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Abstract

Background: Genome-wide expression data of gene microarrays can be used to infer gene networks. At a cellular level, a
gene network provides a picture of the modules in which genes are densely connected, and of the hub genes, which are
highly connected with other genes. A gene network is useful to identify the genes involved in the same pathway, in a
protein complex or that are co-regulated. In this study, we used different methods to find gene networks in the ciliate
Tetrahymena thermophila, and describe some important properties of this network, such as modules and hubs.

Methodology/Principal Findings: Using 67 single channel microarrays, we constructed the Tetrahymena gene network
(TGN) using three methods: the Pearson correlation coefficient (PCC), the Spearman correlation coefficient (SCC) and the
context likelihood of relatedness (CLR) algorithm. The accuracy and coverage of the three networks were evaluated using
four conserved protein complexes in yeast. The CLR network with a Z-score threshold 3.49 was determined to be the most
robust. The TGN was partitioned, and 55 modules were found. In addition, analysis of the arbitrarily determined 1200 hubs
showed that these hubs could be sorted into six groups according to their expression profiles. We also investigated human
disease orthologs in Tetrahymena that are missing in yeast and provide evidence indicating that some of these are involved
in the same process in Tetrahymena as in human.

Conclusions/Significance: This study constructed a Tetrahymena gene network, provided new insights to the properties of
this biological network, and presents an important resource to study Tetrahymena genes at the pathway level.
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Introduction

High throughput gene expression data as generated by DNA

microarray technology provides insight into the behavior of

individual genes under various conditions [1]. The microarray

expression levels under different physiological states constitute an

expression profile of each gene, which can be used in genome-wide

exploration and analysis of coexpression patterns and construction

of gene networks [2]. Gene networks characterize the interactions

of bio-molecules such as the physical interactions, metabolite flow,

regulatory relationships, co-expression relationships, and more [3].

Network analysis can be used to identify related biological

processes or pathways at the cellular level, which are manifested

in the form of modules in the gene network. The module,

representing a cluster of genes which are tightly joined together

and between which there are only sparse connections, is an

important property of a gene network [4]. In addition, the hub

that represents the genes highly connected with others in a

network, is also an important property of a scale free network and

is of great biological significance [5].

Many methods such as the correlation coefficients [6], mutual

information [7,8] and reverse engineering [9,10] have been used

to infer gene networks for large scale expression data in diverse

organisms such as the yeast Saccharomyces cerevisiae [6,11], Arabidopsis

[12,13], human [14,15], the parasite Plasmodium falciparum [16] and

the fungus Aspergillus niger [17]. Tetrahymena thermophila is a protist, a

free-living ciliated protozoan widely distributed in freshwater

environments around the world [18], and is a useful and well

studied model organism for molecular and cellular biology [19].

Tetrahymena has two distinct nuclei which separate germline and

soma functions within a single cell. The diploid germline-like

micronucleus (MIC) is the storehouse of genetic information that is

passed on to sexual progeny. The polyploid soma-like macronu-

cleus (MAC) is actively transcribed during vegetative proliferation
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and determines the phenotype of the cell. The structural and

functional complexity of a Tetrahymena cell is equal to or greater

than that of human and other metazoan cells. Studies on

Tetrahymena have led to the development of a number of important

seminal paradigms and numerous scientific breakthroughs

[20,21,22]. In addition, a number of molecular genetic technol-

ogies and genomic resources have been developed [23,24].

In 2009, Miao et al. reported the first microarray platform of

the AT-rich Tetrahymena genome based on 50 microarrays of RNA

expressed at different stages of the Tetrahymena life cycle [25]. Here

we describe a Tetrahymena gene network (TGN) using these and 17

additional arrays. Three methods were adopted for this analysis,

including the Pearson correlation coefficient (PCC), Spearman

correlation coefficient (SCC) and the context likelihood of

relatedness (CLR) algorithm [26]. The performances of these

three methods were compared to determine the TGN. Two

important properties, modules and hubs, were investigated in the

TGN. Coupled with an analysis of orthologs to genes involved in

human diseases, this work provides a valuable resource for future

investigations of important biological processes and pathways in

Tetrahymena and their relationships to human illness.

Results

Constructing a Tetrahymena Gene Network
Sixty-seven Roche NimbleGen single channel microarray

samples were analyzed. After gene filtering, three methods were

used to construct gene networks: the Pearson and Spearman

correlation coefficient, and the mutual information based context

likelihood of relatedness (CLR) algorithm [26]. The modules and

hubs were determined from the global network. The biological

function categories of these modules and hubs were analyzed using

the gene ontology (GO) approach [27]. In addition, analysis of the

T. thermophila macronuclear genome sequence has identified 58

Tetrahymena orthologs of human disease genes that are missing in

yeast [19], and we also focused our analysis on these genes.

The correlation coefficient was used as the cutoff value for

Pearson and Spearman correlation methods, and the Z-score was

used for the CLR method. The number of nodes (genes) and edges

(interactions of one gene to another determined by threshold)

computed using different methods are shown in Figure 1. With

increasing correlation coefficients or Z-score, both the node and

edge number decreased. However, as the cutoff reached a

relatively high value, the decrease in edge values became slower

than that of nodes, leading to an increase in the network density.

