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The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development
of a calibrated dynamic stiffness matrix (CDSM) method, where the bearings flexibility is represented by massless linear spring
elements with tuneable stiffness. A dedicatedMATLAB code is written to develop and to assemble the element stiffnessmatrices for
the system’smultiple components and to apply the boundary conditions.The developedmethod is applied to an illustrative example
of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a
fundamental frequencymuch higher than the system’s nominal value.The simply supported boundary conditions are then replaced
by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSMmodel leads to the nominal
fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The
proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

1. Introduction

The booming aerospace industry and high levels of compe-
tition have forced companies to constantly look for ways to
optimize their machining processes. Cycle time has been a
major concern at various industries dealing with manufac-
turing of airframe parts and subassemblies. When trying to
machine a part as quickly as possible, spindle speed or metal
removal rates are no longer the limiting factors but rather
the chatter that occurs during the machining process. It is
well established that chatter is directly linked to the natural
frequency of the cutting system, which includes the spindle,
shaft, tool, and hold combination.

The first mention of chatter can be credited to Taylor in
1907 [1]; however, the first comprehensive investigation of
the problem was published by Arnold, in 1946 [2]. Arnold’s
experiments were conducted on the turning process, where
he theorized that the machine could be modeled as a simple
oscillator and that the force on the tool decreased as the speed
of the tool in relation to the work piece increased. Gurney
and Tobias later theorized the nowwidely accepted belief that
chatter is caused by wave patterns traced onto the surface
of the work piece by preceding tool passes [3]. The phase

shift of the preceding wave to the wave currently being traced
determineswhether there is any amplification in the tool head
movement. If there exists a phase shift between the two tool
paths, then the uncut chip cross-sectional area is varied over
the pass. Thomas and Shabana [4] showed that the cutting
force is dependent on the chips cross-sectional area, and,
as a result, a varying cutting force is produced. This was
demonstrated through an illustrative example of a grinding
machine, modeled as a one-degree-of-freedom mass-spring
system, as opposed to an oscillating system.The spring-mass
system is also the widely used modeling theory for how a
vibrating tool should be characterized today.

Prior to 1961, the machining procedures were regarded
as steady state and discrete processes [5]. This erroneous
idea led to the creation of overly heavy and thick-walled
machines, believed to provide high damping to the tooltip
forces (assumed to be static). However, one must note that
machining is a continuous, dynamic process, with constantly
fluctuating tooltip forces. Moreover, while being identical
in construction, the dynamics and response of similar
machines may be slightly different due to structural imper-
fections, imbalances, and so forth. Therefore, the specific
characteristics and dynamics of each machine must also be
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taken into consideration when performing chatter-related
calculations [6]. The structural modes of the machine deter-
mine the frequency and the direction that the tool is going
to vibrate at [7]. Eisele [5] and Peng et al. [8] stressed that
designers must investigate the mode-shapes, weak points,
bearing clearances, and self-inducing vibratory components
of the machine to reduce chatter. Butlin andWoodhouse also
investigated the number of structural modes required to pro-
duce accurate results [9].They showed that low ordermodels,
incorporating only two modes, are sufficiently accurate to
model the machines.

In 1981, Tlusty and Ismail published one of the first papers
that documented the nonlinearity of the vibratory system
occurring during chatter [10]. Kondo et al. [11] added to
Tlusty and Ismail’s investigation the behaviour of the tool
after the onset of chatter. An important study, carried out
by Lee et al. in 1989, helped bring a more complete theory
of chatter to light [12], where they looked into the response
of the work piece to chatter. They modeled the tool as a
typical two-degree-of-freedom spring-mass system and the
work piece as an Euler beam.When the responses of both the
tool and the work piece were incorporated into the typical
spring-mass equations, the results obtained far surpassed the
accuracy of previously used equations. They observed a large
increase in surface finish quality while machining, even with
the use of long end mills.

While a comprehensive set of mathematical models have
already been derived to explain chatter using spring-mass and
Euler beam systems, which have led to dramatic increases in
surface finish quality, chatter is still an issue in the machining
industry as the surface tolerances keep increasing. From
the 1990s on, this drove researchers to use more refined
mathematical models to characterize themachines [13].With
the rise of computer aided calculations and simulations, it
has become increasingly easier to perform more complex
analyses of the machining process [14]. Tool wear is an often-
overlooked factor that contributes to chatter. With the aid of
more powerful computers, this variable can now be included
in simulations. Clancy and Shin [15] investigated the wear
of turning tools and how that affects the stability of the
system. It was found that as the tool becomes worn, its limits
of stability increase. As a result, stability lobes have now
become a function of tool wear. Li et al. [16] determined that
the coherence function of two crossed accelerations in the
bending vibration of the tool shank approaches unity at the
onset of chatter. A threshold needs to be set [17] and then
detected using simple mechanism to alert the operator to
change the machining conditions and avoid increased tool
wear.

