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The free flexural vibration of thin rectangular plates is revisited. A new, quasi-exact solution to the governing differential equation is
formed by following a unique method of decomposing the governing equation into two beam-like expressions. Using the proposed
quasi-exact solution, a Dynamic Coefficient Matrix (DCM) method is formed and used to investigate the free lateral vibration of
a rectangular thin plate, subjected to various boundary conditions. Exploiting a special code written on MATLAB�, the flexural
natural frequencies of the plate are found by sweeping the frequency domain in search of specific frequencies that yield a zero
determinant. Results are validated extensively both by the limited exact results available in the open literature and by numerical
studies using ANSYS� and in-house conventional FEM programs using both 12- and 16-DOF plate elements. The accuracy of all
methods for lateral free vibration analysis is assessed and critically examined through benchmark solutions. It is envisioned that the
proposed quasi-exact solution and the DCMmethod will allow engineers to more conveniently investigate the vibration behaviour
of two-dimensional structural components during the preliminary design stages, before a detailed design begins.

1. Introduction

Many vibrating airframe structural components could be
modelled as thin plates. Not only that do these structural
elements transmit various internal and external loads that
may affect their stiffness but they are also frequently in
close proximity to vibrating components such as engines.
Therefore, it is of utmost importance to device and develop
solution techniques to study the vibrational characteristics
of these structures during preliminary design stages. Such
vibrational analyses would allow the designers to investigate
the effects of various boundary conditions the structural
elements would be subjected to during its operation and the
vibrational characteristics of the component before progress-
ing to advanced stages of design. Using these results designers
could alter the geometry or the materials used to avoid
resonance and gain a favourable outcome.

Among the many methods available for vibration analy-
sis, the analytical and semianalytical methods yield the high-
est accuracy but one major hurdle in using these methods is
that they require the closed form solution to the governing

partial differential equation. This can be a very tedious pro-
cess if at all a tractable one. To circumvent this problem,many
simplifying assumptions have been incorporated into the
existing exact methods and as a result they exhibit many lim-
itations. Having lost their generality, these exact methods are
then only applicable to specific plate shapes, geometries, and
those subjected to certain boundary conditions.

The orthogonality, completeness, and stability of Fourier
series expansions have resulted in their frequent application
to plate vibration problems [1].TheNavier [2] andLevymeth-
ods [3, 4] are two of the most common analytical procedures
available for plate vibration analysis that incorporate such
Fourier series expansions, where the former exploits a double
Fourier series to solve the governing differential equation,
the latter is based on a single Fourier series. However, both
methods have a common drawback in that they are only
applicable to plates having at least two simply supported
boundaries. In addition, the Levy method is also limited to
rectangular shaped plate configurations and is incapable of
taking into account the effects of bending-twisting coupling.
In addition to the above weaknesses, all methods that are
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based on conventional Fourier series expansions consist of
a convergence problem along the boundaries arising as a
result of discontinuities in displacement and its derivatives
[1]. Therefore, both of these methods are unsuitable for most
aerospace applications as they could only tackle simple and
special cases. In order to overcome the discontinuity in
displacement and its derivatives along the boundaries, the
Improved Fourier Series Method (IFSM) [5] was later pro-
posed. Although IFSMpossesses a higher rate of convergence
and ismore readily applicable to a host of plate configurations
and boundary types, it is still inadequate to study problems
comprising material and geometric nonlinearity.

The Rayleigh-Ritz method is another very popular exact
method that has been exploited by many researchers in
the past. It was first introduced by Rayleigh [6] and later
improved by Ritz [7] by assuming a set of admissible trial
functions, each of which had independent amplitude coef-
ficients; thus, it is termed the Rayleigh-Ritz method or Ritz
method. Young [8] and Warburton [9] used the Ritz method
to study the vibration behaviour of rectangular plates. Later,
Vijayakumar and Ramaiah [10] studied the vibration of
clamped square plates using the Rayleigh-Ritz method. The
flexural vibration of simply supported rectangular plates was
investigated by Dickinson [11, 12] using Rayleigh’s method.
One of themost comprehensive studies on thin isotropic rect-
angular plate vibration was carried out by Leissa [13, 14] using
the Rayleigh-Ritz method. Warburton [15] later extended
the Rayleigh-Ritz method for the response calculation of a
damped rectangular plate.The vibration of rectangular plates
with elastically restrained edges was studied by Warburton
and Edney [16]. The Rayleigh-Ritz method was again used
to study the vibration of rectangular plates using plate
characteristic equations as shape function by Rajalingam et
al. [17]. However, the Ritz method in general is based on the
weak form of the governing equations and is only applicable
to self-adjoint problems. Furthermore, the choice of test
functions in formulating the weak form is restricted to the
approximation functions and it is required that the test and
approximation functions are defined across the full domain
of the problem, which is a major disadvantage.

