Application of Grammar-Based
Codes for Lossless Compression of
Digital Mammograms

Xiaoli Li

Ryerson University

Sridhar Krishnan
Ryerson University

Ngok-Wah Ma

Ryerson University

digital.library.ryerson.cal/object/27

Please Cite:

Li, X., Krishnan, S., & Ma, N. (2006). Application of grammar-based codes for
lossless compression of digital mammograms. Journal of Electronic Imaging,
15(1), 013021.

doi:10.1117/1.2178792

Ryerson @]
University Library

library.ryerson.ca

https://library.ryerson.ca/
https://digital.library.ryerson.ca/object/27
https://doi.org/10.1117/1.2178792

Journal of Electronic Imaging 15(1), 013021 (Jan—Mar 2006)

Application of grammar-based codes for lossless
compression of digital mammograms

Xiaoli Li

Sridhar Krishnan

Ngok-Wah Ma
Ryerson University
Department of Electrical and Computer Engineering
Toronto, Ontario M5B 2K3
Canada
E-mail: x4li@ryerson.ca

Abstract. A newly developed grammar-based lossless source cod-
ing theory and its implementation was proposed in 1999 and 2000,
respectively, by Yang and Kieffer. The code first transforms the origi-
nal data sequence into an irreducible context-free grammar, which is
then compressed using arithmetic coding. In the study of grammar-
based coding for mammography applications, we encountered two
issues: processing time and limited number of single-character
grammar G variables. For the first issue, we discover a feature that
can simplify the matching subsequence search in the irreducible
grammar transform process. Using this discovery, an extended
grammar code technique is proposed and the processing time of the
grammar code can be significantly reduced. For the second issue,
we propose to use double-character symbols to increase the num-
ber of grammar variables. Under the condition that all the G vari-
ables have the same probability of being used, our analysis shows
that the double- and single-character approaches have the same
compression rates. By using the methods proposed, we show that
the grammar code can outperform three other schemes: Lempel-
Ziv-Welch (LZW), arithmetic, and Huffman on compression ratio,
and has similar error tolerance capabilities as LZW coding under
similar circumstances. © 2006 SPIE and IS&T. [DOI: 10.1117/1.2178792]

1 Introduction

Breast cancer is the most common cancer among women in
Canada. Mammograms, which are x-ray images of the
breast, allow better cancer diagnosis. Mammograms are
large size images and have scattered correlation details,
which means the gray values of pixels within one area pro-
gressively increase or decrease. To offer higher details, the
ideal resolution of digital mammograms should be up to
4096 X 4096, 12 bits per pixel. For better archival and com-
munication of such large size images, lossless compression
techniques are essential, since loss of any information is
usually unacceptable in medical applications.

The amount of work related to the lossless compression
of mammograms is very little, and most of them use lossy1
or near-lossless techniques,z’3 or lossless encoding of the
object or objects of interest within the mammograms to
achieve a high compression ratio.* Another group in the
University of South Florida adapted wavelet-based com-
pression methods for mammograms,5 and they concluded

Paper 04176RR received Nov. 5, 2004; revised manuscript received Sep.
13, 2005; accepted for publication Sep. 27, 2005; published online Feb.
24, 2006.

1017-9909/2006/15(1)/013021/11/$22.00 © 2006 SPIE and IS&T.

Journal of Electronic Imaging

013021-1

that wavelet-based methods are promising for visually loss-
less digital mammogram compression for high compression
ratio.

In the near future, it is expected that medical images will
become more multimedia in nature. For example, the im-
ages may include speech/audio commentary of radiologists,
physicians, and other clinical practitioners. In addition, pa-
tient information in text form could be encoded in the im-
age. With the ubiquity of the Internet, telemedicine appli-
cations such as web-based clinical interpretation of medical
images also holds a bright future. The well-known lossless
compression schemes of Huffman,’ Lempel-Ziv-Welch
(LZW),” and arithmetic® coding have been widely investi-
gated and used in a variety of applications including medi-
cal image analysis. The performance of these conventional
lossless compression techniques is questionable for
multimedia/multimodal sources.

In 1999 and 2000, a new universal grammar-based loss-
less source coding algorithm, called the grammar-based
code,”'” was developed by Yang and Kieffer and has been
adapted for web application. It has been shown that gram-
mar codes can specifically provide good performance on
files with multimedia characteristics.'' It is interesting to
see if this lossless compression scheme can be adapted ef-
fectively in medical imaging with multimedia nature. This
work is a first attempt to investigate the applicability of
grammar codes for compression of medical images. The
investigation procedure involves the following steps: real-
time implementation of the grammar-based code; applica-
tion to digital mammograms obtained from the Mammo-
graphic Image Analysis Society (MIAS)'?; and comparison
of its compression performance and error-tolerance ability
with three other commonly used lossless compression algo-
rithms (Huffman, arithmetic, and LZW). We encountered
two issues in the investigation: processing time and limited
number of single-character grammar variables (G vari-
ables). For the first issue, an extended grammar code tech-
nique is proposed and the processing time of the grammar
code can be significantly reduced. For the second issue, we
propose to use double-character symbols to increase the
number of grammar variables. Under the condition that all
the G variables have the same probability of being used,

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

Fig. 1 A mini-MIAS digital mammogram with well-defined/
circumscribed masses and malignant tumor.

our analysis shows that the double- and single-character
approaches have the same compression rates.