In most of the existing stability prediction methods,
a frequency response function (FRF)—acquired using an
impact test—is required to extract the system fundamental
frequency, used to perform the calculations. In order to
perform accurate impact tests, the machine would need to
be shut off and allowed to cool down and the coolant drip
off. This process could lead to several hours of down time.
An offline method of obtaining the FRF could greatly ben-
efit manufacturing companies by eliminating the downtime
needed for the impact tests. While stability lobe graphs have

becomemore accurate, the industry is trending towards com-
puter simulations and numerical analyses. With computing
power becoming relatively cheap and readily available, this
method has become feasible. Providing the most accurate
results due to its constantly updated stability calculations,
this is the area of research that engineers will most likely
progress towards. Lee et al. [18] suggested that the whole
system comprising machine, tool and work piece could
be modeled using finite element method (FEM) analysis.
A computer simulation would be able to predict the FRF
during all phases of the machining process. As the part is
machined and becomes thinner, its response to vibration
changes dramatically. Most existing research papers assume
that the FRF remains constant throughout the whole process.
However, a constantly updated FRF would allow for accurate,
real time stability calculations.

In an attempt to numerically model the entire spindle
systems for the vibration modeling and analysis and to
incorporate the effects of bearings, Cao and Altintas [19]
modeled spindle bearing andmachine tool systems for virtual
simulation of milling operations, where they presented a
general, integratedmodel of the spindle bearing andmachine
tool system, consisting of a rotating shaft, tool holder, angular
contact ball bearings, housing, and the machine tool mount-
ing.The proposedmodel, also verified experimentally, allows
virtual cutting of a work material with the numerical model
of the spindle during the design stage and predicts bearing
stiffness, mode shapes, frequency response function (FRF),
static and dynamic deflections along the cutter and spindle
shaft, and contact forces on the bearings with simulated
cutting forces before physically building and testing the
spindles. The study showed that the accuracy of predicting
the performance of the spindles requires integratedmodeling
of all spindle elements and mounting on the machine tool.
Jones’ bearing model, which considers the bearing balls and
rings as elastic parts, and the Hertzian contact theory were
used to calculate the contact force and displacement. Patwari
et al. [20] presented a detailed systematic procedure for
experimental and analytical modal analysis techniques, to
evaluate structural dynamics of a vertical machining centre.
Abuthakeer et al. [21] carried out the dynamic characteristics
analysis of high speed motorized spindles. More recently,
Delgado et al. [22] used FEM to study thenonlinear dynamic
behavior of a high speed machine tool spindle.

It is known that FEM predictions and the numerical
results are often different from test and experimental results.
However, based on the model updating, corrections can be
made on the FEM models by processing records of test
results. Motthershead and Friswell [23] presented a survey
of model updating in structural dynamics. Later, Mares et
al. [24] investigated the model updating using robust esti-
mation, and more recently Mottershead et al. [25] presented
a basic introduction to the most important procedures of
computational model updating, including tutorial examples
and a large scale model updating example of a helicopter
airframe and discussed the sensitivity method in FEMmodel
updating.

To the authors’ best knowledge, except authors’ previ-
ous works [26, 27], no studies on the calibrated/updated
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dynamic stiffness matrix (DSM) models of spindle systems
have appeared in the open literature. The DSM method [28]
provides an analytical solution to free vibration problems,
achieved by combining the coupled governing differential
equations of motion of the system into a single higher-order
ordinary differential equation. Seeking the most general
solution to the resulting higher-order ODE and enforcing
the end displacements and loads through extensive matrix
manipulations lead to the DSM of the structural element.
Unlike limited nodal DOFs in conventional FEM [29], the
DSM-based element is modeled as a continuous system with
infinite number of DOFs within the element. The DSM
formulation has been proven to provide exact frequency
(within the limits of the theory) for various beam con-
figurations and beam-structures, with the use of a single
continuous element per segment (see, e.g., [28, 30–33]).
The objective of the present study is to determine the
natural frequencies/vibration characteristics of machine tool
spindle systems by developing the corresponding dynamic
stiffness matrix (DSM) [31, 32] and the proper boundary
conditions. These results would then be compared to the
existing results for a common cutting system to validate/tune
the model developed. The coupled bending-bending (B-B)
vibration of a spinning beam is investigated. A MATLAB
code is developed to assemble the DSM element matrices for
multiple components and to apply the boundary conditions
(BC). The bearings are first modeled as simply supported (S-
S) frictionless pins, which are then replaced by linear spring
elements to incorporate the flexibility of bearings into the
model. In comparison with the existing data on spindle’s
fundamental frequency, the bearing stiffness coefficient, 𝐾𝑆,
is then varied to achieve a calibrated (or updated) dynamics
stiffness matrix (CDSM) vibrational model. The proposed
formulation can also be extended to include torsional degree-
of-freedom (DOF) for further modeling purposes.

