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Abstract
We analyzed the dynamics of an influenza A/Albany/1/98 (H3N2) viral infection, using a set of
mathematical models highlighting the differences between in vivo and in vitro infection. For
example, we found that including virion loss due to cell entry was critical for the in vitro model but
not for the in vivo model. Experiments were performed on influenza virus-infected MDCK cells in
vitro inside a hollow-fiber (HF) system, which was used to continuously deliver the drug amantadine.
The HF system captures the dynamics of an influenza infection, and is a controlled environment for
producing experimental data which lend themselves well to mathematical modeling. The parameter
estimates obtained from fitting our mathematical models to the HF experimental data are consistent
with those obtained earlier for a primary infection in a human model. We found that influenza A/
Albany/1/98 (H3N2) virions under normal experimental conditions at 37°C rapidly lose infectivity
with a half-life of ~ 6.6 ± 0.2 h, and that the lifespan of productively infected MDCK cells is ~ 13 h.
Finally, using our models we estimated that the maximum efficacy of amantadine in blocking viral
infection is ~ 74%, and showed that this low maximum efficacy is likely due to the rapid development
of drug resistance.
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1 Introduction
Influenza A has become a growing concern for health authorities worldwide. The annual cost
of influenza illness and the threat of an imminent pandemic makes it all the more necessary to
revisit the treatment options currently available. In this paper, we report on a series of
experiments performed in vitro inside a hollow-fiber (HF) system. Madin-Darby canine kidney
(MDCK) cells were infected with influenza A/Albany/1/98 (H3N2) while subjected to a
constant concentration of the drug amantadine.
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Until recently, adamantane drugs, such as amantadine and rimantadine, were the primary
prophylaxis and treatment method used to prevent and control influenza infection. When used
prophylactically, the effiectiveness of adamantanes against sensitive strains of influenza A is
between 80% and 90% (Bright et al., 2006). When used as treatment it can reduce the duration
of illness by 1.5 days if administered within 48 h of symptom onset (Bright et al., 2006).
Unfortunately, resistance to adamantanes emerges rapidly during treatment and resistant
variants show no evidence of fitness impairment and are readily transmissible (Deyde et al.,
2007). This process, further amplified by the massive use of adamantanes, has led to wide-
spread resistance among circulating influenza strains worldwide with 90.5% and 15.5%
resistance prevalence among H3N2 and H1N1 strains, respectively (Deyde et al., 2007).
However, clade 2 H5N1 viruses from Africa and parts of Eurasia are still susceptible to
adamantanes (Writing Committee of the Second World Health Organization Consultation on
Clinical Aspects of Human Infection with Avian Influenza A (H5N1) Virus, 2008). In addition,
the efficacy of combination therapy, including adamantanes and neuraminidase inhibitors, is
an active subject of research (see Ilyushina et al., 2006; Gubareva et al., 2000). Thus, in these
contexts, understanding the dynamics of adamantane treatment will be important to improve
its effect.

In this paper, we use mathematical models to study the effect of drug treatment on the kinetics
on influenza within the HF system. We analyzed the results of in vitro influenza infection of
MDCK cells in the presence of a constant concentration of amantadine. To this end, we use
variations of the ordinary differential equation (ODE) models proposed by Baccam et al.
(2006) and via nonlinear parameter estimation methods parametrized the kinetics of influenza
dynamics and the effects of drug dosage on the infection in the HF system. Clearly, many
features of in vivo infection, such as the effects of innate and adaptive immune responses,
mucociliary clearance and virion transport, differ from those found in vitro. The models that
we develop highlight some of these differences and the changes in modeling strategy needed
to accommodate them.

2 Materials and methods
2.1 Cells and viruses

MDCK cells (ATCC CCL-34) were obtained from the American Type Culture Collection and
maintained in minimal essential medium (MEM) supplemented with 10% fetal bovine serum,
1% sodium pyruvate, 1% MEM nonessential amino acids, and 1% penicillin-streptomycin
solution. A/Albany/1/98 was obtained from the Clinical Microbiology Laboratory at the
Albany Medical Center Hospital. Amantadine was purchased from Fluka, Switzerland.

2.2 Hollow-fiber system
In vitro hollow fiber (HF) models for influenza infection (see Figure 1) were adapted from
Bilello et al. (1994) with the following modifications. Each hollow fiber (HF) cartridge was
charged with 108 MDCK cells in virus growth medium (MEM + 0.2% BSA + 2 µg/mL of
TPCK-treated trypsin + 1% penicillin-streptomycin solution) and the infection was initiated
by adding 100 cells pre-infected with virus. Drug delivery is controlled by a computer-driven
syringe pump attached to the central reservoir, which permits the precise delivery of drug. For
simplicity, the experiments described here were performed at a constant drug concentration
over the full duration of the experiment. Thus, only the central reservoir was used, which
contained the drug at steady-state concentration. The infection takes place in the extra-capillary
space (ECS): the 15 mL of HF reactor volume not occupied by the capillary bundles. Two ports
located on top of the HF reactor are used to deposit or remove materials from the ECS. At times
t = 22 h, 28 h, 46 h, 72 h, 96 h, and 144 h, 3 mL of the 15 mL ECS solution are harvested for
analysis. Cells and virus are obtained by mixing the uid in the ECS using the two syringes
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attached to the HF ports, sampling the ECS solution from one port, mixing the fluid in the ECS
again, sampling the ECS solution from the opposite port and mixing a third time and then
sampling the ECS from the first port. Approximately 1 mL is removed each time for a total of
3 mL. After sampling, medium is drawn into the ECS from the central reservoir so that the 15
mL are restored.

