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Abstract: Massive multiple-input-multiple-output (MIMO) systems use few hundred antennas to
simultaneously serve large number of wireless broadband terminals. It has been incorporated
into standards like long term evolution (LTE) and IEEE802.11 (Wi-Fi). Basically, the more the
antennas, the better shall be the performance. Massive MIMO systems envision accurate beamforming
and decoding with simpler and possibly linear algorithms. However, efficient signal processing
techniques have to be used at both ends to overcome the signaling overhead complexity. There are
few fundamental issues about massive MIMO networks that need to be better understood before their
successful deployment. In this paper, we present a detailed review of massive MIMO homogeneous,
and heterogeneous systems, highlighting key system components, pros, cons, and research directions.
In addition, we emphasize the advantage of employing millimeter wave (mmWave) frequency in the
beamforming, and precoding operations in single, and multi-tier massive MIMO systems.

Keywords: 5G wireless networks; massive MIMO; linear precoding; encoding; channel estimation;
pilot contamination; beamforming; HetNets

1. Introduction

According to CISCO, an american multinational technology company, by 2020, more people
(5.4 B) will have mobile phones than have electricity (5.3 B), running water (3.5 B) and cars (2.8 B).
In addition, 75% of the mobile data traffic will be bandwidth-hungry video. Users will expect wireline
quality in wireless services and higher bit rates and more reliable connections will be mandatory. While
conventional techniques struggling to provide these bit rates, massive multiple-input-multiple-output
(MIMO) systems promise 10 s of Gbps data rates to support real-time wireless multimedia services
without occupying much additional spectrum [1].

Massive MIMO technology has got much attraction lately as it promises truly broadband wireless
networks [2]. Massive MIMO systems use base station (BS) antenna arrays, with few hundred
elements, simultaneously serving many tens of active terminals (users) using the same time and
frequency resources.

1.1. Background

It is well known that, in classical MIMO, multiple antennas at both ends exploit wireless channel
diversity to provide more reliable high-speed connections. Massive MIMO (also known as Large-Scale
Antenna Systems, Very Large MIMO, Hyper MIMO, and Full-Dimension MIMO) makes a bold
development from current practice using a very large number of service antennas (e.g., hundreds or
thousands) that are operated fully coherently and adaptively.

Figure 1 shows the speed improvement of wireless networks over the years starting from
single-input-single-output (SISO) systems, single user (SU) and multiple users (MU) MIMO networks.
MU-MIMO systems already provide significant advantages over earlier systems. Massive MIMO
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aims to further enhance this (to 10 Gbps and more) using hundreds of antennas exploiting advances
in parallel digital signal processing and high-speed electronics. Extra antennas help with focusing
the transmission and reception of signal energy into ever-smaller regions of space. This brings huge
improvements in throughput and energy efficiency, in particular when combined with simultaneous
scheduling of numerous user terminals (e.g., tens or hundreds).

Figure 1. Evolving speed of wireless networks.

The more the BS antennas used, the more the data streams can be released to serve more terminals,
reducing the radiated power, while boosting the data rate. This will also improve link reliability
through spatial diversity and, provide more degrees of freedom in the spatial domain, and improve the
performance irrespective of the noisiness of the measurements. In addition, because massive MIMO
systems have a broad range of states of freedom, and greater selectivity in transmitting and receiving
the data streams, interference cancellation is enhanced. BSs can relatively easily avert transmission into
undesired directions to alleviate harmful interference which, leads to low latency as well. In addition,
massive MIMO makes a proper use of beamforming techniques to reduce fading drops; this further
boosts signal-to-noise-ratio (SNR), bit rate and reduces latency [3].

Furthermore, increasing the number of BS antennas above the number of active users leads
to higher throughput [1]. Channel estimation quality per antenna also improves with the number
of BS antennas especially in the presence of high correlation among the antennas which is very
typical [4]. In addition, the eigenvalue histogram of a single implementation converges to the average
asymptotic eigenvalue distribution [5]. This leads to the possibility of employing simple low complexity
detection techniques while preserving an excellent performance. In addition, the channel becomes
more predestined and random detectors matrices are readily solved.

Aggressive spatial multiplexing in massive MIMO systems leads to an impressive improvement
in the network capacity by minimizing multiuser interference by steering the signal accurately in the
right direction. Massive MIMO systems concentrate the released energy into small user centric zones,
which dramatically increases the throughput and the energy efficiency [1]. Since all of the users can
take part in the multiplexing gain, costly antenna array deployments are only necessary on the BS side,
which saves on costs by sharing. This also leaves the user equipment less complex, often with a single
antenna. A higher number of BS antennas revokes the effects of uncorrelated noise and small-scale
fading, and lowers the required transmitted energy per bit [6]. The propagation medium minimally
affects the performance of a massive MIMO system because of multi-user diversity.

Due to the advantages and popularity of massive MIMO, recently there has been an increase in
papers written on this area. Table 1 describes some of these.
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Table 1. Comparison of related surveys in the literature.

Parameter
Ref. [4],

2016
[7],

2015
[8],

2015
[9],

2014
[1],

2014

Literature Review Limited Limited Limited N/A Limited

Classification based on
characteristic features Extensive Moderate Limited N/A Extensive

Comparison based on number
of users N/A Extensive N/A N/A N/A

Comparison based on channel
estimation methods Moderate Limited N/A N/A Limited

Classification based on
precoding comparison Moderate Extensive Moderate N/A Limited

Comprehensive analysis,
identification of basic elements and
functional requirements

Limited Moderate Moderate Moderate Limited

Integration of recent research trends Moderate Limited Moderate Extensive Moderate

Comparison of objectives,
approaches and
performance metrics

Limited Extensive Extensive Limited Extensive

Future research roadmap Moderate Moderate Moderate Limited Extensive

Parameter
Ref. [6],

2014
[10],
2013

[11],
2013

[12],
2013 Our work

Literature Review Limited Limited N/A N/A Extensive

Classification based on
characteristic features Limited Moderate N/A N/A Extensive

Comparison based on number
of users Extensive Extensive N/A N/A Extensive

Comparison based on channel
estimation methods Moderate Moderate N/A N/A Extensive

Classification based on
precoding comparison Extensive Extensive N/A N/A Extensive

Comprehensive analysis,
identification of basic elements and
functional requirements

Limited Moderate Moderate N/A Extensive

Integration of recent research trends Moderate Limited Limited N/A Extensive

Comparison of objectives,
approaches and
performance metrics

Moderate Limited Limited N/A Extensive

Future research roadmap Moderate Extensive Extensive Limited Extensive

1.2. Networked MIMO and Massive MIMO

MIMO systems can be cooperative or non-cooperative. Cooperating systems are often called
Networked MIMO, where a certain user is served by all BSs within its range of operation. The typical
massive MIMO BSs do not cooperate in this sense [13]. Both systems mitigate interferences of multi
cellular wireless networks in separate ways and are not to be confused with each other [14]. Networked
MIMO emulates distributed antenna arrays by creating clusters of connected BSs. Note that each BS has
a relatively small number of antennas only. Channel state information (CSI) as well as data are shared
among the collaborating BSs through backhaul links. This contributes to interference cancellation,
and then data is passed to the scheduled downlink users cooperatively from the BSs (sometimes using
beamforming) [15]. In contrary, massive MIMO systems have substantial (M) number of antennas per
BS, simultaneously serving a much smaller (K) number of users [8].