2. Problem Description and
Governing Equations

Computer numeric control (CNC) machines are becom-
ing the norm in manufacturing plants worldwide. These
machines are generally 3-, 4-, or 5-axis, depending on the
number of degree-of-freedoms the device has. Having the
tool translating in the 𝑥, 𝑦, and 𝑧 directions accounts for
the first three degrees of freedom. Rotation about the spindle
axes account for any further DOF. A typical spindle contains
the motors that rotate the shaft connected to the tool holder,
the bearings, the tools, and all the mechanisms that hold the
tool in place (see Figure 1 for a sample spindle configuration).
As mentioned earlier in this paper, the fundamental natural
frequency of this system dictates the limitation of the cutting
parameters. If these limits are surpassed, the system tends to
vibrate which causes chatter. Also, as the bearings wear, the
system characteristics and spindle’s natural frequency change.

In what follows, the derivation of the governing differen-
tial equations for the coupled bending-bending vibration of
a spinning beam for a rotating shaft is first briefly discussed.
Bearings restrain the spinning motion of the spindle system

Tool/holder BearingsBearings Motor Spindle shaft

Spindle casing

Figure 1: Typical spindle configuration.
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Figure 2: Spinning beam.

in five degrees of freedom, that is, displacement in 𝑥, 𝑦, and
𝑧 directions and the rotation in 𝑥 and 𝑦 directions.The beam
torsional rigidity, 𝐺𝐽, is large enough so that the torsional
vibrations can be ignored [31, 32]. Figure 2 shows a cylindrical
beam in a right-handed rectangular Cartesian coordinates
system.The beam length is denoted by𝐿, mass per unit length
is 𝑚 = 𝜌𝐴, polar mass moment of inertia per unit length is
𝐼𝛼, and the principal axes bending rigidities are EI for both
planes. At an arbitrary cross section along 𝑧-axis, 𝑢 and V are
displacement of a point 𝑃 in the 𝑥 and 𝑦 directions.The cross
section is allowed to rotate or twist about the 𝑜𝑧 axis. The
position vector r of the point 𝑃 after deformation is given by
(refer to Figures 2 and 3)

r = (𝑢 − 𝜙𝑦) i + (V + 𝜙𝑥) j, (1)

where i and j are unit vectors in the 𝑥 and 𝑦 directions. The
velocity of point 𝑃 is given by

v = ̇r +Ω × r, where Ω = Ωk. (2)

The kinetic and potential energies of the beam (𝑇 and 𝑈) are
given by
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Figure 3: Degrees of freedom of the system.

Using the Hamilton principle in the usual notation state,

𝛿∫

𝑡
2

𝑡
1

(𝑇 − 𝑈) 𝑑𝑡 = 0, (4)

where 𝑡
1
and 𝑡

2
are the time intervals in the dynamic

trajectory and 𝛿 is the variational operator. Substituting the
kinetic and potential energies of the beam in the Hamilton
principle, collecting like terms and integrating by parts, the
following differential equations are obtained:

EI
𝑦𝑦
𝑢


− 𝑚Ω
2
𝑢 + 𝑚�̈� − 2𝑚ΩV̇ = 0,
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2V = 0,

(5)

which govern the bending-bending (B-B) vibration of a
beam, coupled by the spinning speed.The resulting loads, also
force boundary conditions at free ends, are then found to be
in the following forms, written for shear forces as

𝑆
𝑥
= EI
𝑥𝑥
𝑢

, 𝑆

𝑦
= EI
𝑦𝑦
V, (6)

and for bending moments as

𝑀
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𝑢

. (7)

Assuming simple harmonic motion,

𝑢 (𝑧, 𝑡) = 𝑈 (𝑧) cos𝜔𝑡, V (𝑧, 𝑡) = 𝑈 (𝑧) cos𝜔𝑡, (8)

and substituting (8) into (5), they can be rewritten as
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(9)

where 𝜔 is frequency of oscillation and 𝑈, 𝑉, and Φ are the
amplitudes of 𝑢, V, and 𝜙. Introducing 𝜉 = 𝑧/𝐿 and 𝐷 =

𝑑/𝑑𝜉, which are nondimensional length and the differential
operator, and back substitution into (9) lead to
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3. Solution of the Governing Equations

3.1. Dynamic Stiffness Matrix (DSM) Solution. As suggested
by Banerjee and Su [31, 32], the above equation (10) can be
combined into one 8th-order differential equation written as
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where “𝑊” represents both lateral displacements𝑈 and𝑉 and
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The general solution of the differential equation is sought in
the form

𝑊 = 𝑒
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. (13)

Substituting (13) into (11) leads to
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where 𝑟
1,3 = ±√𝛼, 𝑟2,4 = ±√𝛽, 𝑟5,7 = ±𝑖√𝛼, 𝑟6,8 = ±𝑖√𝛽, and
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Based on Euler-Bernoulli beam bending theory, the
corresponding bending rotation, that is, slope, about 𝑥-axis
and 𝑦-axis, Θ

𝑥
and Θ

𝑦
, respectively, is given by (see the

appendix for further details)
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By doing similar substitutions in load (3) and (4), one finds

𝑆
𝑥
= (

EI
𝑦𝑦

𝐿3
)(

𝑑
3
𝑈

𝑑𝜉
3
) , 𝑆

𝑦
= (

EI
𝑥𝑥

𝐿3
)(

𝑑
3
𝑉

𝑑𝜉
3
) ,

𝑀
𝑥 = (

EI
𝑦𝑦

𝐿2
)(

𝑑
2
𝑈

𝑑𝜉
2
) , 𝑀𝑦 = (

EI𝑥𝑥
𝐿2

)(
𝑑
2
𝑉

𝑑𝜉
2
) .