As shown in Figure 1, 0.6 was used as the minimal cutoff value for

the two correlation methods and 3.34 (corresponding to 60%

confidence level in the FDR test) was used as the minimal cutoff Z-

score for the CLR method. Under these minimal values, the

networks of the three methods contained about the same number

of nodes (Figure 1), however, the edge numbers of these three

methods were very different. For the two correlation methods, the

edge number for the Pearson method was greater than the

Spearman method with the same accuracy, suggesting a higher

false positive rate for the PCC method. However, the PCC and the

SCC methods were 2.4 times and 1.5 times respectively the edge

number as those of the CLR method. This indicates that the CLR

method may have higher prediction accuracy than the two

correlation methods. To verify this and choose an appropriate

cutoff, we selected four yeast protein complexes and identified the

one to one orthologs between yeast and T. thermophila. The

cytoplasmic ribosomal large subunit, cytoplasmic ribosomal small

subunit, 20S proteasome core particle and the 19S proteasome

regulatory particle, were used as benchmarks to determine the best

of these three methods and the appropriate cutoff value. Using

these four complexes, the accuracy (p value), the coverage (r value)

and the overall performance (F-score) (see Methods) were

calculated and are shown in Figure 2 and Figure S1. Comparing

the three methods, the F-score, accuracy and coverage of CLR is

consistently better than those of the other methods, especially for

the 19S proteasome regulatory particle complex which contained

19 orthologous genes. Seventeen genes were shown to exist in a

Tetrahymena proteasome complex by mass spectrometry (see below,

Module-19). It is worth noting that the PCC and SCC networks

would have to be two times larger than the CLR network (data not

shown) for getting the same accuracy and coverage, so the

specificity of the CLR method is also better than the correlation

coefficient methodology. Based on the above results, CLR was

used as the method of choice. For presentation of CLR gene

network data, the X-axis represents the FDR test confidence level.

It has been reported that the CLR algorithm performed best at

60% confidence level [26]. In our study, the four complexes

analyzed showed that the appropriate threshold is 77% for the

cytoplasmic ribosomal large subunit, 81% for the cytoplasmic

ribosomal small subunit, 99% for the 20S proteasome core particle

and 86% for the 19S proteasome regulatory particle. Taking into

account the accuracy and coverage, 77%, corresponding to a Z-

score of 3.49, was used as the cutoff confidence level. At this

threshold, the CLR network possessed 15,049 nodes and

1,958,477 edges, and is considered the TGN.

Functional modules of the Tetrahymena life cycle
We used the MCL algorithm to partition TGN into gene

modules. The MCL algorithm is a fast and efficient clustering

algorithm [28] that has been extensively applied in many studies,

such as the yeast protein interaction network [29], protein family

networks [28], a human coexpression network [15], and an

Arabidopsis gene coexpression network [30]. After MCL clustering,

55 modules (modules 1–55) were found for the TGN. To

investigate the functions of these modules, we performed an

enrichment analysis of biological process GO terms for 21 of the

55 modules with more than 100 genes. Data for these 21 modules

are presented in Table 1. Analysis of several modules is presented

below:

Module-1 is the largest module partitioned by the MCL

method. It has 3533 genes, and 36.43 percent (1287 genes) are

annotated by GO terms. Genes in this module are significantly

over-represented in various functions (Table S1). For these

enrichment terms, 475 of 795 genes (59.7%), are annotated by

the GO term of macromolecule metabolic process.

Within Module-1, some enriched processes include some genes

important for Tetrahymena conjugation. For example, the term

‘‘establishment or maintenance of chromatin architecture’’

includes genes Pdd1 and Pdd3. Nuclear dimorphism in Tetrahymena

identifies specific features in conjugation. During MAC differen-

tiation, several types of developmentally programmed DNA

rearrangements occur [31]. One such rearrangement is the

deletion of segments of the MIC genome known as internally

eliminated sequences (IESs). A number of genes have been shown

to be involved in programmed DNA elimination, such as Twi1

[32], Dcl1 [33], Pdd1 and Pdd3 [34], CnjB [35], Ema1 [36], Giw1

[37], Ezl1 [38], Hen1 [39], Tpb2 [40], and Die5 [41]. We have

inspected these 11 genes in our network, and found they are

closely related to each other with high Z-scores (Figure S2). In

addition, there are 147 genes each connected to 11 genes (data not

shown). The extracted sub-network of these 158 genes (147 plus 11

genes) shows a high edge-node ratio (network density) of 77 (Figure

S2), suggesting that the network consisting of these genes are good

Gene Network Landscape of Tetrahymena
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candidates to be involved in DNA rearrangement during

conjugation in Tetrahymena.

Module-2 contains 1703 genes with 46.4 percent annotated by

GO terms. For this module, a significant overrepresentation of

genes are involved in oxidative phosphorylation (Table S1),

represented by GO terms such as oxidation reduction, hydrogen

transport, oxygen and reactive oxygen species, metabolic process,

and transmembrane ion transport. In the oxidative phosphoryla-

tion pathway, there are five complexes, including the NADH-

coenzyme Q oxidoreductase (complex I), succinate-Q oxidore-

ductase (complex II), Q-cytochrome c oxidoreductase (complex

III), and cytochrome c oxidase (complex IV), and the electron

transfer and the ATP synthase (complex V). It has been reported

that there is a special Fo sector of ATP synthase in Tetrahymena and

even in the alveolate group [42]. In that study, 89 proteins were

identified in the ATP synthase complex using mass spectrometric

analysis. For the 89 proteins, 8 were encoded in the mitochondrial

genome and were not included in the microarray data, and 79

genes appeared in our TGN. We extracted the subnetwork of

these 79 genes, and found that 71 were densely connected (Figure

S3). This result suggests the high reliability of the TGN analysis. In

addition, another 66 genes were found to interact with at least 60

genes of the 71 genes densely connected genes described above

(Figure S3), which suggests that there are other genes associated

with this protein complex.

