00
17-May-00
18-May-00
19-May-00
20-May-00
21-May-00
22-May-00
23-May-00
24-May-00
25-May-00
26-May-00
27-May-00
28-May-00
29-May-00
30-May-00
31-May-00
01-Jun-00
02-Jun-00
03-Jun-00
04-Jun-00
05-Jun-00
06-Jun-00
07-3Jun-00
08-Jun-00
09-Jun-00
10-Jun-00
11-Jun-00
12-Jun-00
13-3un-00
14-3un-00
15-Jun-00
16-Jun-00
17-Jun-00
18-Jun-00
19-Jun-00
20-Jun-00
21-Jun-00
22-3un-00
23-Jun-00
24-3un-00
25-Jun-00
26-Jun-00
27-Jun-00
28-Jun-00
29-Jun-00
30-Jun-00
01-Jul-00

0.00
1.20
0.20
24.00
0.00
0.00
0.00
0.00
15.40
0.20
1.40
0.00
0.00
0.00
0.00
0.00
1.20
2.80
0.40
0.00
0.00
3.20
4.20
0.00
0.00
3.60
0.00
26.00
0.20
41.00
14.40
0.00
0.80
0.00
8.60
0.00
0.00
6.20
2.80
0.00
9.60
27.40
3.20
0.20
0.00
9.80
0.00
2.80

3.484
3.508
3.532
3.557
3.581
3.606
3.630
3.655
3.679
3.703
3.728
3.752
3.777
3.801
3.826
3.850
3.874
3.874
3.899
3.923
3.948
3.972
3.997
4.021
4.045
4.070
4.094
4.119
4.143
4.168
4.192
4.216
4.223
4.230
4.237
4.244
4.251
4.258
4.265
4.272
4.279
4.286
4.293
4.300
4.307
4.314
4.321
4.328

xlvii



02-Jul-00
03-Jul-00
04-Jul-00
05-Jul-00
06-Jul-00
07-Jul-00
08-Jul-00
09-3ul-00
10-Jul-00
11-Jul-00
12-Jul-00
13-Jul-00
14-Jul-00
15-Jui-00
16-3ul-00
17-Jui-00
18-Jul-00
19-Jul-00
20-3ul-00
21-Jul-00
22-3ul-00
23-Jul-00
24-3ul-00
25-Jul-00
26-3ul-00
27-Jul-00
28-Jul-00
29-Jul-00
30-Jul-00
31-Jul-00
01-Aug-00
02-Aug-00
03-Aug-00
04-Aug-00
05-Aug-00
06-Aug-00
07-Aug-00
08-Aug-00
09-Aug-00
10-Aug-00
11-Aug-00
12-Aug-00
13-Aug-00
14-Aug-00
15-Aug-00
16-Aug-00
17-Aug-00
18-Aug-00

0.40
0.00
0.00
3.20
4.20
0.00
0.00
3.60
0.00
26.00
0.20
41.00
14.40
0.00
0.80
0.00
8.60
0.00
0.00
6.20
2.80
0.00
9.60
27.40
3.20
0.20
0.00
9.80
0.00
0.00
11.00
0.00
0.00
0.00
0.00
0.20
2.20
15.80
0.00
8.60
3.60
0.00
0.20
0.00
0.80
0.00
0.00
1.80