(17)

Substituting the boundary conditions into the governing
equations, enforced at 𝑧 = 0 (𝜉 = 0) and 𝑧 = 𝐿 (𝜉 = 1),
leads to

𝛿 = BR, (18)
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where
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Substituting similarly for the force equation one finds

F = AR, (20)

where
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The frequency-dependent, dynamic stiffness matrix
(DSM) of the spinning beam, K(𝜔), can then be derived
by eliminating R. We also know that the force amplitude is
related to the displacement vector by

F = K (𝜔) 𝛿, where K (𝜔) = AB−1. (22)

Explicitmatrix forms ofA,B, andR are given in the appendix.

3.2. Classical Finite Element Method (FEM). For validation
and comparison purposes, a conventional finite element
formulation of the problem and aMATLAB-based FEM code
were developed to carry out the free vibration analysis of the
spindle system [33]. The Galerkin method of weighted resid-
uals [29, 33] was employed to develop the integral form of
the governing equation (10). Performing integration by parts
on the resulting integral equations leads to the weak integral
form of equations, which also satisfy the principle of virtual
work. The system is then discretized using beam elements
with four DOF per node (i.e., two lateral displacements, 𝑈
and𝑉, and two slopes,𝑈 and𝑉

, eight degrees of freedom in
total). Introducing cubic Hermite-type polynomial approx-
imations [29, 33] for bending displacements in the element
weak integral form, the classical finite element formulation
is developed. This formulation results in constant (or static)
element stiffness, mass, and coupling matrices, which are
then assembled to find the global matrices. Finally, enforcing
the boundary conditions leads to a linear eigenvalue problem,
which is solved to extract the system natural frequencies and
modes. There has also been an attempt to develop a dynamic
finite element (DFE) [34] formulation for the problem in
hand, using frequency-dependent interpolation functions,
and the preliminary results were found to be promising [35].

4. Application of the Theory and
Numerical Results

TheDSM formulation was first validated against various ana-
lytical and numerical frequency data available in the literature
[31, 32] for various uniform simple beam configurations. The
DSM frequency data were also comparedwith those obtained
from commercial FEM-based software ABAQUS and the
effect of various element types on the convergence was also
examined. In addition, the conventional FEM formulation
[29, 33] was used for further comparisons; however, as the

in-house FEM-based code and commercial software both led
to similar results, the FEM results have been omitted here for
the brevity.

A typical spindle system model (see Figure 4) was then
constructed using multiple segments. As the nominal fun-
damental frequency was available for nonspinning spindle,
therefore the effect of spinning speed was taken out by simply
setting Ω to zero in FEM models. However, one should note
that setting the spinning speed exactly to zero would cause
the DSM formulation to collapse. This is due to the fact
that the DSM formulation pivots around combining the two
expressions (10) into a single on (11), through the coupling
terms involving Ω [31, 32]. However, an extremely small
number (Ω ≅ 0) can be used to model the stationary spindle.

The entire system was assumed to be made from the
same material, that is, tooling steel. Initially it was also
assumed that the system is simply supported at the bearing
locations, that is, the bearings modeled as frictionless pins,
rigidly attached to the spindle casing with zero flexibility,
allowing only for rotations in all directions. This system was
modeled using the DSM method described above, as well
as finite element analysis (FEA) in ABAQUS commercial
software to evaluate the first six natural frequencies of the
spindle system. Several different element types andmesh sizes
were examined to ensure the convergence (Table 1); beam
element B33 uses a 2-node cubic beam (similar to the in-
house FEM code), C3D20R is a general-purpose quadratic
brick element, and C3D10M is a general-purpose tetrahedral
element (see Table 1 for results). Unlike the conventional
FEM formulation, the DSM method results in exact solution
for all natural frequencies of a spinning uniform beam [31,
32]. Therefore, as the spindle system in hand is made of
12 uniform sections, only a 12-element piecewise-uniform
(stepped) DSM model was required. As expected, the results
using beam element type B33 yielded the best agreement with
the DSM results, as the 3D and shear effects are neglected
in both. However, the fundamental frequency values were
found to be different from the nominal value, that is, 1393Hz
compared to 1000 ± 50Hz, as provided by the manufacturer.