Another set of genes overrepresented in this module is involved

in glycolysis and related pathways, such as the citric acid (TCA)

cycle, the pentose phosphate pathway, starch and sucrose

metabolism, pyruvate metabolism, and propanoate metabolism

(Table S1) pathways involved in energy (ATP) and reducing power

(NADH) production [43,44]. Module-2 is closely related to energy

metabolism of Tetrahymena.

Module-19 contains 117 genes with the highest GO annotated

percent (65.8 %) and the highest percent of orthologs (also 65.8 %)

Figure 1. The node and edge number against cutoff values for three methods. For the CLR method, the cutoff value represents the Z-score
with a minimal value of 3.34 corresponding to the 60% confidence level of the FDR test; for the PCC and SCC methods, the cutoff value represents the
correlation coefficient. The minimal correlation coefficient is 0.6.
doi:10.1371/journal.pone.0020124.g001

Figure 2. Overall performance of three methods for four protein complexes. The F-score against the cutoff values (X-axis) of three methods
for each protein complex is presented. Blue, CLR method; Pink, PCC method; Green, SCC method. For the CLR method, the cutoff value means the
different confidence levels of the FDR test; for the PCC and SCC methods, the cutoff values represent the correlation coefficient.
doi:10.1371/journal.pone.0020124.g002
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with other eukaryotes (Table 1). GO enrichment analysis shows

that proteins encoded by genes in this module are significantly

involved in proteolysis with GO terms including proteolysis

involved in cellular protein catabolic process (GO: 0051603) and

regulation of protein metabolic process (GO: 0051246), (Table S1).

Comparison to the KEGG pathway also shows that this module

contains a majority of genes in the proteasome complex (KEGG

pathway: tet03050). The main function of the proteasome is to

degrade unneeded or damaged proteins by proteolysis, and the

complex is part of a major mechanism by which cells regulate the

concentration of particular proteins and degrade misfolded

proteins [45]. The most common form is the 26S proteasome

containing the 20S core particle and the 19S regulatory particle

(Figure 3-A). Using immunopurification and mass spectrometry,

we have identified 17 proteins in the 19S regulatory particle

(Figure 3-B). Sixteen of these 17 genes are densely connected, and

the other gene (TTHERM_01014660, a homolog of Rpt2) was

mispredicted by the gene model as shown by our RNA-Seq data

(unpublished data) (Figure S4), which caused an incorrect

normalization for the expression value in the microarray data.

Using the 16 genes as the bait (Figure 3-C, red nodes), we find that

each of the 13 genes (Figure 3-C, green nodes) in the 20S core

particle (annotated by the KEGG pathway) is connected to at least

13 genes in the bait. Again, setting the 29 genes (16 genes of the

19S regulatory particle and 13 genes of the 20S core particle) as

bait, we find that the other two KEGG annotated genes,

TTHERM_00471830 (a homolog of Rpn10) and TTHERM_

00476810 (another homolog of Rpn11 different from the pull

down experiment), are also densely connected to the 29 bait genes

(Figure 3-C, blue nodes), suggesting these two genes as possible

components of the Tetrahymena 26S proteasome. In addition, two

ubiquitin-associated genes (TTHERM_00471920 and

TTHERM_00355130) in Module-19 are also densely connected

to the proteasome complex, indicating that these two genes may

function in proteolysis processes.

Module-8, -13, -14 and -20 have a low GO annotated

percent (range from 15.8% to 27.8%) and a low orthologs percent

(range from 2.6% to 9.7%) with other eukaryotes (Table 1). In

addition, only a few KEGG annotated pathway genes are found in

these modules. Based on these data, these four modules should be

more representative of unique biological functions after the

divergence of the oligohymenophorean ciliates (e.g. Paramecium

and Tetrahymena, about 800 Mya). Since few Paramecium orthologs

are found, these four modules are possibly unique in Tetrahymena.

In these four modules, no enrichment of biological functions are

found in modules-13 and -20; module-8 shows a few enrichment

terms related to phosphorylation and translation (Table S1), while

the functions of module-14 may involve DNA repair, DNA

replication and DNA integration etc. (Table S1). The enrichment

functions are however likely not representative of the main

functions of these modules, since the low homolog number leads to

a few genes annotated by GO using BLAST based method in

Tetrahymena (see Materials and Methods).

We have also investigated the overrepresented GO categories of

other modules. Some modules such as module-3 (primary

metabolic process) and module-4 (transport involved) show

relatively singular functions, (Table S1). Others like modules-1

and -2 are involved with a group of related functions. This analysis

will assist in understanding the functional clusters of genes and

proteins in the ciliate Tetrahymena.

Table 1. Detailed information of 21 modules containing more than 100 genes in the TGN.