This work is organized as follows. The characteristic
features of digital mammograms are discussed in Sec. 2.
Section 3 presents the theory of the grammar-based code.
The implementation, performance results, and analysis of
the code and its extended form for compression of mam-
mograms are discussed in Sec. 4. Section 5 mainly analyzes
the error tolerance of the grammar-based code. Some con-
clusions are covered in Sec. 6.

2 Mammograms

MIAS generated a database of digital mammograms for
researchers around the world in this field. The original
MIAS database was digitized at 50-um pixel edge and rep-
resents each pixel with an eight-bit word. In the free down-
load version of the database, the resolution of images has
been reduced to 200-um pixel edge and clipped so that
every image contains 1024 X 1024 pixels. This shortened
database of 30 mammographic images is called the mini-
MIAS. The mini-MIAS images contain the significant por-
tion, or region of interest of the mammogram, and is nor-
mally used for computer-aided diagnosis of breast cancer.
The database uses portable gray map (PGM) as the format
of digital mammograms. An example of a digital mammo-
gram with a malignant tumor is shown in Fig. 1. The ex-
ample of a PGM file cut from an original 1024 X 1024
mammogram is illustrated in Fig. 2. In each PGM file, the
first line specifies the type of encoding, P2, which identifies
the PGM grayscale image, stored in ASCII, one value per
pixel. The first two numbers in the second line are width
and height of the image in pixels. The third number indi-
cates the maximum number of gray-level values repre-

Input Data Irreducible
- rammar

Irreducible context free

P2

18 5 255

175 177 179 178 175 171 172 173 174 176 176 178 175 175 173 171 175 175
177 180 182 180 175 176 175 175 173 176 178 179 178 176 175 177 178 177
181 181 181 179 179 180 181 178 179 179 178 179 179 176 176 182 182 179
181 180 182 180 180 182 181 180 181 183 181 182 181 178 179 177 181 181
180 181 182 180 183 183 183 182 180 184 183 182 180 180 177 178 178 179

Fig. 2 A PGM format sample.

sented by integer numbers. The rest of the data in the file
are pixels of different gray levels, and their total number is
width X height.

3 Grammar-Based Source Coding

Traditional lossless data compression source coding can be
divided into two groups, probability based®® and dictionary
based.” The well-known probability-based lossless source
codings are Huffman coding and arithmetic coding and
their variants. LZW coding belongs to the dictionary-based
group. The new grammar-based code also can be viewed as
a dictionary-based code.

The purpose of this section is to briefly review the
grammar-based code. For a detailed description, please re-
fer to Ref. 2. The grammar-based code has the structure
shown in Fig. 3. The code includes four parts: irreducible
grammars, reduction rules, the greedy irreducible grammar
transform, and hierarchical compression algorithm.

Let A be our source alphabet with cardinality greater
than or equal to 2. Let A* be the set of all finite sequences
of positive length from A. A sequence from A is sometimes
called a A sequence. Fix a countable set S={s(,s;,52,...}
of symbols, disjointed from A. Symbols in S will be called
variables; symbols in A will be called terminal symbols.
For any j=1, let S(j)={sy,s1.82,...,5;_1}. A context-free
grammar G is a mapping from S(j) to [S(j) N A]* for some
j=1. The set S(j) will be called the variable set of G or G
variables. To describe the mapping explicitly, we write for
each s5,(i<j) the relationship [s;,G(s;)] as s;— G(s,), and
call it a production rule. Let x be a sequence from A, which
is to be compressed. The irreducible grammar transform
starts from the grammar G consisting of the only produc-
tion rule sy,—x, where s, is the first G variable in the
G-variable set, and repeatedly applies reduction rules in
some order to reduce G into an irreducible grammar G’.
Therefore, the function of reduction rules is to ensure that
an existing grammar G is irreducible. The grammar-based
code then uses a zero-order arithmetic code to compress the
irreducible grammar G’ to achieve high compression ratio.
The original sequence x can be recovered from the com-
pressed binary codeword through the use of arithmetic de-
coding, which produces G’, and the use of parallel replace-
ment on G’ to recover x.

An irreducible grammar G satisfies the following prop-
erties.

Zero—order Binary

X Transform

grammar G’

Arithmetic coder | codeword

Fig. 3 Structure of the grammar-based code.

Journal of Electronic Imaging

013021-2

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes....

Reduction Rules 1,2,3,4,5: the reduction rules of the
grammar transform.

Pi: the ith production rule in grammar G.

_PJ:.thjzhp.r9dyp_ri<1@_r}l_l@_in_gr_%rzu§?£.Q-._._._._._._._._._._._._._._ ..

Step I: Grammar Transform I |

Set a pool with N characters as the resources for G—variables |

Phase A: Initialization

I Open a image file, and initialize n=1 I
S

Phase B: Find the longest subsequence
match and create a new G—

A 3
Append the next symbol from the source image to the end of
the first production rule represented by the first G—variable.

variable based on Rules 2 and 3;

find the longest subsequence
match and do replacement based _

on Rule 4;
Delete the redundant G—variable N_
based on Rule 5. 5 Y

Implement Reduction Rule 5
liminate Pj from G)
Implement Reduction Rule 4

Implement Reduction Rule 2
(Find the longest pattern
within one production rule.)

eplace subsequence
by an existing G—variable)
Implement Reduction Rule 3
(Find the longest pattern
between Pi and Pj)

Y
q N —
i=n? i=i+1
Y

If the longest pattern match is found, assign a new G—variable to represent it and let n=n+1, otherwise pass this step.