In order to address this issue, the DSM and FEM models
were calibrated to take into account the flexibility of the
bearing systems. To this end, the simply supported boundary
conditions were modified and replaced by simple linear
spring elements, attached to the spindle shaft in 𝑥 and
𝑦 directions, representing general flexibility of the bearing
systems (see Figure 4). The bearings were all assumed to be
identical, with the same spring coefficient, 𝐾𝑠. The spring
stiffness value, 𝐾

𝑠
, was then varied and a calibrated model

equippedwith spring elements of constant𝐾
𝑠
= 2.1×10

8N/m
was found to result in a fundamental bending frequency
of 1004Hz, closely equivalent to the system’s nominal value
(Figure 5). The effect of spinning speed, Ω, on the system’s
fundamental frequency was also investigated. In the absence
of spinning speed, Ω = 0 the system exhibits uncoupled
behavior (see (7) and (8)), undergoing two separate bending
displacements in 𝑥 and 𝑦 directions. As a result, for a circular
shaft with 𝐼𝑥𝑥 = 𝐼𝑦𝑦, the modal analysis results in repeated
frequency values, appearing in pairs (Table 1). By introducing
the spinning speed,Ω ̸= 0, the bending natural frequencies in
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Table 1: Spindle natural frequencies; DSM versus FEA for a nonspinning (Ω ≅ 9.55RPM), with simply supported boundary conditions.

Mode DSM FEA B33 element (Hz) FEA C3D20R (Hz) FEA C3D10M (Hz)
12 sections 600 elements 1200 elements 16965 elements 20122 elements 34465 elements 45645 elements

1 1392.92 1393.00 1393.00 1308.00 1308.00 1301.00 1301.00
2 1393.24 1393.00 1393.00 1308.00 1308.00 1301.00 1301.00
3 4071.02 4071.00 4071.00 3208.00 3212.00 3335.00 3322.00
4 4071.34 4071.00 4071.00 3210.00 3212.00 3335.00 3324.00
5 5668.14 5669.00 5669.00 4339.00 4311.00 4322.00 4291.00
6 5668.46 5669.00 5669.00 4341.00 4316.00 4323.00 4292.00

Table 2: Spindle natural frequencies versus various spinning speeds, for flexible boundary conditions; 𝐾
𝑠
= 2.1 × 10

8N/m.

Mode
9.55

(RPM)
(Ω ≅ 0)

4784.2
(RPM)

9558.9
(RPM)

14334
(RPM)

19108
(RPM)

23883
(RPM)

28657
(RPM)

33432
(RPM)

1 1004.27 924.69 845.11 765.54 685.96 606.38 526.80 447.23
2 1004.59 1084.16 1143.21 1063.63 984.06 904.48 824.90 745.32
3 1302.37 1222.79 1163.741 1134.14 1054.56 974.98 895.41 815.83
4 1302.68 1293.29 1213.716 1243.32 1322.90 1402.47 1468.05 1388.47
5 1372.87 1382.26 1461.838 1541.42 1541.42 1547.62 1482.05 1561.63
6 1373.19 1452.77 1532.344 1611.92 1627.20 1700.57 1780.15 1859.73

Tool/holder Motor Spindle shaftSpring Spring

Spindle casing

Figure 4: Modified boundary conditions.

𝑥 and 𝑦 directions become coupled, changing the repeated
natural frequencies to two distinct ones (see Table 2), with
one decreasing and approaching zero (Figure 6) and the other
increasing from their uncoupled values. Further increase
in the spinning speed would make one of the bending
frequencies go to zero; that is, whirling instability, also
reported and discussed in [31, 32]. The first critical spindle
speed, in the case of calibrated model, was found to be Ωcr =
6 × 10

5 RPM, which is well above the operating speed of the
spindle, that is, 3.5 × 104 RPM (see Figure 7).

In order to further validate the proposed CDSM model,
the tap testing method was used to experimentally collect
the frequency response function (FRF) of the spindle sys-
tem in hand, while being installed on its corresponding
machine tool. A 1-inch diameter blank tool, with a 2-inch
protrusion, in a typical shrink fit tool holder was used.
The tool and holder were inserted into the spindle. The
spindle was set to be horizontal (i.e., neutral) position and
an accelerometer (352A21, 0.8 g) was then attached to the
edge of the tool holder. The spindle was struck 10 times
in the 𝑥 direction using a hammer (086C04, 5000N) and
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Figure 5: Varying spring constant versus system natural frequency
using DSM and FEA.

the average FRF graph was generated (SIM3 Module Photon
+ Data Acquisition). Similarly, the spindle was also tested
along the 𝑦 direction. The nonspinning spindle’s natural
frequencies extracted from the FRF graphs are presented in
Table 3, alongside the CDSM results. As can be seen, the
maximum difference between the first three CDSM flexural
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Table 3: Spindle natural frequencies; experimental versus CDSM for a nonspinning spindle system, with flexible boundary conditions;𝐾
𝑠
=

2.1 × 10
8 N/m.

Nonspinning bending modes (Hz) CDSM (Ω ≅ 9.55RPM) Experimental (x-axis/y-axis) Difference (%)
(x-axis/y-axis)

𝜔1 1004.27/1004.59 929.81/926.51 8.0%/8.4%
𝜔2 1302.37/1302.68 1301.51/1310.67 0.07%/0.06%
𝜔3 1372.87/1373.19 1601.44/1583.86 14.3%/13.3%
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Figure 6: Spindle speed versus natural frequency.
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Figure 7: Spindle natural frequency versus spindle RPM; simply
supported and flexible bearing models.

natural frequencies and the experimentally evaluated data
are, respectively, 8%, 0.07%, and 14.3%, in 𝑥 direction, and
8.4%, 0.06%, and 13.3%, in 𝑦 direction.The average difference
is found to be around 7.4%, which is within the acceptable
range.

