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Abstract 
 

The objective of this thesis was to evaluate the viability of implementation of an object 
recognition algorithm driven by deep learning for aerospace manufacturing, maintenance and 
assembly tasks. Comparison research has found that current computer vision methods such as, 
spatial mapping was limited to macro-object recognition because of its nodal wireframe analysis. 
An optical object recognition algorithm was trained to learn complex geometric and chromatic 
characteristics, therefore allowing for micro-object recognition, such as cables and other critical 
components. This thesis investigated the use of a convolutional neural network with object 
recognition algorithms. The viability of two categories of object recognition algorithms were 
analyzed: image prediction and object detection. Due to a viral epidemic, this thesis was limited 
in analytical consistency as resources were not readily available. The prediction-class algorithm 
was analyzed using a custom dataset comprised of 15 552 images of the MaxFlight V2002 Full 
Motion Simulator’s inverter system, and a model was created by transfer-learning that dataset onto 
the InceptionV3 convolutional neural network (CNN). The detection-class algorithm was analyzed 
using a custom dataset comprised of 100 images of two SUVs of different brand and style, and a 
model was created by transfer-learning that dataset onto the YOLOv3 deep learning architecture. 
The tests showed that the object recognition algorithms successfully identified the components 
with good accuracy, 99.97% mAP for prediction-class and 89.54% mAP. For detection-class. The 
accuracies and data collected with literature review found that object detection algorithms are 
accuracy, created for live-feed analysis and were suitable for the significant applications of AVI 
and aircraft assembly. In the future, a larger dataset needs to be complied to increase reliability 
and a custom convolutional neural network and deep learning algorithm needs to be developed 
specifically for aerospace assembly, maintenance and manufacturing applications.  
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1.0 Introduction  
 

The main objective of this thesis was to test the viability of object recognition algorithms for 
the implementation into manufacturing, assembly and maintenance tasks. The aerospace industry 
can be broken into three hardware sectors: manufacturing, maintenance and assembly. A few 
examples of tasks in these sectors are sheet metal cutting, visual inspections and landing gear 
assembly. Artificial Intelligence has various applications across various industries; however, it is 
young to aerospace industry. Large companies such as Boeing and Airbus have recently started to 
utilize object recognition in system inspections. With the implementation of an object recognition 
algorithm the aerospace hardware sectors will see an increase of worker efficiency and 
effectiveness because of the reduction of human error. Two object recognition algorithms were 
tested: prediction-class and detection-class. The primary objective and secondary objectives, such 
as cloud-based dataset storage and model creation, were also taken into consideration to design 
and implement algorithms that recognize a mean accuracy persicion (mAP) of 90% and 85% for 
prediction-class and detection-class, respectively. The dataset preparation format was selected 
based off accuracy between Microsoft COCO and Pascal VOC. For the creation of the object 
recognition models, CNNs such as ResNet-50, InceptionV3 and YOLOv3 were researched and 
compared based on mAP and speed. Deep learning CNNs require large amounts of images and 
annotations for an accurate model to be created. This is achieved by large corporations due to the 
quantity of researchers and amount of time. The time constraint of three months, inaccessibility to 
a variety of aerospace components, and the difficult quarantine situation caused by the global 
pandemic, COVID-19, did not give enough time and resources to complete this research to its 
totality. For the proof of concept, this thesis used undersized and under-diversified datasets 
comprised of aerospace and manufacturing industry-related components.  

 

 

1.1 Computer Vision and Deep Learning 

Computer vision (CV) backed by a deep learning enabled object recognition algorithm 
successfully recognized target objects and provided all the required information for various 
manufacturing and maintenance tasks. CV is the ability for computers to analyze and understand 
the visual world. In the manufacturing world, a major use for computer vision is fault detection. 
This ability for fault detection can be integrated to an automatic assembly line  to increase 
efficiency and effectiveness [1]. With the increase in the amount of data available for CV tasks, 
the scope of the algorithms has grown. Machine learning initially used statistical learning 
algorithms such as linear regression, logistic regression, decision trees and support vector 
machines (SVM) to do pattern analysis and object detection. The method of deep learning using 
neural networks has been developed recently for the  purpose of feature extraction and pattern 
analysis [2]. Object recognition is a CV task for identifying objects in images or video. This task 
can be broken down into three main categories: image classification, object localization and object 



Abhinav Sundar 

2 
 

detection. This thesis utilized a prediction-class algorithm based on the image classification task; 
and a detection-class algorithm based on the object detection task, which consists of an algorithm 
that produces a list of object categories present, bounding box location, and scale of every instance 
of each object category [3]. 

 

Deep learning allows computational models that are composed of multiple processing 
layers to learn representations of data with multiple levels of abstractions [4]. A major benefit to 
deep learning algorithms over older learning algorithms was the ability to continuously increase 
performance as the neural networks and datasets increase in size and complexity [5] [6]. This was 
key to manufacturing applications as deep learning enabled for object detection could continuously 
increase accuracy with the addition of more data. These algorithms can improve the accuracy 
performance of object recognition codes.  

 

1.2 Scope and Structure of the Thesis 

 

The hardware sectors of the aerospace industry are pushed by accuracy and efficiency. 
Tasks such as assembly requires a large amount of time for part identification. Object recognition 
algorithms would, for example, be trained to conduct automatic visual inspections of the aircraft 
and aid aircraft technicians to complete landing gear assemblies by quickly locating the required 
part. Object recognition algorithms in the aerospace industry also provides a significant support to 
technician training. With the detection features of an object detection algorithm, an effective 
augmented reality-based training application can be created to decrease technician practical 
training time and aid newly trained technicians to identify target components. This thesis intended 
to improve the task of part identification by removing human error from the process, allowing 
worker efficiency and performance to increase. 