2.3 Plaque assays
To quantitate the amount of infectious virus taken from the hollow fiber at each time point, the
number of plaque forming units (PFU) present in the clarified medium was determined by
plaque assay as described by Sidwell and Smee (2000). Serial 10-fold dilutions of clarified
virus supernatant were made in virus growth medium. The MDCK cell monolayers were
washed twice with virus growth medium, and 0.5 mL of each virus dilution was added to the
monolayers in triplicate. After a 1-h adsorption period at 37°C under an atmosphere of 5%
CO2, the inoculum was removed and 5 mL of virus growth medium supplemented with 1%
DEAE dextran and 0.3% agar was added to each plate. After 2 days of incubation at 37°C
under an atmosphere of 5% CO2, the agar was removed, the monolayers were stained with
0.1% crystal violet in 20% ethanol, and the number of PFU were counted visually.

2.4 Parameter fitting
The models that we develop consist of systems of ordinary differential equations. These
equations were solved numerically using Octave 2.1.73 (Eaton et al., 2007) and its lsode
function, which uses Gear’s method if the equations are stiff, or the Adam’s method (predictor-
corrector) if they are not. The delay differential equation model (which we refer to as the delay
model) was solved using Matlab’s dde23 function in Octave.

The values of the models’ parameters were estimated by fitting log10(V ) predicted by
numerically solving the model to log10 of the experimental viral titer. The experimental viral
titer considered at each time point represents the geometric average of the three samples
collected at that time point. In addition, note that log10(V ) rather than V was used for the fits
because the measurement errors for viral titer are thought to follow a log-normal distribution.
The fit was performed using the Octave 2.1.73 (Eaton et al., 2007) leasqr function, which is
an implementation of the Levenberg-Marquardt nonlinear regression method (Seber and Wild,
1989). The 95% confidence interval (95% CI) provided for each parameter estimate
corresponds to the 25th and 975th instances of 1,000 ordered bootstrap replicates (Efron and
Tibshirani, 1986).

To quantify the quality of each fit, we computed the sum of squared residuals (SSR) between
the experimental viral titer and the models’ results. In order to compare models with different
numbers of parameters (e.g. the simple vs eclipse model or the simple model with 6 free
parameters vs the simple model with 5 free parameter and 1 fixed parameter), we also computed
the small-sample (second order) Akaike’s “An Information Criterion” (AICC) for each fit using

which when applied to our case of least square fits, can be re-written as
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where K = Npar+1, Npar is the number of parameters of the fitted model and the +1 term arises
because we estimate the variance σ2, by SSR=Npts, where Npts is the number of data points
fitted by the model, and SSR is the sum of squared residuals (Burnham and Anderson, 2002).
The model with the lowest AICC is considered to be the better model given the experimental
data it is approximating.

3 Results
3.1 Rate of loss of viral infectivity

In our experiments, viral titer is determined from plaque assays, which yield the concentration
of infectious virions (pfu/mL). Between sampling times virions cannot leave the extracellular
space of the HF. Thus, the loss of infectious virions can only come from the physical
degradation of virion integrity, loss of virions through cell entry, or the loss of virion infectivity
such that they no longer form plaques when used in plaque assays. The cell-independent loss
of virion infectivity was determined by means of the following simple experiment. Virions
were incubated in the same medium and under the same conditions that exist in the HF system
but in the absence of any cells. Viral titer was determined at various times by performing plaque
forming assays on the virus collected from the container. This scenario can be described by

which integrates to V (t) = V0 e−ct, where V (t) and V0 are the infectious influenza virus titers
at time t and time 0, respectively, and c is the first order rate constant characterizing the loss
of viral infectivity we wish to determine. A linear regression was performed to fit

to the plaque assay triplicates from three different experiments: (i) in the absence of
amantadine; (ii) with amantadine at a concentration of 5.3 µM; and (iii) with amantadine at a
concentration of 53 µM. Since the presence of amantadine did not seem to affect the rate of
loss of infectivity (see Figure 2), data from all three experiments were combined into a single
set. The linear least square regression performed on the combined data set yielded a rate of
loss of infectivity of c = 0.105 ± 0.003 h−1, corresponding to a half-life of 6.6 ± 0.2 h for
infectious influenza A/Albany/1/98 (H3N2) virions at 37°C. Viral infectivity decays should
be taken into consideration in the context of infection experiments. For example, if a viral
sample is not used quickly, the actual multiplicity of infection (MOI) may not be the desired
MOI.

3.2 Preliminary models
3.2.1 Simple model—The model

(1)

(2)
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(3)

is a modified version of the simple infection model proposed in Baccam et al. (2006) where a
term for the effect of amantadine has been added. T is the density of available target cells, I
the density of infected cells secreting virions, V is the infectious viral titer as detected by plaque
assays.

The parameters are such that β is the rate at which virions infect the available target cells, δ is
the rate of loss of productively infected cells, p is the production rate of infectious virions by
productively infected cells, and c is the rate of loss of infectious virions.

