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An analytical-experimental investigation of machine tool spindle decay and its effects of the system’s stability lobe diagram (SLD) is
presented. A dynamic stiffness matrix (DSM)model for the vibration analysis of the OKADAVM500machine spindle is developed
and is validated against Finite Element Analysis (FEA).Themodel is then refined to incorporate flexibility of the system’s bearings,
originallymodeled as simply supported boundary conditions, where the bearings aremodeled as linear spring elements.The system
fundamental frequency obtained from themodal analysis carried on an experimental setup is then used to calibrate theDSMmodel
by tuning the springs’ constants. The resulting natural frequency is also used to determine the 2D stability lobes diagram (SLD)
for said spindle. Exploiting the presented approach and calibrated DSM model it is shown that a hypothetical 10% change in the
natural frequency would result in a significant shift in the SLD of the spindle system, which should be taken into consideration to
ensure chatter-free machining over the spindle’s life cycle.

1. Introduction

A great number of airframe structural components are
manufactured by high speed milling, where problems can
arise related to the instability in the process, dimensional
errors in the work pieces, and even breakage of the tools. The
instability of the process, a vibration phenomenon known as
chatter, appears in the high removal rate roughing, as well
as in the finishing of low rigidity airframe sections. Machine
chatter has been researched since the early 20th century
[1]. It has been well established that chatter is dependent
on the dynamic behavior of machine tool structure and
is directly linked to the machine vibrational characteristics
[2], which is often expressed in terms of the frequency
response function (FRF) of the system at the tool point. As
the machine vibrational characteristics change, the machine
stability behavior changes.

In the mid-1990s, Altintas and Budak [3] presented an
analytical form of the so-called two-dimensional (2D) sta-
bility lobe theory for milling. The two-dimensional stability
lobe theory deals with the stability of solutions for dynamical
cutting systems, which usually stands for the spindle speed
and axial depth of cut. As a function of these two cutting

parameters, the border between a stable cut (i.e., chatter-
free) and an unstable one (i.e., with chatter) can be visualized
in a chart known as stability lobes diagram (SLD). A stable
cut is defined as cut where the tool tooth displacement
decreases from one pass to the next dampening the effect
of the initial deflection. If the displacement increases or
stays the same causing a wave pattern on the part, the cut
is unstable. Numerous effective experimental and analytical
techniques have been developed to establish SLD and to
predict stable processes in recent decades (see, e.g., Altintas
andWeck [4]). Amore recent review ofmethods of obtaining
stability lobe diagram in high speed milling operation is
presented by Palpandian et al. [5]. 3D stability lobes were also
later established considering radial depth of cut as another
parameter [6]. Both of these stability lobe theories can help to
select the appropriate cutting parameters of the spindle speed
and axial depth to avoid chatter in machining processes.
Attempts have also been made to integrate the dynamical
behavior variation of the part with respect to the tool position
in 3D lobes construction, with application to thin-walled
structure milling, in order to determine optimal cutting
conditions during the machining process [7].
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The stability lobes calculation requires the dynamic
parameters of the system, namely, stiffness, natural frequency,
and damping ratio of the workpiece for each natural mode.
Thevenot et al. [7] used FEM-based numerical models to
determine the system’s stiffness terms, but the damping ratio
cannot be easily calculated numerically, and therefore it
is usually evaluated through experimental measurements.
Ertürk et al. [8] modeled the machine tool spindle with a
set of springs and dampers to simulate bearing behavior and
to predict tool tip FRF. Cao and Altintas [9] investigated the
effect of preload applied to a bearing on the overall system
natural frequency and showed that the greater the preload,
the higher the system’s natural frequency.

Many researchers have studied the stability through
machine behavior, assuming a rigid work piece. The tool tip
transfer function is then elaborated throughmodels or exper-
imental approaches. In addition, most of the previousmodels
reported in the open literature have been developed assuming
that spindle-tool set dynamics do not change over the full
spindle speed range. However, this assumption needs to be
reconsidered in high speed machining, where gyroscopic
moments and centrifugal forces on both bearings and spindle
shaft induce spindle speed dependent dynamics changes.
Furthermore, the change of spindle system dynamics has not
been accounted for in most existing stability studies. Few
studies were also reported considering the flexibility of work
piece [10].