5. Discussion and Conclusion

It has been established that the service life changes the vibra-
tional behavior of spindle systems, that is, reduced natural
frequency over the time, associated with the bearings wear.
Therefore, in order to generate an updated spindlemodel, it is
essential to include the effect of the bearings in the system.An
analytical model of a multisegment spinning spindle, based
on the dynamic stiffnessmatrix (DSM) formulation and exact
within the limits of the Euler-Bernoulli beam bending theory,
was developed. The beam exhibits coupled bending-bending
(B-B) vibration and, as expected, its fundamental coupled
frequency was found to decrease with increasing spinning
speed. The bearings were included in the model using two
different models: rigid, simply supported, frictionless pins,
and flexible linear spring elements. The simply supported
bearing model was found to yield an excessively rigid system
with amuch higher natural frequency than the nominal value
of the system. Replacing the simply supported boundary
condition with linear spring elements, the spring stiffness,
𝐾
𝑠
, was then calibrated so that the fundamental frequency

of the system matched the nominal value, that is, a more
realistic and accurate representation of the spindle system.
The accuracy of the proposed calibrated dynamic stiffness
matrix (CDSM) method was confirmed through compari-
son with both numerical and experimental results. When
compared to the conventional finite element method (FEM),
the CDSM frequencies were found to best match with those
obtained from a cubic beamfinite element (B33 inABAQUS).
Moreover, in comparison with experimental data, the CDSM
results were found to be within acceptable accuracy; the aver-
age error for the first three bending natural frequencies is less
than 8%.

It is worth noting that the proposed CDSM can also
be fine-tuned to match spindle’s experimental fundamental
frequency, instead of the nominal value. Further research
is underway to improve the CDSM by using more accu-
rate material properties for different segments of the
spindle. The developed calibrated model could then be
exploited in an attempt to take into account the effects
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of bearing wear in terms of spindle’s service time, numer-
ically evaluate the equivalent cutting force, and calcu-
late updated stability lobes, used to achieve chatter-free
cuts.

Appendix

From the solutions of 𝑈 and 𝑉 (see expressions (13)) the
corresponding bending rotation about 𝑥-axis and 𝑦-axis, Θ

𝑥

and Θ
𝑦
, are, respectively, given by

Θ
𝑥 =

𝑑𝑉

𝑑𝑧
= −

1

𝐿

𝑑𝑉

𝑑𝜉

= −
1

𝐿
(√𝛼𝐵

1
cos√𝛼𝜉 − √𝛼𝐵

2
sin√𝛼𝜉

+ √𝛼𝐵
3
cosh√𝛼𝜉 + √𝛼𝐵

1
sin√𝛼𝜉

+ √𝛽𝐵
5
cos√𝛽𝜉 − √𝛽𝐵

6
sin√𝛽𝜉

+√𝛽𝐵
7
cosh√𝛽𝜉 + √𝛽𝐵

8
sinh√𝛽𝜉) ,

Θ
𝑦
=

𝑑𝑈

𝑑𝑧
=

1

𝐿

𝑑𝑈

𝑑𝜉

= −
1

𝐿
(√𝛼𝐴

1
cos√𝛼𝜉 − √𝛼𝐴

2
sin√𝛼𝜉

+ √𝛼𝐴3 cosh√𝛼𝜉 + √𝛼𝐴1 sin√𝛼𝜉

+ √𝛽𝐴5 cos√𝛽𝜉 − √𝛽𝐴6 sin√𝛽𝜉

+√𝛽𝐴
7
cosh√𝛽𝜉 + √𝛽𝐴

8
sinh√𝛽𝜉) .

(A.1)

By doing similar substitutions we find (see expressions (3),
(4), and (14))