4.335
4.342
4.349
4.356
4.363
4.370
4.377
4.384
4.391
4.398
4.405
4.412
4.419
4.426
4.397
4.369
4.340
4.312
4.283
4.255
4.226
4.198
4.169
4.141
4.112
4.084
4.055
4.027
3.998
3.970
3.970
3.941
3.912
3.884
3.855
3.827
3.798
3.770
3.741
3.713
3.684
3.656
3.627
3.599
3.570
3.527
3.485
3.442
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19-Aug-00
20-Aug-00
21-Aug-00
22-Aug-00
23-Aug-00
24-Aug-00
25-Aug-00
26-Aug-00
27-Aug-00
28-Aug-00
29-Aug-00
30-Aug-00
31-Aug-00
01-Sep-00
02-Sep-00
03-Sep-00
04-Sep-00
05-Sep-00
06-Sep-00
07-Sep-00
08-Sep-00
09-Sep-00
10-Sep-00
11-Sep-00
12-Sep-00
13-Sep-00
14-Sep-00
15-Sep-00
16-Sep-00
17-Sep-00
18-Sep-00
19-Sep-00
20-Sep-00
21-Sep-00
22-Sep-00
23-Sep-00
24-Sep-00
25-Sep-00
26-Sep-00
27-Sep-00
28-Sep-00
29-Sep-00
30-Sep-00
01-Oct-00
02-Oct-00
03-Oct-00
04-Oct-00
05-Oct-00

0.20
0.00
0.00
6.00
14.20
0.20
0.00
2.60
0.40
0.00
0.00
0.00
0.00
0.00
6.40
0.80
0.00
0.00
0.00
0.00
0.00
0.00
13.40
0.20
0.80
0.00
25.20
0.00
0.00
0.00
0.00
0.00
4.20
1.20
1.20
14.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4.20
1.40

3.399
3.356
3.313
3.270
3.228
3.185
3.142
3.099
3.056
3.013
2.971
2.928
2.885
2.885
2.842
2.799
2.757
2.714
2.671
2.628
2.585
2.542
2.500
2.457
2.414
2.371
2.328
2.285
2.249
2.213
2.177
2.141
2.105
2.069
2.033
1.997
1.961
1.925
1.889
1.853
1.817
1.781
1.745
1.709
1.672
1.636
1.600
1.564

xlix



06-Oct-00
07-Oct-00
08-Oct-00
09-Oct-00
10-Oct-00
11-Oct-00
12-Oct-00
13-Oct-00
14-Oct-00
15-Oct-00
16-Oct-00
17-Oct-00
18-Oct-00
19-Oct-00
20-Oct-00
21-Oct-00
22-0Oct-00
23-Oct-00
24-Oct-00
25-0ct-00
26-Oct-00
27-Oct-00
28-0Oct-00
29-Oct-00
30-Oct-00
31-Oct-00

4.60
5.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.80
0.00
0.00
2.00
0.00
0.00
0.00
0.00
0.20
0.20
0.00
0.00
0.60
0.00
0.00
0.00
0.00

1.528
1.492
1.456
1.420
1.384
1.348
1.312
1.276
1.240
1.204
1.182
1.160
1.138
1.116
1.094
1.072
1.050
1.028
1.006
0.984
0.962
0.940
0.918
0.896
0.874
0.852



APPENDIX V Curve Number Error Model Monte Carlo

Sub Output_Processor()
' Macrol Macro
' Macro recorded 6/25/2003 by Harry Manson

1

"The GIS export will contain duplicate shape objects because during the buffer process,
some regions with varying

'Soil types will inevitably overlap. As a result it is neccesary to reduce the records such that
there is one

'for each shape but that each possible soil and landuse is documented for each record rather
that haveing a series

'of Records for each possible outcome. Further Scripts will examine the stochastic nature of
which region will

'posses which soil type. (Manson, June 2003)

Dim rgCurrent As Range

Dim dblfirstvalue As Double

Dim intArea As Integer, intTrials As Integer

Dim strArea As String, strRange As String, strSoil As String, strtLanduse As String
Dim rngArea As Range, rngMonte As Range

Dim i As Integer, j As Integer, k As Integer, | As Integer, m As Integer, n As Integer

Set rngCurrent = Cells(1, 3)

Do While mgCurrent.Offset(0, -1) <>""

If rngCurrent.Cells.Offset(1, 0).Value <> rngCurrent.Cells.Value Then
mgCurrent.Cells.Offset(0, 1).Value = rngCurrent.Cells.Offset(0, -2).Value
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Elself mgCurrent.Value = rmgCurrent.Cells.Offset(1, 0).Value And rngCurrent.Value <>
rngCurrent.Cells.Offset(2, 0) Then
rmgCurrent.Cells.Offset(0, 1).Value = rngCurrent.Cells.Offset(0, -2).Value
mgCurrent.Cells.Offset(0, 2).Value = rngCurrent.Cells.Offset(1, -2).Value
Set rngCurrent = rngCurrent.Cells.Offset(2, 0)