Module Gene NO GO ANNO NO GO ANNO PER BP ANNO NO Ortho No Ortho PER

Module-1 3533 1287 36.43% 795 741 20.97%

Module-2 1703 790 46.39% 548 605 35.53%

Module-3 1369 510 37.25% 327 266 19.43%

Module-4 988 271 27.43% 156 278 28.14%

Module-5 929 314 33.80% 196 179 19.27%

Module-6 836 287 34.33% 154 114 13.64%

Module-7 827 365 44.14% 233 336 40.63%

Module-8 824 156 18.93% 132 29 3.52%

Module-9 583 264 45.28% 152 307 52.66%

Module-10 565 202 35.75% 124 139 24.60%

Module-11 338 134 39.64% 86 71 21.01%

Module-12 332 93 28.01% 52 53 15.96%

Module-13 314 65 20.70% 39 27 8.60%

Module-14 313 87 27.80% 61 8 2.56%

Module-15 260 106 40.77% 64 45 17.31%

Module-16 181 82 45.30% 49 58 32.04%

Module-17 162 93 57.41% 56 89 54.94%

Module-18 127 35 27.56% 19 22 17.32%

Module-19 117 77 65.81% 64 77 65.81%

Module-20 114 18 15.79% 9 11 9.65%

Module-21 109 38 34.86% 25 22 20.18%

The modules are named by the gene numbers in descending order. GO ANNO NO, indicates the number of GO annotated genes; GO ANNO PER, indicates the
percentage of GO annotated genes; BP, biological process; Ortho, orthologs with other eukaryotes (see Materials and Methods).
doi:10.1371/journal.pone.0020124.t001
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Functional central genes in Tetrahymena
To better understand these functional centers, we investigated

the distribution and the node degree of the TGN. The distribution

of the node and edge number is shown in Figure 4. A power law

tail of this distribution demonstrating that some of the genes in the

network are highly connected with others, indicates that the

network is scale free. This suggests that there are some hubs in the

TGN. We have arbitrarily defined the top 1200 high connectively

genes as hubs of the TGN (see Materials and Methods). These

1200 hubs can be sorted into 6 groups according to their

expression profiles (Figure 5). Table S2 shows the detailed

information and enrichment functions of the 6 groups.

Group2 represents 326 hubs, which show specific high

expression levels in the early stages of Tetrahymena conjugation.

With 31.6 % of GO annotated genes, the overrepresentation

functions are involved in a series of nuclear events, including DNA

replication, DNA recombination, DNA repair and chromatin

organization processes (Table S2), which are important events

during early conjugation in Tetrahymena.

Group4 contains 78 hubs specifically expressed during growth.

Twenty-seven genes are annotated by GO terms and enrichment

analysis shows 12 of them are overrepresented with two low level

GO terms cofactor metabolic processes and cellular biosynthetic

processes (Table S2). Twenty-one genes belong to a general high

level GO term (metabolic processes) with an FDR value 8.1E-3.

These data support that these genes are important for Tetrahymena

growth.

Group6 contains 466 hub genes with 34.78 % annotated by GO

terms. This group of genes has a continuous moderate or high

expression level in all the stages of the Tetrahymena life cycle.

Enriched GO terms indicate that these hubs are involved in not

only basic cellular process such as DNA replication, transcription

and translation (Table S2) but also in cellular metabolic processes

such as glycolysis (GO:0006096) and the tricarboxylic acid cycle

(GO:0006099) (data not shown). In addition, cellular biosynthetic

processes (GO:0044249) are also over-represented with an FDR

value 7.21E-6 (Table S2). These results suggest that these 466 hubs

are essential for determination of the life cycle of this ciliate.

Group1, Group3 and Group5, shows no overrepresented

and no significant GO terms (FDR value ,0.05) in the enrichment

analysis (Table S2). For the 1200 hub genes selected, about 35 %

(Group1 and Group2) are specifically expressed in conjugation,

Figure 3. Possible components of the Tetrahymena proteasome complex. A, KEGG annotated Tetrahymena proteasome complex (http://
www.kegg.jp/kegg-bin/show_pathway?tet03050); B, Silver stained gel of a pull down experiment using Dss1 (Rpn15) as bait that identifies proteins
of the Tetrahymena proteasome; C, The network of the possible Tetrahymena proteasome complex.
doi:10.1371/journal.pone.0020124.g003

Figure 4. The distribution of the gained partners number of genes in TGN. The X-axis indicates the gained partners (each represents an
edge) of genes, the value was Log2 transformed. The Y-axis indicates the frequency of gained partners number, also Log2 transformed.
doi:10.1371/journal.pone.0020124.g004
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6.5 % (Group4) are specifically expressed in growth, and 38.8%

(Group6) are continuously, moderately, or highly expressed in

growth, starvation, and conjugation. However, no hub genes are

found specifically expressed during starvation.

A hub of the scale-free network is very important and usually

dominates the topology of the network .We have mapped the 1200

hubs to the modules that partition by the MCL method. Most of

these hubs map intensively into the three biggest modules. The

group1 and group2 hubs show the conjugation up-regulated

expression pattern, and most of these are included in module-1

with overlapped GO enrichment terms (Table S2). The group3

and group4 hubs that dominate module-2 (Table S2) show growth

up-regulated expression patterns, The group5 hubs are contained

in module-3 with few genes. The group6 hubs, dispersedly map to

four modules and overlap the enrichment GO terms with these

modules (Table S2). Thus, the group6 hubs which express at

continuous moderate or high level likely function throughout the

Tetrahymena life cycle.