The Galerkin method is also an analytical method which
falls under the category of indirect classical variational meth-
ods. The Galerkin method has also been extensively used
by researchers around the world. Although being somewhat
similar in nature to the Rayleigh-Ritz method and belonging
to the wide group of weighted residual methods, there are
some distinct differences between the two techniques. Unlike
the Rayleigh-Ritz method the Galerkin method commences
with the weighted integral equations that are not comprised
of boundary conditions. Thus, comparatively, the Galerkin
method demands higher order approximation functions.
Secondly, the Galerkin method does not require the system
to be self-adjoint. But both methods take the test and
approximation functions to be equivalent. Amongmany who
exploited the Galerkin method for plate vibration analysis
purposes, the transverse vibration of a rectangular plate
was studies by Galin [18]. Munakata [19] used the Galerkin
method to investigate the vibration and elastic stability of
a rectangular plate clamped at its four edges. Aynola [20]

and Stanisic [21] also studied the vibration behaviour of
rectangular plates using the Galerkin method. Laura and
Saffell [22] investigated the small-amplitude vibration of
clamped rectangular plates. Later Laura and Duran [23]
applied the Galerkin method to determine the vibration
characteristics of a clamped rectangular plate subjected to
forced vibration. Nevertheless, one of the biggest drawbacks
associated with classical variationmethods in general such as
Rayleigh-Ritz andGalerkinmethods is the difficulty involved
in accurately developing the approximating functions for
arbitrary domains. This difficulty associated with construct-
ing the arbitrary test and approximate functions that should
satisfy essential edge conditions, smoothness levels, linear
independence, and completeness and continuity conditions
is a massive limiting factor and the complicatedness of the
problem becomes evenmore severe inmagnitude for difficult
geometries commonly found in most aerospace structures.
Therefore, the lack of a credible method to formulate proper
approximation functions for a specific geometry drastically
reduces the convergence quality and applicability of classical
variation methods.

The method of superposition is also a very powerful
approximate analytical method that has been used exten-
sively by many researchers in the past to obtain highly
accurate results for problems involving plate vibrations. It
was developed by Gorman [24] who utilised it to analyse the
vibrational behaviour of thin isotropic rectangular plates. In
thismethod, the plate is divided into a number of subsystems,
termed building blocks, under different boundary conditions
compared to the global system, and subjected to a distributed
force, moment, rotation, and translation [24]. The steady-
state response of each subsystem is then superimposed.
Unlike most other exact methods, this method is applicable
to a variety of plate types, which include orthotropic, hybrid,
and laminated plates.The superposition technique also allows
for the application of various classical and nonclassical
boundary conditions as well as loading configurations and is
readily applicable to thin plates, thick Mindlin plates, trans-
verse shear deformable laminated plates, and open cylindrical
shells. Furthermore, throughout the entire domain of the
plate, the governing differential equations are satisfied exactly
by all the solutions [24]. Gorman and Sharma [25] used the
superposition method to conduct a free vibration analysis of
rectangular plates. A free vibration analysis of cantilevered
plates was also carried out by Gorman [26] using the super-
position method. Later, Gorman [27] also conducted a study
on the free vibration analysis of completely free rectangular
plates using the superposition-Galerkin method. However,
the main problem with the method of superposition is that,
for mixed boundary types, it has not been verified yet if
the results yielded are an upper bound or a lower bound.
Thus, this uncertainty may well be a problem when trying to
estimate the error of the results.