Table 2 compares cooperating network MIMO and conventional massive MIMO approaches.
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Table 2. Comparison between cooperating and non-cooperating multipl-input-multiple-output
(MIMO) systems.

Cooperating Systems
(Networked MIMO)

Non-Cooperating Systems
(Conventional Massive MIMO)

Multiple fold increase in spectral efficiency. Less.

Less energy consumption. Less energy saving.

Cooperation between BSs with small
antenna arrays.

Noncooperation: Each BS is robust
against ICI 1

More controls (yields in better performance). Fewer controls (yields in better
implementation).

Less downlink user rate. Improvement in the downlink user rate.

Each user experiences less quality of service. More user quality of service.

Increased system complexity, and the large
signaling overhead, which is reduced by

distributed optimization.
Less Complexity.

Improved capacity, coverage, and cell
edge throughput.

Improved capacity, coverage, and cell
edge throughput.

1 Inter-Carrier Interference.

1.3. Massive MIMO in Wireless Sensor Networks

Wireless sensor networks (WSN) are special kinds of monitoring networks, aiming at detecting,
measuring, monitoring certain physical phenomena, such as temperature, humidity, pressure,
vibration, etc. Each device in the WSN is termed as a node that exchanges information with its
neighbour. Typically nodes have limited connectivity and energy resources. All data will be poured
into a BS node, or a sink, which in turn relays the information to an outside user, or a server to process
it. WSN nodes are small in size, cheap in cost, and do not employ complicated processing units, except
the sink node. WSN may be composed of hundreds or thousands of nodes to provide coverage on
a large scale basis.

Recently, several research efforts have been addressed to discuss the benefit of introducing
a massive number of antennas at the BS, or the sink node. Multiple antennas at the BS improve the
detection performance, the estimation performance, and energy efficiency, even when using simpler
algorithms, and linear receivers with partial CSI knowledge.

In [16], the authors studied the detection, and estimation performances of a Gaussian signal
communicating over a coherent multiple access channel in a WSN having a massive MIMO BS,
or fusion center (FC). The Neyman–Pearson detectors and the linear minimum mean squared error
(LMMSE) estimation detectors that require full CSI were studied. Significant performance gains were
achieved at low sensor transmit power levels. However, the energy detector shows improvement in
gain under both low and high sensor power assumptions.

In addition, in [17], the authors compared the performance of a low cost energy detector to that of
an expensive complex optimal detector, in a WSN having multiple antennas at the FC, both analytically
and by simulation.

Finally, the authors in [18] optimized the transmission power at each node of a WSN having
multiple antennas at the FC, using two different scenarios—in correlated and in uncorrelated fading
channels with noise. The authors proved that the total power consumption at the nodes is saved as the
number of antennas increases.

2. Homogeneous MIMO (Single Tier Systems)

Conventional MIMO systems are composed of randomly distributed multiple antenna BSs,
where each BS is serving a certain number of users. All BSs are working with the same access methods,
diversity techniques, and type of transmission. The average transmit power per unit service area is
also often the same (subjected to power control algorithms).
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Figure 2 shows the uplink and the downlink of a massive MIMO single cell system. As shown in
Figure 2, the BS is composed of a few hundred service antennas serving a few hundred users each,
usually with only one antenna.

Figure 2. Uplink and downlink operation of a MIMO link.

The steps of the uplink operation are as follows [7]:

1. Encoding is employed to prepare data for transmission.
2. Pilot sequences and uplink data sequences are transmitted at the same time and over the same

frequencies from each user to the BS.
3. The BS receives the sum of data streams from all the users, and estimates the channel.
4. Decoding and detection operations produce individual data streams by utilizing the

estimated CSI.

The steps of the downlink process are as follows:

1. Beamforming: Data streams are transmitted from the BSs to only the intended users by means of
beamforming, where the different data streams may occupy the same frequencies at the same
time (space division multiplexing).

2. Precoding: The previous operation is carried out knowing the frequency response of the
propagation channels (or CSI) between each of its elements and each user and precoding the
signals accordingly.

Linear decoding or demultiplexing is employed on the uplink, while linear precoding or
multiplexing is employed on the downlink. Figure 3 shows major elements of a massive MIMO system.

Linear precoding techniques at the downlink aim to focus each signal at its desired terminal
and mitigate interference towards other terminals [1]. Meanwhile, receive combining is used in the
uplink for differentiation between signals sent from different terminals. The more the antennas used,
the finer the spatial focusing can be. Low-complexity precoding methods are mandatory and critical to
minimize the computational complexity of the precoder [19].

Unlike the conventional MIMO, massive MIMO uses linear precoders, such as maximum ratio
combining (MRC), matched filtering, conjugate beamforming, minimum mean squared error (MMSE)
receive combining, and zero-forcing (ZF) [4].
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Figure 3. MIMO system components.

2.1. Pilot Transmission

When a signal propagates from the transmitter to the receiver, it experiences the effect of
shadowing, scattering, fading, and path loss. Knowing the CSI in both forward and reverse links
is crucial for accomplishing successful transmission under various channel conditions. Training
sequences are often designed to optimize an equalizer at the receiver by providing CSI. In massive
MIMO systems, the pilot sequence is used to estimate the CSI in both directions. For downlink
transmission, the pilot sequences’ sample period should be longer than the number of transmitting
BS antennas. For uplink transmission, the pilot sequence sample period should be longer than the
number of users (K), so that the BS would learn the uplink channel matrix.

Pilot contamination is a crucial problem in massive MIMO, which is caused by non-orthogonality
of pilot sequences used in adjacent cells. Usually, reusing pilots in multiple cells is the main cause
of the problem. In this case, the estimated channel vector in any cell is the summation of all the
channel vectors of users from the neighboring cells (in addition to the original cell). As the number of
interfering cells increase, the problem exponentially grows and eventually causes system malfunction.

Various solutions were introduced to solve this problem, which are:

• Channel Estimation Methods: These are based on some channel estimation algorithm to detect
the CSI by picking up the strongest channel impulse responses, often done with less number of
pilots than users.

• Time-Shifted Pilot Based Methods: These are based on insertion of shifted pilot locations in slots
(or a shifted frame structure).

• Optimum Pilot Reuse Factor Methods: These are based on choosing a reuse factor greater than
unity optimized in some sense. In addition, please note there are significant performance gaps
that exist among different reuse patterns.

• Pilot Sequence Hopping Methods: These schemes switch users randomly to a new pilot between
time slots, which provides randomization in the pilot contamination.

• Cooperative Methods: Here, each BS tries to find unique optimum pilots that are also suitable for
other BSs.

• Cell Sectoring based Pilot Assignment: These schemes are based on sectioning the cells into
a center and edge regions. Users in neighboring border areas partly reuse sounding sequences.
This improves the quality of service by reducing the number of serviced users. However,
by significantly reducing serviceable users, it degrades the system capacity.
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• Angle of Arrival (AOA) based methods: Use the fact that non-overlapping user terminals
reusing the pilots would have different AOA. However, this needs a way to detect AOA such as
directional antennas.

