
RYERSON UNIVERSITY

FACULTY OF ENGINEERING AND ARCHITECTURAL SCIENCE

DEPARTMENT OF AEROSPACE ENGINEERING

Implementation of Object Recognition Algorithm to enhance Manufacturing and
Maintenance Tasks on an Aircraft

Abhinav Sundar

AER 870 Aerospace Engineering Thesis – Final Report

Submission Date: April 13, 2020

Faculty Advisor: Dr. Joon Chung

Abhinav Sundar

i

Acknowledgements

 I would like to thank my research advisor, Dr Joon Chung, for his guidance and support
through the progression of this thesis. I would like to thank Cassandra Czobit, and the MIMS Lab
Research group, Pratik Pradhan, Isabel Jojart and Vishaal Venkatesh for continuous support and
guidance. Finally, I would like to thank my family, especially my mom, for their strength,
motivation and support throughout my research.

Abhinav Sundar

ii

Abstract

The objective of this thesis was to evaluate the viability of implementation of an object
recognition algorithm driven by deep learning for aerospace manufacturing, maintenance and
assembly tasks. Comparison research has found that current computer vision methods such as,
spatial mapping was limited to macro-object recognition because of its nodal wireframe analysis.
An optical object recognition algorithm was trained to learn complex geometric and chromatic
characteristics, therefore allowing for micro-object recognition, such as cables and other critical
components. This thesis investigated the use of a convolutional neural network with object
recognition algorithms. The viability of two categories of object recognition algorithms were
analyzed: image prediction and object detection. Due to a viral epidemic, this thesis was limited
in analytical consistency as resources were not readily available. The prediction-class algorithm
was analyzed using a custom dataset comprised of 15 552 images of the MaxFlight V2002 Full
Motion Simulator’s inverter system, and a model was created by transfer-learning that dataset onto
the InceptionV3 convolutional neural network (CNN). The detection-class algorithm was analyzed
using a custom dataset comprised of 100 images of two SUVs of different brand and style, and a
model was created by transfer-learning that dataset onto the YOLOv3 deep learning architecture.
The tests showed that the object recognition algorithms successfully identified the components
with good accuracy, 99.97% mAP for prediction-class and 89.54% mAP. For detection-class. The
accuracies and data collected with literature review found that object detection algorithms are
accuracy, created for live-feed analysis and were suitable for the significant applications of AVI
and aircraft assembly. In the future, a larger dataset needs to be complied to increase reliability
and a custom convolutional neural network and deep learning algorithm needs to be developed
specifically for aerospace assembly, maintenance and manufacturing applications.