Among the exact methods commonly used for the
vibration analysis of plates is the dynamic stiffness method
(DSM), which was first presented by Kolousek [28] in
the forties. Later Boscolo and Banerjee [29] applied DSM
to study the vibration behaviour of plates using both the
Classical Plate Theory (CPT) and the First-Order Shear
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Figure 1: Thin rectangular plate of length 𝐿 = 𝑎, width𝑊 = 𝑏, and
thickness ℎ.

Deformation Theory (FSDT). Banerjee and Papkov [30]
also presented a DSM solution of a rectangular plate for
the most general case. Subsequently, the free vibration
of plates subjected to arbitrary boundary conditions was
investigated by Liu and Banerjee [31] using a novel spectral
dynamic stiffness method. However, the DSM method is
cumbersome to use when applied to complex, real-life plate
configurations consisting of material and geometric nonlin-
earity.

Thus, the objective of this work is twofold. Firstly, the
authors wish to develop a new quasi-exact solution to the
plate governing equation by treating the governing equation
as a sum of two beam-like expressions, an approach that
does not incorporate any simplifying assumptions, thus,
preserving the generality of the solution and which, to the
best of the authors’ knowledge, has not been explored before.
The second objective will be to develop a new Dynamic
Coefficient Matrix (DCM) method for the modal analyses
of thin rectangular plates, having any aspect ratio, based on
the new quasi-exact solution. To the best of the authors’
knowledge, the new DCM method built upon a quasi-exact
Dynamic Coefficient Matrix has also not been developed and
presented in the open literature.What distinguishes theDCM
method from other classical exact methods is the frequency-
dependent nature of the resulting system’s matrix and most
importantly the fact that its generality is not compensated
by any simplifying assumptions. Together, the new DCM
method and the quasi-exact solution would, upon further
development in the future, provide researchers with the
flexibility to study the vibration of thin rectangular plates of
any dimension or thin isotropic plate assemblies modelled
using rectangular elements, subjected to any boundary con-
dition.

2. Theoretical Background

Consider a linearly elastic, homogeneous, isotropic, thin
rectangular plate, as shown in Figure 1, having length𝐿, width𝑊, and thickness ℎ. The thickness ℎ is assumed to be much
smaller compared to the other characteristic dimensions as
well as the wavelength. Thus, Classical Plate Theory is used
for the purpose of this study. As a result, during vibration only
small deflections are assumed and the rotary inertia and shear
effects are neglected.

The governing partial differential equation for the plate
[32] will take the following form:

𝐷(𝜕4𝑤𝜕𝑥4 + 2 𝜕4𝑤𝜕𝑥2𝜕𝑦2 + 𝜕4𝑤𝜕𝑦4 ) + 𝜌ℎ𝜕2𝑤𝜕𝑡2 = 0 (1)

where 𝑤 is the flexural displacement, 𝜌 is the density, 𝑡 is the
time, and𝐷 represents the plate modulus and it is defined as
follows:

𝐷 = 𝐸ℎ312 (1 − ]2) (2)

In order to obtain a quasi-exact solution to (1), the roots have
to be determined. To this end, a new approach is taken here,
which is to decompose the plate equation into two separate
beam-like expressions representing each spatial coordinate
direction of the plate. The main steps of this procedure
are outlined below. If the solution is assumed to take the
following form,

𝑊(𝑥, 𝑦, 𝑡) = 𝑒𝐴𝑥𝑒𝐵𝑦𝑒𝑖𝜔𝑡, (3)

then the characteristic equation will be as follows:

𝐴4 + 2𝐴2𝐵2 + 𝐵4 − 𝜔2𝜌ℎ𝐷 = 0 (4)

This could be rewritten as follows:

(𝐴4 + 𝐴2𝐵2 − 𝑘1𝜔2𝜌ℎ𝐷 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∗

+ (𝐵4 + 𝐴2𝐵2 − 𝑘2𝜔2𝜌ℎ𝐷 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∗∗

= 0
(5)

where 𝑘1 and 𝑘2 are the mass distribution constants along
the 𝑥- and 𝑦-directions, respectively. These constants were
introduced to decompose the plate governing equation in to
the two beam-like expressions above. Through careful obser-
vation it could be seen that simply plugging numerical values
in place of these constants will allow one to reconstruct and
rewrite the plate governing equation into its original form.
The numerical values of 𝑘1 and 𝑘2 can be anything between
0 and 1 (0 < 𝑘1 and 𝑘2 < 1); however, the sum of the two
mass distribution constants should be unity (𝑘1+𝑘2 = 1). For
example, 𝑘1 and 𝑘2 will both be equal to 0.5 for a square plate.
They will assume other values for other rectangular plate
shapes. The term (∗) represents the 𝑥-direction and the term
(∗∗) is for the 𝑦-direction of the plate. In both expressions,𝐴
is the coordinate in the x-direction and 𝐵 is the coordinate
in the 𝑦-direction. The terms (∗) and (∗∗) are treated as
two different beam equations for determining roots. Further-
more, in expression (∗), 𝐴 can vary and 𝐵 is held constant
and, for the term (∗∗), 𝐴 is held constant and 𝐵 is allowed
to vary. The quadratic formula was then applied on the
expressions (∗) and (∗∗) separately. Simplification resulted in
the following roots for expression (∗) of the plate governing
equation.

𝐴 = √±𝑘1𝜔√𝜌ℎ𝐷 (6)
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An identical procedure resulted in the roots for the term (∗∗)
in (5) above.

𝐵 = √±𝑘2𝜔√𝜌ℎ𝐷 (7)

The detailed mathematical manipulations for both simpli-
fication processes are not included here for brevity. Thus,
from (6) it could be seen that there will be four roots,𝐴 𝑖, (𝑖 = 1, 2, 3, 4) for the expression (∗), as defined in
(8) and (9), of which two are real and two are imagi-
nary.

𝐴1 = −𝐴3 = √𝑘1𝜔√𝜌ℎ𝐷 = 𝛽𝑥 (8)

𝐴2 = −𝐴4 = 𝑖√𝑘1𝜔√𝜌ℎ𝐷 = 𝛼𝑥 (9)

Similarly, from (7) it could be found that there are four roots,𝐵𝑗, (𝑗 = 1, 2, 3, 4) for the expression (∗∗), of which two
are real and two are imaginary, as defined in the follow-
ing:

𝐵1 = −𝐵3 = √𝑘2𝜔√𝜌ℎ𝐷 = 𝛽𝑦 (10)

𝐵2 = −𝐵4 = 𝑖√𝑘2𝜔√𝜌ℎ𝐷 = 𝛼𝑦 (11)

It is important to note here that the not only do roots
shown in (8) through (11) satisfy their individual expressions
separately, but together any real-real or imaginary-imaginary
combination (𝐴 𝑖, 𝐵𝑖) of these roots also satisfy (5) as a whole.
Thus, each real-real and imaginary-imaginary pair of roots
(𝐴 𝑖, 𝐵𝑖) is an exact solution to the plate governing equation.
There are eight such pairs of exact solutions: (𝐴1, 𝐵1), (𝐴1,𝐵3), (𝐴3, 𝐵1), (𝐴3, 𝐵3), (𝐴2, 𝐵2), (𝐴2, 𝐵4), (𝐴4, 𝐵2), and
(𝐴4, 𝐵4). However, if a real-imaginary combination of roots
(𝐴 𝑖 and 𝐵𝑖) is substituted into the characteristic equation,
it can be seen that such a pair does not fully satisfy the
entire characteristics equation in general, although on their
own each of these roots satisfies their respective beam-like
expressions (∗) and (∗∗).There are eight such real-imaginary
combinations that can be made from the solutions presented
in (8) through (11) and these pairs (𝐴 𝑖, 𝐵𝑖) are not exact
solution to the plate governing equation.These roots are (𝐴1,𝐵2), (𝐴1, 𝐵4), (𝐴3, 𝐵2), (𝐴3, 𝐵4), (𝐴2, 𝐵1), (𝐴2, 𝐵3), (𝐴4,𝐵1), and (𝐴4, 𝐵3). Thus, out of the 16 combinations of roots
that can be developed, eight satisfy the governing equation
fully, but the other eight fail to do so and as such the solu-
tion becomes a quasi-exact solution to the plate governing
equation.

As the solution to the plate equation was assumed
to take the form shown in (3), the following expressions

were constructed using the roots shown in (8) through
(11).