 

To give a fundamental understanding into deep learning-enabled object recognition 
algorithms, this thesis reviews the ground CNN structure and the underlying functions that enable 
the breakdown and processing of image features; beneficial modifications to the original CNN; 
and commercial applications of CV in the commercial sector. The methodology is described to 
show how the design requirements were achieved. Finally, the results are discussed and assessed 
based on the research and design objectives.  



Abhinav Sundar 

3 
 

2.0 Background 
 

The prediction-class and detection-class algorithms used modified CNNs. These CNNs 
were developed to achieve better results for the object recognition task. The CNNs used were 
InceptionV3 and YOLOv3. the original CNN was updated for the explicit purpose of increased 
accuracy and speed, each with layer additions and modifications. The theory behind these CNNs 
are covered this section, with trade-off studies covered in the methodology section. 

 

2.1 Convolutional Neural Networks 

 

Convolutional Neural Networks (CNN) are the main type of neural networks used in object 
recognition. Previous networks have each neuron from the previous layer connected to the neurons 
in the next layer. Due to this design, limitations on the size and processing ability of those networks 
are apparent. However, with the use of the three basic ideas of a CNN, a faster, deeper and larger 
network can be created. These concepts are as follows: local receptive fields, shared weights and 
pooling [7]. Rather than connected an entire image to the next layer, CNN layers take an input 
layer and the network connects a local region of neurons to one neuron of the next layer. The 
application of CNN layers creates a feature map. As a result, that neuron of the following layer 
learns the weight and bias of the local region, commonly known as the local receptive field. The 
local receptive field was then slid over the image and then respectively assigned to a neuron, with 
the field moving from left to right and top to bottom. Figure 1 demonstrates the relation between 
the feature map and the local receptive field: 

 



Abhinav Sundar 

4 
 

 

Figure 1: Local Receptive Field extraction method [7] 

 

 These weights and biases are shared over the next resultant layer of neurons, and each of 
that resultant feature map can extract one type of feature. Convolutional layer includes multiple 
feature map that extract various types of features from the target image., Figure 1 displays how the 
neuron weight (5x5) of the preceding layer is projected and recorded on the following neuron. This 
translates the 28X28 image into a 24X24 feature map [7]. The shared weights and biases are 
referred to as the kernel or filter. The convolutional layers method of feature extraction reduces 
the number of parameters calculated drastically, when compared to the older fully connected 
layers. The convolutional layers’ sliding local receptive field’s extraction method can be 
mathematically represented by equation 1 [8]: 

 

 

𝑮[𝒎, 𝒏] = (𝒇 ∗ 𝒉)[𝒎, 𝒏] =--𝒉[𝒋, 𝒌]𝒇[𝒎 − 𝒋, 𝒏 − 𝒌]	
𝒌𝒋

 

 
(1) 

 

 

The figure 2 below accurately explains have the feature map is created using an input image 
and set kernels/filters: 
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Figure 2: Feature map creation [8] 

 
 

 The value of each feature map neuron is a two-part iterative equation. The first part is the 
weighted average (z) of the input local receptive field values (x) for each neuron is the function of 
the activation function (a, or x for the first layer) of the previous layer, the set weight of the neuron 
(w), and the set bias of the neuron (b). The second part is the value of the neuron which is calculated 
by multiplying the non-linear activation function (g) with z [9]. Therefore, for the first feature map 
for the first neuron, the weighted average, the value (y), and the next layer’s activation function 
(a) would be: 

𝒙 = 𝒂𝟏𝟎 (2) 
  

𝒘𝑻 ∗ 𝒙 = 𝒘𝟏𝒙𝟏 +𝒘𝟐𝒙𝟐…𝒘𝒏𝒙𝒏 (3) 
 

Where n equals the number of input local receptive field values. 

𝒛𝟏𝟏 = 𝒘𝟏
𝑻 ∗ 𝒙 + 𝒃𝟏 (4) 

  
𝒂𝟏𝟏 = 𝒚 = 𝒈𝟏(𝒛𝟏𝟏) (5) 

 

Where subscript denotes neuron number and superscript denotes layer number [9]. Weight 
and bias are shared values for the entire layer. However, these equations can be simplified into a 
matrix for the whole layer. The weight average of the values (Z) equation of each layer involves 
two unknowns with two equations. The layer values are calculated with the activation function of 
the previous layer (A), the defined weight of the current layer (W), the defined bias of the current 
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layer (b), and the non-linear activation function (g). Equations 6, 7 and 8, pertain to the first layer 
[9]: 

 

𝒙 = 𝒂𝟎 (6) 
  

𝒁𝟏 = 𝑾𝟏 ∗ 𝒙 + 𝒃𝟏 (7) 
  

𝑨𝟏𝟏 = 𝒀 = 𝒈𝟏(𝒁𝟏) (8) 
 

 The non-linear activation function, g, allows for greater flexibility, increased speed of 
learning and the creation of complex functions during the learning process. As the ReLu activation 
function is piece-wise linear function, the parameter definitions become easier, therefore it is often 
used for feature maps. Finally, the last element of a CNN is the pooling layers. A pooling layer is 
a layer which simplifies the output of a convolutional layer, takes each feature map output from 
the convolutions and prepares a condensed feature map [7].  