Abhinav Sundar

iii

Table of Contents
1.0 Introduction ... vii

1.1 Computer Vision and Deep Learning ... 1

1.2 Scope and Structure of the Thesis ... 2

2.0 Background ... 3

2.1 Convolutional Neural Networks ... 3

2.2 Overview of Dataset Format and Compared CNNs ... 6

2.3 Current Commercial Application .. 9

3.0 Algorithm Design .. 11

3.1 Design Objective and Requirements ... 11

3.1.1 Design Objectives ... 11

3.1.2 Design Requirements and Verifications: .. 12

3.2 Methodology ... 13

3.2.1 Ground Station Setup .. 14

3.2.2 Dataset Collection and Preparation ... 15

3.2.3 Transfer-Learning ... 17

3.2.4 Accuracy and Application testing ... 20

4.0 Results and Discussion ... 21

4.1 Prediction-class ... 21

4.2 Detection-class .. 23

4.3 Degree of Requirements Matrix .. 29

5.0 Conclusion .. 30

6.0 Future Considerations ... 31

References ... 32

Appendix A – Prediction class .. 34

Training Algorithm ... 34

Training Algorithm Raw Results .. 35

Application Algorithm .. 36

Application Algorithm Raw Results ... 37

Appendix B – Detection-class .. 39

Training Algorithm ... 39

Modal Testing Algorithm ... 40

Abhinav Sundar

iv

Application Algorithm .. 41

Application Algorithm Raw Results ... 42

Abhinav Sundar

v

List of Figures
Figure 1: Local Receptive Field extraction method [7] .. 4
Figure 2: Feature map creation [8] .. 5
Figure 3: InceptionV3 Inception Module A .. 7
Figure 4: InceptionV3 Inception Module B .. 8
Figure 5: InceptionV3 Inception Module C .. 8
Figure 6: Dataset Preparation - Prediction-class ... 16
Figure 7: Dataset Preparation - Detection-class .. 17
Figure 8: Transfer-learning Process - Prediction-class ... 19
Figure 9: Transfer-learning Process - Detection-class .. 20
Figure 10: Model Testing - Prediction-class ... 21
Figure 11: Application testing - Prediction-class .. 22
Figure 12: Object Instances versus AP ... 23
Figure 13: Model Testing - Detection-class .. 24
Figure 14: Detection Results - Lexus RX 350 .. 24
Figure 15: Detection Results - Lamborghini Urus .. 25
Figure 16: Detection Results - Tesla Model X ... 25
Figure 17: Detection Results - Hyundai Elantra ... 26
Figure 18: Detection Results - Mercedes G-Wagon ... 26
Figure 19: Training Algorithm Raw Results - Prediction-class .. 35
Figure 20: Aviation Inverter Prediction Results ... 37
Figure 21: MaxFlight Inverter Prediction Results .. 37
Figure 22: PE (Green) Wire Prediction Results .. 37
Figure 23: PE (Green+Yellow - 240V) Wire Prediction Results ... 37
Figure 24: U (Red) Wire Prediction Results ... 38
Figure 25: Application Algorithm Code - Detection-class ... 41
Figure 26: Lexus RX 350 Detection Results Raw .. 42
Figure 27: G-Wagon Detection Results Raw .. 43
Figure 28: Hyundai Elantra Detection Results Raw ... 44
Figure 29: Tesla Model X Detection Results Raw ... 45
Figure 30: Lambourghini Urus Detection Results Raw .. 46

Abhinav Sundar

vi

List of Tables
Table 1:Design Requirements - Prediction-class .. 12
Table 2: Design Requirements - Detection-class .. 12
Table 3: Design Requirement Verifications – Prediction-class .. 13
Table 4: Design Requirement Verifications – Detection-class ... 13
Table 5: Dataset Format Comparison - Detection-class ... 16
Table 6: CNN Comparison - Prediction-class [10][12] .. 18
Table 7: CNN Comparison - Detection-class [16] .. 18
Table 8: Degree of Requirements Matrix - Prediction-class .. 29
Table 9: Degree of Requirements Matrix - Detection-class ... 29

Abhinav Sundar

vii

Nomenclature

AP Accuracy Precision
ATTOL Autonomous Taxi Take-Off and Landing
AVI Automatic Visual Inspection
CNN Convolutional Neural Network
CV Computer Vision
IoU Intersection over Union
mAP mean Accuracy Precision
Microsoft COCO Microsoft Common Objects in Context
MIMS Mixed-Reality Immersive Motion Simulation
ML Machine Learning
Pascal VOC Pascal Visual Object Class
R-CNN Region-based Convolutional Neural Network
ResNets Residual Networks
R-FCN Region-based Fully Connected Network
RPN Region Proposal Network

Abhinav Sundar

1

1.0 Introduction

The main objective of this thesis was to test the viability of object recognition algorithms for
the implementation into manufacturing, assembly and maintenance tasks. The aerospace industry
can be broken into three hardware sectors: manufacturing, maintenance and assembly. A few
examples of tasks in these sectors are sheet metal cutting, visual inspections and landing gear
assembly. Artificial Intelligence has various applications across various industries; however, it is
young to aerospace industry. Large companies such as Boeing and Airbus have recently started to
utilize object recognition in system inspections. With the implementation of an object recognition
algorithm the aerospace hardware sectors will see an increase of worker efficiency and
effectiveness because of the reduction of human error. Two object recognition algorithms were
tested: prediction-class and detection-class. The primary objective and secondary objectives, such
as cloud-based dataset storage and model creation, were also taken into consideration to design
and implement algorithms that recognize a mean accuracy persicion (mAP) of 90% and 85% for
prediction-class and detection-class, respectively. The dataset preparation format was selected
based off accuracy between Microsoft COCO and Pascal VOC. For the creation of the object
recognition models, CNNs such as ResNet-50, InceptionV3 and YOLOv3 were researched and
compared based on mAP and speed. Deep learning CNNs require large amounts of images and
annotations for an accurate model to be created. This is achieved by large corporations due to the
quantity of researchers and amount of time. The time constraint of three months, inaccessibility to
a variety of aerospace components, and the difficult quarantine situation caused by the global
pandemic, COVID-19, did not give enough time and resources to complete this research to its
totality. For the proof of concept, this thesis used undersized and under-diversified datasets
comprised of aerospace and manufacturing industry-related components.