The drug used in the experiments, amantadine, is an adamantane. Adamantanes act as antiviral
agents by blocking the ion channel activity of influenza virus’ matrix M2 protein (Takeda et
al., 2002; Schnell and Chou, 2008; Stouffer et al., 2008). Virions, which bind to cell surface
sialic acid receptors, are typically brought into a cell through the endocytic pathway. The
endocytic vesicles are acidified and influenza virus’ M2 protein allows the interior of the virus
to also acidify. In the presence of adamantanes, the virion interior does not acidify and this
prevents viral uncoating. This, in turn, hinders the virions’ ability to replicate and successfully
infect new cells (Takeda et al., 2002; Schnell and Chou, 2008; Stouffer et al., 2008). For this
reason, we chose to model amantadine as affecting β, the rate at which virions successfully
infect new cells. For this purpose, we introduce a parameter for drug efficacy, ϵ(t), which
depends on the drug concentration, D(t). The pharmacodynamic effect of a drug is frequently
modeled using some form of the Emax model (Holford and Sheiner, 1981). Here, we use

(4)

where D(t) is the drug concentration at time t, ϵmax is the maximum effect of the drug such
that 0 < ϵmax ≤ 1, IC50 is the concentration of drug necessary to inhibit the response by 50%,
and the parameter n, called the Hill coefficient, controls the steepness of the sigmoidal function.
In preliminary fits, we determined that n = 1 gives a reasonable fit to the drug effect and thus
we fixed n to be 1. Also, in the experiments reported here, D(t) = D is held constant such that
ϵ(t) = ϵ is also constant over time.

3.2.2 Eclipse model—A more biologically accurate model should include an eclipse phase
(Baccam et al., 2006). The eclipse phase is the period of time that elapses between the entry
of the virus into the target cell and the release of virions produced by that newly infected cell.
The eclipse model is

(5)

(6)
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(7)

(8)

where ϵ is as in (4). T, I, and V are as in (1)–(3), and E is the density of infected cells in the
eclipse phase, which have not yet begun releasing virions. The parameters are also as in (1)–
(4) with the addition of parameter k which is the rate at which newly infected cells move out
of the eclipse phase and start releasing virions. In other words, 1/k is the mean time elapsed
between the successful infection of the cell and the initial release of virions produced by that
cell.

3.2.3 Delay model—Another way to include an eclipse phase is to introduce it as a delay in
the simple model such that

(9)

(10)

(11)

where ϵ is as in (4). T, I, and V are as in (1)–(3), and τ is the delay between viral entry into a
cell and the start of virus production by that cell. In other words, once a virion has entered a
cell the latter is removed from the target population immediately, but only enters the
productively infected cell population after a time τ. During the eclipse phase the cell does not
contribute to the dynamics of the simulation. We also neglect cell death during the eclipse
phase consistent with our neglecting death of target cells during this brief infection. We propose
this model as an alternative to the eclipse model above, where cells infected by a virion enter
the eclipse compartment and remain there on average for time 1/k, with some cells becoming
infectious (migrating to the I compartment) almost immediately and others taking as much as
an infinite amount of time to become infected. While this fixed delay model does not provide
the variability in the transition times that one would expect with any biological system, it does
prevent unrealistically short or long transitions times. Models with a distributed delay have
been used to model HIV infection (Mittler et al., 1998) and could also be used here, but involve
adding extra parameters.

3.2.4 Basic reproductive number—In order to quantitate the ability of influenza to spread
in the HF system, we computed the basic reproductive number, R0, using the parameters
estimated by fitting our model to the viral titer data. The basic reproductive number represents
the average number of cells that will become infected as a result of introducing a single infected
cell into a population of fully susceptible cells. For all three of our models, it is given by
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(12)

where T0 is the density of target cells available at time t = 0. Note that p/δ is the average number
of virions produced by an infected cell over its lifespan, and βT0/c is the average number of
cells infected per virion. Including an eclipse phase does not alter this formula as infected cells
only produce virus at rate p after the eclipse phase and during their average time of viral
production 1/δ.

3.2.5 Estimation of key parameters of influenza dynamics—We used the simple,
eclipse, and delay models to fit the viral titer data over time. To this end, each model was fitted
simultaneously to data from 6 different continuous-infusion experiments each done at a
different fixed drug concentration, D. In our fitting only D was allowed to vary between
experiments. In Table 1, we present the best fit parameters obtained, and Figure 3 shows the
fits of the models to the experimental results.

Since infection in our experiments is initiated with 108 uninfected cells mixed with 100 infected
cells deposited into the 15 mL HF reactor, the initial conditions used are T0 = 6.7 × 106 cell ·
mL−1, E0 = 0, I0 = 6.7 cell · mL−1, and V0 = 0. In addition, at each sampling time, we reduce
T, E, I, and V by 20% because 3 mL of the 15 mL of the HF extracellular fluid are harvested
for sampling. Below (see Viral Loss and Production) we will examine the effect of assuming
that the cells adhere to the fiber and thus are not removed as readily as virions. Additionally,
we fixed c = 0.105 h−1.