In summary, the methods of obtaining stability lobe dia-
gram (SLD) can be divided in three main categories, namely,
experimental, semianalytical, and analytical approaches.

The aim of experimental methods is to obtain SLD
by conducting a series of experiments on work piece by
machining it using a milling machine tool; while machining
at a certain depth of cut along the tool path, forced vibrations
turn into self-excited vibrations, causing the milling process
to become unstable, that is, chatter onset. This procedure is
used in various experiments and is repeated for various depth
of cut and spindle speed combinations.

In semianalytical methods, most of the parameters
required to obtain stability lobes are calculated analytically.
The modal parameters of spindle/tool-holder/tool systems,
however, are obtained experimentally (e.g., using tap test),
from the resulting FRF of the system.The system’s parameters
can then be used to calculate its SLD.

The analytical approaches (see, e.g., [3]) aim to obtain
the transfer functions of structure, which is required in the
stability model, and to eliminate the need for series of costly
experimental impact testing at various points on a work
piece.The dynamic characteristics of the entire (spindle/tool-
holder/tool) system, contributing in the transfer functions of
structure, have been shown to depend on a large number
of factors, including holder characteristics, spindle shaft
geometry and drawbar force, and the stiffness and damping
provided by the bearings. Thus the analytical approaches,
complemented with numerical methods such as FEM, elimi-
nate the need for experimentation and save the time and cost
involved in determining the stability lobes.

The aim of this paper is to present a semianalytical
stability technique, developed to incorporate the spindle’s

dynamic behavior variations in the stability lobes diagram
(SLD). The change in the spindle’s dynamic behavior, also
referred to as aging, is generally caused by system’s bearings
wear, translated through a reduction in the system’s natural
frequencies. Exploiting and adapting the dynamic stiffness
matrix (DSM) method [11], the model of the spindle system
is generated, where the boundary conditions (BC) at the
bearings are originally enforced using simple supports. The
spindle DSM model is also validated against conventional
FEM-based simulations generated in the educational version
of commercial software ANSYS V13. Once the correctness of
the DSM method has been established, the simple supports
BC are replaced with linear spring elements to incorporate
the inherent flexibility of the bearings. The experimental
(working) fundamental frequency of the spindle system,
determined from FRF data obtained from tap testing, is
subsequently used to adjust the spring stiffness constants,
leading to a calibrated dynamic stiffness matrix (CDSM) [12]
model of the system. Using the system’s CDSM model and
the experimental FRF data, the SLD can then be determined.
Exploiting the proposed semianalytical method, it will then
be possible to evaluate updated SLD and optimized machin-
ing parameters, should one know the variation of system’s
stiffness (i.e., changes in the fundamental frequency) over the
spindle life cycle.

The application of the proposed model is demonstrated
through an OKADA VM500 machine spindle, where the
shift in the SLD resulting from a simulated 10% reduction
of the system’s fundamental frequency and its effects on the
machining parameters are investigated. The spindle, initially
examined while mounted on the original machine tool, was
then installed on a bench top fixture to carry out further
experimentations.

2. Theory and Governing Equations

In what follows, the differential equations governing the
bending-bending (BB) vibrations of a spinning beam seg-
ment are briefly discussed. Following mainly the theory
presented by Banerjee and Su [11], the effect of torsional
stiffness is assumed to be large enough so that the torsional
vibrations can be ignored (see, e.g., [12]). Figure 1 shows the
beam in a right-handed rectangular Cartesian coordinates
system. The beam length is 𝐿, the mass per unit length is
𝑚 = 𝜌𝐴, the polar mass moment of inertia per unit length is
𝐼
𝛼
, the principal axes bending rigidities are𝐸𝐼 for both planes,

and the torsional rigidity is 𝐺𝐽.
The differential equations governing the bending-

bending (BB) vibrations of a spinning beam segment can be
written as [11, 12]