1.1 Computer Vision and Deep Learning

Computer vision (CV) backed by a deep learning enabled object recognition algorithm
successfully recognized target objects and provided all the required information for various
manufacturing and maintenance tasks. CV is the ability for computers to analyze and understand
the visual world. In the manufacturing world, a major use for computer vision is fault detection.
This ability for fault detection can be integrated to an automatic assembly line to increase
efficiency and effectiveness [1]. With the increase in the amount of data available for CV tasks,
the scope of the algorithms has grown. Machine learning initially used statistical learning
algorithms such as linear regression, logistic regression, decision trees and support vector
machines (SVM) to do pattern analysis and object detection. The method of deep learning using
neural networks has been developed recently for the purpose of feature extraction and pattern
analysis [2]. Object recognition is a CV task for identifying objects in images or video. This task
can be broken down into three main categories: image classification, object localization and object

Abhinav Sundar

2

detection. This thesis utilized a prediction-class algorithm based on the image classification task;
and a detection-class algorithm based on the object detection task, which consists of an algorithm
that produces a list of object categories present, bounding box location, and scale of every instance
of each object category [3].

Deep learning allows computational models that are composed of multiple processing
layers to learn representations of data with multiple levels of abstractions [4]. A major benefit to
deep learning algorithms over older learning algorithms was the ability to continuously increase
performance as the neural networks and datasets increase in size and complexity [5] [6]. This was
key to manufacturing applications as deep learning enabled for object detection could continuously
increase accuracy with the addition of more data. These algorithms can improve the accuracy
performance of object recognition codes.

1.2 Scope and Structure of the Thesis

The hardware sectors of the aerospace industry are pushed by accuracy and efficiency.
Tasks such as assembly requires a large amount of time for part identification. Object recognition
algorithms would, for example, be trained to conduct automatic visual inspections of the aircraft
and aid aircraft technicians to complete landing gear assemblies by quickly locating the required
part. Object recognition algorithms in the aerospace industry also provides a significant support to
technician training. With the detection features of an object detection algorithm, an effective
augmented reality-based training application can be created to decrease technician practical
training time and aid newly trained technicians to identify target components. This thesis intended
to improve the task of part identification by removing human error from the process, allowing
worker efficiency and performance to increase.

To give a fundamental understanding into deep learning-enabled object recognition
algorithms, this thesis reviews the ground CNN structure and the underlying functions that enable
the breakdown and processing of image features; beneficial modifications to the original CNN;
and commercial applications of CV in the commercial sector. The methodology is described to
show how the design requirements were achieved. Finally, the results are discussed and assessed
based on the research and design objectives.

Abhinav Sundar

3

2.0 Background

The prediction-class and detection-class algorithms used modified CNNs. These CNNs
were developed to achieve better results for the object recognition task. The CNNs used were
InceptionV3 and YOLOv3. the original CNN was updated for the explicit purpose of increased
accuracy and speed, each with layer additions and modifications. The theory behind these CNNs
are covered this section, with trade-off studies covered in the methodology section.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are the main type of neural networks used in object
recognition. Previous networks have each neuron from the previous layer connected to the neurons
in the next layer. Due to this design, limitations on the size and processing ability of those networks
are apparent. However, with the use of the three basic ideas of a CNN, a faster, deeper and larger
network can be created. These concepts are as follows: local receptive fields, shared weights and
pooling [7]. Rather than connected an entire image to the next layer, CNN layers take an input
layer and the network connects a local region of neurons to one neuron of the next layer. The
application of CNN layers creates a feature map. As a result, that neuron of the following layer
learns the weight and bias of the local region, commonly known as the local receptive field. The
local receptive field was then slid over the image and then respectively assigned to a neuron, with
the field moving from left to right and top to bottom. Figure 1 demonstrates the relation between
the feature map and the local receptive field:

Abhinav Sundar

4

Figure 1: Local Receptive Field extraction method [7]