Phase C: Reduce the redundancy of | Implement Reduction Rule 1

|

the grammar based on Rule 1.

N
At th f th
imeagg(%i?e? ©
Y

Y El% Output the grammar G to the file *.G.txt;
2) Re—initialize all production rules by
clearing the confents of all G—variables.

T A . . 1) Output the grammar G to the file *.G.1xt;
Step 11: Arithmetic Encoding ||g2§ Imgl)emenr arithmetic encoding and save o *.G.Arith.txt file. l

Fig. 4 The encoding flow chart of the grammar-based code.

* Each G-variable s other than s, appears at least twice
in the right-hand side of the production rules of G.

* There is no nonoverlapping repeated pattern of length
greater than or equal to 2 in the right-hand side of the
production rules of G.

e Each distinct G variable represents a distinct A
sequence.

The irreducible grammar transform is a greedy one. It
parses x sequentially into nonoverlapping subsequences
and builds sequentially an irreducible grammar for each
subsequence. Figure 4 gives a flow chart of the grammar-
based code implementation. In the flow chart, the main
loop, which includes phases B and C, will be executed
every time the next symbol from the source x is appended
to the end of G(s(). Within the main loop, reduction rules 1
to 5 introduced in Refs. 1 and 2 will be applied. In the
remainder of this work, we refer to the greedy irreducible
grammar transform as the G transform. As demonstrated in
Ref. 2, one of the main tasks of the G transform is simply
to search for the longest repeated nonoverlapping subse-
quences. Two kinds of searches are involved: one is to
search the subsequences among all the sequences on the

Journal of Electronic Imaging

013021-3

right-hand side of the existing production rules; therefore
we name this kind of search as among-search; the other one
is named within-search, which searches the subsequences
within each production rule’s sequence. Reduction rules 1,
3,4, and 5 are utilized in among-search, while reduction
rule 2 is used in within-search. Reduction rules 2 and 3
have to be applied within the main loop of the grammar
code implementation, as shown in Fig. 4, because they will
be applied at least once in the main loop, and may be in-
voked more than once if reduction rule 4 is invoked. For
example, in Fig. 4, we define 7 as a counter of the subloop
from 1 to n, where 1 to n correspond to the production rule
1 to n. We define j as another counter of the subloop from
i to n,where i to n correspond to the production rule i to n.
Among-search can be described as screening whether a
subsequence resides in the i’th production rule and search-
ing its match in the j’th production rule. When i equals j,
the common subsequences match search is the within-
search. Overall, the purpose of within-search (or among-
search) is to find if the subsequence appears more than once
within that production rule (or among all production rules).

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

Below is an example of the G-transform procedure. Let
A={0,1} and
x=100111000100011100011. (1)

Let G,, G, and so on be the grammars G, which are re-
ducible, and G, be the corresponding irreducible grammar.
The footnote n represents the grammar G’ being associated
with the subsequence of x, which includes the first n sym-
bols of x. The sequence that consists of the first six symbols
of x does not have any nonoverlapping repeated pattern, so
no reduction rules can be applied. Consequently, the Gg
only contains one G variable and one production rule:

so— 100111.

Appending the symbol 0 to the end of G(sy), we get a
grammar G given by

so— 1001110.

G is not irreducible any more, since there is a nonoverlap-
ping repeated pattern 10 in the right-hand side of the pro-
duction rules of G¢. At this point, only reduction rule 2 is
applicable. Applying reduction rule 2 once, we get the irre-
ducible grammar G5 given by

so— 51011

S — 10.

Appending the next symbol xg=0 to the end of G,(s,), we
get grammar G given by

s0—>s1011ﬁ

sy — 10.

G5 is not irreducible. Applying reduction rule 2 once,
which is the only applicable reduction rule at this point, we
get a grammar G

So — SzllSz
S — 10

s, — 5,0.

In the previous, the variable s; appears only once in the
right-hand side of the production rules of the grammar. Ap-
plying reduction rule 1 once, we get our irreducible gram-
mar Gyg:

so— s111s;

s, — 100.

From G5 to Gg, we have applied reduction rule 2 followed
by reduction rule 1. Similarly, appending the symbols from
x9=0 to x;5=1 to the end of G(sy) step by step, we get G,

Sg— S111sp8,11

Journal of Electronic Imaging

013021-4

s; — 100

Sy — S]O.

For the detailed description of the G-transform procedure
from Gg to Gy,, please refer to Ref. 2. From the G, we get,
applying reduction rule 2 once, we obtain G5

S0 — 5153525283
5 — 100
Sy — S]O

S3—>11.

Appending xs=1, x;7=0, x;3=0, and x,9=0 to the end of
G 5(sy), respectively, and then applying reduction rule 2
followed by reduction rule 1, we get Gy,

So = 51535253
s; — 100
S2 — 310

§3 — 11S2.

G5 is obtained by appending x,,=1 to the end of G4 (sy).
Appending x,,=1 to the end of G5 (s,), we get

S0 = $153825311
s;— 100
Sy — SIO

§3 — 1152.

Applying reduction rule 3 once, we get Gy¢

S0 — $153525354
s;— 100
5, — 510
§3 — $4855
s4— 11.