The fitted models are in good agreement with the experimental data, and the AICC values
indicate that the eclipse and delay models are slightly better supported by the experimental
data than the simple model. Unfortunately, the parameter estimates suggest that over its
lifespan, an infected cell will produce p/δ = 0.97 (95% confidence interval: 0.68–1.4) infectious
virions with the simple model, 1.1 (0.78–1.6) with the eclipse model, or 1.4 (0.92–1.9) with
the delay model. If an infected cell did indeed produce less than one infectious virus over its
infected lifespan, the infection could not be sustained. Strangely, however, due to the initially
large density of target cells (T0 = 6.7 × 106 cells/mL) and the small clearance rate of virions,
the basic reproductive numbers computed using (12) from the parameter estimates are much
greater than one and much greater than the average number of infectious virions produced. But
in order to be meaningful, the basic reproductive number should be smaller than the number
of virions produced by a cell over its infected lifespan: at best, each infectious virion will infect
only one cell. This is a clear indication that the models are not properly capturing the
mechanisms involved in the infection process, or that our parameter estimation procedure is
not providing accurate estimates.

3.3 Incorporating loss of virions due to cell entry
In models of in vivo viral infection virus loss due to entry into target cells is frequently neglected
as this process is a minor mechanism of virion loss compared with processes such as
phagocytosis and mucociliary clearance. An important consequence of the value obtained for
the virion clearance rate is that in our models, the rate at which a virion is lost due to target
cell entry, βT, is not negligible compared to the rate at which a virion loses infectivity, c. As
per our parameter estimates, the rate of loss of infectious virus due to loss of infectivity is c =
0.105 h−1 and the rate of loss of virus due to cell entry at time t = 0, is βT0 = 5.0 h−1. Thus,
loss of virions through cell entry cannot be neglected and a term needs to be added in all three
models to incorporate the effect of virus entry into target cells, namely
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(13)

where γ is the rate at which infectious virions are lost due to target cell entry. Note that this
new formulation of the model will affect the calculation of the basic reproductive number,
which should now be computed as

(14)

We repeated the fits to the three models where equations (3), (8), and (11) were replaced with
(13), and the viral clearance rate was still held fixed at c = 0.105 h−1. The best-fit parameter
estimates are presented in Table 2. The fit of the models to the experimental data are presented
in Figure 4, and the predicted evolution of the target and infected cell populations over the
course of the infection using the simple model are presented in Figure 5.

The fits obtained when including loss of virus due to cell entry are better (smaller AICC) than
those obtained previously, and the simple model is now statistically better supported by the
experimental data than the eclipse and delay model.

It is interesting to compare the parameter estimates obtained here for MDCK cells infected
with influenza A/Albany/1/98 (H3N2) in the HF system to those obtained in Baccam et al.
(2006) where similar models were used to analyze experimental data from human volunteers
infected with influenza A/Hong Kong/123/77 (H1N1) in the absence of drug (ϵ = 0). Table 3
presents the results side-by-side for the two systems.

For human infection, we found the length of the eclipse phase, 1/k, to be about 6.0 h, almost
twice the 3.2 h found here for the MDCK HF system. This difference, however, is not
statistically significant due to the wide confidence interval on both parameter estimates. Both
values are also in rough agreement with values reported elsewhere (Bocharov and
Romanyukha, 1994; Möhler et al., 2005).

Fitting the data from human infection, Baccam et al. (2006) estimated the length of time over
which infected cells produce virions, 1/δ, to be about 4.6 h to 6.0 h, about half of the 13 h found
here for the MDCK HF system. The smaller productively infected cell lifespan found for in
vivo infection in humans may reflect the active killing of infected cells by the immune system.
It could also be due to differences between MDCK cells used in our experiments and human
lung epithelial cells. Also, note that in Baccam et al. (2006), we used models that neglected
the loss of virions due to cell entry as non-specific and immune-mediated clearance of
infectious virions in vivo would also be taking place.

The fits to the experimental viral titer allowed us to obtain new estimates for the number of
infectious virions a cell is expected to produce over its lifespan. We found p/δ = 1.7 (1.1–2.8)
virions from the simple model, 1.6 (1.0–2.5) from the eclipse model, or 1.7 (1.2–2.4) in the
delay model. These estimates are greater than one for all models, but are still low. It is important
to note that in the plaque assay, one only measures infectious virions. However, we expect that
the majority of viral particles produced by an infected cell are non-infectious. To test this, in
another set of experiments, performed on MDCK cells in the HF system, we assayed both the
infectious viral titer (measured through plaque assays) and the total viral titer (measured
through PCR assays). We found that infectious virions made up only about 1 in 10,000 virions
(data not shown). Thus, assuming that an infected cell will produce 1 infectious virion for each
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10,000 virions produced, an infected cell is expected to produce about 17,000 virions over its
lifespan. This is in agreement with values suggested elsewhere (Bocharov and Romanyukha,
1994; Möhler et al., 2005).

We also computed the basic reproductive number using (14) and the parameter estimates found
for both models. We found it to be 11 (7.5–19) for the simple model, 36 (10–120) for the eclipse
model, and 13 (9.5–25) for the delay model. These values compare well with the basic
reproductive numbers of 11 (6.6–19) and 22 (10–46) for the human infection data analyzed
using the simple and eclipse models, respectively (Baccam et al., 2006), but they are still larger
than our estimate of the number of infectious virions produced by an infected cell over its
lifespan. Furthermore, the rate at which infectious virions infect new cells, β, is larger than the
rate at which infectious virions are lost due to cell entry, γ, suggesting that a single infectious
virion can infect more than one cell. These odd results are addressed in detail below.