𝑒𝐴𝑥 = 𝐶1 sin (𝛼𝑥𝑥) + 𝐶2 cos (𝛼𝑥𝑥) + 𝐶3 sinh (𝛽𝑥𝑥)
+ 𝐶4 cosh (𝛽𝑥𝑥) (12)

𝑒𝐵𝑦 = 𝐷1 sin (𝛼𝑦𝑦) + 𝐷2 cos (𝛼𝑦𝑦) + 𝐷3 sinh (𝛽𝑦𝑦)
+ 𝐷4 cosh (𝛽𝑦𝑦) (13)

where 𝐶1 to 𝐶4 and 𝐷1 to 𝐷4 are unknown coefficients.
Since the solution is assumed to take the form defined
by (3) the final 16-term quasi-exact solution for a thin
plate could be derived by multiplying (12) and (13) as
follows:

𝑊(𝑥, 𝑦) = 𝐸11 sin (𝛼𝑥𝑥) sin (𝛼𝑦𝑦)
+ 𝐸12 sin (𝛼𝑥𝑥) cos (𝛼𝑦𝑦)
+ 𝐸13 sin (𝛼𝑥𝑥) sinh (𝛽𝑦𝑦)
+ 𝐸14 sin (𝛼𝑥𝑥) cosh (𝛽𝑦𝑦)
+ 𝐸21 cos (𝛼𝑥𝑥) sin (𝛼𝑦𝑦)
+ 𝐸22 cos (𝛼𝑥𝑥) cos (𝛼𝑦𝑦)
+ 𝐸23 cos (𝛼𝑥𝑥) sinh (𝛽𝑦𝑦)
+ 𝐸24 cos (𝛼𝑥𝑥) cosh (𝛽𝑦𝑦)
+ 𝐸31 sinh (𝛽𝑥𝑥) sin (𝛼𝑦𝑦)
+ 𝐸32 sinh (𝛽𝑥𝑥) cos (𝛼𝑦𝑦)
+ 𝐸33 sinh (𝛽𝑥𝑥) sinh (𝛽𝑦𝑦)
+ 𝐸34 sinh (𝛽𝑥𝑥) cosh (𝛽𝑦𝑦)
+ 𝐸41 cosh (𝛽𝑥𝑥) sin (𝛼𝑦𝑦)
+ 𝐸42 cosh (𝛽𝑥𝑥) cos (𝛼𝑦𝑦)
+ 𝐸43 cosh (𝛽𝑥𝑥) sinh (𝛽𝑦𝑦)
+ 𝐸44 cosh (𝛽𝑥𝑥) cosh (𝛽𝑦𝑦)

(14)

where, 𝐸𝑖𝑗, in (14), are the new unknown coefficients defined
as follows:

𝐸𝑖𝑗 = 𝐶𝑖 ⋅ 𝐷𝑗 (15)

Thus, the non-nodal flexural displacement 𝑊(𝑥, 𝑦) any-
where in the plate could be written in the matrix form as
follows:
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𝑊(𝑥, 𝑦) = ⟨𝑇1 𝑇2 ⋅ ⋅ 𝑇15 𝑇16⟩
{{{{{{{{{{{{{{{{{{{{{{{

𝐸11𝐸12⋅⋅𝐸43𝐸44

}}}}}}}}}}}}}}}}}}}}}}}

;

or 𝑊(𝑥, 𝑦) = ⟨𝑇⟩1𝑥16 {𝐸}16𝑥1

(16)

where the row vector ⟨𝑇⟩ is the solution vector which con-
tains the roots to the plate governing differential equation and
the column vector {𝐸} is the vector of unknown coefficients.
The slope along the 𝑥-direction could then be written as
follows.