Orthologs of human disease genes in T. thermophila but
not in yeast

Many human genes including human disease genes have

homologs or orthologs in model organisms where they can be

readily studied. The yeast, S. cerevisiae, is a useful unicellular model

organism, which can be used to study human genes involved in

disease [46]. Many human disease genes are however not found as

orthologs in this model organism. Tetrahymena, although phyloge-

netically distant from human, have many examples of genes found

in human but not in yeast [19,23]. Comparison between human

and Tetrahymena shows that there are 58 orthologs (54 in TGN) of

human disease genes in Tetrahymena but not in yeast [19]. We have

extracted and analyzed the partners of each of these 54 genes from

the TGN (Table S3). GO enrichment analysis suggests the

potential use of these Tetrahymena genes for studying human disease

genes (Table S3). Two cases are presented below:

Retinoblastoma, an embryonic malignant neoplasm of retinal

origin, presents in early childhood and is often bilateral. The

retinoblastoma (RB) gene was the first tumor suppressor gene

cloned. It has been reported that this gene is closely related with

cell cycle processes [47,48,49] and with DNA damage response

pathways [50,51]. The RB gene functionally interacts with

components of the cell cycle machinery [52] and is phosphorylated

by cyclin dependent kinases [53,54,55]. In addition, the RB gene is

also related to ABC transporter genes [56], to minichromosome

maintenance (MCM) genes [56] and to the transcription

regulatory protein SNF2 gene [57,58]. In Tetrahymena, there is an

ortholog (TTHERM_00439030) of the human RB gene. This

gene has 519 partners in TGN and 231 are annotated by GO

terms. The overrepresented GO terms suggest that this gene with

the partners identified may be involved in cell cycle and DNA-

related metabolic processes, such as the cell cycle process

(GO:0022402), regulation of cell cycle (GO:0051726), and DNA

repair (GO:0006281) (Table S3). For the Tetrahymena ortholog of

the human RB gene, we find cyclin genes, kinase genes, ABC

transporter genes, MCM genes and SNF2 genes connected with

TTHERM_00439030 (Table S4). We also find that this

Tetrahymena RB ortholog is significantly related to histone proteins,

Figure 5. The heatmap of the 1200 hub genes in TGN. The heatmap was clustered by Euclidean distance of expression. The levels of
expression are illustrated by different grades of color as determined from microarray data indicated along the top (from left to right). The color scale
is as follows: dark color, low expression; light color, high expression. Levels of expression were obtained for 20 points in time during three
physiological/developmental stages of the life cycle of Tetrahymena: For growing cells, L-l, L-m and L-h correspond to ,16105 cells/ml,
,3.56105 cells/ml and ,16106 cells/ml, respectively. For measurements of expression during starvation, ,26105 cells/ml were collected at intervals
of 0, 3, 6, 9, 12, 15 and 24 hours (referred to as S-0, S-3, S-6, S-9, S-12, S-15 and S-24, respectively). For measurements of expression during
conjugation, equal volumes of B2086 and CU428 cells were mixed following 18 h of starvation, and samples were collected at intervals of 0, 2, 4, 6, 8,
10, 12, 14, 16 and 18 h after mixing (referred to as C-0, C-2, C-4, C-6, C-8, C-10, C-12, C-14, C-16 and C-18, respectively). The 1,200 genes were sorted
into six groups according to clustering analysis.
doi:10.1371/journal.pone.0020124.g005
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identifying with the GO terms DNA packaging (GO:0006323) and

chromatin organization (GO:0006325) in TGN (Table S3 and S4).

This finding is consistent with reports that RB can recruit histone

methyltransferase [59] and histone deacetylase [60]. These results

suggest that the RB ortholog in Tetrahymena may play a similar role

to the human retinoblastoma gene at the molecular level. In

addition, the structural maintenance of chromosomes (SMC)

family genes and the kinesin motor domain containing genes are

also significantly related to the Tetrahymena RB ortholog (Table S4),

suggesting these genes are likely functional relateded in the

retinoblastoma pathway.

Another case of human disease gene is the NADH-ubiquinone

oxidoreductase flavoprotein 1 (NDUFV1),which encodes a 51 kD

subunit of complex I of the mitochondrial respiratory chain, and

mutation of this gene leads to a mitochondrial complex I

deficiency in human [61,62]. As this gene belongs to complex I

of electron transport, it should have many partners in the oxidative

phosphorylation pathway. The Tetrahymena ortholog

(TTHERM_00193910) of the human NDUFV1 gene has 347

partners in TGN. GO enrichment analysis results show these

genes are involved in oxidative phosphorylation related terms:

oxidation reduction, electron transport chain, tricarboxylic acid

cycle, and hydrogen transport (Table S3). This result again

suggests similar function between the human NDUFV1 gene and

the Tetrahymena ortholog.