Elself mgCurrent.Cells.Value = rngCurrent.Cells.Offset(1, 0).Value And

rngCurrent.Value = mgCurrent.Cells.Offset(2, 0) And _
mgCurrent.Cells.Value <> rngCurrent.Cells.Offset(3, 0).Value Then

li



rmgCurrent.Cells.Offset(0, 1).Value = rngCurrent.Cells.Offset(0, -2). Value
rngCurrent.Cells.Offset(0, 2).Value = rngCurrent.Cells.Offset(1, -2).Value
rngCurrent.Cells.Offset(0, 3).Value = rngCurrent.Cells.Offset(2, -2).Value
Set rngCurrent = rngCurrent.Cells.Offset(3, 0)

Elself rgCurrent.Cells. Value = rngCurrent.Cells.Offset(3, 0).Value Then
rngCurrent.Cells.Offset(0, 1).Value = rngCurrent.Cells.Offset(0, -2).Value
rgCurrent.Cells.Offset(0, 2).Value = rngCurrent.Cells.Offset(1, -2).Value
rngCurrent.Cells.Offset(0, 3).Value = rngCurrent.Cells.Offset(2, -2).Value
rngCurrent.Cells.Offset(0, 4). Value = rngCurrent.Cells.Offset(2, -2).Value
Set rngCurrent = rngCurrent.Cells.Offset(4, 0)

End If

Loop
' This Section removes the unecessary Records

dblfirstvalue = Range("C2").Value
ActiveCell = Cells(2, 3).Select

Do While ActiveCell.Offset(0, -1) <> ""
If IsEmpty(ActiveCell.Offset(0, 1)) Then
ActiveCell. EntireRow.Delete
Else
ActiveCell.Offset(1, 0).Select
End If
Loop

Range("C2").Value = dblfirstvalue ' This is neccesary for some reason otherwise a value of

"TRUE" is returned as
' Apposed to the Area

' This Section Sums the total area in Hectares and fills a column with proportions for each

shape record

i=3 :

J = Range("C2").End(xIDown).Row ,
strArea="("&"C"&i&""&"C"&j&")"
intArea = Evaluate("SUM" & strArea)

Set rmgTest = Cells(1, 2)

rngTest.Cells.Value = intTest

Range("H1").Value = "Area Proportion"
Set rngCurrent = Cells(2, "H")
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Do While rmgCurrent.Cells.Offset(0, -4) <> ""
rngCurrent.Cells.Value = (rngCurrent.Cells.Offset(0, -5).Value) / (intArea)
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Loop

End Sub

'This Section will birandomize values based on the lookup table random functions and will
incorporate

'A randomized selection of the lookup table based on the 1 to 4 possible soil types occuring
in each shape

Sub MonteCarlo()

Dim rngCurrent As Range

Dim dblfirstvalue As Double, dbICN As Double

Dim intArea As Integer, intTrials As Integer

Dim strArea As String, strRange As String, strSoil As String, strLanduse As String, strCN
As String

Dim rngArea As Range, rngMonte As Range

Dim i As Integer, j As Integer, k As Integer, | As Integer, m As Integer, n As Integer

Range("I1").Value = "CN Range"

Set rngMonte = Worksheets("Stochastic Modeler").Cells(1, 1)

strCN = "(12:1672)"

intTrials = Application.InputBox(Prompt:="Number of Trails", Type:=1)
n = Range("12").End(xIDown).Row

StI'CN — "(" & "I" & "2" & ":" & "I" & n & ")"

Fori=1 To intTrials

Forj=2To 672
Set rngCurrent = Cells(j, 9)