3.4 Viral loss and production
The influenza infection process is such that a target cell becomes productively infected after
one or more virions have entered it. Thus, one would expect the rate at which virions are cleared
due to entry into target cell, γ, to be either larger or at least equal to the rate at which virions
infect cells, β. Unfortunately, our best parameter estimates suggest that γ is smaller than β. If
we force β = γ the fit of the simple model is not as good (AICC = −51) as when is free
(AICC = −65), with the model showing systematic deviations from the data. How then can this
be explained?

One possible explanation is that the number of virions counted by the plaque assay
underestimates the true number of infectious virions. Say the true number of infectious virions,
Vreal, is such that Vreal = αV, where V is the number of infectious virions counted by the plaque
assay and α > 1. If this were the case, our model with virion entry into cells would become

where V was replaced with Vreal=/α. Thus, the underestimation of the number of infectious
virions would affect the rate of infection of target cells, β, and the rate of production of virus,
p, such that βreal = β/α, and preal = α p. This means that the rate of infection of target cell by
virions, βreal, could in fact be equal to or greater than the rate of virus entry into target cells,
γ, provided that α is such that βreal = β/α ≤ γ While this would not affect the value of the basic
reproductive number, it could explain why we obtained values of R0 that were greater than the
number of infectious virions produced by a cell over its infected lifespan. Indeed, we would
have
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and if α is such that β/α ≤ γ, then R0 would indeed be smaller than (p α)/δ = preal/δ.

In order to have β/α ≤ γ, α would have to be at least 6.9 (2.9–21) with the simple model, 29
(5.1–330) with the eclipse model, or 8.8 (5.0–26) with the delay model when including virion
entry into cells (see β/γ in Table 2). Assuming that exactly one infectious virus is lost every
time a cell is infected implies βreal = β/α = γ. That is, α = 6.9 in the simple model, 29 in the
eclipse model, and 8.8 in the delay model. Since our estimated values of p/δ are 1.7, 1.6, and
1.7 for the simple, eclipse, and delay models, respectively, such values of α imply that an
infected cell is expected to produce at least (p α)/δ ~ 12 infectious virions according to the
simple model or as many as 46 infectious virions according to the eclipse model, or 15
according to the delay model. These numbers are now larger than their respective basic
reproductive numbers of 11, 36, and 13, as they should be. But what could account for the fact
that no more than 14% (1/6.9) of infectious virions are being counted?

Several factors may be responsible for this underestimation of the true count of infectious
virions. The most significant contribution likely comes from the fact that the virions sampled
from the HF reactor are frozen for storage, and subsequently thawed before they are counted
by plaque assay. Experimental data suggests that there is a 10-fold reduction in plaque counts
after each freeze/thaw cycle: a loss of 90% of infectious virions (data not shown). Infectious
virions may also be lost between the time of thawing and plaquing because the rate of loss of
infectivity is high, and may be even higher depending on how carefully the virions were
handled. In addition, plaques that are not well separated may be miscounted resulting in a
systematic underestimation of infectious virus count.

Unfortunately, without a good estimate of the ratio of counted infectious virions to true number
of infectious virions, our estimates for the production rate of infectious virus, the infection rate
of cells, and the number of virions needed to infect a cell need to be interpreted with caution.
Additional experiments are needed in order to estimate α, and thus to obtain better estimates
for these parameters.

3.5 Hollow fiber system sampling
At each sampling time, we reduced T, E, I, and V by 20% because 3 mL of the 15 mL of the
HF extracellular fluid is harvested for sampling. But it is possible that inside the HF, uninfected
cells and cells in the early stage of infection attach themselves solidly to the surface of the
capillary bundle. In that case, less than 20% of the cells present in the HF system may be
harvested. We explored the effect of having anywhere between 0–20% of uninfected and/or
infected cells removed at each sampling time on the parameter estimates obtained using the
simple model with virion entry into cells. We found that varying the percentage of cells
removed at each sampling time did not have a significant effect on the parameter estimates
with the exception of β/γ which varied from 6.9 when 20% of cells were removed to 29 when
no cells were removed, and ϵmax which varied from 0.56 when 20% of cells were removed to
0.67 when no cells were removed.

3.6 Models without multiple infection
In the models developed above, the effect of amantadine has been modeled by assuming that
the drug blocked infection and hence the loss of target cells. Thus with a perfect drug (ϵ = 1),
target cells would never be lost. However, in the presence of amantadine virus still enters cells.
Thus, implicit in these models is the assumption that multiple virions can enter cells and the
successive entry of virions into target cells does not reduce their ability to accommodate more
virions. Successive entry of infectious virions into cells is commonly called multiple infection.
Here because target cells are never lost when ϵ = 1, in principle an infinite number of virions
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can enter. This is not very realistic (Huang et al., 2008) and thus we decided to also explore
two different approaches to correct the models.