In summary, the G transform transforms x into the irreduc-
ible grammar G4

S0 = 5153525354

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

s; — 100
s, — 510
83— 8§48

S4—>1].

Once the final irreducible grammar G is obtained, it will be
compressed by using a zero-order arithmetic code with a
dynamic alphabet. The decoder recovers G from the com-
pressed codewords and then performs the parallel replace-
ment procedure to recover x, as shown next:

So G 851535285354
8515385285354 G 100S4S2S10S4S211
10054555,0545,11 G 100115,01000115,011

10011s,0100011s,011 G 100111000100011100011.

We start with s, and then repeatedly apply the parallel re-
placement procedure. We see that after four steps, we re-
cover the original sequence, and the parallel replacement
procedure terminates.

4 Implementation

As presented in Sec. 3, the grammar-based source coding is
accomplished by taking the following three steps.

1. Define a size-on-demand variable set of G and en-
sure each G variable is distinct from source sym-
bols.

2. Convert the source sequence x into an irreducible

context-free grammar (in which the first G vari-
able s, represents the source sequence x, and each
of the other G variables represents a subsequence
of x) by applying the G transform presented in
Ref. 2

3. Use one of the three universal lossless data com-
pression algorithms (sequential algorithm, im-
proved sequential algorithm, or hierarchical algo-
rithm) to compress the irreducible grammar. All
these algorithms combine the power of arithmetic
coding with that of string matching. The size of S,

S|, is defined as the number of G variables in S.

The rest of this work mainly describes the implementation
of the grammar-based algorithm from different aspects.

4.1 Implementation Issues of Encoding

By studying the implementation of the grammar-based cod-
ing, we discovered two main implementation issues: the
large processing time and limited number of G variables.
Although the compression ratio obtained by the implemen-
tation of the code is comparable and even better than the

Journal of Electronic Imaging

013021-5

A sequence with 8 characters: bcO1ZAgY.

bjc O|1|Z A|lg|Y

Subsequencel = bc01

Subsequence2 =bc0 k=4

1
,_ Subsequence3 = c01

Subsequence4|: 01Z

Subsequence5 = bc

Subsequence6 = c0
Subsequence7 = 01

Subsequence8 = 17
Subsequence9 = FA

Fig. 5 The longest nonoverlapping common subsequence match
search in the worst case in a sequence with even numbered
characters.

conventional lossless schemes, these two factors limit its
use for real-time and large image analysis. Typically, medi-
cal images such as mammograms are of large type and
hence to effectively apply the grammar-based code, a new
method has been derived. This work focuses on these is-
sues.

4.1.1 Processing-time issue

From the study, we found that as we used more G variables
for compression, the processing time we needed for con-
verting from a source image to an irreducible grammar G
increased at about a quadratical rate.

For the among-search, where i # j, if the size of G vari-
ables, S| equal N, matching subsequences from all the G
variables takes maximum N(N+1)/2 time. This makes the
algorithm time consuming. A larger image usually means a
larger |S| and the computational time becomes longer.
When i=j, the program does a search within one produc-
tion rule, and if i=j=1, such a production rule will be the
first production rule. Figure 5 illustrates how the program
does the longest nonoverlapping common subsequence
match search within one production rule. It divides the se-
quence on the right-hand side of the production rule into
two parts evenly. Assume that there are m characters in the
sequence. The program defines that if m is an even number,
then half of it will be m/2, otherwise (m—1)/2. Let k rep-
resent m/2 or (m—1)/2. Since we want to search the long-
est nonoverlapping matching subsequence, the program
starts by setting a subsequence that contains the first k£ char-
acters of the sequence, and looks for a match to the subse-
quence in the rest of the sequence.

1. If a match is found, a new G variable is assigned
to represent the subsequence, and go to step 3. If a
match is not found, go to step 2.

2. Reduce the subsequence by one symbol, and re-
peat the search for a match. If a match is found, a
new G variable is assigned to represent the subse-
quence, and go to step 3. If a match is not found,
repeat step 2.

3. Replace the subsequence in the original sequence
by the new G variable and stop the search.

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

Figure 5 displays that subsequence 9 has to be searched,
because no match could be found for subsequences longer
than two. The total search time depends on m. If m is an
even number, for example m equals 8 in Fig. 5, in the worst
case, the total number of searches will be (k—1)?>=(4—1)?
=9, while if m is an odd number, the total time of search
will be k(k—1).

It was observed that the size of the first production rule
increases much faster than others as the G transform con-
tinues. The reason is that the G transform appends the next
character read from the source image file to the end of the
first production rule, but not to the other production rules. If
the image is large, the size of production rule 1 will be very
large, and consequently the search times will be extremely
high.

4.1.2 Extended grammar codes

Extended grammar codes are an approach to reduce the
processing time. The approach, based on an important fea-
ture of the G transform, was discovered through our exten-
sive studies. The following paragraphs describe the discov-
ery and its benefit for the implementation of the grammar-
based code.