 

 

2.2 Overview of Dataset Format and Compared CNNs  

 

The performance of an object detection model is affected by many factors. These include 
factors such as the type of deep learning algorithm that extracted features, the input image 
resolutions, the boundary box encoding, data augmentation, the training dataset, the localization 
loss function and training configurations including batch size, input image size, learning rate and 
learning rate decay.  Dataset format was an influencer for training accuracy. The method of how 
and what annotation information was saved resulted in a positive or negative variation in mAP. 
Two main dataset formats used in the object recognition algorithms are Microsoft COCO and 
Pascal Visual Object Classes (Pascal VOC). The key difference between the two formats was the 
type of file saved, which was a .json file for COCO and .xml for Pascal VOC. JSON files included 
info, licenses, categories, images and annotations. However, one JSON file contained all the 
images in the dataset. One XML file was created per image and included information such as 
folder, filename, size, object details per instance, truncated and difficult tags, and the bounding 
box details per object instance [10].  

 

 As object recognition task have evolved to model more complex, real life applications, the 
need for faster and more accurate CNNs has developed. VGGNet originally began by modifying 
the ground CNN architecture for simplicity, by deploying only 3X3 local receptive field 
convolutional layers. A max pooling layer was added to the reduce the volume size [11]. VGGNet 
with its simplicity goal, still followed the base CNN architecture, therefore the weight of the 
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overall deep learning model was large. A major development in the deep learning field arrived 
with exotic architectures such as Microsoft’s ResNets and Google’s GoogleNet/InceptionV1 to 
InceptionV3. ResNet-50, consists of 50 weight layers, is a deep convolutional neural network that 
has a unique feature called Residual Modules. These modules allowed the data learned in the 
previous modules to be applied to the current module, therefore the training time and error were 
reduced. The modules were added after each convolutional layer, which allows it to compile the 
information and reference that function for the following layers. The goal for ResNet was depth 
and was achieved by addressing the “vanishing gradient” error. As layers were added, the deep 
learning network started to converge upon training, this resulted in increased training error and a 
rapidly degrading accuracy; this was the vanishing gradient issue [12]. ResNet achieved up to 152-
layer depth which is 8 times deeper than VGGNet, with a greater accuracy and 5 times lower 
weight [12]. InceptionV3 worked as a multi-level feature extractor. Its main feature was the 
method that each convolutional layer was organized to optimize speed and weight. The 
architecture used various sizes of convolution local receptive fields, such as 1X1, 3X3 and 5X5, 
to capture features in different scales, thus the accuracy of each convolutional layer is increased. 
InceptionV3 included three different substructures for feature extraction referred to as Inception 
Modules A, B and C. Figures 3, 4 and 5, visualize the breakdown of these multi-level feature 
extracting modules from the paper, Rethinking the Inception Architecture for Computer Vision 
[13]. 

 

 

Figure 3: InceptionV3 Inception Module A 
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Figure 4: InceptionV3 Inception Module B 
 

 

 

Figure 5: InceptionV3 Inception Module C 
  

Detection deep learning networks have two main goals: accuracy and speed. The base CNN 
structure has been modified according to those goals. Architectures such Faster R-CNN and R-
FCN used region-based feature extractors to accomplish this goal, whereas CNNs such as 
YOLOv3 combine the ResNet and Inception features and create hybrid networks. R-CNN was a 
two-stage object detection network. The first stage was a deep FCN, which included the 
convolutional layers, and the second stage was a Region Proposal Network (RPN). The RPN was 
the marketed selling point of the Faster R-CNN and consisted of two sibling fully connected layers: 
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a box regression and a box classification layer. The RPN was put ahead of the convolutional feature 
map and utilized the feature output to predict object bounds and scores simultaneously. This 
module enabled the Faster R-CNN to increase overall accuracy from the older Fast R-CNN [14]. 
Like the Faster R-CNN, the R-FCN was also a two-stage architecture. It consisted of an FCN and 
an RPN. However, unlike the individual region evaluation method of the Faster R-CNN, the R-
FCN was fully connected network with all the layers being convolutional. This means that the 
second stage, RPN, evaluated the entire region instead of multiple individual evaluations. This 
enabled the R-FCN to limit errors such as the “a trous trick” and increase the overall accuracy of 
the architecture [15]. YOLOv3 was the third version of the YOLO9000 object detection system, 
which aimed at achieving real-time object detection with good accuracy. The system achieved this 
by mixing the Darknet-19 network used in YOLOv2, and residual networks (ResNets). The 
convolutional layers were also varied in size like the InceptionV3/GoogleNet architecture with 
1X1 and 3X3 size layers, which increased the accuracy and speed. DarkNet-53 has similar 
performance to a 152-layer deep residual network (ResNet-152 on Faster R-CNN) with twice the 
speed [16]. 

 

2.3 Current Commercial Application 

 

Boeing and Airbus lead the front in the aerospace computer vision field. Boeing’s work 
dates back to 1999, when they created a video-based foreign object detector. This system was 
designed as an overhead camera that can automatically detect small pieces of debris that can go 
unnoticed by human vision [17]. This system was put into the Boeing wing production line of the 
F/A-18 C/D and E/F. This was a fault-detection inspection system during an assembly line. The 
system was cost-effective, reduced the need for inspection, decreased part rejections and delivery 
delays. This technology used objection detection and was built on foreign-object samples, work 
pieces and tooling to build positive and negative assumptions. Airbus is currently focusing on 
implementing CV algorithms in the air. Airbus has demonstrated its first fully automatic vision-
based take-off system. On January 16th, 2020, Airbus utilized image recognition technology which 
it incorporated directly onto the aircraft. This achievement is part of the larder Autonomous Taxi, 
Take-Off and Landing (ATTOL) project [18]. Vision-based taxi and landing tasks are targeted to 
be completed by mid-2020. Image recognition has allowed for the effective take-off of an aircraft, 
which entails a lower workload for the pilot and a safer flight due to the elimination of human 
error. The aerospace industry has applied object recognition to assembly line fault detection and 
autonomous take-offs to eliminate the effect of human error. 