If rngCurrent.Cells.Offset(0, -5) < "" And rngCurrent.Cells.Offset(0, -4) = "" Then
strSoil = rngCurrent.Cells.Offset(0, -5).Value
If strSoil = "A" Then

k=14
Elself strSoil = "B" Then
k=15

Elself strSoil ="C" Then
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k=16

Elself strSoil = "D" Then
k=17

End If

strL.anduse = rngCurrent.Cells.Offset(0, -7).Value
If strLanduse = "Agriculture/Rural” Then
1=5
Elself strLanduse = "Meadow" Then
1=6
Elself strLanduse = "Forest" Then
1=7
Elself strLanduse = "Federal Airport Lands" Then
1=8
Elself strLanduse = "Urban" Then
1=9
Elself strLanduse = "Urban Open Space" Then
1=10
Elself strLanduse = "Wetlands" Then
1=11
End If
strRange = Cells(l, k).Value

Elself rngCurrent.Cells.Offset(0, -4) <> "" And rngCurrent.Cells.Offset(0, -3) =""
Then

m = Evaluate("RANDBETWEEN(-5.-4)")

strSoil = rngCurrent.Cells.Offset(0, m).Value
If strSoil = "A" Then
k=14
Elself strSoil = "B" Then
k=15
Elself strSoil = "C" Then
k=16
Elself strSoil = "D" Then
k=17
End If

strLanduse = rngCurrent.Cells.Offset(0, -7).Value
If strL.anduse = "Agriculture/Rural” Then

1=5

Elself strL.anduse = "Meadow" Then
1=6

Elself strLanduse = "Forest" Then
1=7

Elself strLanduse = "Federal Airport Lands" Then
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1=8

Elself strLanduse = "Urban" Then
1=9

Elself strLanduse = "Urban Open Space" Then
1=10

Elself strLanduse = "Wetlands" Then
1=11

End If

strRange = Cells(l, k).Value

Elself rngCurrent.Cells.Offset(0, -5) <> "" And rngCurrent.Cells.Offset(0, -2) <> ""
Then
m = Evaluate("RANDBETWEEN(-5,-2)")

strSoil = mgCurrent.Cells.Offset(0, m).Value
If strSoil = "A" Then
k=14
Elself strSoil = "B" Then
k=15
Elself strSoil = "C" Then
k=16
Elself strSoil = "D" Then
k=17
End If

strLanduse = rngCurrent.Cells.Offset(0, -7).Value
If strLanduse = "Agriculture/Rural”" Then
1=5
Elself strLanduse = "Meadow" Then
1=6
Elself strLanduse = "Forest" Then
1=7
Elself strL.anduse = "Federal Airport Lands" Then
1=8
Elself strLanduse = "Urban" Then
1=9
Elself strLanduse = "Urban Open Space" Then
1=10
Elself strLanduse = "Wetlands" Then
1=11
End If
strRange = Cells(l, k).Value

End If



rmgCurrent.Cells.Value = (Evaluate("RANDBETWEEN" & strRange)) *
(rngCurrent.Cells.Offset(0, -1).Value)
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Next j

dblCN = Evaluate("SUM" & strCN)
rngMonte.Cells.Value = dbICN
Set rngMonte = rngMonte.Cells.Offset(1, 0)

Next i

End Sub
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APPENDIX V 1

Mean Displacement of Street Intersections

Point Num L i i L

1 641948 4869816  641937.56

2 641885 4869818  641881.95

3 641600 4869725 641501.47

4 641464 4869781  641452.46

5 641583 4869807 641561.72

6 841912 4870022  641900.38

7 641908 4870114  641881.34

8 641883 4870197  641865.02

9 641860 4870375 641831.02
10 641816 4870577  641792.03
" 641674 4870530 641650.12
12 641495 4870483  641498.25
13 641312 4870438 641289.7
14 641188 4870379 641162.76
15 640870 4870279  640861.28
16 640845 4870361  640826.82
17 640717 4870580  640700.79
18 640683 4870683  640658.17
19 840619 4870551  640593.79
20 640629 4870484  640618.27
21 640659 4870441  640652.73
22 640707 4870345  640694.47
23 640730 4870284 840717.11
24 640749 4870240 640734.34
25 640606 4870196  640603.31
26 640587 4870270  640582.91
27 640038 4870004  640030.27
28 639914 4870033  639884.28
29 639804 4870637 639775.93
30 639864 4870663 ©639850.28