2.2. Encoding Techniques

MIMO encoding is all about converting data into symbols appropriate for transmission over
multiple transmit antennas. Space multiplexing and space-time coding are the commonly used
encoding techniques, as they do not require knowledge of the CSI at the transmitter. Table 3 compares
Spatial Multiplexing, Space–Time Coding, and Spatial Modulation. MIMO encoding using known CSI
at the transmitter is known as precoding [5].

Table 3. Comparison between spacial multiplexing, space-time coding, and spatial modulation.

Spacial Multiplexing Space–Time Coding Spatial Modulation

Achieves high rates. Achieves increased reliability
through transmit diversity. Allows fewer transmit RF 1 chains.

Information is carried on the
modulation symbols.

Information is carried on the
modulation symbols.

Information is carried on the
modulation symbols in addition to

the indices of the antennas on which
transmission takes place.

Simplest (only the receiver needs to
detect transmitted symbols). Sophisticated.

Simple, but requires additional
memory to construct encoding table

at the transmitter.

Example: V-BLAST. Space–Time Trellis. STBC 2.
1 Radio-frequency; 2 Space Time Block Coding.

2.3. Channel Estimation Methods: (TDD or FDD?)

A non-stationary wireless channel needs to be re-estimated after every coherence time lap. Massive
MIMO systems were originally envisioned for time division duplex (TDD) operation, in which the
channel is periodically estimated in one direction and compensation can be applied in both directions
assuming reciprocity.

TDD systems have the following features:

1. The time required to acquire CSI does not depend on the number of BSs or users.
2. Only the BS needs to know the information about the channels to process antennas coherently.

In TDD systems, multi-user precoding in the downlink and detection in the uplink require CSI
knowledge at the BS. The resource, time or frequency needed for channel estimation is proportional to
the number of the transmit antennas.

In frequency division duplexing (FDD), uplink and downlink use different frequency bands
(different CSI in both links). The uplink channel estimation at the BS is done by letting all users send
different pilot sequences. To get the CSI for the downlink channel, the BS transmits pilot symbols to all
users. The users respond by the estimated CSI for the downlink channels [4].

CSI can be estimated at the receiver side only, or at both at the transmitter and the receiver.
Estimation at both sides has some advantages. The CSI does not have to be transmitted, which yields
low latency and high capacity. In addition, more power can be allocated to the (OFDM) subchannels
with higher channel gain. Schemes with estimation at the receiver side only experience higher outage
probability with fast fading channels but have lower complexity.

As the number of BS antennas goes up, the time required to transmit the downlink pilot symbols
increases. In addition, as the number of BS antennas grows, FDD channel estimation becomes almost
impossible and a TDD approach can resolve this issue. In TDD systems, due to channel reciprocity,
only CSI for the uplink needs to be estimated. In addition, linear MMSE based channel estimation can
provide near-optimal performance with low complexity [20].

Table 4 compares various channel estimation techniques of massive MIMO systems.
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Table 4. Different channel estimation techniques of massive MIMO.

Ref. Channel Estimation
Strategy System Type User

Antennas Channel Type Performance Metric

[21], 2013 Compressive
Sensing-Based Multiple Users Single TDD 1 , Flat-Fading

Quasi-Static Estimation Error

[22], 2013 Direction of Arrival
Estimation Multiple Users Single TDD, Ray Vectors Mean Square Errors

and Capacity Loss

[23], 2014 Semi-Orthogonal
Pilot-Assisted Multiple Users Single TDD, Rayleigh Overall Achievable

Rates

[24], 2014 Closed-Loop Beam
Alignment Single User Single FDD 2 , Gaussian Beamforming Gain

[25], 2014 Discriminatory Two-Users Multiple TDD, Rayleigh Flat
Fading Power and MSE 3

[26], 2014 Low-Complexity
Polynomial Single User Multiple TDD, Quasi-Static

Flat-Fading MSE

[27], 2014 Distributed
Compressive CSIT 4 Multiple Users Multiple FDD, Quasi-static CSI 5 MSE

[28], 2014 Linear Estimation Multiple Users Single TDD, Narrowband
Memoryless

Residue and Error
Norms

[29], 2014 Improved Multicell
MMSE 6 Multiple Users Single TDD, Rayleigh MSE

[30], 2014 CSIT Multiple Users Multiple FDD, Quasi-static CSI Mean Squared
Error

[31], 2014 Spectrum-Efficiency
Parametric Multiple Users Single FDD, Rayleigh Fading Mean Squared Error

[32], 2015 Blind Multiple Users Single TDD, NA MSE

[33], 2015 Gaussian-Mixture
Bayesian Learning Multiple Users Single TDD, NA MSE and Average

User Rate

[34], 2015 Subspace-Based Multiple Users Single TDD, Narrow band
Flat Fading

Bit Error Rate and
Eigen Value Clusters

[35], 2015 Simple DFT 7-Aided
Spatial Basis Expansion Multiple Users Single TDD, Flat Fading

The Average
Achievable Sum Rate

and MSE

[36], 2015 Bayes-Optimal Joint Multiple Users Single TDD, Flat Block
Fading

Symbol Error Rate and
MSE

[37], 2015 Adaptive Semi-Blind Multiple Users Single NA, TDD Capacity and MSE

[38], 2015 Imperfect Single User Single TDD, Spatially
Correlated BER 8

[39], 2015 Atomic Norm
Denoising-Based Multiple Users Single TDD, Flat-Fading

Quasi-Static Estimation Error

[40], 2016
Structured Compressive

Sensing-Based
Spatio-Temporal

Single User Single FDD, Fast
time-varying

Mean Squared Error,
BER, and Average

Throughput

[41], 2016 Bayes Multiple Users Single TDD, Flat block fading MSE, and SER 9

[42], 2017 Eigenvalue
Decomposition Multiple Users Single TDD, Fast fading Rate Loss, and SER

[43], 2017 Beam-Blocked Multiple Users Single FDD, Spatio
Correlation Channel

MSE, Achievable Rate,
and Reconstruction

SNR 10

[44], 2017 Joint Angle-Delay
Subspace Multiple Users Single TDD, Flat Rich

Scattering

Projection Error Power,
Path Number, and

MSE

[45], 2017 Beam-Domain Multiple Users Multiple TDD, Block-fading Mean Squared Error,
and BER

[46], 2017 Low Rank Covariance
Matrix Multiple Users Single TDD, Flat Rayleigh

fading Normalize MSE

1 Time Division Duplex; 2 Frequency Division Duplex; 3 Mean Squared Error; 4 Channel State Information at
the Transmitter; 5 Channel State Information; 6 Minimum Mean Squared Error; 7 Discrete Fourier Transform;
8 Bit Error Rate; 9 Symbol Error Rate; 10 Signal-to-Noise-Ratio.
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2.4. Detection of Encoded Signals (an Open Area of Research)

We will explain the detection techniques of encoded signals in more detail. In addition, Table 5
shows the different detection techniques in MIMO systems.