𝜃𝑥 (𝑥, 𝑦) = ⟨𝑇1𝑥 𝑇2𝑥 ⋅ ⋅ 𝑇15𝑥 𝑇16𝑥⟩ {𝐸}16𝑥1
= ⟨𝑇𝑖𝑥⟩1𝑥16 {𝐸}16𝑥1 (17)

In (17) above the row vector ⟨𝑇𝑖𝑥⟩ is determined by differ-
entiating the solution vector ⟨𝑇⟩ with respect to 𝑥. Simi-
larly, the slope along the 𝑦-direction could be expressed as
follows:

𝜃𝑦 (𝑥, 𝑦) = ⟨𝑇1𝑦 𝑇2𝑦 ⋅ ⋅ 𝑇15𝑦 𝑇16𝑦⟩ {𝐸}16𝑥1
= ⟨𝑇𝑖𝑦⟩1𝑥16 {𝐸}16𝑥1 (18)

where the row vector ⟨𝑇𝑖𝑦⟩ is obtained by taking the deriva-
tives of the roots 𝑇1 to 𝑇16 contained within the with solution
vector, with respect to 𝑦. The curvature of the plate 𝜃𝑥𝑦 could
also be represented as follows:

𝜃𝑥𝑦 (𝑥, 𝑦) = ⟨𝑇1𝑥𝑦 𝑇2𝑥𝑦 ⋅ ⋅ 𝑇15𝑥𝑦 𝑇16𝑥𝑦⟩ {𝐸}16𝑥1
= ⟨𝑇𝑖𝑥𝑦⟩1𝑥16 {𝐸}16𝑥1 (19)

where the row vector ⟨𝑇𝑖𝑥𝑦⟩ is determined by obtaining the
derivatives of the solution vector with respect to both 𝑥 and𝑦.

The boundary conditions for the displacements are as
follows:

𝑥 = 0, 𝑦 = 0, 𝑊 = 𝑊1; 𝜃𝑥 = 𝜃𝑥1; 𝜃𝑦 = 𝜃𝑦1; 𝜃𝑥𝑦 = 𝜃𝑥𝑦1𝑥 = 𝑎, 𝑦 = 0, 𝑊 = 𝑊2; 𝜃𝑥 = 𝜃𝑥2; 𝜃𝑦 = 𝜃𝑦2; 𝜃𝑥𝑦 = 𝜃𝑥𝑦2𝑥 = 𝑎, 𝑦 = 𝑏, 𝑊 = 𝑊3; 𝜃𝑥 = 𝜃𝑥3; 𝜃𝑦 = 𝜃𝑦3; 𝜃𝑥𝑦 = 𝜃𝑥𝑦3𝑥 = 0, 𝑦 = 𝑏, 𝑊 = 𝑊4; 𝜃𝑥 = 𝜃𝑥4; 𝜃𝑦 = 𝜃𝑦4; 𝜃𝑥𝑦 = 𝜃𝑥𝑦4
(20)

By applying the boundary conditions for displacements, i.e.,
substituting (20) into (16) through (19), the following matrix
relationship is obtained.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑊1𝜃𝑥1𝜃𝑦1𝜃𝑥𝑦1𝑊2𝜃𝑥2𝜃𝑦2𝜃𝑥𝑦2𝑊3𝜃𝑥3𝜃𝑦3𝜃𝑥𝑦3𝑊4𝜃𝑥4𝜃𝑦4𝜃𝑥𝑦4

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

⟨𝑇𝑖⟩𝑥=0,𝑦=0⟨𝑇𝑖𝑥⟩𝑥=0,𝑦=0⟨𝑇𝑖𝑦⟩𝑥=0,𝑦=0⟨𝑇𝑖𝑥𝑦⟩𝑥=0,𝑦=0⟨𝑇𝑖⟩𝑥=𝑎,𝑦=0⟨𝑇𝑖𝑥⟩𝑥=𝑎,𝑦=0⟨𝑇𝑖𝑦⟩𝑥=𝑎,𝑦=0⟨𝑇𝑖𝑥𝑦⟩𝑥=𝑎,𝑦=0⟨𝑇𝑖⟩𝑥=𝑎,𝑦=𝑏⟨𝑇𝑖𝑥⟩𝑥=𝑎,𝑦=𝑏⟨𝑇𝑖𝑦⟩𝑥=𝑎,𝑦=𝑏⟨𝑇𝑖𝑥𝑦⟩𝑥=𝑎,𝑦=𝑏⟨𝑇𝑖⟩𝑥=0,𝑦=𝑏⟨𝑇𝑖𝑥⟩𝑥=0,𝑦=𝑏⟨𝑇𝑖𝑦⟩𝑥=0,𝑦=𝑏⟨𝑇𝑖𝑥𝑦⟩𝑥=0,𝑦=𝑏