𝑆𝑥 = (

EI
𝑦𝑦

𝐿3
)(

−𝛼√𝛼𝐴
1
cos√𝛼𝜉 + 𝛼√𝛼𝐴

2
sin√𝛼𝜉 + 𝛼√𝛼𝐴

3
cosh√𝛼𝜉 + 𝛼√𝛼𝐴

4
sinh√𝛼𝜉

−𝛽√𝛽𝐴
5
cos√𝛽𝜉 + 𝛽√𝛽𝐴

6
sin√𝛽𝜉 + 𝛽√𝛽𝐴

7
cosh√𝛽𝜉 + 𝛽√𝛽𝐴

8
sinh√𝛽𝜉

) ,

𝑆
𝑦 = (

EI𝑥𝑥
𝐿3

)(
−𝛼√𝛼𝐵

1
cos√𝛼𝜉 + 𝛼√𝛼𝐵

2
sin√𝛼𝜉 + 𝛼√𝛼𝐵

3
cosh√𝛼𝜉 + 𝛼√𝛼𝐵

4
sinh√𝛼𝜉

−𝛽√𝛽𝐵
5
cos√𝛽𝜉 + 𝛽√𝛽𝐵

6
sin√𝛽𝜉 + 𝛽√𝛽𝐵

7
cosh√𝛽𝜉 + 𝛽√𝛽𝐵

8
sinh√𝛽𝜉

) ,

𝑀
𝑥
= (

EI
𝑦𝑦

𝐿2
)(

−𝛼𝐵
1 sin√𝛼𝜉 − 𝛼𝐵2 cos√𝛼𝜉 + 𝛼𝐵3 sinh√𝛼𝜉 + 𝛼𝐵4 cosh√𝛼𝜉

−𝛽𝐵
5
sin√𝛽𝜉 + 𝛽𝐵

6
cos√𝛽𝜉 + 𝛽𝐵

7
sinh√𝛽𝜉 + 𝛽𝐵

8
cosh√𝛽𝜉

) ,

𝑀
𝑦
= (

EI
𝑥𝑥

𝐿2
)(

−𝛼𝐴
1 sin√𝛼𝜉 − 𝛼𝐴

2 cos√𝛼𝜉 + 𝛼𝐴3 sinh√𝛼𝜉 + 𝛼𝐴
4 cosh√𝛼𝜉

−𝛽𝐴5 sin√𝛽𝜉 + 𝛽𝐴6 cos√𝛽𝜉 + 𝛽𝐴7 sinh√𝛽𝜉 + 𝛽𝐴8 cosh√𝛽𝜉
) ,

(A.2)

where
𝐴
1
= 𝑘
𝛼
𝐵
1
, 𝐴

2
= 𝑘
𝛼
𝐵
2
,

𝐴
3
= 𝑘
𝛼
𝐵
3
, 𝐴

4
= 𝑘
𝛼
𝐵
4
,

𝐴5 = 𝑘𝛽𝐵5, 𝐴6 = 𝑘𝛽𝐵6,

𝐴
7 = 𝑘𝛽𝐵7, 𝐴8 = 𝑘𝛽𝐵8,

𝑘
𝛼
=

2𝜆
2

𝑦
𝜂

𝛼2 − 𝜆2
𝑦
(1 + 𝜂2)

, 𝑘
𝛽
=

2𝜆
2

𝑦
𝜂

𝛽2 − 𝜆2
𝑦
(1 + 𝜂2)

.

(A.3)

To obtain the dynamic stiffness matrix we introduce the
boundary conditions into the governing equations. For dis-
placements,

at 𝑧 = 0,

𝑈 = 𝑈
1
, 𝑉 = 𝑉

1
, Θ

𝑥
= Θ
𝑥1
, Θ

𝑦
= Θ
𝑦1
;

(A.4)

at 𝑧 = 𝐿,

𝑈 = 𝑈
2
, 𝑉 = 𝑉

2
, Θ

𝑥
= Θ
𝑥2
, Θ

𝑦
= Θ
𝑦2
.

(A.5)

And for forces we have the following:

at 𝑧 = 0,

𝑆
𝑥
= 𝑆
𝑥1
, 𝑆

𝑦
= 𝑆
𝑦1
, 𝑀

𝑥
= 𝑀
𝑥1
, 𝑀

𝑦
= 𝑀
𝑦1
;

(A.6)

at 𝑧 = 𝐿,

𝑆
𝑥
= 𝑆
𝑥2
, 𝑆

𝑦
= 𝑆
𝑦2
, 𝑀

𝑥
= 𝑀
𝑥2
, 𝑀

𝑦
= 𝑀
𝑦2
.

(A.7)