𝐸𝐼
𝑦𝑦
𝑢
󸀠󸀠 󸀠󸀠

− 𝑚Ω
2

𝑢 + 𝑚𝑢̈ − 2𝑚ΩV̇ = 0, (1)

−2𝑚Ω𝑢̇ − 𝐸𝐼
𝑥𝑥
V󸀠󸀠 󸀠󸀠 − 𝑚V̈ + 𝑚Ω2V = 0, (2)

where 𝑢 and V are displacement of a point, 𝑃, at an arbitrary
cross section at 𝑧, in the𝑋 and𝑌 directions.The cross section
is allowed to rotate or twist about the 𝑂𝑍 axis. The resulting
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Figure 1: Degrees of freedom of a spinning beam segment.

loads are then found to be in the following forms, written for
shear forces as

𝑆
𝑥
= 𝐸𝐼
𝑥𝑥
𝑢
󸀠󸀠󸀠

,

𝑆
𝑦
= 𝐸𝐼
𝑦𝑦
V󸀠󸀠󸀠

(3)

and for Bending Moments as

𝑀
𝑥
= 𝐸𝐼
𝑥𝑥
V󸀠󸀠,

𝑀
𝑦
= −𝐸𝐼

𝑦𝑦
𝑢
󸀠󸀠

.

(4)

Assuming simple harmonic motion,

𝑢 (𝑧, 𝑡) = 𝑈 (𝑧) cos𝜔𝑡,

V (𝑧, 𝑡) = 𝑉 (𝑧) sin𝜔𝑡,
(5)

where 𝜔 is the circular frequency of oscillation and 𝑈 and 𝑉,
respectively, are the amplitudes of 𝑢 and V. Substituting (5)
into (1) and (2), they can be rewritten as

(𝐸𝐼
𝑦𝑦
𝑈
󸀠󸀠 󸀠󸀠

− 𝑚(Ω
2

+ 𝜔
2

)𝑈) + 2𝑚Ω𝜔𝑉 = 0, (6)

(𝐸𝐼
𝑥𝑥
𝑉
󸀠󸀠 󸀠󸀠

− 𝑚(Ω
2

+ 𝜔
2

)𝑉) + 2𝑚Ω𝜔𝑈 = 0. (7)

Now we introduce 𝜉 = 𝑧/𝐿 and 𝐷 = 𝑑/𝑑𝜉, which are
nondimensional length and the differential operator. We
substitute them back into (6) and (7):

[𝐷
4

−

𝑚(Ω
2

+ 𝜔
2

) 𝐿
4

𝐸𝐼
𝑦𝑦

]𝑈 +
2𝑚Ω𝜔𝐿

4

𝐸𝐼
𝑦𝑦

𝑉 = 0, (8)

[𝐷
4

−

𝑚(Ω
2

+ 𝜔
2

) 𝐿
4

𝐸𝐼
𝑥𝑥

]𝑉 +
2𝑚Ω𝜔𝐿

4

𝐸𝐼
𝑥𝑥

𝑈 = 0. (9)

Combining the above equations into one 8th order, the
resulting differential equation in terms of𝑊, satisfied by both
𝑈 and 𝑉, is then written as

[𝐷
8

− (𝜆
2

𝑥
+ 𝜆
2

𝑦
) (1 + 𝜂

2

)𝐷
4

+ 𝜆
2

𝑥
𝜆
2

𝑦
(1 − 𝜂

2

)
2

]𝑊

= 0,

(10)

where

𝜆
2

𝑥
=
𝑚𝜔
2

𝐿
4

𝐸𝐼
𝑥𝑥

,

𝜆
2

𝑦
=
𝑚𝜔
2

𝐿
4

𝐸𝐼
𝑦𝑦

,

𝜂
2

=
Ω
2

𝜔2
.