d Northing GIS Easting GIS Northing Diff Easting Diff Northing RMSE

4869599.93
4869581.56
4869484
4869550.75
4869586.57
4869799.19
4869891.22
4869973.74
4870156.44
4870358.64
4870310.13
4870257.99
4870191.35
4870149.73
4870046.27
4870137.85
4870357.73
4870454.75
4870323.28
4870261.62
4870188.63
4870124.71
4870055.34
4870002.3
4869958.32
4870015.45
4869769.72
4869806.45
4870413.5
4870435.71

10.44
3.05
8.53

11.54

21.28

11.62

26.66

17.98

28.98

23.97

23.88

-3.25
223

25.24
8.72

18.18

16.21

2483

25.21

10.73
6.27

12.53

12.89

14.66
2.69
4.09
773

29.72

28.07

13.72

216.07
236.44

241
230.25
220.43
222.81
222.78
223.26
218.56
218.36
219.87
225.01
246.65
229.27
232.73
223.15
222.27
228.25
227.72

216.3220712
236.4596712
241.150909
230.5390078
221.4547884
2231127977
2243695256
223.9828297
220.4729326
219.671688
221.1629971
225.03347
247.6560367
230.6551333
232.8933045
223.8893363
222.8603083
229.596584
229.1112012
222.6387147
2524478754
220.6460627
229.0230288
238.1516441
237.8952219
254 5828561
2344074899
228.4910959
2252557988
227.7037165

Mean 229.7146
Standard 9.604919
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APPENDIX VII VBA Script for OAT Sensitivity

Sub Relative Error()
Static sngCalibresult As Single

Dim rmgStart As Range, rmgRestore As Range

Dim rngCurrent As Range, rngMbcell

Dim sngPercent As Single, intDiv As Integer

Dim i As Integer, j As Integer, sngResults As Single, intCount As Integer
Dim sngX As Single

sngCalibresult = Worksheets("Totals for Validation Year").Range("J17").Value
Set rngStart = Worksheets("OAT Sensitivity").Range("B3")
sngDiv =100

Fori=3To 10 ' Column numbers corresponding to each parameter column
Set rngStart = Worksheets("OAT Sensitivity").Cells(3, 1)
If rngStart = Worksheets("OAT Sensitivity").Cells(3, 2) Then 'OK Precip
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 2)
intCount = Worksheets("Mass Balance").Range("BE4").End(xIDown).Row
Do While rngCurrent.Offset(0, -1).Value <> ""
sngPercent = rngCurrent.Offset(0, -1).Value / sngDiv

For j =4 To intCount
Set rngMbcell = Worksheets("Mass Balance").Cells(j, "BF")
sngX = rngMbcell.Cells.Offset(0, -1).Value * sngPercent
rngMbcell. Value = rmgMbecell. Cells.Offset(0, -1).Value + sngX
Next j

sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent. Value = sngResults - sngCalibresult
Set rngCurrent = rgCurrent.Cells.Offset(1, 0)
Loop
For j =4 To intCount
Set rngMbcell = Worksheets("Mass Balance").Cells(j, "BF")

rgMbcell.Value = rmgMbcell.Cells.Offset(0, -1)
Next j

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 3) Then 'OK Evap
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 3)
intCount = Worksheets("Mass Balance").Range("BE4").End(xIDown).Row
Do While rmgCurrent.Offset(0, -2).Value <> ""
sngPercent = rngCurrent.Offset(0, -2).Value / sngDiv
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For j =4 To intCount
Set rngMbcell = Worksheets("Mass Balance").Celis(j, "BH")
sngX = mgMbcell.Cells.Offset(0, -1).Value * sngPercent
rngMbcell. Value = rngMbcell.Cells.Offset(0, -1). Value + sngX