Signal detection implies accurate estimation of the transmit vector knowing the received vector
and (sometimes) the channel. Detection of MIMO encoded signals is very demanding and probably
the most important task, since the received signal is subjected to noise, fading, shadowing as well as
spatial interference. Advanced signal processing methods are required for accurate detection. Since the
elements of the transmitted vector belong to a predefined discrete alphabet, detection is harder when
the alphabet is bigger. Some detection algorithms produce soft values of the estimate of the transmitted
symbols while the others produce hard values [5]. The estimated soft values are fed into the channel
decoders in coded systems. Hard outputs like search-based algorithms test a set of discrete valued
vectors and then choose the best one among them as the output. In general, the soft fed values give a
better performance compared to hard inputs. The general trend has been to consider optimization
algorithms and artificial intelligence to achieve superior detection performance.

Detection can be done using linear or nonlinear algorithms. Linear detection generally generates
soft estimates of the transmitted vectors [5]. Linear detection has less complexity but yields lower
performance and limited spectral efficiency. The performance of linear detectors deteriorates rapidly
as the number of transmitting antennas increases.

Lattice Reduction (LR) based linear detection has better performance than ordinary linear
detection. However, instead of applying the linear transformation to the received signal model,
they apply it to an equivalent system model obtained using LR-techniques. The new channel matrix is
more orthogonal than the old one. Slicing is done on the data vector instead of the transmitted vector.

Interference cancelation detectors are nonlinear, which perform estimation and removal
of interference in multiple stages. Popular schemes are successive and parallel interference
cancelation detectors.

Table 5. Different detection techniques in MIMO.

Ref. Detection strategy System Type User
Antennas Channel Type Performance Metric

[47], 2008 Factor Graph Multiple Users Multiple Dual-polarized Sum-Rate

[48], 2010 Factor Graph Single User Multiple Clustered Scattering Mean Squared Error

[49], 2011 Factor Graph Single User Multiple Ray-Tracing Throughput

[50], 2012 Factor Graph Multiple Users Single Ray-Tracing Spatial Correlation

[51], 2012 Factor Graph Single User Multiple Frequency Selective
Fading Channel Geometric Mean

[52], 2013 Factor Graph Single User Multiple Block-Fading Average Probability of
Detection Error

[53], 2014 Factor Graph Multiple Users Multiple Gaussian Bit Error Rate

[54], 2003 Interference
Cancellation Multiple Users Multiple Flat Fading Bit Error Rate

[55], 2007 Interference
Cancellation Multiple Users Multiple Complex Gaussian Bit Error Rate

[56], 2008 Interference
Cancellation Multiple Users Multiple Gaussian Bit Error Rate

[57], 2009 Interference
Cancellation Single User Multiple NA Block Error Rate and

Throughput

[58], 2009 Interference
Cancellation Single User Multiple NA Bit Error Rate

[59], 2011 Interference
Cancellation Multiple Users Multiple Fading Packet Error Rate

[60], 2011 Interference
Cancellation Multiple Users Single Flat Fading Bit Error Rate
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Table 5. Cont.

Ref. Detection strategy System Type User
Antennas Channel Type Performance Metric

[61], 2012 Interference
Cancellation Single-user Multiple Complex Gaussian Achievable rate and Bit

Error Rate

[62], 2012 Interference
Cancellation Multiple Users Multiple Complex Gaussian Bit Error Rate

[63], 2012 Interference
Cancellation

Single and
Multiple Users Multiple Multipath Discrete-Time

Block Fading Bit Error Rate

[64], 2012 Interference
Cancellation Single User Multiple Block Fading Bit Error Rate

[65], 2014 Interference
Cancellation Single User Multiple NA Bit Error Rate

[66], 2014 Interference
Cancellation Multiple Users Multiple NA Bit Error Rate

[67], 2014 Interference
Cancellation Multiple Users Multiple Complex Gaussian Bit Error Rate

[68], 2016 Interference
Cancellation Multiple Users Single Flat Fading Bit Error Rate, and Average

Number of Computations

[68], 2017 Interference
Cancellation Multiple Users Single Flat Fading Bit Error Rate

[69], 2007 Linear Multiple Users Multiple Rayleigh Block Fading Bit Error Rate

[70], 2009 Linear Single User Multiple Rich-Scattering Flat-Fading Bit Error Rate

[71], 2011 Linear Multiple Users Multiple Frequency-Flat Fading
Empirical Cumulative
Distribution and Bit

Error Rate

[72], 2011 Linear Single User Multiple Block Fading Bit and Packet Error Rate

[73], 2012 Linear Single User Single Two-Way Relay Bit Error Rate

[74], 2013 Linear Multiple Users Multiple NA Block Error Rate

[75], 2013 Linear Single User Multiple Flat Fading Bit Error Rate

[76], 2013 Linear Single User Multiple Time-Varying Flat Fading Bit Error Rate

[77], 2013 Linear Single User Multiple NA Bit Error Rate

[78], 2016 Linear Multiple Users Single Block Flat Fading Sum Rate

[79], 2008 Local Search Multiple Users Single Rayleigh flat Bit Error Rate

[80], 2015 Local Search Single User Multiple NA Bit Error Rate

[81], 2016 Local Search Multiple Users Single Flat Fading
Bit Error Rate, and Average

Number of Arithmetic
Operations

[82], 2016 Local Search Multiple Users Single Quasi-Static Flat Fading
Bit Error Rate, and

Normalized Spectral
Efficiency

[83], 2007 1 LR-Aided Multiple Users Multiple NA Bit, Packet error rate and
Throughput

[84], 2008 LR-Aided Multiple Users Multiple Flat-Fading Quasi-Static Bit Error Rate

[85], 2010 LR-Aided Multiple Users Multiple Rayleigh faded Bit Error Rate

[86], 2010 LR-Aided Single User Multiple Flat-Fading Bit Error Rate

[87], 2011 LR-Aided Single User Multiple Flat-Fading Bit Error Rate

[71], 2011 LR-Aided Single User Multiple Frequency-Flat Fading
Empirical Cumulative

Distribution Function and
Bit Error Rate

[88], 2012 LR-Aided Single User Multiple Quasi-Stationary (Block
Fading)

Average Orthogonality
Defect and Bit Error Rate

[89], 2012 LR-Aided Single User Multiple Rayleigh Flat-Fading Bit Error Rate

[90], 2012 LR-Aided Single User Multiple NA Bit Error Rate

[75], 2013 LR-Aided Single User Multiple Flat Fading Bit Error Rate

[91], 2014 LR-Aided Single User Multiple Flat Fading Bit Error Rate

[91], 2014 LR-Aided Three-User Multiple Frequency Flat Fading Bit Error Rate

[92], 2014 LR-Aided Single User Multiple Rayleigh Flat-Fading Channel Correlation Effect
and Bit Error Rate
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Table 5. Cont.