(11)

The solution of the differential equation is sought in the form

𝑊 = 𝑒
𝑟𝜉

. (12)

Substituting (12) into (10) leads to

𝑟
8

− (𝜆
2

𝑥
+ 𝜆
2

𝑦
) (1 + 𝜂

2

) 𝑟
4

+ 𝜆
2

𝑥
𝜆
2

𝑦
(1 − 𝜂

2

)
2

, (13)

where

𝑟
1,3
= ±√𝛼,

𝑟
2,4
= ±√𝛽,

𝑟
5,7
= ±𝑖√𝛼,

𝑟
6,8
= ±𝑖√𝛽,

(14)

𝛼
2

=
1

2
{(𝜆
2

𝑥
+ 𝜆
2

𝑦
) (1 + 𝜂

2

)

+ √(𝜆2
𝑥
− 𝜆2
𝑦
)
2

(1 + 𝜂2)
2

+ 16𝜆2
𝑥
𝜆2
𝑦
𝜂2}

(15)

𝛽
2

=
1

2
{(𝜆
2

𝑥
+ 𝜆
2

𝑦
) (1 + 𝜂

2

)

− √(𝜆2
𝑥
− 𝜆2
𝑦
)
2

(1 + 𝜂2)
2

+ 16𝜆2
𝑥
𝜆2
𝑦
𝜂2} .

(16)

Based on the roots presented in (14), solutions for 𝑈 and 𝑉
can then be written as

𝑈 = (𝐴
1
sin√𝛼𝜉 + 𝐴

2
cos√𝛼𝜉 + 𝐴

3
sinh√𝛼𝜉

+ 𝐴
4
cosh√𝛼𝜉 + 𝐴

5
sin√𝛽𝜉 + 𝐴

6
cos√𝛽𝜉

+ 𝐴
7
sinh√𝛽𝜉 + 𝐴

8
cosh√𝛽𝜉)

𝑉 = (𝐵
1
sin√𝛼𝜉 + 𝐵

2
cos√𝛼𝜉 + 𝐵

3
sinh√𝛼𝜉

+ 𝐵
4
cosh√𝛼𝜉 + 𝐵

5
sin√𝛽𝜉 + 𝐵

6
cos√𝛽𝜉

+ 𝐵
7
sinh√𝛽𝜉 + 𝐵

8
cosh√𝛽𝜉) .

(17)

Based on Euler-Bernoulli beam bending theory, the corre-
sponding bending rotation, that is, slope, about 𝑋 and 𝑌
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axes,Θ
𝑥
andΘ

𝑦
, respectively, is given by (see [12] for further

details):

Θ
𝑥
=
𝑑𝑉

𝑑𝑧
= −

1

𝐿

𝑑𝑉

𝑑𝜉
,

Θ
𝑦
=
𝑑𝑈

𝑑𝑧
=
1

𝐿

𝑑𝑈

𝑑𝜉
.

(18)

By doing similar substitutions in load equations (3) and (4),
one finds

𝑆
𝑥
= (

𝐸𝐼
𝑦𝑦

𝐿3
)(

𝑑
3

𝑈

𝑑𝜉
3
) ,

𝑆
𝑦
= (

𝐸𝐼
𝑥𝑥

𝐿3
)(

𝑑
3

𝑉

𝑑𝜉
3
) ,

𝑀
𝑥
= (

𝐸𝐼
𝑦𝑦

𝐿2
)(

𝑑
2

𝑈

𝑑𝜉
2
) ,

𝑀
𝑦
= (

𝐸𝐼
𝑥𝑥

𝐿2
)(

𝑑
2

𝑉

𝑑𝜉
2
) .

(19)

Substituting the boundary conditions into the governing
equations, enforced at 𝑧 = 0 (𝜉 = 0) and 𝑧 = 𝐿 (𝜉 = 1),
leads to

𝛿 = BR, (20)

where

𝛿 = [𝑈
1
𝑉
1
Θ
𝑥1

Θ
𝑦1

𝑈
2
𝑉
2
Θ
𝑥2

Θ
𝑦2
]
𝑇

,

R = [𝑅
1
𝑅
2
𝑅
3
𝑅
4
𝑅
5
𝑅
6
𝑅
7
𝑅
8
]
𝑇

.