Discussion

Physiological processes such as transcription, translation and

metabolism evolve both within and between cells. To understand

these dynamic processes, insight into interactions and combina-

tions of independent genes and events is required. Constructing

gene networks is a useful way to understand these physiological

processes, and has been widely used in many common model

organisms [6,13,15,63,64]. Based on machine learning methodol-

ogy, gene network inference methods fall into two categories,

supervised and unsupervised. Supervised methods start from a set

of known interactions, and using this predefined training set

evaluate new candidate genes as potential targets [65,66].

Unsupervised methods do not use information from known

network interactions [67,68]. The method to be used depends

on the datasets available and unsupervised methods are more

suitable to infer the gene networks in some organisms[69], such as

the ciliate protozoan Tetrahymena.

We report here the use of data from 67 expression microarrays

to construct the Tetrahymena gene network using the unsupervised

methods PCC, SCC and the CLR method. With the paucity of

experimentally determined interactions in Tetrahymena, we chose

four evolutionarily conserved protein complexes of yeast to

validate the inferred networks. The CLR network performed with

high accuracy and coverage with half of the total edges of

correlation networks. To determine an appropriate cutoff

confidence level of the CLR network, we chose the point of the

F-score curve reaching a plateau at decreasing accuracy and

increasing coverage. Faith et al. have reported 60% as the best

cutoff level in the analysis of regulatory networks in Escherichia coli

[26]. In the four protein complexes analyzed in the studies

reported here, the minimal confidence level is 77%. Since the

genes in protein complexes have a more coincident expression

pattern than other interactions such as regulation and genes in

same pathway, we chose the minimal 77% for the cutoff for the

TGN.

After determining the appropriate cutoff confidence level, we

used an efficient graphical clustering algorithm to partition the

genome-wide TGN into gene modules based on the topological

properties of the network. Genes in the same module are densely

connected and provide a meaningful template for understanding

biological processes. The GO enrichment analysis provides

overrepresented terms of each module and indicates related

biological pathways. Two examples of this analysis are: 1)

Tetrahymena has separate germline and soma functions that are

embodied by distinct nuclei within a single cell [18]. DNA

rearrangement occurs during the programmed development of the

new somatic macronucleus [70]. Module-1, although containing

3533 genes, is significantly enriched in genes related to this

process. Using TGN to predict interactions involving eleven

experimentally identified genes involved in developmentally

programmed genome reorganization indicates a complex process

involving many more genes than those identified to date. The

analysis reported here provides a basis for further experimental

analysis of developmental genome reorganization in Tetrahymena.

2) Oxidative phosphorylation is an important process in cellular

respiration. In module-2, we have detected genes involved in this

process, including components of the four complexes in the

electron transport chain and ATP synthase including a unique

ATP synthase [42]. We also found genes in related energy

producing pathways such as glycolysis and the citric acid cycle to

be closely connected to the oxidative phosphorylation genes.

We have designated 1200 genes in TGN as hubs based on

connection or interaction number. Although a commonly held

view is that hub nodes tend not to link to each other [30], we have

found these hubs could be grouped by the expression patterns.

The GO enrichment analysis for these hub groups shows that the

overrepresented terms significantly relate to the expression of some

hub groups. These results indicate some central genes playing

important roles in different stages of the Tetrahymena life cycle. No

hub genes were, however, found to be specifically expressed in the

starvation stage of the Tetrahymena life cycle. Although starvation is

an abnormal physiological condition providing an explanation for

the absence of starvation-specific hub genes, genes expressed in

both starvation and conjugation are found because starvation is

required to induce conjugation [18]. The hubs are more

concentrated in the large modules. With high connectivity, these

genes dominate the structures of these modules, and also

determine the related functions of the modules.

Tetrahymena is a unicellular microbial eukaryotic model organism

with facile genetic manipulation. Tetrahymena has a high gene

number and has more orthologs to human than to yeast [19]. We

have analyzed the connected partners in TGN of 54 orthologs of

human disease genes found in Tetrahymena but not in yeast. GO

enrichment analysis shows that these orthologs and their

interactions are likely to be involved in similar processes in human

and Tetrahymena. Retinoblastoma is a rapidly developing cancer

associated with mutation of the RB gene in humans. The RB gene

has been extensively studied in human, and many experimentally

determined interactions have illuminated involvement of the RB

pathway in a number of biological processes. Through analysis of

the partners of the Tetrahymena ortholog of the human RB gene, we

found a very similar pattern of interacting genes in our constructed

network. This suggests that Tetrahymena is potentially useful as a

model to study molecular mechanisms of human disease genes.

Materials and Methods

Microarray data and gene filtering
The data used in this work correspond to a set of genome wide

expression microarrays hybridized with mRNA samples coming

mainly from growth, starvation and conjugation stages of the
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Tetrahymena life cycle [25]. A total of 67 NimbleGen single channel

microarrays were collected and used (Table S5). Raw data are

deposited in the Gene Expression Omnibus database, under

accession numbers GSE11300, GSE26384, GSE26385 and

GSE26650.

In order to remove genes with low information content, a

combined filter criterion was used [15]. Based on between sample

variability and gene-minimal signal, the filter leaves out only those

gene that fulfilled both of the two following conditions: 1) Genes

which have an expression difference or variability between samples

(Exphighest-lowest) lower than the median of all the expression

differences calculated for each gene (Exphighest-lowest,median

Exphighest-lowest); 2) Genes which have a mean expression signal

between samples lower than the median of all the expression

signals calculated for each gene. After this filter, 12,973 genes were

removed and 15,091 genes were used to construct the gene

network.