A key manufacturing industry example is the company, NanoNets. This company is 
providing the model creating resources for manufacturing tasks such as AVI.  NanoNets has 
created their own proprietary CNN to detect faults in the assembly line and defects during a visual 
inspection. With the promises of fast, accurate, and scalable object recognition algorithms, this 
company allows for individuals and businesses to create custom models for tasks such as product 
quality control, defect detection, and crop quality assessment. The use of the algorithm services is 
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available through APIs, docker, or mobile apps achieves the human factors considerations of 
accessibility. Nanonets explained that deep learning and CV algorithms application into visual 
inspection, allows for automatic inspections, lowers the cost of labour and removes human error 
of imprecision of eyesight with unlimited performance [19]. As deep learning algorithms are 
scalable, the performance continually increases with an increase in the amount of data available. 
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3.0 Algorithm Design 
 

The design objectives, requirements and methodology are stated in this section. The focus 
for this research was to assess the viability of an object recognition algorithm for the 
implementation into aerospace manufacturing and maintenance tasks. The algorithms shall meet 
the stated requirements for successful integration. The designed algorithm should be able to 
efficiently identify the target object and display its results in an effective format. These objectives 
and requirements were integrated into the design methodology to create two types of object 
recognition models and algorithms. The design methods for both prediction-class and detection 
class are stated in this section.  

 

3.1 Design Objective and Requirements 

 

3.1.1 Design Objectives 

 

The object recognition algorithms successfully recognize and display the target object and 
its name, when given an input image. For the designs to meet the goal the following objectives 
were tested and met: 

OBJ-MAIN-PREDICTION-001: The prediction-class object recognition algorithm 
should be able to optically recognize the target object. 

• Justification: The algorithm must be capable of recognizing the target component 
of the inverter system with an input picture. 

OBJ-MAIN-PREDICTION-002: The prediction-class object recognition algorithm 
should be able to print the names and accuracy precision (AP) of the target object, with the highest 
percentage at the top. 

• Justification: In order to inform the user what object is recognized, the algorithm 
must display its names and APs. 

OBJ-MAIN-DETECTION-001: The detection-class object recognition algorithm should 
be able to optically recognize the target object. 

• Justification: The algorithm must recognize the object to calculate location, 
bounding boxes and AP’s with object detection model. 

OBJ-MAIN-DETECTION-002: The detection-class object recognition algorithm should 
be able to output an image to with all target objects detected with bounding boxes, locations, names 
and AP’s. 
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• Justification: In order to inform the user where the recognized object is, the 
algorithm must display bounding boxes, locations, names, and AP’s of all objects 
detected from the input image. 

 

3.1.2 Design Requirements and Verifications: 

 

Requirements were defined to meet the objectives stated in the previous section. The 
requirements for each type of object recognition algorithm are as follows: 

Table 1:Design Requirements - Prediction-class 
Subcomponent Description Objective 
Ground station Laptop Computer To process transfer-learning 

python code and run object 
prediction algorithm 

Custom dataset 15 000 images of 13 classes of 
objects of the Maxflight 
V2002 Flight Simulator 
inverter system 

To provide data to be transfer-
learned for the creation of 
prediction model 

Neural Network InceptionV3 CNN  To provide feature extraction 
and transfer-learning 
capabilities 

Object Prediction Model Custom .h5 trained model To identify target set of 
objects and display their 
names and AP’s 

 

Table 2: Design Requirements - Detection-class 
Subcomponent Description Objective 
Ground station Dell G7 Laptop with Nvidia 

Geforce GTX 1050 GPU 
To process transfer-learning 
python code and create the 
object detection model 

Custom dataset 100 images of six class of 
objects from two different 
SUVs 

To provide data to be transfer-
learned for the creation of 
detection model 

Neural Network YOLOv3 CNN  To provide feature extraction 
and transfer-learning 
capabilities 

Object Detection Model Custom .h5 trained model To identify target set of 
objects and display their 
names, bounding boxes, 
locations and AP’s 

Mobile Station Samsung Galaxy Note 9 
Smartphone 

To run object detection 
algorithm with the custom 
model 
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To ensure the above objectives were met following verification procedures were created to 
test each subcomponent requirement: 

 

Table 3: Design Requirement Verifications – Prediction-class 
Test Category Qualification Testing Method 
Model Testing Obtain a mean accuracy precision (mAP) 

of at least 90% 
AP analysis of model after 
creation. AP’s are listed while 
experiments are being run. 

Object Recognition 
Algorithm Testing 

Algorithm must be able to recognize 
target object in image and list the AP’s 
and names of predicted objects in order 
from highest to lowest AP 

Trials with parts of the 
inverter system, and different 
inverters 

 

Table 4: Design Requirement Verifications – Detection-class 
Test Category Qualification Testing Method 
Model Testing Obtain a mean accuracy precision (mAP) 

of at least 85% 
Separate AP analysis of model 
after creation, displaying 
IoU’s, AP’s and mAP’s of 
each experiment 

Object Recognition 
Algorithm Testing 

Algorithm must be able to recognize all 
target objects in image and display the 
AP’s, names, locations and bounding 
boxes of detected objects 

Trials with images of various 
SUVs. 