(21)

Substituting similarly for the force equation one finds

F = AR, (22)

where

F = [𝑆
𝑥1

𝑆
𝑦1

𝑀
𝑥1

𝑀
𝑦1

𝑆
𝑥2

𝑆
𝑦2

𝑀
𝑥2

𝑀
𝑦2
]
𝑇

. (23)

Finally, the frequency-dependent, dynamic stiffness matrix
(DSM) of the spinning beam segment, K(𝜔), can be derived
by eliminating R, where the force amplitude is related to the
displacement vector by

F = K𝛿 (24)

and F = K(BR) = AR, where assuming KB = A finally leads
to

K (𝜔) = AB−1. (25)

The element matrices are then assembled to find the global
dynamic stiffness matrix, 𝐾(𝜔), and the system boundary
conditions are applied. Setting force vector 𝐹 = 0 (for free
vibrations) then leads to the following nonlinear eigenprob-
lem:

K (𝜔) 𝛿 = 0, (26)

where the solution then consists of searching for system
natural frequencies, 𝜔, satisfying

|K (𝜔)| = 0. (27)

3. Numerical DSM Results

TheDSM formulationwas used tomodel anOKADAVM500
vertical milling machine spindle [13] (see Figure 2 for the
schematic structure of the spindle). The spindle has a total of
10 bearings, with four sets of angular contact bearings and two
other ball bearings, and two belt assemblies, which provide
the necessary driving force from the spindle motor. The
spindle dimensions and geometric/sectional data, modeled
using CATIA V5, were taken from [13]. For the sake of
modeling convenience, the tapered and curved areas of the
spindle and tool were modeled as uniform sections. The
spindle along with the tool-holder and tool was modeled
as a single piecewise uniform, stepped system, as shown in
Figure 3, where the connection between the tool and heat
shrink tool-holder is assumed to be rigid, as instructed by
the tool-holder manufacturer. In the case of system studied
here, the grip force is 5000 to 12000 lbf, depending on the
extent of the interference fit, that is, 0.001–0.002 in. The
rigid connection assumption is justified, as the cutting forces
required for aluminum are normally much less than the
nominal grip forces, that is, 2000N or 450 lbf of maximum
reference force, as reported in [2]. Also the tool-holder is
made of hardened steel and therefore the deflection of this
connection is minimal.

The spindle was modeled using the DSM method pre-
sented in the previous section, where only one element per
uniform segment (i.e., a total of 26 elements) was used
and simply supported boundary conditions were applied at
the bearings locations. The material properties of tool steel,
elastic modulus of 𝐸 = 210GPa and mass density of 𝜌 =

7850Kg/m3, were used. Modal analysis was carried out and
the fundamental flexural natural frequency of the spindle
systemwas found to be 2303Hz. To validate the spindle DSM
model, frequency data were compared with those obtained
from a 154-element FEM model created in ANSYS V13
software [14].TheBEAM188 element used is one-dimensional
(1D) line element and has 2 nodes and 6 degrees of freedom
(3 translational and 3 rotational). Comparing the DSM and
FEM frequency results shows minor differences, with less
than 3% error, confirming the correctness and accuracy of
the DSM model, making it attractive for practical modeling
applications.

4. Experimental Modal Analysis

The experimental modal analysis results, obtained using
tap testing, were used to determine the system’s nominal
fundamental frequency. Experimental Apparatus (Figure 4)
includes the following components:

(1) 352A21 (Light, 0.8 g) accelerometer,
(2) 086C04 (5000 N Hammer) Hammer,
(3) SIM3 Module Photon+ Data Acquisition,
(4) MetalMax Software (TXF).