 These weights and biases are shared over the next resultant layer of neurons, and each of
that resultant feature map can extract one type of feature. Convolutional layer includes multiple
feature map that extract various types of features from the target image., Figure 1 displays how the
neuron weight (5x5) of the preceding layer is projected and recorded on the following neuron. This
translates the 28X28 image into a 24X24 feature map [7]. The shared weights and biases are
referred to as the kernel or filter. The convolutional layers method of feature extraction reduces
the number of parameters calculated drastically, when compared to the older fully connected
layers. The convolutional layers’ sliding local receptive field’s extraction method can be
mathematically represented by equation 1 [8]:

𝑮[𝒎, 𝒏] = (𝒇 ∗ 𝒉)[𝒎, 𝒏] =--𝒉[𝒋, 𝒌]𝒇[𝒎 − 𝒋, 𝒏 − 𝒌]	
𝒌𝒋

(1)

The figure 2 below accurately explains have the feature map is created using an input image
and set kernels/filters:

Abhinav Sundar

5

Figure 2: Feature map creation [8]

 The value of each feature map neuron is a two-part iterative equation. The first part is the
weighted average (z) of the input local receptive field values (x) for each neuron is the function of
the activation function (a, or x for the first layer) of the previous layer, the set weight of the neuron
(w), and the set bias of the neuron (b). The second part is the value of the neuron which is calculated
by multiplying the non-linear activation function (g) with z [9]. Therefore, for the first feature map
for the first neuron, the weighted average, the value (y), and the next layer’s activation function
(a) would be:

𝒙 = 𝒂𝟏𝟎 (2)

𝒘𝑻 ∗ 𝒙 = 𝒘𝟏𝒙𝟏 +𝒘𝟐𝒙𝟐…𝒘𝒏𝒙𝒏 (3)

Where n equals the number of input local receptive field values.

𝒛𝟏𝟏 = 𝒘𝟏
𝑻 ∗ 𝒙 + 𝒃𝟏 (4)

𝒂𝟏𝟏 = 𝒚 = 𝒈𝟏(𝒛𝟏𝟏) (5)

Where subscript denotes neuron number and superscript denotes layer number [9]. Weight
and bias are shared values for the entire layer. However, these equations can be simplified into a
matrix for the whole layer. The weight average of the values (Z) equation of each layer involves
two unknowns with two equations. The layer values are calculated with the activation function of
the previous layer (A), the defined weight of the current layer (W), the defined bias of the current

Abhinav Sundar

6

layer (b), and the non-linear activation function (g). Equations 6, 7 and 8, pertain to the first layer
[9]:

𝒙 = 𝒂𝟎 (6)

𝒁𝟏 = 𝑾𝟏 ∗ 𝒙 + 𝒃𝟏 (7)

𝑨𝟏𝟏 = 𝒀 = 𝒈𝟏(𝒁𝟏) (8)

 The non-linear activation function, g, allows for greater flexibility, increased speed of
learning and the creation of complex functions during the learning process. As the ReLu activation
function is piece-wise linear function, the parameter definitions become easier, therefore it is often
used for feature maps. Finally, the last element of a CNN is the pooling layers. A pooling layer is
a layer which simplifies the output of a convolutional layer, takes each feature map output from
the convolutions and prepares a condensed feature map [7].

2.2 Overview of Dataset Format and Compared CNNs

The performance of an object detection model is affected by many factors. These include
factors such as the type of deep learning algorithm that extracted features, the input image
resolutions, the boundary box encoding, data augmentation, the training dataset, the localization
loss function and training configurations including batch size, input image size, learning rate and
learning rate decay. Dataset format was an influencer for training accuracy. The method of how
and what annotation information was saved resulted in a positive or negative variation in mAP.
Two main dataset formats used in the object recognition algorithms are Microsoft COCO and
Pascal Visual Object Classes (Pascal VOC). The key difference between the two formats was the
type of file saved, which was a .json file for COCO and .xml for Pascal VOC. JSON files included
info, licenses, categories, images and annotations. However, one JSON file contained all the
images in the dataset. One XML file was created per image and included information such as
folder, filename, size, object details per instance, truncated and difficult tags, and the bounding
box details per object instance [10].