Ref. Detection Strategy System Type User
Antennas Channel Type Performance Metric

[93], 2016 LR-Aided Multiple Users Multiple Rayleigh Flat-Fading Bit Error Rate, Sum Rate,
and Plog Cond

[94], 2016 LR-Aided Multiple Users Multiple Quasi-Static Block Fading Bit Error Rate

[95], 2017 LR-Aided Multiple Users Single Rayleigh Flat-Fading Bit Error Rate, and
Average Flops

[96], 2005 2 MCMC Single User Multiple Flat Fading Bit Error Rate

[97], 2007 MCMC Single User Multiple Flat Fading Bit Error Rate

[98], 2008 MCMC Single User Single Block Fading Bit Error Rate

[58], 2009 MCMC Single User Multiple NA Bit Error Rate

[99], 2011 MCMC Single User Multiple NA Bit Error Rate

[100], 2011 MCMC Single User Multiple NA Bit Error Rate

[101], 2012 MCMC Multiple Users Multiple Frequency Non-Selective
Fading Bit Error Rate

[102], 2015 MCMC Multiple Users Single NA Bit Error Rate

[103], 2016 MCMC Multiple Users Single NA Bit Error Rate

[104], 2016 MCMC Multiple Users Single NA Bit Error Rate

[105], 2006 Optimum Detection Single User Multiple Uncorrelated Rayleigh
Fading Bit Error Rate

[106], 2007 Optimum Detection Single User Multiple Quasi-Static Frame Error Rate

[107], 2007 Optimum Detection Single User Multiple Flat Rayleigh Fading Bit Error Rate

[108], 2009 Optimum Detection Multiple Users Multiple NA Bit Error Rate

[109], 2009 Optimum Detection Single User Multiple Block fading Frame Error Rate

[110], 2015 Optimum Detection Multiple Users Single Rayleigh Fading Bit Error Rate, and Flops

[111], 2016 Optimum Detection Multiple Users Single Rayleigh Fading
Bit Error Rate, Frame Error

Rate, and Normalized
Info Rates

[112], 2006 Probabilistic Data
Association Multiple Users Multiple Quasi-Static Rayleigh

Fading Bit Error Rate

[113], 2008 Probabilistic Data
Association Single User Multiple NA Bit Error Rate

[114], 2009 Probabilistic Data
Association Single User Multiple NA Bit Error Rate

[115], 2011 Probabilistic Data
Association Single User Multiple NA Bit and Symbol Error Rate

[115], 2011 Probabilistic Data
Association Single User Multiple NA Bit Error Rate

[116], 2013 Probabilistic Data
Association Multiple Users Multiple Nakagami-m Fading Bit Error Rate

[117], 2013 Probabilistic Data
Association Multiple Users Multiple Nakagami-m Fading Bit Error Rate

[118], 2013 Probabilistic Data
Association Single User Multiple Nakagami-m Fading Bit Error Rate

[119], 2017 Probabilistic Data
Association Multiple Users Single Flat Rayleigh Fading Bit Error Rate

[120], 2008 Soft-Input Soft-Output Multiple Users Single Flat Rayleigh Fading Bit Error Rate

[121], 2009 Soft-Input Soft-Output Multiple Users Single Rayleigh Multi-Path
Fading

Average Complexity,
and Rate

[122], 2014 Soft-Input Soft-Output Multiple Users Single Rayleigh Fading Frame Error Rate
1 Lattice Reduction; 2 Monte Carlo Markov Chain.

There are optimal detectors such as Maximum Likelihood Detectors. Local search detectors also
seek for optimal solution. However, these methods have an issue of huge problem size, as well as the
lack of knowledge of the problem structure. The good thing about local search is its neighborhood
function that guides the search to a right solution. Another popular technique is the polynomial time
approximation algorithm, but it gives an inferior solution.



Electronics 2017, 6, 63 12 of 29

Tabu search is a mathematical optimization method that is used to solve combinatorial
optimization problems. It is effective when the problem size gets very large. It has the ability of
quickly find near-optimal solutions [5].

Low-complexity MIMO uses detection based on probabilistic data association. Remote sensing
applications have been using this detection method for target tracking for some time. Since signals
coming from the targets are weak, the detection threshold is lower. However, this leads to detection of
additional unwanted signals and noise. Data association means to specify which measurements are
the most suitable to be used in tracking filters. This technique’s principal aim is to track targets where
there is uncertainty in their data association [5].

2.5. Beamforming

Beamforming is a technique that enables focusing the signal from multiple antennas into one
strong beam, minimizing energy in side lobes at the transmitter end. At the receiver, beamforming
refers to a kind of spatial multiplexing that combines the received signals to add up in a certain direction,
and rejecting the signals coming from any other direction, and considering them as interference.
The direction control of the signal is done by adjusting the weights of the signal phase amplitudes of
multiple antennas. Beamforming techniques are categorized into:

• Fixed beamformers that employ fixed weights and phases to combine the signals without
considering the properties of the received signals.

• Adaptive beamformers that may steer the direction of the main lobe in the desired direction,
adaptively minimizing interference.

Table 6 describes the different beamforming techniques recently discussed in the literature for
multiple user MIMO.

Table 6. Different beamforming techniques of multiuser MIMO.

Ref. Beamforming Strategy System Type User Antennas Channel Type Topology

[123], 2005 Asymptotic Optimality Multiple Users Multiple Rician No, or
Partial CSI 1

[124], 2008 Generalized Multiple Users Multiple Flat Fading Full CSI

[125], 2011 Gram-Schmidt Orthogonal Multiple Users Multiple Gaussian Full CSI

[126], 2011 OCI 2 Multiple Users Multiple Gaussian
Narrow-Band NA

[127], 2012 Perturbation Theory of
Generalized Eigenvector Multiple Users Multiple Time-Varying Full CSI

[128], 2012 SINR 3 Constrained Multiple Users Multiple Gaussian NA

[129], 2013 Precoder Diversity
Opportunistic Multiple Users Multiple Gaussian Partial CSI

feedback

[130], 2013 Flexible coordinated Multiple Users Multiple Quasi-Static
Block-Fading Full CSI

[131], 2013 Delay-Constrained Multiple Users Single Gaussian Imperfect
CSI

[132], 2013 Improved SINR Multiple Users Multiple Rayleigh Fading Perfect CSI

[133], 2015 Interference-Nulling
Time-Reversal Multiple Users Single Rayleigh Fading Perfect CSI

[134], 2016 SINR Constrained Multiple Users Multiple Uncorrelated
Rayleigh Fading Perfect CSI

[135], 2017 Sparse Multiple Users Multiple Quasi Static Fading Perfect CSI
1 Channel State Information; 2 Other Cell Interference; 3 Signal to Interference and Noise Ratio.

MIMO Beamforming Configurations can be categorized into:

• Point to Point MIMO (PTP): Here, every antenna on the transmitter side will only communicate
with a single antenna on the receiver side. The transmitter and the receiver are provided with
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a large number of antennas to increase the data rate without increasing the bandwidth [5]. PTP
systems usually assume frequency-flat and slow fading channels.

• MU-MIMO: Where the communication is between a BS and multiple user terminals.

Figure 4 shows a PTP MIMO system. The BS has M antennas, and it transmits data
(a vector-valued signal) to a user having K antennas. This transmitted vector is multiplied by
the channel matrix to produce the received signal vector. Different users are served over different
time/frequency blocks by time division/frequency division multiplexing.