The accelerometer was attached to the edge of the tool-holder
using wax. The spindle was struck 10 times and the average
FRF graphs were generated and the experimentally evaluated
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Figure 2: Schematic diagram of an OKADA VM500 spindle [13].

Bearing location

Tool-holder

Tool

x y

z

Figure 3: Spindle model.

Figure 4: Experimental equipment.

frequency response function (FRF) data were measured for
the spindle system while mounted on the machine (see Fig-
ures 5 and 6). As can be observed from FRF graphs, the most
predominant natural frequency measured experimentally is
found to be 1722Hz, corresponding to the lowest peak of the
imaginary part of the FRF graph.

5. Experimentally Calibrated CDSM Results

The system’s fundamental frequencies were found to bemuch
higher than that of the experimentallymeasured fundamental
natural frequency, that is, 2303Hz (from DSM) and 2367Hz
(from FEM) versus 1722 evaluated experimentally. The large
difference (34%) between numerical and experimental results
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Figure 5: Spindle experimental frequency response function (FRF)
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Figure 7: Spindle with bearings replaced with springs.
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Figure 8: System fundamental frequency versus bearing equivalent
spring constant for a low speed spindle (in log scale).

can be associated with the bearings flexibility. As mentioned
earlier in this paper, the spindle DSM and FEMmodels were
both initially equipped with simply supported (frictionless
pin) boundary conditions at the bearing locations, that is,
infinite lateral stiffness. A calibrated dynamic stiffness matrix
(CDSM) model of the system was created by implementing
spring boundary conditions (i.e., finite lateral stiffness) in
the spindle’s DSMmodel (Figure 7). The spring constant,𝐾

𝑆
,

was then varied to calibrate the model to the experimentally
evaluated fundamental frequency of the spindle system (see
Figure 8). As it is clear from Figure 8, as the spring stiff-
ness, 𝐾

𝑆
, is increased, the natural frequency asymptotically

approaches the natural frequency value for the spindle with
simply supported boundary conditions, that is, bearings with
zero flexibility, or infinite stiffness.
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To achieve the system’s experimental natural frequency
of 1722Hz, the required bearing stiffness was found to be
𝑘
𝑠
= 1.28×10

9N/m (see Figure 8). Furthermore, the spindle’s
critical speed was also evaluated using both uncalibrated
DSM and calibrated CDSM models and is found to be
138,464 RPM and 103,142 RPM, respectively (See Figure 9).
Both values, however, are well above the operational RPM of
the spindle; the suggested manufactures operational speed is
6000 RPM.

6. Stability Lobes

The stability lobes were generated using the experimental
FRF data obtained. The peak picking method was used
to determine the equivalent stiffness at the tool tip [2].
Consider again the initial FRF data, shown in Figures 5
and 6. In the imaginary graph (Figure 6), the frequencies
labeled at 𝐶 correspond to the minimum peaks of the FRF.
The corresponding frequency at this peak represents the
dominant natural frequency of the system,𝜔

𝑛
.The equivalent

damping ratio at each mode can be calculated by using the
two frequencies in the real part (𝜔

𝐴
and 𝜔

𝐵
):

Ž =
𝜔
𝐵
− 𝜔
𝐴

2𝜔
𝑛

. (28)

The peak value of FRF in the imaginary part (Figure 6) is used
to calculate the equivalent stiffness values at each mode:

𝐾exp =
−1

2Ž𝐷
. (29)

Using above 𝐾exp, one can then generate stability lobes
diagram (SLD) usingmethods described in [2] (see Figure 10,
the graphs in red color, where damping ratio of Ž = 0.029136
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Figure 10: Stability chart an OKADA VM500 spindle using 2
different frequencies.

and the equivalent stiffness value of𝐾exp = 3.2289𝐸+07N/m
have been used to generate the SLD).