 

 

3.2 Methodology 

 

The coding environment, libraries, design and testing processes are stated in this section. 
Both object recognition algorithms aim to show their viability for aerospace manufacturing and 
maintenance applications. Commercial applications of object recognition algorithms use 
proprietary neural networks design for the sole purpose of the intended object recognition task. 
However, this report focuses on the viability of an object recognition algorithm using pre-trained 
convolutional neural networks such as InceptionV3 and YOLOv3. The language Python was used 
with artificial intelligence-enabling libraries: ImageAI and Tensorflow. Both prediction-class and 
detection-class algorithms were trained with custom datasets and pre-trained CNNs, which were 
selected by a trade-off study. The functionality was verified, and the viability was confirmed with 
an accuracy and application test.  
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3.2.1 Ground Station Setup 

 

The ground station used for both prediction-class and detection-class algorithms was a Dell 
G7 laptop with a Nvidia Geforce GTX 1050 GPU. The training, testing and object recognition 
codes were made on the language Python. All the codes utilized a deep learning library called 
“ImageAI”. This library allowed for the creation of the training, testing and application codes with 
its self-contained deep learning and computer vision capabilities. It can be used for object 
detection, video detection and object tracking, which are all essential for the successful 
implementation into the aerospace manufacturing and maintenance field. For the purpose of this 
thesis, the functions used were from the “ObjectPrediction” and “ObjectDetection” classes. Within 
those classes, functions were called to set the model path, set the input picture path, set output 
picture path, load the model, detect objects and print the objects name and AP, for the application 
codes. The training and testing codes utilized functions that set the model type, called the model, 
set the dataset path, set the training configuration values, trained the model and evaluated the 
model [20]. Enabling both the use of the ImageAI library and the training and testing codes was 
the Tensorflow library. This library, created by Google, enables fast numerical computing and was 
used to transfer-learning onto deep learning models. A major advantage with this library is that it 
can run on single CPU systems, GPUs, mobile devices and large scale distributed systems [21]. 
The code utilized tensorflow GPU version 1.13.1 for both prediction-class and detection-class. 
This enabled the training, testing and application codes to run at faster speeds.  

 

The prediction-class training and application codes were all run from the Dell G7 laptop. 
The dataset was setup in folders and those paths were set using ImageAI functions. Once the 
pretrained InceptionV3 model, TensorFlow GPU version 1.13.1 and ImageAI version 2.1.5 were 
downloaded, the training code was run on the Nvidia GeForce GTX 1050 GPU. Once the model 
was trained, the object prediction code was run on an aviation inverter, the flight simulator’s 
inverter and wires. The full codes for training and application with explanations can be found in 
Appendix A. 

 

The detection-class training, and testing codes were run from Google colab to display the 
viability of a cloud-based dataset and training system. A Google drive folder called “detection” 
was mounted onto the Google Colab notebook and the dataset of 100 images and annotations of 
two different SUVs were uploaded to it. Once the pretrained YOLOv3 model, TensorFlow GPU 
version 1.13.1, and ImageAI version 2.1.5 were downloaded, the trained and test codes were run 
using Google colab’s Nvidia K80 GPU. The completed model was then tested on Google Colab 
and then transferred to the mobile station for application testing. The detection-class code was 
tested on a Samsung Note 9 smartphone using a mobile python 3 IDE called “Pydriod 3”. This 
program allowed for the effective functioning of the object detection code. The full codes for 
training, testing and application with explanations can be found in Appendix B. 
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3.2.2 Dataset Collection and Preparation 

 

Dataset collection and preparation was a key factor in the effectiveness and efficiency of 
the transfer-learning step. The larger and more diverse the data set collected, the better the 
reliability of the mAP will be. If the model is trained from the repetition of the same image, the 
algorithm will only be able to recognize that specific object in that specific attitude. For the 
prediction-class algorithm, due to a scarcity of aerospace components and the quantity of images 
needed for good accuracy (minimum 500 per class of object) [20], only one system was selected 
to for training. The inverter system of the MaxFlight V2002 Flight Simulator was selected for its 
relation to aerospace inverter systems. This acted as a proof of concept for the implementation into 
aerospace manufacturing and maintenance systems. The dataset collected contained 15 552 images 
from different angles and lighting scenarios. Dataset preparation followed a train path and test path 
with the images divided approximately 75% and 25%, respectively. Under each path, the images 
were broken down into their respective object class folders (i.e. inverter, analog, digital, etc.). The 
path flow of the dataset preparation is shown in the figure 6. 
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Figure 6: Dataset Preparation - Prediction-class 
 

 

The dataset collection and preparation for the detection-class algorithm was more complex 
as the training format required images and corresponding annotated xml files. The dataset was 
comprised of 100 images and annotations of two types of SUVs: a 2016 Hyundai Santa Fe Sport 
and a 2015 Lexus RX 350. Two dataset formats were compared for the dataset preparation. The 
main objective of the dataset format selection was to test the accuracy. The formats compared were 
the Pascal Visual Object Classes (VOC) and Microsoft Common Objects in Context (COCO) 
formats.  

 

Table 5: Dataset Format Comparison - Detection-class 
 Microsoft COCO PASCAL VOC 
mAP (%) [22] 21.6 73.4 
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As seen in the table 5, PASCAL VOC is 3.4 times more accurate for object recognition 
tasks. The PASCAL VOC dataset preparation format and path flow is shown in figure 7. 

 

Figure 7: Dataset Preparation - Detection-class 
 

3.2.3 Transfer-Learning 

 

Transfer-learning is the process of integration of a new related dataset to an older dataset 
to increase accuracy and speed [23]. The more accurate the feature extraction, the higher the mean 
accuracy precision of the new model. There are three main parts of transfer-learning: the input, the 
neural network and the output. The inputs are custom datasets and pretrained models. The neural 
networks used for prediction-class and detection-class are InceptionV3 and YOLOv3 CNNs, 
respectively. The outputs are two new models.  