An extensive discussion on PTP MIMO is presented in the following papers:
The authors in [136] studied Array Beamforming Synthesis and related areas. The existing

beamforming techniques for PTP MIMO lack providing efficient beamformers especially in certain
situations such as under different power constraints or array sizes, certain types of channels, and with
random initializations. To solve this problem, they proposed an iterative algorithm that specifies
transmit and receive beamformers based on various channel information available to the transmitter
and the receiver.

Figure 4. Point-to-point massive MIMO link.

In [137], the authors introduced an optimum linear precoder imposed on both sum-power
and maximum eigenvalue power. In [138], the authors discussed the most spectral-efficient power
allocation strategy and specified whether it is energy efficient or not. The proposed approach in [139]
optimally switches between beamforming and Orthogonal Space–Time Block Coding by varying the
periodicity of feedback intervals and varying the amounts of channel state information for mobile users
to determine the optimum diversity feedback. The approach in [140] proposed a new adaptive symbol
mapping scheme for PTP MIMO by disordering the transmitted symbols in a frame using dynamic
mapping (either by changing the allocation order of the symbols on the antennas or by applying a
scrambling process that reverses the symbols sign). The aim of doing this was to increase the symbols’
received power and to reduce the interference between the symbols.

Table 7 compares PTP and MU-MIMO, regarding implementation and precoding complexity,
error rate, rate gain and, operation flexibility [4].

PTP MIMO is not very suitable for massive MIMO due to the following reasons:

• Training time is related to the number of antennas and becomes too high as the number of
antennas grows.

• Independent electronics chains are required for each antenna; hence, as the number of antennas
increases, the system becomes very complicated and expensive.

• Multiplexing gains fall near the edge of the cell.
• Line-of-sight conditions for compact arrays permits only one data stream [1].

MU-MIMO alleviates some of the pernicious effects of PTP MIMO.
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Beam Forming and Multiplexing with Millimeter Waves

Millimeter wave phased arrays have been devised and studied for diverse applications. Recent
works have given much concern to digital beamforming and spatial multiplexing using millimeter
wave frequencies [141].

There are many benefits of using massive mmWave multi-antenna systems, and these include the
following [8]:

• It has a significantly smaller form factor than designs established at current frequencies.
• Free space path loss (PL) would ultimately impose an upper limit on cell size. Path loss can

be beneficial in small-cell scenarios since it limits inter-cell interference and allows greater
frequency reuse.

• Growth in the number of antennas in the array, improves array gain, extends the communication
range and helps to beat PL.

• Allow dramatic increases in user bandwidth to hundreds of megahertz or even a few gigahertz
(and hence symbol periods on the order of 1 to 10 ns or less).

• Frequency selective fading may need to be addressed through either equalization or modulation.

Table 7. Difference Features Between Point-to-Point and MU-Massive MIMO.

Point-to-Point MIMO MU-MIMO

Easy to implement Not easy in capacity-achieving schemes

High sum-capacity of uplink Exactly the same

Less sum-capacity of downlink Higher sum-capacity of downlink

Users use single antenna terminals Users use single antenna terminals

More affected by the propagation environment Less affected by the propagation environment

User Selection is not flexible Flexible user choice and scheduling

Complex precoding Simple precoding

Optimal solutions to beamforming Downlink beamforming requires CSI 1knowledge at
the BS 2

Less rate gain High rate gain

More error rate Less error rate

Knowledge of uplink CSI Full knowledge of uplink and downlink CSI.

Less complexity of coding/decoding The growing complexity of coding/decoding.

Less time to acquire CSI Significant time is spent acquiring CSI, which grows
with both the number of BSs and users

1 Channel State Information; 2 Base Station.

An increasing number of papers in the literature discuss mmWave massive MIMO for next
generation 5G wireless systems. In [141], the authors gave an introduction of mmWave massive MIMO,
and then highlighted the importance of digital beamforming and spatial multiplexing as a future trend
replacing the old analog mmWave phased arrays. In addition, they briefly spoke about the design
considerations, the problems facing proper transmission like interference management, and loss of
channel orthogonality. In the end, they explained the antenna and radio frequency (RF) transceiver
architecture.

Table 8 compares the different beamforming techniques of mmWave massive MIMO.

2.6. Precoding Techniques (Linear or Nonlinear?)

It is well known that MIMO effectively utilizes multiple channels between the BS and users by
using appropriate (space-time) coding to increase system throughput.

On the other hand, the massive MIMO system works by space division multiplexing by knowing
the CSI of every link connecting the BS to a user.
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Precoding in massive MIMO systems is essentially a beamforming approach that enables
multi-streams transmission. On the other hand, linear decoding techniques aim to accurately detect
signal from the desired terminal and mitigate interference from other terminals [1]. Both linear
precoding (or multiplexing) that is employed in the downlink, and linear decoding (or demultiplexing)
that is employed in the uplink can approach the Shannon’s limit with substantial number of antennas.

Consider Table 9, which compares different precoding techniques introduced in literature for
massive MIMO networks.

Table 8. Different beamforming techniques of mmWave massive MIMO.

Ref. Beamforming
Strategy System Type User

Antennas Channel Type Performance Metric

[142], 2013 Polarization Diversity Multiple
Users Multiple Dual-Polarized Sum Rate

[143], 2014 DOA 1 Single User Multiple Clustered Scattering Mean squared error and
achievable rate

[144], 2014 Coarse Pilot-Assisted Single User Multiple Ray-Tracing Throughput

[133], 2015 Interference-Nulling
Time-Reversal

Multiple
Users Single Ray-Tracing Spatial Correlation, Power

and BER

[145], 2015 Robust RF 2 Single User Multiple Frequency Selective
Fading Channel

Geometric Mean, Outage
Capacity and

Computational Complexity

[146], 2015 AOA/AOD 3 Single User Multiple Block-Fading APEE 4 and AAEE 5

[147], 2015 Turbo-Like Tabu
Search Algorithm Single User Multiple Narrow Band Block

Fading Achievable Rate

[148], 2016 Randomly Directional Multiple
Users Single Rayleigh Fading Rich

Scattering Sum Rate

[149], 2016 Right Singular Vector Single User Multiple Multipath Rich
Scattering

Loss in SNR, and
Beamforming Gain

1 Direction of Arrival; 2 Radio-Frequency; 3 Angle of Departure; 4 Average Probability of Detection Error;
5 Average Angle Estimation Error.

Table 9. Different approaches for precoding of massive MIMO.

Ref. Technique Users User
Antennas Channel Type Performance Metric Results

[150],
2014

Conjugate
beamforming

Single and
Multiple

Users
Multiple Rician Flat Fading Average Rate Limited

[151],
2015 MMSE 1 precoder Multiple

Users Single AWGN 2 Achievable Sum
Square Error Extensive

[152],
2008

Maximal Ratio
Combining Single User Multiple AWGN Average Mutual

Information and SNR 3 Moderate

[153],
2014 ZF 4 and MRT 5 Multiple

Users Single Rayleigh Fading
Sum Rate and

Downlink Transmit
Power

Extensive

[154],
2014 Zero-Forcing Multiple

Users Single AWGN Spectral Efficiency Moderate

[155],
2011 ZF and MMSE Multiple

Users Single Slowly varying
Rayleigh Flat Fading

Sum Rate and Channel
Correlation Limited

[156],
2014

Truncated
Polynomial
Expansion

Multiple
Users Single Rayleigh Fading Transmit Power Moderate

[157],
2013

Truncated
Polynomial
Expansion

Multiple
Users Single Rayleigh Block-Fading User Rate Moderate

[158],
2014

Truncated
Polynomial
Expansion

Multiple
Users Single Rayleigh Block-Fading User Rate Moderate

[159],
2016

Block
Diagonalization

Multiple
Users Single Rayleigh Fading Mean Squared Error,

and Cell Throughput
Moderate
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Table 9. Cont.