Furthermore, exploiting the calibrated CDSMmethod, it
is possible to evaluate updated SLD and optimized machin-
ing parameters, should one know the variation of system’s
stiffness (i.e., changes in the fundamental frequency) over
the spindle life cycle. This reduction can correspond to a
combination of bearing degradation and loss of bearing
preload due to age and/or damage. For the spindle system
at hand, however, the authors were not able to find any
data publicly available on the time history and reduction
of the system’s fundamental frequency versus service time.
However, to demonstrate the application of the presented
CDSM and the process, let us consider a hypothetical 10%
reduction in the system’s fundamental frequency.

As presented in [2], the stability lobes are generated
based on a spindle structure modeled as a single-DOF
system, subjected to end force. However, the spindle models
investigated here consist of continuous DSM elements (or
large number of beam FEM elements) and the supporting
bearings represented by multiple linear spring elements.
Therefore, one needs to first convert the rotating system to
a spring-damper system, in order to evaluate the equivalent
stiffness of the entire updated system, 𝐾theo. In what follows,
the process of evaluating𝐾theo is briefly presented.

Exploiting the graph given in Figure 8 (the system’s natu-
ral frequency versus spring constant), the required bearing
stiffness, 𝐾

𝑠
, in the calibrated DSM model to achieve a

fundamental frequency of 1550Hz (i.e., 90% of the nominal
experimental frequency) is first evaluated (𝑘

𝑠
= 7.72 ×

10
8N/m). The updated calibrated dynamic stiffness matrix

of the system is then converted to a static stiffness matrix by
linearizing the nonlinear eigenvalue problem of the system,
as described by Hashemi (1998) [15]. Based on this method,
the static stiffness of the system can be evaluated at zero
frequency (i.e., no vibration: 𝜔 = 0), or in the neighborhood
of any given frequency [16].

Let us consider a very small natural frequency, 𝜔
𝐿
, in the

vicinity of zero (𝜔 ≈ 0). Adding a very small frequency
increment, Δ𝜔, to 𝜔

𝐿
, leads to

𝜔
𝑈
= 𝜔
𝐿
+ Δ𝜔 (30)

and an average frequency value, 𝜔, defined as

𝜔 =
(𝜔
𝑈
+ 𝜔
𝐿
)

2
. (31)

Linearizing the updated system’s nonlinear eigenproblem
(26), in the vicinity of 𝜔, leads to

[𝐾 (𝜔)] = [𝐾] − 𝜔
2

[𝑀] , (32)

where𝐾(𝜔) is the systemDSM and [𝐾] and [𝑀] are the static
stiffness and mass matrices, respectively. Subsequently, the
mass matrix of the system is written as

[𝑀] = −
𝑑 [𝐾 (𝜔)]

𝑑 (𝜔
2

)
(33)

and substituting (33) back into (32), the system static stiffness
matrix is obtained as

[𝐾] = [𝐾 (𝜔)] + 𝜔
2

[𝑀 (𝜔)] . (34)

Once the static stiffness matrix of the system, [𝐾], has
been evaluated, one can then apply any force to the node
representing the tool tip in the spindle model and calculate
the deflection, 𝑥, in the same direction as the applied force,
𝐹
𝑥
, using the following expression:

[𝑈] = [𝐾]
−1

[𝐹] . (35)

This deflection, 𝑥, is then used to calculate the theoretical tool
stiffness, as follows:

𝐾theo =
𝐹
𝑥

𝑥
. (36)

The updated system’s parameters are then used to develop the
revised stability lobes diagrams (SLD). The updated stability
lobes, together with original SLD, are shown in Figure 10
graphs in blue, where damping ratio of Ž = 0.029136 and the
equivalent stiffness value of𝐾theo = 2.90601𝐸 + 07N/m have
been used to generate the SLD. As it is clear from Figure 10,
a 10% reduction in the system’s fundamental frequency leads
to a significant shift in the stability lobes. If this shift is not
accounted for and themachining parameters are not updated,
a chatter-free cutting program can start yielding chatter as the
spindle ages and/or gets damaged. A typical 10% reduction
in the system’s natural frequency over the spindle’s lifetime
has been previously observed and reported in an earlier work
by the authors [17]. Furthermore, it is worth noting that an
FEMmodel (see, e.g., [14]) could be developed and calibrated
for the spindle modeling purposes and subsequently used to
produce the system’s FRF. However, the aim of the present
study was to introduce the dynamic stiffness matrix (DSM)
approach to assess the system’s dynamic behavior. The DSM
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method, formulated based on the continuous beam model
and exact within the limits of the theory, is validated against
FEM and used to ultimately evaluate 𝐾theo, representing the
system’s overall stiffness, treated as an equivalent single-
DOF system. It is to be noted that one could equally use
conventional FEM to achieve the same goal.