As mentioned before, although the sequence on the right
hand of the first production rule keeps expanding its length
during the G-transform process, as shown in Fig. 4, each
time at the end of the main loop that starts at the beginning
of phase B and ends at the end of phase C, the grammar G
is irreducible. Each G variable other than the first G vari-
able is created based on its unique sequence without over-
lapping matching subsequences. In general, the sequence
will not be changed unless a single variable locates in its
sequence and is replaced by the sequence of that single
variable; this change does not lead to a new matching sub-
sequence. These existing G variables do not need to search
subsequence match within themselves. On the other hand,
the main loop is executed whenever a next source character
is appended to the first production rule: therefore, from the
view of the grammar, the only factor that may result in the
matched subsequences emerging is the newly appended
source character of the first production rule. Consequently,
if a matched subsequence exists, this subsequence must be
in the first production rule and composed of the newly ap-
pended source character and its immediate neighbor. Ex-
amples of these subsequences are highlighted with under-
scores in Eq. (1). Using this observation, we can simplify
the match search by just finding the second one of the sub-
sequence from the rest of the first production rule sequence,
for example, the grammars G¢, G7, G|, in Eq. (1), and from
other production rule sequences, for example, the grammar
GIS in Eq (l)

With the new search method, the G transform has been
simplified significantly. When these proposed schemes
were put to test, the image quality after the G transform
was the same as the ones using match search, as illustrated
in Fig. 5, but the processing time was reduced from 10 to
20.

Although the processing time has been dramatically re-
duced, the processing time of the G transform is still longer
than its counterpart, the LZW code. The LZW code takes
advantage of the hash algorithm to locate a particular se-

Journal of Electronic Imaging

013021-6

quence, and with good probability can find the target string
in one search. The grammar-based code cannot adopt the
hash algorithm because it has to search match subse-
quences, not matched sequences only. However, the reduc-
tion of the processing time allows us to use a larger number
of G variables.

4.1.3 Visible variable issue

Since string match is often used by the G transform and the
digital mammograms are encoded using number characters
from the ASCII character set, we should also use visible
ASCII characters for the G variables. Furthermore, the
ASCII character code was chosen because it is very easy to
check for valid data ranges, which is a very important fea-
ture for programming the grammar-based code. Unfortu-
nately, the number of visible ASCII characters is limited.
The maximum number of the characters that can be used in
this study as G variables is 75, and these characters are:

@ ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkl

mnopgrstuvwxyz~}{’_*[?=;:/.—, + * § #!

For the rest of the character set, some are control characters
rather than symbols, so that they cannot be utilized in the
study. Some are source alphabets that encode the digital
mammograms, and the others are used as identification
codes for the output of the irreducible grammar, such as
“ %& ” and “(){).” Figure 6 shows an example of an
original mammographic image segment transformed to a
grammar-based encoded file *.G.arith.txt using visible
ASCII characters as the G variables.

As noted in Sec. 3, the G variables that represent the
distinct production rules are distinct. |S| is dependent on the
image size as the G transform is applied. The larger the
image size is, the bigger |S| will be.

To enlarge |S|, we propose to use double characters to
represent G variables. For example, if there are 64 single
characters, we can obtain in total 642=4096 G variables. To
ensure every double-character G variable is equally used,
the total |S| value has to be the square of an integer, other-
wise some characters will be used less and some redundant
double-characters will never be used. The use of double-
character G variables gets smaller entropy value than the
use of single-character G variables. The final codeword
lengths of the cases are equal under the condition that all
the G variables are equally probable in the transformed
grammar.

For the grammar G using single-character as the
G-variables, [is defined as 1. If the grammar has N (where
N=|S|) unique G variables, the number of source symbols
is NN, the equal probability of the G variables is presented as
1/N. Define y as the total number of occurrences of these
N G variables in a grammar. The equations of entropy H
and codeword length is defined in Eq. (2)

N

1
H(single — character) = — > N log N=-1log N
i=1

Jan—-Mar 2006/Vol. 15(1)

Li,

Krishnan, and Ma: Application of grammar-based codes...

@- %2’3AA2551ID7 (%2°3AA2551D7
P2 CORLI KEEEDG CI9FHLKEEFDG
Apply the proposed| DAMIGKCACG DAI4IGKC4CG
355255 educibl LdNOel8Q}T7uS | o
irreducible grammaf 15y XL, Write to a LANOeI8Q!17uS Arithmetic
175177 179 ... 169 .
transform * G.txt file . encoding
—»{177180 182 ... 167 | A= 5& | USUVOURXIL.DSL o e % G arith.txt
181181 181 ... 167 B 12 &17&BABC6<C
C-&B
181 180 182 ... 165 8I>...
D- AB
180 181 182 ... 178
E-C6
F-C8J
A pgm image The corresponding pgm The irreducible grammar of the source image ~ The *.G.txt file

in digitized mode

Fig. 6 An example of an original mammographic image segment transformed to a grammar-based

encoded file *. G.arith.txt.

codewordlength(single — character)

=yXIXH=yX1X(-logN). (2)

For the grammar G using double characters as the
G-variables, [is defined as 2. If the grammar has N (where
N=|S|) unique G variables, the number of source symbols
is the square of N, ther equal probability of the G variables
is presented as 1/ VN. Define y as the total number of
occurrences of these N G variables in a grammar. The equa-
tions of entropy H and codeword length is defined in Eq.

(3):
W~

1 —
H(double — character) = — >, Tr\/ log \N
i=1

— 1
=—]0g V’N:—ElogN

codewordlength(single — character)
1
=y XIXH=yX2X (—ElogN>:y X 1 X (-logN).