Next j

sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Loop
For j =4 To intCount
Set rngMbcell = Worksheets("Mass Balance").Cells(j, "BH")
rngMbcell.Value = rngMbcell.Cells.Offset(0, -1)

Next j

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 4) Then 'OK A
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 4)
Do While mgCurrent.Offset(0, -3).Value <> ""
sngPercent = rngCurrent.Offset(0, -3).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(8, "AN")
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbcell. Value = rngMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)
Loop
rngMbcell.Value = rngMbecell. Cells.Offset(0, -3)

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 5) Then 'OK A_Imp
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 5)

Do While rngCurrent.Offset(0, -4).Value <> ""
sngPercent = rngCurrent.Offset(0, -4).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(9, "AN")
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbcell.Value = rngMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Loop
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rngMbcell. Value = mgMbcell. Cells.Offset(0, -3)

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 6) Then 'OK A_Perv
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 6)
Do While rgCurrent.Offset(0, -5).Value <> ""
sngPercent = rngCurrent.Offset(0, -5).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(10, "AN")
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rmgMbcell.Value = ragMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresuit
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)
Loop
rmgMbcell. Value = rngMbcell. Cells.Offset(0, -3)

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 7) Then 'OK A_DCImp
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 7)
Do While rngCurrent.Offset(0, -6).Value <> ""
sngPercent = rngCurrent.Offset(0, -6).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(11, "AN")
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbcell. Value = rngMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)
Loop
rngMbcell.Value = "=0.75 *(AN9)"

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 8) Then 'OK A_IDCImp
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 8)

Do While rngCurrent.Offset(0, -7).Value <> ""
sngPercent = rngCurrent.Offset(0, -7).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(12, "AN")
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbcell. Value = rngMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Loop

rngMbcell.Value = "=25*AN9"

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 9) Then 'OK FImpADC
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 9)
Do While mgCurrent.Offset(0, -8).Value < ""
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sngPercent = rngCurrent.Offset(0, -8).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(14, "AN")
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbcell.Value = mgMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)
Loop
rmgMbcell.Value = "=AN11/AN8"

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 10) Then 'OK FImpAIDC
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 10)

Do While rmgCurrent.Offset(0, -9).Value <> ""
sngPercent = rngCurrent.Offset(0, -9).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(15, "AN")
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbecell.Value = rngMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Loop

rngMbcell.Value = "=AN12/AN8"

Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 11) Then 'OK CN
Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 11)
Do While mgCurrent.Offset(0, -10).Value <> ""
sngPercent = rngCurrent.Offset(0, -10).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(16, "AN")
If sngPercent = -1 Then
sngPercent = -0.0009999
Else
sngX = rngMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbcell. Value = rngMbcell. Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
End If
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)

Loop
rngMbcell.Value = "=AK16"
Elself rngStart = Worksheets("OAT Sensitivity").Cells(3, 12) Then 'OK IAPerv_Inf

Set rngCurrent = Worksheets("OAT Sensitivity").Cells(3, 12)
Do While mgCurrent.Offset(0, -11).Value <> ""
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sngPercent = rngCurrent.Offset(0, -11).Value / sngDiv
Set rngMbcell = Worksheets("Mass Balance").Cells(18, "AN")
sngX = mgMbcell.Cells.Offset(0, -3).Value * sngPercent
rngMbcell.Value = mgMbcell.Cells.Offset(0, -3).Value + sngX
sngResults = Worksheets("Totals for Validation Year").Range("J17").Value
rngCurrent.Value = sngResults - sngCalibresult
Set rngCurrent = rngCurrent.Cells.Offset(1, 0)
Loop
rngMbcell.Value = "AK18"
End If

Next i

End Sub
Sub Testcomp()
Dim rng As Range

Set rng = Cells(3, 11)
rng.Value = Worksheets("Mass Balance").Range("BE4").End(xIDown).Row

End Sub
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