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝐸11𝐸12𝐸13𝐸14𝐸21𝐸22𝐸23𝐸24𝐸31𝐸32𝐸33𝐸34𝐸41𝐸42𝐸43𝐸44

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

(21)

The expression in (21) above could be written in the short-
hand form as fp;;pws:

{𝑊𝑛} = [𝐾𝐷 (𝜔)]16𝑥16 {𝐸}16𝑥1 (22)

where [𝐾𝐷(𝜔)] is the symmetric 16 x 16 Dynamic Coefficient
Matrix (DCM) of the system. The stiffness matrix in (22)
consists of the essential requirements to compute the natural
frequencies for a thin rectangular plate subjected to any
boundary condition. To obtain the natural frequencies using
the Dynamic Coefficient Matrix (DCM) method, boundary
conditions are applied on the dynamic stiffness matrix and a
determinant sweep is conducted by sweeping the frequency
domain in search of frequencies at which the determinant of
the DCM will be zero; i.e., |𝐾𝐷(𝜔)| = 0.
3. Results

Numerical checkswere performed to confirm the predictabil-
ity, accuracy, and practical applicability of the proposed
Dynamic Coefficient Method (DCM) method, programmed
in a MATLAB� code. In what follows, an illustrative example
of homogeneous, rectangular, thin plate is examined.

At first, the natural frequencies for the plate with one
edge clamped and other three edges free (C-F-F-F) were
investigated, where the exact results from reference [13],
together with the frequency data obtained using ANSYS�
and in-house conventional FEM programs, based on both 12-
and 16-DOF plate elements, were used as the benchmarks for
comparison and to validate the DCM solution method. For
further studies, 10 more different sets of boundary conditions
were considered, where the DCM results were validated
against only exact results from reference [13].

Consider a thin, rectangular plate made of Steel ((𝐸 =200GPa, 𝜌 = 7800 kg/m3, ] = 0.3) having length, 𝐿 =
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Table 1: Natural frequencies for a plate with one edge clamped and three edges free (C-F-F-F).

Mode Number
Natural Frequencies (Hz)

Exact DCM Conventional FEM; 196 Elements
[13] (Present) ANSYS Error% 16-DOF Error% 12-DOF Error%

1 9.36 9.36 9.36 0.00 9.36 0.00 9.37 0.11
2 31.51 31.51 31.60 0.29 31.59 0.25 31.61 0.32
3 58.15 58.15 58.89 1.27 58.71 0.96 59.01 1.48
4 106.29 106.29 107.43 1.07 107.20 0.86 107.58 1.21
5 144.92 144.92 146.35 0.99 146.04 0.77 146.56 1.13

0.6m, width, 𝑊 = 0.4m, and thickness, ℎ = 0.004m
(4mm), as shown in Figure 1, presented earlier in this paper.
The aspect ratio, in this case, is (𝐿/𝑊) = 1.5. However,
as explained before, the DCM formulation can be applied
to any thin rectangular plate configuration with any aspect
ratio. In what follows, the natural frequencies of such a
plate, determined using the new DCM method outlined
in Section 2, are presented for various sets of boundary
conditions. The notation S-F-S-F, for example, will identify
a rectangular plate whose edges 𝑥 = 0, 𝑦 = 0, 𝑥 = 𝑎,
and 𝑦 = 𝑏 are subjected to pinned, free, pinned, and free
boundary conditions, respectively.The results of these modal
analyses are included below.

In Table 1, the DCM plate natural frequencies for one
edge clamped and other three edges free (C-F-F-F) boundary
conditions are presented alongside and are comparedwith the
exact data [13] and those obtained using various conventional
FEM formulations. As can be seen, the first five natural
frequencies obtained from DCM are in perfect match with
the exact values reported in [13]; i.e., zero relative error.
The ANSYS� results, obtained from a 196-element mesh
model, show slight differences with DCM/exact data, with
the maximum error of less than 1% for the highest mode.
These slight discrepancies can be attributed to the fact that
while using ANSYS�, the 3D, 4-noded, SHELL-181 element
was used to model the system. This element is a shell
element, which has 6 DOFs per node and these are the three
translations along, and three rotations about the x-, y-, and
z-axes.