Substituting the boundary conditions into the governing
equations we find

𝛿 = BR, (A.8)
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where

𝛿 = [𝑈1 𝑉
1

Θ
𝑥1

Θ
𝑦1

𝑈
2

𝑉
2

Θ
𝑥2

Θ
𝑦2]
𝑇

,

R = [𝑅1 𝑅
2

𝑅
3

𝑅
4

𝑅
5

𝑅
6

𝑅
7

𝑅
8]
𝑇
,

B =

[
[
[
[
[
[
[
[
[
[
[
[

[

0 𝑘
𝛼

0 𝑘
𝛼

0 𝑘
𝛽

0 𝑘
𝛽

0 1 0 1 0 1 0 1

−𝜏
𝛼

0 −𝜏
𝛼

0 −𝜏
𝛽

0 −𝜏
𝛽

0

𝜒
𝛼

0 𝜒
𝛼

0 𝜒
𝛽

0 𝜒
𝛽

0

𝑘
𝛼
𝑆
𝛼

𝑘
𝛼
𝐶
𝛼

𝑘
𝛼
𝑆
ℎ
𝛼

𝑘
𝛼
𝐶
ℎ
𝛼

𝑘
𝛽
𝑆
𝛽

𝑘
𝛽
𝐶
𝛽

𝑘
𝛽
𝑆
ℎ
𝛽

𝑘
𝛽
𝐶
ℎ
𝛽

𝑆𝛼 𝐶𝛼 𝑆ℎ
𝛼

𝐶ℎ
𝛼

𝑆𝛽 𝐶𝛽 𝑆ℎ
𝛽

𝐶ℎ
𝛽

−𝜏
𝛼
𝐶
𝛼

𝜏
𝛼
𝑆
𝛼

−𝜏
𝛼
𝐶
ℎ
𝛼

−𝜏
𝛼
𝑆
ℎ
𝛼

−𝜏
𝛽
𝐶
𝛽

𝜏
𝛽
𝑆
𝛽

−𝜏
𝛽
𝐶
ℎ
𝛽

−𝜏
𝛽
𝑆
ℎ
𝛽

𝜒
𝛼
𝐶
𝛼

−𝜒
𝛼
𝑆
𝛼

𝜒
𝛼
𝐶
ℎ
𝛼

𝜒
𝛼
𝑆
ℎ
𝛼

𝜒
𝛽
𝐶
𝛽

−𝜒
𝛽
𝑆
𝛽

𝜒
𝛽
𝐶
ℎ
𝛽

𝜒
𝛽
𝑆
ℎ
𝛽

]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝜏
𝛼
=

√𝛼

𝐿
, 𝜏

𝛽
= −

√𝛽

𝐿
, 𝜒

𝛼
= 𝑘
𝛼
𝜏
𝛼
, 𝜒

𝛽
= 𝑘
𝛽
𝜏
𝛽
.

(A.9)

Also

𝑆
𝛼
= sin√𝛼, 𝐶

𝛼
= cos√𝛼,

𝑆
ℎ
𝛼

= sinh√𝛼, 𝐶
ℎ
𝛼

= cosh√𝛼,

𝑆
𝛽
= sin√𝛽, 𝐶

𝛽
= cos√𝛽,

𝑆
ℎ
𝛽

= sinh√𝛽, 𝐶
ℎ
𝛽

= cosh√𝛽.

(A.10)

Substituting similarly for the force equation,

F = AR, (A.11)

where

F = [𝑆𝑥1 𝑆
𝑦1

𝑀
𝑥1

𝑀
𝑦1

𝑆
𝑥2

𝑆
𝑦2

𝑀
𝑥2

𝑀
𝑦2]
𝑇

,

A =

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜁𝛼 0 𝜁𝛼 0 −𝜁𝛽 0 𝜁𝛽 0

−𝜀𝛼 0 𝜀𝛼 0 −𝜀𝛽 0 𝜀𝛽 0

0 −𝛾
𝛼

0 𝛾
𝛼

0 −𝛾
𝛽

0 𝛾
𝛽

0 𝜆
𝛼

0 −𝜆
𝛼

0 𝜆
𝛽

0 −𝜆
𝛽

𝜁
𝛼
𝐶
𝛼

−𝜁
𝛼
𝑆
𝛼

−𝜁
𝛼
𝐶
ℎ
𝛼

−𝜁
𝛼
𝑆
ℎ
𝛼

𝜁
𝛽
𝐶
𝛽

−𝜁
𝛽
𝑆
𝛽

−𝜁
𝛽
𝐶
ℎ
𝛽

−𝜁
𝛽
𝑆
ℎ
𝛽

𝜀
𝛼
𝐶
𝛼

−𝜀
𝛼
𝑆
𝛼

−𝜀
𝛼
𝐶
ℎ
𝛼

−𝜀
𝛼
𝑆
ℎ
𝛼

𝜀
𝛽
𝐶
𝛽

−𝜀
𝛽
𝑆
𝛽

−𝜀
𝛽
𝐶
ℎ
𝛽

−𝜀
𝛽
𝑆
ℎ
𝛽

𝛾
𝛼
𝑆
𝛼

𝛾
𝛼
𝐶
𝛼

−𝛾
𝛼
𝑆
ℎ
𝛼

−𝛾
𝛼
𝐶
ℎ
𝛼

𝛾
𝛽
𝑆
𝛽

𝛾
𝛽
𝐶
𝛽

−𝛾
𝛽
𝑆
ℎ
𝛽

−𝛾
𝛽
𝐶
ℎ
𝛽

−𝜆𝛼𝑆𝛼 −𝜆𝛼𝐶𝛼 𝜆𝛼𝑆ℎ
𝛼

𝜆𝛼𝐶ℎ
𝛼

−𝜆𝛽𝑆𝛽 −𝜆𝛽𝐶𝛽 𝜆𝛽𝑆ℎ
𝛽

𝜆𝛽𝐶ℎ
𝛽

]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝜁𝛼 = 𝑘𝛼𝛼√𝛼

EI
𝑦𝑦

𝐿3
, 𝜀𝛼 = 𝛼√𝛼

EI𝑥𝑥
𝐿3

,

𝛾
𝛼
= 𝛼

EI
𝑥𝑥

𝐿2
, 𝜆

𝛼
= 𝑘
𝛼
𝛼

EI
𝑦𝑦

𝐿2
,

𝜁
𝛽
= 𝑘
𝛽
𝛽√𝛽

EI
𝑦𝑦

𝐿3
, 𝜀

𝛽
= 𝛽√𝛽

EI
𝑥𝑥

𝐿3
,

𝛾
𝛽 = 𝛽

EI𝑥𝑥
𝐿2

, 𝜆𝛽 = 𝑘𝛽𝛽

EI
𝑦𝑦

𝐿2
.

(A.12)
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