 

Two neural networks were compared for prediction-class and three neural networks were 
compared for detection-class. As the detection-class model was intended for live feed object 
detection, the main requirement for the model was speed. The algorithms were listed as successful 
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if the results were properly displayed and accurate; and the mAPs of the results were above the 
required mark of 90% and 85%, respectively.  

 

For the prediction-class model, the compared CNNs were ResNet-50 and InceptionV3. 
Both these CNNs have many feature extracting convolutional layers and have high object 
recognition accuracies. The two main features compared between the ResNet-50 and InceptionV3 
architectures are: CNN weight and accuracy on the ImageNet dataset. This data is from the 
ImageNet project in which the dataset is comprised of 1.2 million images belonging to 1000 
different classes (Reference from cv-tricks.com). The comparison between the CNNs are listed in 
table 6, with the winning values italicized: 

 

Table 6: CNN Comparison - Prediction-class [10][12] 
 ResNet-50 InceptionV3 
Weight (MB) 105 96 
Accuracy (%) 93.0 94.4 

 

For the same dataset, InceptionV3 outperformed the ResNet-50 in both weight and 
accuracy. Therefore, the prediction-class model was trained using the InceptionV3 pretrained 
CNN.  

For detection-class, the comparison focus was on mAP and mainly inference time, which 
is the time it takes for the model to predict the testing data. The neural networks compared for the 
detection-class model were Faster R-CNN (Region-based Convolutional Neural Network), R-FCN 
(Region-based Fully Connected Network), and YOLOv3. The compared neural networks have all 
been trained with the Microsoft COCO object detection dataset format. The COCO format is not 
optimal for object detection, therefore the researched data displayed low APs for all the neural 
networks. The trade-off study between neural networks was compiled in table 7, with the winning 
values italicized: 

Table 7: CNN Comparison - Detection-class [16] 
 Faster R-CNN  R-FCN YOLOv3 
mAP (%)  34.9 29.9 33 
Inference time (ms) >100 85 51 

 

Prediction-class and detection-class transfer-learning was a two-step process with dataset 
collection and preparation, and the model creation (via transfer-learning), as the second step. The 
training algorithm was created using the ImageAI manual, which stated all the functions and their 
options. Figure 9 visualizes the flow of the transfer learning and the InceptionV3 general 
architecture: 
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Figure 8: Transfer-learning Process - Prediction-class 
 

Figure 9 explains the flow of the transfer learning and the YOLOv3’s DarkNet-53 based 
feature extractor: 
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Figure 9: Transfer-learning Process - Detection-class 
 

3.2.4 Accuracy and Application testing 

 

During the training process, the AP value for each experiment was listed. Once the highest 
AP was reached, the training process was stopped to ensure overfitting does not occur. The AP 
was then verified with the satisfactory mark of 90%. The model was then tested with the object 
prediction code a generic aviation inverter, and parts of the MaxFlight V2002 Flight Simulator 
inverter system. The AP results were recorded in a table. 

 

 For the detection-class code, the model was tested with a testing code that listed the mAP 
of each model created. The training code saved models for each experiment only if the loss and 
accuracy was better than the previous experiment. The model with that highest mAP was selected 
to be used for the application testing. The selected model and JSON dataset file were moved to the 
mobile station, and the station was setup for object recognition tasks. With Python 3, ImageAI and 
Tensorflow, input images were given to the object detection code and outputs were obtained. The 
code was tested with similar vehicles to prove accuracy. The output images and accuracies were 
recorded. 
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4.0 Results and Discussion 

4.1 Prediction-class 

 

Prediction-class training took 16 653 seconds (4 hours 37 minutes 33 minutes) to reach 
100% accuracy (7 experiments). In contrast, The mAP of the model was 99.97%, The generic 
inverter image was found online [24].The results, discussion and limitations were explained in this 
section. The prediction-class dataset was evaluated based on accuracy. The model and application 
testing revealed exceptional accuracy. Figures 10 and 11 explained the results from the model 
testing and application testing, respectively. 

 

Figure 10: Model Testing - Prediction-class 
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Figure 11: Application testing - Prediction-class 
 

 The prediction-class algorithm achieved and surpassed its design requirement. Model 
testing showed an impressive maximum mAP of 99.97% at the seventh experiment. This proves 
that with a sizeable dataset, the ability for the InceptionV3 CNN and the prediction-class algorithm 
to complete an image classification task on aerospace-related components and subcomponents. A 
key result was the identification of the Maxflight’s inverter system’s various wires. Such as small 
component, once colour-coded, was identified by the prediction-class algorithm with almost 100% 
accuracy. The accuracy of the generic aviation inverter was 99.56%, as shown in Figure 11, which 
was also higher than the satisfactory mark of 90%. From the aspect of accuracy, the prediction-
class proves that it can be utilized for assembly, manufacturing and maintenance applications.   