3.6.1 Removal of target cells after virion entry—This approach is equivalent to taking
the opposite limiting case. Whereas before an infinite number of virions could enter a target
cell, here only a single infectious virion will be allowed to enter. In other words, entry of an
infectious virus removes a cell from the target cell population whether or not this cell becomes
infected. This is modeled by removing the drug effect, (1−ϵ), from the target cell equations in
the three models, such that

(15)

leaving the equations for E, I, and V as before. Indeed, since adamantanes affect the successful
infection of the cell and not the rate of viral entry into the cell, the drug should only affect the
rate at which target cells enter the infected compartment, not the rate at which they leave the
target cell compartment.

We repeated the fit to the three models where the equation for the virus titer, V , was replaced
with (13), the equation for the target cells, T, was replaced with (15), and holding the viral
clearance rate fixed at c = 0.105 h−1.

The best-fit of this model occurred for k = ∞ (no eclipse phase). In order to keep an eclipse
phase, we fixed k = 0.25 h−1 (1/k = 4 h) consistent with values obtained here and adopted in
an earlier mathematical model for influenza A/Equi 2 (H3N8) infection in large-scale
microcarrier cultures of MDCK cells (Möhler et al., 2005). The best-fit parameter estimates
are presented in Table 4. Figure 6 shows the fit of the models to the viral titer data.

The fitted models are in good agreement with the experimental data, and the AICC values
indicate that this model formulation is slightly better supported by the experimental data than
the formulation allowing multiple viral entries into target cells. The parameter estimates have
not been significantly affected by the change, and the parameters presented in Table 2 and
Table 4 are indistinguishable given the confidence intervals.

3.6.2 Lengthening of the eclipse phase—This approach lays probably somewhere
between the case where cells are removed upon entry of a single virion and the case where
cells can absorb an infinite number of virions and remain susceptible to infection. This is
modeled by putting the drug effect, (1 − ϵ), in front of k rather than β, such that the eclipse
model becomes

(16)

(17)

(18)
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(19)

We fit this model to the data holding the viral clearance rate fixed at c = 0.105 h−1.
Unfortunately, convergence could not be achieved. In order to facilitate convergence, we fixed
the length of the eclipse phase in the absence of drug to 1/k = 4 h, as above. The best-fit
parameter estimates are presented in Table 5. Figure 7 shows the fit of the models to the viral
titer data.

The newly fitted system is in reasonable agreement with the experimental data, but the AICC
value indicates that the model formulation is actually the worst of all those proposed so far.
The parameter estimates have not been significantly affected by the change, and the parameters
presented in Table 2, Table 4, and Table 5 are indistinguishable given the confidence intervals.
From Figure 7, we can see that the fit of the model where the drug affects the length of the
eclipse phase is most similar to that of the model with viral clearance due to cell entry with
multiple infection. The two models differ most at higher drug concentrations.

3.7 Effect of amantadine
Figure 4, shows that the presence of amantadine has the effect of delaying the viral titer peak
rather than reducing it. This is because adamantanes only lower the rate of infection of new
cells. Figure 5, shows that the presence of the drug not only delays the peak of infected cells,
but also reduces the fraction of cells infected at the peak from about 68% in the absence of
drug to less than 48% at the higher drug concentrations. Note, however, that the total number
of cells infected during the experiment (area under the curve) remains roughly the same since
essentially all cells are infected.

Fitting our models to viral titer data obtained at different amantadine drug concentrations
simultaneously provides an estimate of the effect of amantadine on viral titer. We found the
IC50 to be 0.40 µM (0.23–0.78 µM) with the simple model, 0.30 µM (0.17–0.68 µM) with the
eclipse model, and 0.38 µM (0.21– 0.76 µM) with the delay model. These values are in good
agreement with the value reported in Ilyushina et al. (2006) of 0.56 µM for amantadine in the
context of an in vitro infection of MDCK cells with influenza A/Panama/2007/99 (H3N2).

We also obtained estimates of ϵmax, the maximum drug effect, of 56% (51–64%) with the
simple model, 74% (55–83%) with the eclipse model, and 60% (54–71%) with the delay model.
These low values for ϵmax are surprising given that in tissue cultures, amantadine blocks
influenza virus yield 90–99%, depending on the virus strain (Takeda et al., 2002). This
discrepancy may be due to the emergence of drug resistance under treatment. Indeed,
adamantanes are known to rapidly generate drug resistance as a single amino acid mutation is
sufficient to confer drug resistance to a mutant (Abed et al., 2005; Belshe et al., 1988; Bright
et al., 2006; Saito et al., 2003). In order to explore this possibility, we investigated the effect
of fixing ϵmax to a higher value, 95%, and setting

where τµ is the time where the virus population shifts from being composed of mostly wild-
type strains with IC50 as in Table 2 to mostly drug-resistant strains with IC50 = IC50,mutant.
Note that the IC50,mutant is not meant to represent the IC50 of a specific mutant strain (e.g.
S31N), but rather that of the combined drug-resistant mutant population. In reality, the
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development of drug-resistant mutations is a stochastic process and a number of different
mutants can emerge.

We used the least square fitting method to find the best estimates for a common IC50,mutant for
all experiments and individual τµ for each experiment with a different drug concentration (see
Table 6). In the fitting process, all other parameters were fixed and given the values presented
in Table 2. The viral titer curves resulting from this modification are presented in Figure 8.
One expects that at higher drug concentrations the mutant population will have greater selective
advantage, and thus should overtake the wild-type population more rapidly. In fact, our results
in Table 6 show that τµ is lower for higher drug concentrations.