(3)

In our study, we found that G variables have near-equal
probabilities in most cases. Hence, using a double-character
set to increase the G-variable symbols is feasible.

4.2 Decoding

The decoding process of the grammar-based code
involves two steps: first, arithmetic decoding decodes the
*.G.arith.txt file to the grammar file named *.G.#xt; second,
the grammar file is then decoded to the original image file,
which involves the removal of the wrappers, such as the
special symbols (){), the reconstruction of G-variables, and
the parallel replacement of G variables to recover the origi-
nal image.

The decoding procedure is much faster than the encod-
ing procedure for the grammar-based code. More specifi-

Journal of Electronic Imaging

013021-7

cally, it takes at most N times of the G-variable parallel
replacement to recover the source image. Therefore, the
decoding time is in proportion to the size of G variables N.

4.3 Results

In the research, we are using double-character G variables.
To compress 30 mini-MIAS images (1024 X 1024 pixels),
we utilized two sets of G variables, and these two sets of G
variables have sizes of 81 and 324, respectively. We also
applied three sets of G variables to compress 30 mini-
MIAS images (512X 512 pixels) and they have sizes of 81,
324, and 1024. The comparisons of compression ratios be-
tween the extended grammar-based code and others, such
as the Huffman, arithmetic, and LZW codes, and the com-
bination of LZW and arithmetic code, are shown in Tables
1 and 2.

Both tables show that arithmetic coding outperforms
Huffman coding in most cases, but both are worse than the
grammar-based coding and LZW, if LZW uses a larger dic-
tionary. The reason is that the probability-based codes, such
as arithmetic and Huffman codes, cannot capture the
higher-order correlation in the source file.

Tables 1 and 2 also show that as the number of G vari-
ables increases, the compression performance of the
grammar-based code becomes better. For 1024 X 1024 im-
ages, the average compression ratios are from 3.5 to 3.6,
and for 512X 512 images, the average compression ratios
are from 3.13 to 3.48 to 4.04. It proves that more G vari-
ables are used, and more higher-order correlations of im-
ages can be separated, so that a higher compression ratio
can be achieved. This theory is also applicable to LZW, as
seen in Table 1.

Compared with the three conventional lossless compres-
sion techniques and the combination of LZW and arith-
metic coding, the grammar-based code outperforms others
under the same conditions. For example, in Tables 1 and 2,
the compression rate of the grammar-based code using 324
G variables (its dictionary size is between 8 and 9 bits) is
higher than LZW coding and LZW coding with arithmetic
coding using a 9-bit dictionary. Similarly, Table 1 indicates

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

Table 1 STAGE 2: The comparison of compression ratio between
the extended grammar-based code and others on 30 mini-MIAS im-
ages (512 x512) with an average size of 718,699 bytes. Legends: 1
MIAS is the Mammographic Image Analysis Society, T G is the
grammar-based code, 1 A is arithmetic, T H is Huffman, and + LZW
is Lempel-Ziv-Welch.

Table 2 STAGE 2: The comparison of compression ratio between
the extended grammar-based code and others on 30 mini-MIAS im-
ages (1024 x 1024) with an average size of 2,877,523 bytes. Leg-
ends: T MIAS is the Mammographic Image Analysis Society, T G is
the grammar-based code, 1 A is arithmetic, T H is Huffman, and t
LZW is Lempel-Ziv-Welch.

Techniques Compression ratio

Techniques Compression ratio

G 81 G variables Size 233,671 bytes
Ratio 3.13

8 bits< 324 G variables Size 211,574 bytes

<9 bits Ratio 3.48

1024 G variables(10 bits) Size 183,478 bytes

Ratio 4.04
LzZW 9 bits Size 259,811 bytes
Ratio 2.84
LZW+A 9 bits Size 247,052 bytes
Ratio 2.98
LzZwW 10 bits Size 183,018 bytes
Ratio 4
LZW+A 10 bits Size 182,378 bytes
Ratio 4.02
LZW 12 bits Size 182,708 bytes
Ratio 4.03
LZW+A 12 bits Size 176,725 bytes
Ratio 417
A Independent of dictionary size Size 251,778 bytes
Ratio 2.87
H Independent of dictionary size Size 258,797
Ratio 2.79

that the compression rate of the grammar-based code using
1024 G variables (its dictionary size equals 10 bits) is also
higher to LZW coding and its combination with arithmetic
coding when they use a 10-bit dictionary as well.

In the study, we also tested the compression perfor-
mance of the proposed technique combined with Huffman
coding. The result shows that this combination performs
worse than its combination with arithmetic coding by 1%
on average. The reason is that arithmetic coding does not
need to use an integer number of bits to each source sym-
bol, so that the average bit rate achieved is closer to the
entropy of the source.

Journal of Electronic Imaging

013021-8

G 81 G variables Size 837,285 bytes
Ratio 3.5

8 bits<324 G variables Size 818,961 bytes

<9 bits Ratio 3.6
LZW 9 bits Size 1,180.474 bytes
Ratio 2.49
LZW+A 9 bits Size 1,111,890 bytes
Ratio 2.64
LzZw 12 bits Size 742,692 bytes
Ratio 3.97
LZW+A 12 bits Size 711,838 bytes
Ratio 3.97
A Independent of dictionary size Size 1,013,087 bytes
Ratio 2.85
H Independent of dictionary size Size 1,041,679 bytes
Ratio 2.78

5 Error Control Coding

In this section, we study how the performance of the
grammar-based code is affected by transmission errors and
how the performance could be improved in that case.