The comparison is also made between the DCM results
and those obtained using the in-house FEM code, where
again 196-element mesh models of 12- and 16-DOF conven-
tional FEM plate elements are used. In general, when com-
pared with the DCM/exact frequencies, the results obtained
from the 16-DOF plate elements show the lowest differences
(a max of 0.77%), followed by ANSYS (a max 0.99%) and
those evaluated using 12-DOF plate element (a max of 1.13%),
respectively.

As can be seen from Tables 2–11, the presented DCM
method produces exact results for the first five natural
frequencies of a thin rectangular plate, subjected to any type
of boundary conditions. Thus, the accuracy of the unique
solution procedure adopted in determining the roots of
the plate governing equation and subsequently forming the
quasi-exact solution is validated.

Table 2: Natural frequencies for fully pinned plate (S-S-S-S).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 86.68 86.68
2 166.63 166.63
3 266.99 266.99
4 300.14 300.14
5 346.49 346.49

Table 3: Natural frequencies for two opposite edges pinned and two
edges clamped plate (S-C-S-C).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 152.52 152.52
2 213.68 213.68
3 333.22 333.22
4 395.68 395.68
5 459.86 459.86

Table 4: Natural frequencies for three edges pinned and one edge
free plate (S-S-S-F).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 37.04 37.04
2 117.89 117.89
3 129.29 129.29
4 219.89 219.89
5 250.88 250.88

Table 5: Natural frequencies for two opposite edges pinned and two
edges free plate (S-F-S-F).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 25.89 25.89
2 58.30 58.30
3 104.88 104.88
4 148.13 148.13
5 177.72 177.72
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Table 6: Natural frequencies for all edges clamped plate (C-C-C-C).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 164.52 164.52
2 254.00 254.00
3 402.53 402.53
4 405.06 405.06
5 485.62 485.62

Table 7: Natural frequencies for three edges clamped and one edge
free plate (C-C-C-F).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 72.07 72.07
2 178.17 178.17
3 178.42 178.42
4 288.34 288.34
5 337.80 337.80

Table 8: Natural frequencies for two adjacent edges clamped and
two edges pinned plate (C-C-S-S).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 121.45 121.45
2 207.00 207.00
3 330.95 330.95
4 349.98 349.98
5 412.25 412.25

Table 9: Natural frequencies for two adjacent edges clamped and
two edges free plate (C-C-F-F).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 30.25 30.25
2 80.57 80.57
3 141.76 141.76
4 183.35 183.35
5 207.65 207.65

Table 10: Natural frequencies for two opposite edges clamped and
two edges free plate (C-F-C-F).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 59.83 59.83
2 83.23 83.23
3 165.07 165.07
4 191.58 191.58
5 199.80 199.80

Table 11: Natural frequencies for three edges clamped and one edge
pinned plate (C-C-C-S).

Mode Number Natural Frequencies (Hz)
Exact Value [13] DCMMethod

1 130.34 130.34
2 231.30 231.30
3 335.40 335.40
4 389.44 389.44
5 427.90 427.90

Unlikemost exactmethods available, which are limited to
certain configurations and special boundary conditions, the
DCM method presented here is a powerful tool that can be
used to study the vibration behaviour of square or rectangular
thin plates of any dimension and subjected to any set of
boundary conditions.

4. Conclusion

Anew, quasi-exact, frequency-dependent solutionwas devel-
oped for the free flexural vibration of thin (Kirchhoff) rectan-
gular plates using a distinctive procedure of splitting the thin
plate governing equation in to two beam-like expressions.
Using these quasi-exact solutions to the governing equation
the Dynamic Coefficient Matrix (DCM) of the thin plate
was developed. The boundary conditions of the system were
applied using a special code written in MATLAB� and the
natural frequencies of a thin plate subjected to various sets
of boundary conditions were investigated to validate the
accuracy of the new quasi-exact solution and the DCM
method. When investigating the system’s first five natural
frequencies, the results were found to match perfectly with
exact results from the open literature. Further research is
being carried out to extend the DCM method, based on the
new quasi-exact solutions, to thick and multilayered plates.
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