 

 The results showed exceptional accuracy, but there were limitations to its feasibility. These 
values were exceptionally high for object recognition algorithms and are an outliner when 
compared to literature review. AP’s of 99% are unreliable and unrealistic because the model was 
created with an undersized and under-diversified dataset. The model was trained using only one 
inverter system. In reality, this algorithm would not be able to recognize the sub-components of 
any other inverter system. The issue was related to the testing part of the dataset. As the testing 
images was of the same system, the model achieved exemplary results. Even with numerous 
pictures from various angles and lighting conditions, the fact was that this model can very 
accurately recognize only this inverter system. As exhibited in figure 11, the accuracy slightly 
decreased with the generic aviation inverter. If the application testing was done on a generic 
aviation wire, the code would not be able to recognize it successfully. To mediate this error, the 
dataset would need various images of components from a diverse collection of inverter systems, 
thus making the dataset large and diverse. The inaccessibility multiple aviation components were 
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a major limitation for this thesis. The dataset collected was large but not diverse in component 
brand and type. Another key limitation was the image classification object recognition task. This 
task was only able to recognize the main object in an image. For the purposes of aerospace 
manufacturing and maintenance applications, this model would not suffice to remedy this issue 
the object detection algorithm was utilized. Both accuracy and feasibility were analyzed to show 
the viability for object recognition in the aerospace applications.  

 

4.2 Detection-class 

 

Detection-class training took 30 832 seconds (8 hours 33 minutes 52 seconds), 2 seconds 
per step for 160 steps per experiment, for a total of 100 experiments. The results, discussion and 
limitations were explained in this section. The images that were tested were taken from the internet 
[25]–[27], and are attached to the application results in appendix B . The detection-class results 
were recorded and plotted to show the relation of accuracy versus, object instances and number of 
experiments. These trends can be seen in figures 12 and 13. Furthermore, the application testing 
results were compiled into five figures (Figures 14-18), which showed the highest accuracy of 
each object class detection. The code results from the algorithm can be found in Appendix B. 

 

 

Figure 12: Object Instances versus AP 
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Figure 13: Model Testing - Detection-class 
 

 

 

Figure 14: Detection Results - Lexus RX 350 
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Figure 15: Detection Results - Lamborghini Urus 
 

 

 

Figure 16: Detection Results - Tesla Model X 
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Figure 17: Detection Results - Hyundai Elantra 
 

 

 

Figure 18: Detection Results - Mercedes G-Wagon 
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The detection-class model testing results showed the highest mAP of 89.54% at the 
thirteenth experiment as seen on figure 13. The mAP function showed a fifth-order polynomial 
trend with the peak achieved at 89.54%. Model testing showed that the detection-class algorithm 
using the YOLOv3 CNN achieved and surpassed the required mAP of 85%. The object instance 
comparison in figure 10, showed the general trend that higher the number of instances of a target 
object the higher the accuracy. Figure 10 also showed that the higher the complexity of the part 
the lower the accuracy. This complexity factor was seen when comparing the AP results between 
the side mirror (97%) and light (89%). As the headlights, rear lights and fog lights all had different 
shapes and sizes, whereas the side mirror was a distinct protruding rectangular figure. The 
application testing, shown by figures 14-18, display the strengths and weaknesses of the model. 
The strengths were seen in figures 14 and 15, with all categories detected on the target SUVs and 
at accuracies ranging from 94.3% to 99.87%. The raw code output and image detection results are 
in Appendix B. These validates the set requirements and proves the viability of the implementation 
of the detection-class algorithm in aerospace applications. Unlike prediction-class, this algorithm 
detects all the objects within the frame and displays object name and location. This location 
detection can be used for augmented reality-based assembly training and AVI.  

 

 This object recognition outputted the same results as the Nanonets’ manufacturing object 
detection algorithm. The accuracy surpassed industry standard, however, the accuracy obtained is 
unrealistic due to the undersized and under-diversified dataset. Unlike Boeing’s video-based 
foreign object detection algorithm, which only displayed the results in positive or negative colours, 
the algorithm designed successfully identified the target and displayed the location, name and AP. 
This shows that the designed algorithm incorporated better filter than the foreign object detection 
system. The results were also obtained from a mobile device which proved the accessibility of the 
algorithm. For the mobile station to be able to process the information quickly and effectively, the 
model had to be limited in size and detailed in features extracted. The aerospace industry has not 
applied object detection-enabled maintenance, therefore this implementation of a CNN-based 
object detection algorithm was unique. 

 

 The weakness and limitation of this detection-class algorithm was seen in figures 16, 17 
and 18. Due to lack of data, the model detected multiple objects in one location. The lack of data 
refers to the low number of images used and diversity of objects. The dataset was comprised of 
images of two SUVs, this limits its ability to detect the components of other types of vehicles. A 
reliable dataset such as ImageNet includes millions of pictures for thousands of classes of objects. 
Such a dataset requires a lot of time to collect and format. Figure 16 and 18 showed that irregular 
SUV figures did not recognize well, as the Tesla Model X has different style doors then most 
SUVs, and the Mercedes G-Wagon has an unusual boxed figure. These features were not on the 
SUVs that were trained. A limitation from the overall aspect of the thesis was the inability to access 
a diverse dataset and manpower. The accessibility of a diverse dataset was affected by the novel 
coronavirus, COVID-19. The development of this virus forced citizens to stay indoors in 
quarantine. The lab and curricular resources were restricted causing a personal mental strain and 
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an inability to complete research tasks. This situation was handled as best as possible, and the 
datasets that were used for this thesis had to be modified. Large AI-focused companies such as 
Microsoft and Google have teams of employees working on dataset collection and preparation. 
This allowed for the creation of large and diverse datasets which then are trained into CNNs for 
highly reliable models. The detection-class algorithm utilized a hundred images and corresponding 
annotations. With a more manpower, and a larger, diverse dataset, this detection-class algorithm 
can be used in a variety of application for aerospace manufacturing, assembly and maintenance.  
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4.3 Degree of Requirements Matrix 

 

Table 8: Degree of Requirements Matrix - Prediction-class 
Requirement Achieved Comments 
Model Testing 

 
The model achieved an accuracy 
of 99.97% mAP, which was well 
above the required 90%. 