Network construction and validation
After the filtering, the expression values for the remaining

15,091 genes were log2 transformed. Three methods were used to

construct the TGN, including the context likelihood of relatedness

(CLR) algorithm [26], Pearson correlation coefficient (PCC), and

Spearman correlation coefficient (SCC). For the CLR algorithm,

the FDR test was performed to determine the confidence level for

the Z-score.

For determining which method is the best and an appropriate

threshold for the network, we have adopted the protein complex

data of yeast to validate the network. The yeast protein complex

data were downloaded from the CYC2008 [71], which provides

an up-to-date reference set of both experimentally and computa-

tionally identified yeast protein complexes. We converted these

yeast protein complexes to the Tetrahymena protein complexes

based on the one to one orthologs. Since many of the converted

Tetrahymena protein complexes are only a few genes, only

connections for the four largest protein complexes in YeastNet v.

2 (http://www.yeastnet.org/) were used for the validation analysis

as the ‘‘true positive’’ connections (edges). The performance was

evaluated at different correlation coefficients and confidence levels,

and three parameters, accuracy, coverage and overall perfor-

mance were used to infer the performance [72]:

N The accuracy represents the percentage of inferred connec-

tions which are correct, defined as the p value.

p~
true positives

true positiveszfalse positives

N The coverage represents the percentage of true connections

that are correctly inferred by each method, defined as the r

value.

r~
true positives

true positiveszfalse negatives

N The overall performance, called F-score, represents the

compromise between p and r value, defined as follows:

F{score~
2(p � r)

pzr

The nodes and edges under different correlation coefficients

(PCC and SCC) or Z-score (CLR), the distribution of node degree

and the validation are calculated using homemade Perl scripts.

Ortholog retrieving
The OrthoMCL-DB Version 3 including 128 genomes was

downloaded from the OrthoMCL website [73]. One to one

orthologs between Tetrahymena and 9 other eukaryotes were

extracted using homemade Perl script. Since no ortholog

information between Tetrahymena and Paramecium exist in the

database, the orthologs between T. thermophila and P. tetraurelia

were determined by reciprocal best hit from a BLAST analysis.

We selected a total of 10 eukaryotes based on evolutionary

diversity, including Homo sapiens, Danio rerio, Drosophila melanogaster,

S. cerevisiae, Arabidopsis thaliana, Dictyostelium discoideum, Giardia

lamblia, Plasmodium falciparum, Trypanosoma brucei, and P. tetraurelia.

Modules, hubs and orthologs of human disease genes
Modules. We used the MCL algorithm to partition TGN into

gene modules [28]. The MCL software has an important

parameter, named –I flag. This parameter has been evaluated to

identify yeast protein complexes in protein-protein interaction

networks using 1.8 (for –I flag) as the optimal value for the network

[74]. Mao et al. [30] also used the 1.8 –I flag value to partition the

Arabidopsis gene coexpression network with a set of 16,293 selected

genes. In our work, we also chose 1.8 as the optimal value for -I

flag to partition TGN using the MCL software.

To investigate the relationship between the modules and pathways,

we extracted the KEGG pathway information from the KEGG

Pathway Database website (http://www.genome.jp/kegg/pathway.

html), and each pathway was matched to the modules. There are 90

Tetrahymena pathways in KEGG, 58 of them intensively matched to

one module or to several modules (Table S1). Others are small

pathways with few genes and matched to many modules.

Hubs. A clear definition of a hub protein in terms of the

number of interacting partners, is not well-established, and the

definition might vary from one dataset to another. Chad et al. [75]

somewhat arbitrarily chose ten partners as a cutoff value and

defined proteins with $10 partners as hubs in their work. Ashwini

et al. [76] chose genes with more than five interactions as hubs,

while Lu et al. [77] defined genes as nodes with connectivity

greater than 5. In addition, Mao et al. [30] used the top 382 genes

with at least 889 co-expression links as hubs in an Arabidopsis gene

coexpression network. We chose the top 1,200 connected genes

(about 5% of all Tetrahymena predicted proteins) as the hubs of

TGN, and each of these 1,200 genes has at least 541 partners in

TGN. The heatmap of these 1200 hubs was generated using the

Euclidean distance as the cluster method in ArrayStar version 2.0

(DNASTAR, Inc, Madison, WI).

Orthologs of human disease genes. 58 Tetrahymena

orthologs (54 in TGN) of human disease genes but not in yeast

[19] were analyzed. The partners of each of the 54 genes in TGN

were extracted to perform GO enrichment analysis.

GO enrichment analysis
The gene ontology annotation was performed using the

BLAST-based software Blast2GO for all predicted proteins of
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Tetrahymena as a reference. For the modules, groups, and disease

related genes, the test gene set, GO term enrichment analysis was

carried out by using Blast2GO. The false discovery rate (FDR)

correction was used to control the false positive rate. If a GO term

in a module showed an FDR corrected p value less than 0.05 in

comparison with the reference, then the GO term was determined

to be significantly enriched in the test gene set.

Identification of Proteasomal Proteins
C-terminal tandem affinity tagged Dss1-FZZ plasmids were

constructed as described by Witkin et al. [78]. DSS1 is the human

homolog of the yeast proteasomal component Sem1 [79]. The

Tetrahymena homolog of a protein annotated as a member of the

Dss1/Sem protein family is TTHERM_00227230 (Tetrahymena

Genome Database, http://www.ciliate.org; Rpn15).