In our study, we tested the case where Gaussian noise is
added to the output file compressed by grammar-based
codes. After arithmetic decoding and recovering grammar
G via parallel replacement, the restored images had signifi-
cant distortions. We group the results into two groups, and
Figs. 7 and 8 show the examples of these results. In the
restored images, some had substantial distortions, as dis-
played in Figs. 7 and 8, and some even could not be re-
stored by the grammar decoder at all. The reason is due to
the nature of the arithmetic coding. The codeword of arith-
metic coding is a floating point number, and each digit
should be precise. If any one of them is changed, the de-
coder will fail and this error will propagate. Since the
grammar-based code transforms the source image into a
grammar and then encodes it using an arithmetic code, once
the codeword of arithmetic coding is infected by errors, the
image restored by arithmetic decoding will have errors in
the corresponding position. In other words, the initial part
of the image can be recovered correctly until an error ap-

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

(@)
L '
W Y (Y A
(b)

Fig. 7 The comparison of images before and after noise added on
grammar-based coded files.

pears. To protect this error from happening, channel coding,
which adds redundant bits for error detection and correc-
tion, has to be used.

In the study, channel encoding and decoding were ap-
plied, and they are the convolutional encoder and the Vit-
erbi decoder with additive white Gaussian noise (AWGN).
Even though there are other simpler channel coding
schemes such as linear block codes (LBC) and their branch
cyclic codes, their error correction capabilities are limited,
since they independently detect and correct the data se-
quence block by block, which means they do not consider
the correlation of data blocks. If a higher correction rate is
required, more redundant bits are needed, and correspond-

Bit Error Rate (BER)

Fig. 8 The comparison of images before and after noise added on
grammar-based coded files.

ingly the encoding and decoding efficiencies of the
schemes decrease. A convolutional encoder is a code that
considers the correlation between data blocks, so that its
error correction efficiency is relatively higher than LBC
and cyclic codes. Also, it can be easily implemented, and is
suitable for a continuous data stream and to a channel in
which the transmitted signal is corrupted mainly by
AWGN.

In the study, we defined five noise power levels for the
AWGN channel by letting a Gaussian random number be
divided by noise factors from 5 to 1, respectively. There-
fore, the corresponding values of the five noise power lev-
els increase according to the second-order polynomial. We

-©~- Encoded Channel |:
(1«1 Un—coded Channel |-

SNR [dB]

Fig. 9 SNR versus BER average results on 15 mini-MIAS images for rate 1/2 convolutional encoder

and the decoding length N=128 bits.

Journal of Electronic Imaging

013021-9

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

Fig. 10 The completely recovered mini-MIAS image (mdb002.pgm)
in a channel with SNR=11 dB (noise factor=5), rate 1/2 convolu-
tional channel encoder, and Viterbi channel decoder.

transmitted 15 mini-MIAS images encoded by the extended
grammar-based code through the defined AWGN channel in
two cases, channel encoded and channel uncoded. Figure 9
displays the probability of bit error rate (BER) versus re-
ceived (SNR) signal-to-noise rate of the tests. It indicates
the fact that the BER of the channel without using convo-
lutional coding is higher than the channel using convolu-
tional coding under the same SNR. Consequently, the test
result shows that an image file in the encoded channel can
tolerate noise at least one noise power level higher than the
one in the uncoded channel when the rate of 1/2 convolu-
tional encoder is applied. It means that channel encoding
can protect data from noise to some extent. For example,
when the noise factor is set as 5, the image file in the
uncoded channel cannot be restored at all, while the one in
the channel with convolutional encoding (rate 1/2) can be
restored completely, as displayed in Fig. 10. Furthermore,
as the noise factor is set as 4, the noise power becomes
higher, the image file in the uncoded channel still cannot be
recovered, and in the encoded channel the recovered part of
the image file is smaller and will always be the beginning
of the image, as mentioned in the second paragraph in this

Fig. 11 The first 616 pixel lines recovered mini-MIAS image
(mdb002.pgm) in a channel with SNR=9.03 dB (noise factor=4),
rate 1/2 convolutional channel encoder, and Viterbi channel
decoder.

Journal of Electronic Imaging

013021-10

section. The recovered image can be found in Fig. 11. In
theory, as the encoding rate of the convolutional encoder is
increased, more noise in the file transmitted through the
channel can be detected and corrected.

6 Conclusion and Contributions

For decades, researchers have kept looking for more effec-
tive lossless compression techniques for critical and large
images such as mammographic images. The lossless com-
pression grammar-based coding algorithm proposed by
Yang and Kieffer attracts our attention and prompts us to
investigate if it is a promising code, and what are its ad-
vantages and disadvantages compared with traditional loss-
less algorithms. To our knowledge, this work is the first
attempt to investigate the applicability of grammar-based
codes for compression of a medical image.

The two weaknesses of the original grammar-based
codes are the limited G-variable set and the computational
time. These two weaknesses are overcome to some extent
by applying the extended grammar code technique and
double-character G variables proposed in this work. Sig-
nificantly less computational time is achieved and more G
variables could be utilized through the use of double-
character representation, and consequently the average bit
rate could reduce if all the encoding characters are equally
probable. These results are also proved analytically.