Object Prediction Algorithm 
Testing  

The algorithm successfully 
displayed name and AP of target 
objects. 

 

Table 9: Degree of Requirements Matrix - Detection-class 
Requirement Achieved Comments 
Model Testing 

 
The model achieved an accuracy 
of 89.54% mAP, which was well 
above the required 85% 

Object Detection Algorithm 
Testing  

The algorithm successfully 
displayed name, location and AP 
of all target objects 
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5.0 Conclusion 
 

Object recognition in the aerospace industry is a relatively new area of study. The viability 
object recognition algorithms are based on the ability for the algorithm to detect target components 
accurately and quickly. This report determined that the accuracy of, both the prediction-class and 
the detection-class were viable for the task, with excelling mAPs of 99.97% and 89.54%, 
respectively. However, the prediction-class could not be used for aerospace tasks as it does not 
present object location and could only recognize the main target object in the image correctly. This 
is not the case for object detection, as the detection-class code displays locations, names and 
accuracies. Limitations for both algorithms were mainly due to lack of dataset size and diversity. 
Live-feed detection could not be completed for this report due to a sudden change in accessibility 
situation, however, research has shown that the YOLOv3 architecture can detect object in live 
video with acceptable frame rates. This report proved the viability, however, with further research, 
the functionality of this algorithm can be increased to be commercially usable. 
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6.0 Future Considerations 
 

Due to restrictions in time and manpower, this thesis was not able to explore the fields of 
total object recognition viability for aerospace manufacturing, maintenance and assembly task. For 
a complete viability test of object recognition algorithms, a proprietary CNN must be designed 
based on the physical properties of the target objects. Future research must consider evaluating the 
convolution’s functions, such as the non-linear activation function, based on the dataset. This 
research will need to include a proposed network restructuring based on existing architectures. 
Following the idea of YOLOv3, a hybrid network should be the first building block of the new 
structure. Once the feature extraction concepts of residual networks and inception modules are 
brought in, the core CNN can be modified by setting requirements and objectives for parameters 
such as loss function and kernel/filter features. A proprietary CNN for aerospace manufacturing, 
maintenance and assembly tasks will be able to show its full viability, strengths and limitations.  
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Appendix A – Prediction class 
 

Training Algorithm 

 

from imageai.Prediction.Custom import ModelTraining 

 

model_trainer = ModelTraining() 

model_trainer.setModelTypeAsInceptionV3() 

model_trainer.setDataDirectory(r"C:\Users\Abhinav\Desktop\simulator") 

model_trainer.trainModel(num_objects=13, num_experiments=100, enhance_data=True, 
batch_size=32, show_network_summary=True) 
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Training Algorithm Raw Results  

 

 

 

Figure 19: Training Algorithm Raw Results - Prediction-class  
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Application Algorithm 

 

from imageai.Prediction.Custom import CustomImagePrediction 

import os 

 

execution_path = os.getcwd() 

 

model_path = "./model/model_ex-007_acc-1.000000.h5" 

json_path = "./json/model_class.json" 

input_path = "./input/U_Red.jpg" 

 

prediction = CustomImagePrediction() 

prediction.setModelTypeAsInceptionV3() 

prediction.setModelPath(model_path) 

prediction.setJsonPath(json_path) 

prediction.loadModel(num_objects=13) 

 

predictions, probabilities = prediction.predictImage((input_path), result_count=5) 

 

for eachPrediction, eachProbability in zip(predictions, probabilities): 

    print(eachPrediction , " : " , eachProbability) 
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Application Algorithm Raw Results 

 

 

Figure 20: Aviation Inverter Prediction Results 
 

 

Figure 21: MaxFlight Inverter Prediction Results 
 

 

Figure 22: PE (Green) Wire Prediction Results 

 

Figure 23: PE (Green+Yellow - 240V) Wire Prediction Results 
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Figure 24: U (Red) Wire Prediction Results 
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Appendix B – Detection-class 
 

Training Algorithm 

 

from imageai.Detection.Custom import DetectionModelTrainer 

 

trainer = DetectionModelTrainer() 

trainer.setModelTypeAsYOLOv3() 

trainer.setDataDirectory(data_directory="/content/drive/My Drive/detection") 

trainer.setTrainConfig(object_names_array=["SUV", "car", "Truck", "light", "side mirror", "car 
seat", "door", "wheel"], batch_size=4, num_experiments=100, 
train_from_pretrained_model="pretrained-yolov3.h5") 

trainer.trainModel() 
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Modal Testing Algorithm 

 

from imageai.Detection.Custom import DetectionModelTrainer 

 

trainer = DetectionModelTrainer() 

trainer.setModelTypeAsYOLOv3() 

trainer.setDataDirectory(data_directory="/content/drive/My Drive/detection") 

trainer.evaluateModel(model_path="/content/drive/My Drive/detection/models", 
json_path="/content/drive/My Drive/detection/json/detection_config.json", iou_threshold=0.5, 
object_threshold=0.3, nms_threshold=0.5) 
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Application Algorithm 

 

 

 

Figure 25: Application Algorithm Code - Detection-class  
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Application Algorithm Raw Results 

 

 

Figure 26: Lexus RX 350 Detection Results Raw 



Abhinav Sundar 

43 
 

 

Figure 27: G-Wagon Detection Results Raw 
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Figure 28: Hyundai Elantra Detection Results Raw 
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Figure 29: Tesla Model X Detection Results Raw 
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Figure 30: Lambourghini Urus Detection Results Raw 