Tetrahymena strain B2086 was biolistically transformed [80] with

the Dss1-FZZ construct. Extracts were prepared from exponen-

tially growing cells at 26105 cells/ml as described by Witkin et al.

[78]. Dss1-Fzz and associated proteins were purified first on IgG-

Sepharose (Amersham), eluted with TEV protease and subse-

quently immunopurified on M2-agarose (Sigma Chemical Co.)

before being eluted with 3xFLAG peptide (Sigma). Silver stained

bands from a 10% SDS PAGE gel were cut out, stored in 1%

acetic acid and analyzed by MALDI mass spectrometry as

described in Bowman et al. [81]. Tetrahymena proteasomal proteins

identified were compared with yeast and human proteasomal

proteins [79] and correlated with the Tetrahymena proteasome as

presented on the KEGG web site (http://www.genome.jp/kegg/

pathway.html).

Supporting Information

Figure S1 The accuracy, coverage and overall perfor-
mance against the cutoff values (X-axis) of three
methods for four protein complexes. Blue, the accuracy,

represented by p-value; pink, the coverage, represented by r-value;

yellow, the overall performance, represented by F-score. For the

CLR method, the cutoff value indicates the different confidence

levels of the FDR test; for the PCC and SCC methods, the cutoff

value represents the correlation coefficient.

(TIF)

Figure S2 The network of genes very likely involved in
MAC development. Top represents the network of 11

experimentally identified genes involved in MAC development.

The line width indicates the Z-score (also listed in the middle of

the line). Bottom, the network of genes interacting with the 11

genes, representing 158 genes in total including the upper 11

genes, green square.

(TIF)

Figure S3 The network of genes very likely involved in
the ATP synthase processes. Top represents the network of

71 genes of the ATP synthase complex identified by Mass

Spectrometry [42]. Bottom is the network of 66 genes interacting

with at least 60 of the upper 71 genes, representing a total of 137

genes including the upper 71 genes, green square.

(TIF)

Figure S4 The corrected gene model and expression
profile of TTHERM_01014660 (Rpt2). A, an incorrectly

predicted gene model of TTHERM_01014660. Red box, the

corrected gene model determined by RNA-Seq, and five of

fourteen microarray probes was located in the new gene model; B,

comparison of the previous and re- normalized expression profile

of TTHERM_01014660 in the Tetrahymena life cycle. Red, original

normalization; Blue, re-normalized using the corrected gene

model with five probes, the re-normalized expression profile is

very similar to the other genes in the 19S proteasome regulatory

particle (data not shown). For growing cells, L-l, L-m and L-h
correspond respectively to ,16105 cells/ml, ,3.56105 cells/ml

and ,16106 cells/ml. For starvation, ,26105 cells/ml were

collected at 0, 3, 6, 9, 12, 15 and 24 hours(referred to as S-0, S-3,
S-6, S-9, S-12, S-15 and S-24). For conjugation, equal numbers

of B2086 and CU428 cells were mixed after 18 h of starvation,

and samples were collected at 0, 2, 4, 6, 8, 10, 12, 14, 16 and

18 hours after mixing (referred to as C-0, C-2, C-4, C-6, C-8,
C-10, C-12, C-14, C-16 and C-18) [25].

(TIF)

Table S1 The enrichment functions of the 21 modules
containing more than 100 genes in the TGN. MF,

molecular function; BP: biological process.

(XLS)

Table S2 The enrichment functions of the 6 groups of
hub genes. GO ANNO NO, indicates the number of GO

annotated genes; GO ANNO PER indicates the percentage of GO

annotated genes; MF, molecular function; BP, biological process.

(XLS)

Table S3 The partners of 56 orthologs of human disease
genes and the enrichment functions. GO ANNO NO,

indicates the number of GO annotated genes; BP, biological

process; MF, molecular function.

(DOC)

Table S4 The partners of the Tetrahymena ortholog
(TTHERM_00439030) of human retinoblastoma gene.
These partners were extracted from TGN with Z-score . 3.49

using TTHERM_00439030 as the bait, and the annotation of

these partners were retrieved from TGD.

(XLS)

Table S5 The information of the collected microarrays.
The three stages of the Tetrahymena life cycle involved in growth,

starvation and conjugation. For growing cells, L-l, L-m and L-h
correspond respectively to ,16105 cells/ml, ,3.56105 cells/ml

and ,16106 cells/ml. For starvation, ,26105 cells/ml were

collected at 0, 3, 6, 9, 12, 15 and 24 hours(referred to as S-0, S-
3, S-6, S-9, S-12, S-15 and S-24). For conjugation, equal

numbers of B2086 and CU428 cells were mixed after 18 h of

starvation, and samples were collected at 0, 15 min, 2, 4, 6, 8, 10,

12, 14, 16 and 18 hours after mixing (referred to as C-0, C-
15 m, C-2, C-4, C-6, C-8, C-10, C-12, C-14, C-16 and C-
18). All 67 microarrays are highlighted based on GEO series.

Red, GSE11300; Green, GSE26384; Blue, GSE26385; Purple,

GSE26650.

(DOC)
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