Ref. Technique Users User
Antennas Channel Type Performance Metric Results

[160],
2017

Discrete-Phase
Constant Envelope

Multiple
Users Single Rayleigh Fading

Avereage Interference
Power, Rate Loss, and

Rate Per User

Degaraded
Compared

to the
Continuous

Phase
Algorithm,

and
Moderate
Compared

to the
Conventional

Ones

[161],
2017 Cell-Edge-Aware Multiple

Users Single Quasi-Static Coverage Probability,
and Sum Rate Per Cell Extensive

[162],
2017 Orthogonal Random Multiple

Users Multiple Block Constant Fading Coverage Probability Extensive

1 Minimum Mean Squared Error; 2 Additive White Gaussian Noise; 3 Signal-to-Noise-Ratio; 4 Zero Forcing;
5 Maximum Ratio Transmission.

Received signals from different terminals are combined in the uplink using appropriate decoding.
The more the antennas are used, the finer the spatial focusing can be so that a large array is built in
practice. The use of nonlinear but power efficient RF front-end amplifiers are preferred to minimize
power consumption in this high bit rate scenario (Note that energy per bit will decrease in proportion
to the square bit rate. Hence, the transmit power has to be very high at Gigabit data rates.) Therefore,
to avoid signal distortion at nonlinear amplifiers, often the transmit signal is required to have
a low peak-to-average-power-ratio (PAPR), which is difficult to achieve, especially in orthogonal
frequency-division multiplexing (OFDM) environments. Several PAPR reduction techniques and
precoding can hence be fruitful. Furthermore, precoding with such power-efficient amplifier constraints
leads to improvement in the power efficiency of the entire system.

Low-complexity precoding methods are mandatory and critical to minimize the computational
complexity of the precoder [19]. A recent study mentions that single-carrier modulation (SCM)
can, in theory, fulfill near-optimal sum rate performance in massive MIMO systems operating at
low-transmit-power-to-receiver-noise-power ratios, distinct from the channel power delay profile and
with an equalization-free receiver [141]. In SCM, the PAPR performance is also optimally maintaining
a constant envelope.

For conventional MIMO systems, both nonlinear precoding and linear precoding techniques
are used without preferences, although nonlinear methods, such as dirty-paper-coding (DPC)
and lattice-aided methods, have better performance with higher implementation complexity. Unlike the
conventional MIMO, massive MIMO systems use linear precoders, such as maximal ratio combining
(MRC), matched filtering, conjugate beamforming, minimum mean squared error (MMSE) and
zero-forcing (ZF) [4].

Table 10 makes a comparison between MRC, MMSE, and ZF precoding techniques.
In addition, Figure 5 shows a comparison between MMSE, ZF, and MRC precoding techniques vs.

the number of BS antennas.
In MRC, the multiple antenna transmitter uses the channel estimate of a terminal to maximize

the strength of that terminal’s signal by adding the signal components coherently. MRC precoding
maximizes the SNR and works well in the massive MIMO system, since the base station radiates low
signal power to the users on average.
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Table 10. Comparison between the performance of ZF precoding, MMSE precoding, and
MRC precoding.

Performance Metric ZF 1 Precoding MMSE 2 Precoding MRC 3 Precoding

Achievable rate Optimum (very high) Medium Less

Performance with respect
to power

Better at high transmission
power

Best performance at high and
low transmission powers

Better at low transmission
power

Performance at high SNR 4 Better Converges to ZF Less

Performance at low SNR Less Good Good

BER 5 High Low Highest

Number of served users Low Highest High

Interferences ( Inter-cell
and Multiuser) Suppresses Treated as extra additive noise More

Capacity Low Linear capacity growth with
antennas Very low

Number of antennas Needs more antennas Capability to work with fewer
antennas More is better

Channel matrix
Uses Pseudo-inverse of the
estimated channel matrix to
cancel Inter user interference

Uses MSE of estimated channel
matrix

Uses the complex
conjugate of the estimated

channel matrix

Working condition
Not necessarily able to work

under high inter-cell
interference

Capability to work under high
inter-cell interference

conditions

Cannot work under very
high inter-cell interference

1 Zero Forcing; 2 Minimum Mean Squared Error; 3 Maximum Ratio Combining; 4 Signal-to-Noise-Ratio;
5 Bit Error Rate.
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Figure 5. An illustration of the spectral efficiency of a massive MIMO system serving 16 users in under
the Rayleigh fading channel (with various precoding methods).

ZF precoding is a method of spatial signal processing by which the transmitter can null out
multiuser interference signals. In general, ZF precoder performs well under high SNR conditions.

The ZF precoder outperforms MRC, as shown in Figure 5 in performance as well as in
computational complexity. It also suppresses inter-cell interference at the cost of reducing the array
gain [6]. It is noted that spectral efficiency increases as the number of BS antennas grows. In addition,
the figure shows the superiority of the performance of MMSE, especially in massive MIMO.

MMSE precoding is the optimal linear precoding in a massive MIMO downlink system.
This technique uses the mean square error (MSE). The Lagrangian technique is used to optimize
this precoder, using the average power of each transmitting antenna as the constraint.
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Advantages of MMSE are [163]:

1. Its combining receiver creates one scalar channel per terminal, thus balancing between amplifying
the signals and suppressing the interference.

2. The remaining interference is treated as extra additive noise; thus, conventional single-user
detection algorithms can be applied.

3. Performance improves by adding more BS antennas.
4. Small-scale fading averages out over the array.

Other widely used linear precoding and decoding schemes are matched filtering (MF) and
conjugate beamforming (CB). Advantages of these techniques are:

1. Signal processing can be performed locally at each antenna.
2. A decentralized architecture for the antenna array. This means that if few antennas are lost, or in

sleep mode, the rest may takeover without affecting the performance too much [164].

There are new precoding techniques introduced in the literature for millimeter-wave massive
MIMO. In [165], the authors proposed a hybrid precoding scheme combining both analog and digital
precoding to overcome the high signal attenuation that happens at mmWave frequencies using
a non-complex sub array. This work reiterated the benefit of hybrid analog/digital precoding work
that optimizes the achievable capacity of each antenna array by employing the concept of consecutive
interference cancellation.

3. Multi-Tier Networks Very Promising for the Next Century?

All the systems that we have described in the previous sections were about homogeneous MIMO
cellular networks, where the system has a single network, with a number of BSs—either cooperating
or non-cooperating to serve a number of simultaneous homogeneous users. Typically, in those systems,
the BSs were identical in terms of average transmit power per unit area, access techniques, number of
antennas, modulation and estimation schemes.