Finally, the reason for not using the FRF directly and
entirely is the extremely large amount of data points in
the FRF file. The goal of the present study was to use a
quick approach to generate stability lobes that would benefit
someone working as a machine operator in a manufacturing
facility, with limited computation capabilities, that is, the
CNCmachine programmers. The stability lobes generated in
this research, however, were confirmed against ones directly
generated from FRF graphs. Additionally, as also suggested
in [18], including the higher/additional modes obtained from
the FRF does not increase the accuracy of the stability lobe
chart significantly.

7. Conclusion

An experimentally calibrated dynamic stiffness matrix
(DSM) formulation was presented and used to model an
OKADA VM500 spindle. Unlike conventional FEM, the
modeling method commonly used in this field, the presented
element DSM is exact within the limits of the theory. As a
result, in comparison with FEM, the DSM model requires
much fewer elements to achieve the desired precision, that
is, one element per uniform segment. The system’s natural
frequency found experimentally was used to calibrate the
spindle model, equipped with bearings represented as linear
spring elements, and to generate spindle’s stability lobes.This
natural frequency was then reduced by 10% to simulate a
bearing degradation, or loss of preload due to spindle aging
and/or damage. Incorporating the reduced frequency into
the calibrated DSM, it was utilized to calculate the spindle’s
equivalent stiffness value, used to generate updated stability
lobe diagram. It was found that a 10% reduction in frequency
leads to a significant shift in the stability lobes, which should
be taken into consideration to ensure that a machine spindle
runs chatter-free over its entire life cycle.
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[8] A. Ertürk, H. N. Özgüven, and E. Budak, “Analytical modeling
of spindle-tool dynamics on machine tools using Timoshenko
beam model and receptance coupling for the prediction of
tool point FRF,” International Journal of Machine Tools &
Manufacture, vol. 46, no. 15, pp. 1901–1912, 2006.

[9] Y. Cao and Y. Altintas, “Modeling of spindle-bearing and
machine tool systems for virtual simulation of milling opera-
tions,” International Journal of Machine Tools & Manufacture,
vol. 47, no. 9, pp. 1342–1350, 2007.

[10] U. Bravo, O. Altuzarra, L. N. L. De Lacalle, J. A. Sánchez, and F.
J. Campa, “Stability limits of milling considering the flexibility
of the workpiece and the machine,” International Journal of
Machine Tools and Manufacture, vol. 45, no. 15, pp. 1669–1680,
2005.

[11] J. R. Banerjee and H. Su, “Development of a dynamic stiffness
matrix for free vibration analysis of spinning beams,”Computers
and Structures, vol. 82, no. 23–26, pp. 2189–2197, 2004.

[12] O. Gaber and S. M. Hashemi, “On the free vibration modeling
of spindle systems: a calibrated dynamic stiffness matrix,” Shock
and Vibration, vol. 2014, Article ID 787518, 10 pages, 2014.

[13] OKADA VM500 FANUC 6MB, Maintenance Manual.
[14] H. Sambandamurthy, Numerical and experimental modal anal-

ysis of machine tool spindle systems [M.S. thesis], Department of
Aerospace Engineering, Ryerson University, Toronto, Canada,
2014.

[15] S. M. Hashemi, Free vibrational analysis of rotating beam-
like structures: a dynamic finite element approach [Ph.D. the-
sis], Department of Mechanical Engineering, Laval University,
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