We obtained a SSR of 5.5 fitting the viral titer curves to the simple model with ϵmax = 95%.
While this fit is not as good as that obtained using ϵmax = 56% (SSR = 3.6), it did improve the
fit at higher drug concentrations. Indeed, the fits with ϵmax = 95% are notably worse for the
intermediate drug concentrations 0.5 µM and 5.3 µM, but better for the higher concentrations
16 µM and 53.3 µM. This suggests that if the mutant population could be explicitly modeled,
a larger estimate for ϵmax would likely be found. Unfortunately, such an explicit model of the
drug resistant mutants involves too many parameters and could not be explored with the present
data. The model presented here, with τµ, is a conceptual model which shows that drug resistance
could account for the low value of ϵmax. This model, with its extra parameter exhibited very
slow and unreliable parameter convergence when fitted to the experimental data. For this
reason, we were not able to obtain bootstrap CI for the parameter estimates.

4 Discussion
We analyzed the dynamics of an influenza A/Albany/1/98 (H3N2) viral infection of MDCK
cells under various constant concentrations of amantadine using mathematical models. The
experiments were conducted in vitro inside a hollow-fiber (HF) system.

We first attempted to fit the experimental data with the models used previously in Baccam et
al. (2006), i.e. a simple model describing the population of uninfected and infected cells, and
virions, and a more realistic eclipse-phase model where the time elapsed between the entry of
the infectious virus and the release of infectious virus by the newly infected cell (the eclipse-
phase) is explicitly taken into consideration. These models, which were developed for in vivo
infection, assume virions are lost by a first-order process. We also considered a delay model
where the eclipse-phase is included as a delay in the creation of new infected cells rather than
as an additional compartment as in the eclipse-phase model.

In vitro, mucosal and immune-mediated clearance of virus cannot occur, but nonetheless we
observed loss of infectious virus within the HF system. This caused us to consider the
possibility that loss of viral infectivity rather than loss of viral particles could be playing a
significant role. Through an independent experiment, we determined that under normal
experimental conditions at 37°C, influenza A/Albany/1/98 (H3N2) virions lose infectivity
rapidly with a half-life of 6.6 h. This has important implications for the design of experimental
procedures as inconsistent delays before plating a viral inoculum for plaque counting could
result in significant discrepancies in quantitation of viral titer.

Given the nature of the mechanisms by which infectious virions are lost within the HF system,
we then considered a modified version of the standard models with one term for non-specific
clearance due to loss of infectivity, and a second term for viral loss due to entry of infectious
virus into uninfected cells. The clearance term due to loss of viral infectivity was fixed to the
value determined in our independent experiment, thus reducing the number of parameters to
be estimated. The addition of the term for loss of virions due to cell entry while fixing the value
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for the clearance rate due to loss of viral infectivity significantly improved the fit of the models
to the experimental data. This confirmed that these more accurate models better capture the
experimental reality.

Using these models, we found the lifespan of infected cells to be ~ 13 h. We were also able to
compute the basic reproductive number from our parameter estimates and found it to be 11 for
the simple model, 36 for the eclipse model, and 13 for the delay model. These values are in
good agreement with the values of 11 (simple) and 22 (eclipse) found in Baccam et al.
(2006) for an in vivo human primary infection with influenza A/HK/123/77 (H1N1).

We also obtained estimates for the parameters describing the drug effect. Our estimates for the
IC50 of amantadine of 0.4 µM for the simple model, 0.3 µM for the eclipse model, and 0.38
µM for the delay model are in good agreement with the value reported in Ilyushina et al.
(2006) of 0.56 µM for amantadine in the context of an in vitro infection of MDCK cells with
influenza A/Panama/2007/99 (H3N2). On the other hand, we found a maximum drug efficacy
for amantadine of 56%, 74%, and 60% with the simple, eclipse, and delay models, respectively.
Amantadine, however, is reported to have a maximum efficacy of 90–99%, depending on the
virus strain (Takeda et al., 2002). Using a simplistic model, we confirmed that the rapid
emergence of drug resistance over the course of treatment with amantadine could account for
the low value obtained for the maximum drug efficacy.