The new trend in wireless communications to meet the growing demand is the introduction of low
power nodes (Femto-cell, Pico-cells, Wi-Fi access points, distributed antennas, etc.) with heterogeneous
users. In these MIMO heterogeneous networks (HetNets), where there are multiple tiers working
together at the same time, the capacity increases tremendously.

Figure 6 shows a Poisson point process (PPP)-based two-tier cellular network with a
20 km × 20 km area, consisting of femto-cells (crosses) and macrocells (dots). With the aid of stochastic
geometry, the BS locations in each tier were modeled using a dependent or independent PPP to
distribute the BSs randomly in different locations. The users associated with those BSs were modeled
using a dependent PPP (using a parent–child relationship).

HetNets can either be open access or closed access. In open access HetNets, the users can work
under any BS in any tier, whereas in closed access networks, the user has limited access to certain
tiers only, or has access to only the BSs in its own tier. Table 11 highlights the differences between
homogeneous and heterogeneous networks.

Authors in [166] modeled the MIMO HetNets in a fixed cell size (allocation of users to BSs is based
on fixed distances). Inter-cell and inter-tier interference were considered in this model approximating
the interference distribution using a Gamma function. Outage probability and per user capacity
(as a function of the distance to the cell center) were studied. Performances of single and multi-tier
cases were compared. One limitation of this paper is the assumption of a fixed cell size. In turn,
the users are associated with the BSs based on fixed distances, which may not be realistic. In addition,
the numerical integrals need to be computed.
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Figure 6. An illustration of a Poisson point process (PPP)-based two-tier cellular network deployment.
A 20 km × 20 km area, consisting of femto-cells (crosses) and macrocells (dots), is shown.

Table 11. Comparison between homogeneous and heterogeneous MIMO systems.

Heterogeneous MIMO Homogeneous MIMO

Models the actual systems, which are composed of
multiple networks operating together at the same time,

and area
Non-realistic

High sum-capacity in the order of thousands Capacity increase, but not as HetNets

Users can access any BS 1 in any tier Users access only the closest BS

More interference is considered (inter-tier interference) Less affected by interference

Flexible user choice and scheduling User Selection is not flexible

More flexibility and degrees of freedom Less interference

Optimal solutions to beamforming Downlink beamforming requires CSI 2 knowledge at
the BS

Networks with different capabilities Limited

More error rate Less error rate

BSs have different transmit powers, and
multi-access methods Everything is fixed

Less overhead load Users are overloaded with the long range transmission
to BS

Network life-time is more Less network life-time
1 Base Station; 2 Channel State Information.

Authors of [167] studied multi antenna HetNets with zero-forcing precoding. They compared the
coverage probability and rate per user for both open access (where users are allowed to access any BS
in any tier) and closed access networks (where users are granted access to certain BSs in restricted tiers).
The authors used a cell association criterion based on the maximum Signal to Interference Plus Noise
Ratio (SINR). In addition, the authors compared the performance with various combinations of
multiple antenna techniques. The performance when the BS is serving a single user in each resource
block (by SISO or single user beamforming (SU-BF) is compared with MIMO configuration serving
multiple blocks (by space division multiple access (SDMA)). However, the approximations need
more characterizations. In addition, the numerical integrals need extra computational tools to obtain
the results.

In [168], the authors introduced the fractional frequency reuse (FFR) technique to manage the
cross-tier interference (strict FFR and soft frequency reuse). In addition, the authors derived the
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coverage probability for open-access and closed-access networks (different association policies) and the
average rate for the cell edge users. Finally, the authors compared the performance of different FFR
and access cases under the full SDMA and SU-BF.

In [169], the energy efficiency of different MIMO diversity schemes and antenna configurations
using adaptive modulation of a two-tier network is studied to ensure a minimum quality of service
(QoS). Energy is saved while obtaining the same throughput by using femto-cells with sleeping
mode capabilities, where only a few of the available antennas are used. This paper identifies that
the diversity schemes that provide the highest throughput is different than the ones that achieve the
highest energy efficiency.

Finally, in [170], the authors derived general and asymptotic success probability expressions for
multi-user HetNets with ZF precoding, using a novel Toeplitz matrix representation. In addition,
they showed the effect of the BS density on the success probability and derived an optimal BS density
for obtaining the maximum area spectral efficiency (ASE) while guaranteeing a certain link reliability.
This paper is straightforward with a simple system model. More sophisticated system models should
be investigated.

In addition, the advantages of introducing mmWave frequency operation in HetNets is discussed
in [171]. The authors discussed the potentials and challenges of the 5G HetNet wireless networks,
which merge mmWave technologies into a massive MIMO approach. First, they discussed the extended
requirements for 5G wireless networks with an enormous number of devices that demand more
concealment, data rate, better energy and cost efficiency. Then, they discussed the difficulties including
traffic arrangement, radio resource management, mobility management, and low-cost beamforming.
In the end, they presented some design and case studies to illustrate how to address some of the
challenges in 5G MIMO HetNet.

4. Conclusions

Massive MIMO is an innovative technology that helps in the achievement of higher system
throughput and reliable transmission for 5G and beyond wireless networks.

In this paper, we discussed major elements of massive MIMO networks, namely pilot usage,
precoding, encoding, detection, and beamforming. We provided a detailed overview of some of
the research efforts done in this area so far. We observe that fast booming HetNets would be more
promising to improve data rates and provide flexibility in user-BS association.

There are many interconnected design issues that need to be properly understood and solved
before widespread deployment of the massive MIMO technology. Several open research challenges
are still facing the progress and development of this emerging technology.

More research is needed to introduce new adaptive beamforming techniques to achieve higher
received symbol power and less interference. In addition, introducing efficient beamformers for PTP
networks to work under different constraints and with different types of channels would be beneficial
for enabling PTP widespread application in massive MIMO systems.

As detection becomes harder when the number of BS antennas increases, more advanced
signal processing methods are required for better detection and are associated with introducing
low complexity optimum and nonlinear detectors, and precoders to improve the performance and
reduce the computational complexity.

Introducing new techniques to reduce the training time, especially when the number of antennas
increases is needed, will, in turn, improve the performance of FDD systems in massive MIMO to
improve channel gain, capacity, received power, and reduce latency.

As the number of interfering cells increases, pilot contamination exponentially grows up,
and prevents proper system function. Introduced methods to reduce pilot contamination are very
limited and aim to reduce the effect of the problem, but do not provide a final solution.

The benefits and issues of using the mmWave frequency band, and its application on beamforming,
channel estimation, and precoding techniques in homogeneous and heterogeneous systems, need
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better research studies. They are thought to increase user bandwidth, reduce form factor, limit inter
cell interference, and allow greater frequency reuse.

In WSNs, more research is needed on the optimum low cost, less complex detectors to improve
gain, and boosting energy efficiency.

Finally, in HetNets, more traffic management, radio resource management, network planning, and
inter-tier interference management are required, as those networks are more complicated, have more
dense cells, and any user can access any BS in any tier. In addition, more research efforts should be
directed to study various performance metrics in HetNets in the massive MIMO context.
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