In our study, the arithmetic coding outperforms Huffman
coding in most cases. LZW coding and grammar-based
coding both are dictionary-based compression methods.
They are more comparable and perform better than arith-
metic and Huffman coding when they have larger dictio-
nary size. Although LZW and grammar-based coding are
dictionary-based lossless compression techniques, both do
not require sending the dictionary to the decoder. The study
also shows that, under the same dictionary size, the
grammar-based code has better performance than LZW
coding. The LZW process is faster than the grammar-based
code because it can utilize the Hash algorithm, while the
nature of grammar-based coding does not allow it to apply
the Hash algorithm, as discussed in Sec. 4.1.

Also, such a technique is very sensitive to errors because
of its use of the irreducible G transform and arithmetic
algorithm. Section 5 shows that arithmetic code can be eas-
ily infected by errors, but cannot do self-synchronization to
avoid error propagation as the Huffman code does. There-
fore, data correction coding has to be adopted for the trans-
mission.

Acknowledgment

I wish to acknowledge those who I feel have greatly aided
me in completing this research. I would like to thank Pro-
fessor S. Krishnan for providing an open study and discus-
sion environment, constant encouragement and willingness
to provide advice, and very clear guidance toward the suc-
cess of this project. I would also like to thank Professor N.
W. Ma for his enlightening guidance, constructive sugges-
tions, high-standard requirement, and unconditional sup-
port. Many thanks to those who provide me technical sup-
port and help. Finally, special thanks go to my family.

Jan—-Mar 2006/Vol. 15(1)

Li, Krishnan, and Ma: Application of grammar-based codes...

References

1.

10.

11.
12.

N. R. Wanigasekara, S. Ding, Z. Yan, and Y. Zeng, “Quality evalua-
tion for JPEG 2000 based medical image compression,” EMBS/
BMES Conf. Proc. 2, 10191020 (2002).

M. Y. Al-Saiegh and S. Krishnan, “Fixed block-based lossless com-
pression of digital mammograms,” Electric. Computer Eng. Conf. 2,
937-942 (2001).

. H. S. Wong, L. Guan, and H. Hong, “Compression of digital mam-

mogram databases using a near-lossless scheme,” Image Process.
Proc. 2, 21-24 (1995).

H. D. Lin, K. P. Lin, and S. L. Lou, “Digital mammographic image
analysis and data compression,” IEEE Eng. Med. Biol. Mag. 2, 1025—
1027 (1998).

Z. Yang, M. Kallergi, R. A. DeVore, B. J. Lucier, Q. Wei, R. A.
Clark, and L. P. Clarke, “Effect of wavelet bases on compressing
((iigital) mammograms,” [EEE Eng. Med. Biol. Mag. 14(5), 570-577
1995).

D. A. Huffman, “A method for the construction of minimum redun-
dancy codes,” Proc. IRE 40, 10981101 (1952).

T. A. Welch, “A technique for high performance data compression,”

IEEE Trans. Comput. 17(6), 8—19 (1984).

R. Pasco, “Source coding algorithms for fast data compression,” PhD

Thesis, Stanford University, CA (1976).

E. H. Yang and J. C. Kieffer, “Universal source coding theory based

on grammar transform,” Proc. 1999 IEEE Info. Theory Commun.
Workshop, pp. 75-77 (1999).

E. H. Yang and J. C. Kieffer, “Efficient universal lossless data com-

pression algorithms based on a greedy sequential grammar transform

Part one: Without context models,” IEEE Trans. Inf. Theory 46, 755—

788 (May 2000).

SlipStream Company, see http://www.slipstream.com/tech.html.

Mammographic Image Analysis Society (MIAS) images data

webpage, see http://peipa.essex.ac.uk/ipa/pix/mias/.

> " Xiaoli Li received her MASc degree in
4 computer networks from Ryerson Univer-
sity, Toronto, Ontario, in 2004. She is cur-
rently pursuing her PhD in electrical and
computer engineering at Ryerson Univer-
sity. Her research interests include image
analysis and multimedia networking.

Sridhar (Sri) Krishnan received his BE
degree in electronics and communication
engineering from Anna University, Madras,
India, in 1993, and his MSc and PhD de-
grees in electrical and computer engineer-
ing from the University of Calgary, Calgary,
Alberta, Canada, in 1996 and 1999 respec-
tively. He joined the Department of Electri-
cal and Computer Engineering, Ryerson
University, Toronto, Ontario, Canada in
July 1999, and currently he is an associate

professor and chairman of the department. His research interests
include adaptive signal processing, biomedical signal/image analy-
sis, and multimedia processing and communications.

Journal of Electronic Imaging

013021-11

Ngok-Wah Ma received his BASc, MASc,
and PhD degrees in electrical engineering
from the University of Waterloo, Ontario,
Canada in 1982, 1984, and 1988, respec-
tively. In September 1988, he joined the
Department of Electrical and Computer En-
gineering, Ryerson University, Toronto, On-
tario, Canada, where he is currently a pro-
fessor and the director of the computer
Networks Master of Engineering program.
His current research interests are in quality

of service of internet, key distribution for secure multicast, and digital
signal processing.

Jan—-Mar 2006/Vol. 15(1)

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2006

	Application of grammar-based codes for lossless compression of digital mammograms
	Xiaoli Li
	Sridhar Krishnan
	Ngok-Wah Ma
	Recommended Citation