In conclusion, we developed a set of models of influenza infection in vitro in a hollow fiber
system that allows precise control of antiviral drug concentrations. Fitting the models to data
allowed us to estimate key parameters that characterize influenza A infection in vitro and the
effects of amantadine treatment. We determined that the emergence of drug-resistant mutants
over the course of treatment needs to be considered explicitly in order to accurately characterize
the effect of adamantanes on the dynamics of an influenza viral infection. This is particularly
important as understanding the process of emergence of drug-resistance under adamantane
treatment could be of great help in guiding the design of new drug compounds or drug-
combination therapies.
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Fig. 1. Diagram of the hollow-fiber system
The HF system allows virus-infected cells to produce high titers of cell-free virus within the
HF bundle. The extracapillary space (ECS) is separated from the medium coming from the
central reservoir with pore sizes that are large enough to allow nutrients, small compounds,
and cellular metabolites to traverse in and out of this ECS but too small for viruses and virus-
infected cells to leave the ECS. The ECS can be sampled through the sampling ports to
determine the number of virus-infected cells and the amount of cell-free virus in the HF unit
over time.
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Fig. 2. Rate of loss of infectivity of influenza virions
A linear least square regression yielded a rate of loss of infectivity (slope of the best-fit line)
of c = 0.105 ± 0.003 h−1. Since the presence of amantadine in various concentrations (red,
green, blue) did not appear to affect the rate of loss of infectivity, data from all three experiments
were combined as a single set for fitting.
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Fig. 3. Infectious viral titer predicted by the three models
The curves represent the best fit of the infectious viral titer, V , predicted by the simple model
(solid), (1)–(3), eclipse model (dashed), (5)–(8), and delay model (red), (9)–(11), to the plaque
assay data (square) from experiments performed on MDCK cells in the HF system at various
drug dosages. The vertical bars on the experimental points indicate the standard deviation of
the experimental measurements done in triplicate. Each panel corresponds to a different drug
concentration — indicated in the top right corner — maintained constant over the full duration
of the experiment. All the data were fitted simultaneously and the parameter values obtained
are given in Table 1.

Beauchemin et al. Page 18

J Theor Biol. Author manuscript; available in PMC 2009 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4. Infectious viral titer predicted by the three models with virion entry into cells
The curves represent the best fit of the infectious viral titer, V , predicted by the simple model
(solid), eclipse model (dashed), and delay model (red), modified to include loss of virus due
to cell entry as in Eqn. (13), to the plaque assay data (square) from experiments performed on
MDCK cells in the HF system at various drug dosages. Each panel corresponds to a different
drug dosage experiment where the drug is maintained at a constant concentration — indicated
in the top right corner — over the full duration of the experiment. All the data were fitted
simultaneously and the parameter values obtained are given in Table 2.
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Fig. 5. Prediction of the evolution of the cell populations over time
The populations of target, infected, and dead cells over the course of the infection are predicted
using the simple model modified to include loss of virus due to cell entry as in Eqn. (13). The
dead cells, D, are defined as dD/dt = δI, and the fraction of total cells are computed by dividing
T, I, or D by (T + I + D) at each time point. Each panel corresponds to a different drug dosage
experiment where the drug is maintained at a constant concentration — indicated in the top
right corner — over the full duration of the experiment. The parameter values used are given
in Table 2.
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Fig. 6. Infectious viral titer predicted by the three models with virion entry into cells and no multiple
infection
The curves represent the best fit of the infectious viral titer, V , predicted by the simple model
(solid), eclipse model (dashed), and delay model (red), modified to include loss of virus due
to cell entry as per (13), and no multiple infection as per (15), to the plaque assay data (square)
from experiments performed on MDCK cells in the HF system at various drug dosages. Each
panel corresponds to a different drug dosage experiment where the drug is maintained at a
constant concentration — indicated in the top right corner — over the full duration of the
experiment. All the data were fitted simultaneously and the parameter values obtained are given
in Table 4.
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Fig. 7. Infectious viral titer predicted by the eclipse model with virion entry into cells, with no
multiple infection, or with the drug affecting the length of the eclipse phase
The curves represent the best fit of the infectious viral titer, V , predicted by the eclipse model
with virion entry into cell (dashed), with no multiple infection (solid), or with the drug affecting
the length of the eclipse phase (red), to the plaque assay data (square) from experiments
performed on MDCK cells in the HF system at various drug dosages. Each panel corresponds
to a different drug dosage experiment where the drug is maintained at a constant concentration
— indicated in the top right corner — over the full duration of the experiment. All the data
were fitted simultaneously and the parameter values obtained are given in Table 2 (dashed),
Table 4 (solid), and Table 5 (red).
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Fig. 8. Effect of considering emergence of drug-resistance on viral titer predictions
The best fit of the viral titer data using the simple model with virion entry into cells, with and
without considering the effect of the emergence of drug-resistant mutants on ϵmax are
presented. The simple model using the parameters presented in Table 2 with ϵmax = 56% (black)
is compared against the simple model using ϵmax = 95% and IC50 = 0.40 µM for t ≤ τµ and
IC50 = 33 µM for t > τµ with τµ as in Table 6 (red). All other parameters are as in Table 2.
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Table 5
Parameter estimates for the eclipse model with the drug affecting the length of the eclipse phase

Param. Eclipse model (95% CI)

β (mL · h−1) 30 × 10−7 (13–82)×10−7

k (h−1) 0.25 Fixed

δ (h−1) 0.075 (0.057–0.093)

p (h−1) 0.093 (0.055–0.18)

γ(mL · h−1) 0.84 × 10−7 (0.11–3.8)×10−7

IC50 (µM) 0.27 (0.12–0.71)

ϵmax 0.83 (0.78–0.88)

1/k (h) 4.0 Fixed

1/δ (h) 13(h) (11–17)

p/δ 1.2 (0.86–2.0)

β/γ 36 (13–190)

R0 38 (24–85)

SSR 5.1 (1.9–6.8)

AICC −52 (36 pts, 6 par)
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Table 6
Parameters for the case where mutants are taken into consideration

Drug concentration
(µM)

τµ
(h)

IC50,mutant
(µM)

ϵmax

0.0 144

0.05 120

0.5 13
33 95%

5.3 15

16 9.2

53.3 0
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