 As object recognition task have evolved to model more complex, real life applications, the
need for faster and more accurate CNNs has developed. VGGNet originally began by modifying
the ground CNN architecture for simplicity, by deploying only 3X3 local receptive field
convolutional layers. A max pooling layer was added to the reduce the volume size [11]. VGGNet
with its simplicity goal, still followed the base CNN architecture, therefore the weight of the

Abhinav Sundar

7

overall deep learning model was large. A major development in the deep learning field arrived
with exotic architectures such as Microsoft’s ResNets and Google’s GoogleNet/InceptionV1 to
InceptionV3. ResNet-50, consists of 50 weight layers, is a deep convolutional neural network that
has a unique feature called Residual Modules. These modules allowed the data learned in the
previous modules to be applied to the current module, therefore the training time and error were
reduced. The modules were added after each convolutional layer, which allows it to compile the
information and reference that function for the following layers. The goal for ResNet was depth
and was achieved by addressing the “vanishing gradient” error. As layers were added, the deep
learning network started to converge upon training, this resulted in increased training error and a
rapidly degrading accuracy; this was the vanishing gradient issue [12]. ResNet achieved up to 152-
layer depth which is 8 times deeper than VGGNet, with a greater accuracy and 5 times lower
weight [12]. InceptionV3 worked as a multi-level feature extractor. Its main feature was the
method that each convolutional layer was organized to optimize speed and weight. The
architecture used various sizes of convolution local receptive fields, such as 1X1, 3X3 and 5X5,
to capture features in different scales, thus the accuracy of each convolutional layer is increased.
InceptionV3 included three different substructures for feature extraction referred to as Inception
Modules A, B and C. Figures 3, 4 and 5, visualize the breakdown of these multi-level feature
extracting modules from the paper, Rethinking the Inception Architecture for Computer Vision
[13].

Figure 3: InceptionV3 Inception Module A

Abhinav Sundar

8

Figure 4: InceptionV3 Inception Module B

Figure 5: InceptionV3 Inception Module C

Detection deep learning networks have two main goals: accuracy and speed. The base CNN
structure has been modified according to those goals. Architectures such Faster R-CNN and R-
FCN used region-based feature extractors to accomplish this goal, whereas CNNs such as
YOLOv3 combine the ResNet and Inception features and create hybrid networks. R-CNN was a
two-stage object detection network. The first stage was a deep FCN, which included the
convolutional layers, and the second stage was a Region Proposal Network (RPN). The RPN was
the marketed selling point of the Faster R-CNN and consisted of two sibling fully connected layers:

Abhinav Sundar

9

a box regression and a box classification layer. The RPN was put ahead of the convolutional feature
map and utilized the feature output to predict object bounds and scores simultaneously. This
module enabled the Faster R-CNN to increase overall accuracy from the older Fast R-CNN [14].
Like the Faster R-CNN, the R-FCN was also a two-stage architecture. It consisted of an FCN and
an RPN. However, unlike the individual region evaluation method of the Faster R-CNN, the R-
FCN was fully connected network with all the layers being convolutional. This means that the
second stage, RPN, evaluated the entire region instead of multiple individual evaluations. This
enabled the R-FCN to limit errors such as the “a trous trick” and increase the overall accuracy of
the architecture [15]. YOLOv3 was the third version of the YOLO9000 object detection system,
which aimed at achieving real-time object detection with good accuracy. The system achieved this
by mixing the Darknet-19 network used in YOLOv2, and residual networks (ResNets). The
convolutional layers were also varied in size like the InceptionV3/GoogleNet architecture with
1X1 and 3X3 size layers, which increased the accuracy and speed. DarkNet-53 has similar
performance to a 152-layer deep residual network (ResNet-152 on Faster R-CNN) with twice the
speed [16].

2.3 Current Commercial Application

Boeing and Airbus lead the front in the aerospace computer vision field. Boeing’s work
dates back to 1999, when they created a video-based foreign object detector. This system was
designed as an overhead camera that can automatically detect small pieces of debris that can go
unnoticed by human vision [17]. This system was put into the Boeing wing production line of the
F/A-18 C/D and E/F. This was a fault-detection inspection system during an assembly line. The
system was cost-effective, reduced the need for inspection, decreased part rejections and delivery
delays. This technology used objection detection and was built on foreign-object samples, work
pieces and tooling to build positive and negative assumptions. Airbus is currently focusing on
implementing CV algorithms in the air. Airbus has demonstrated its first fully automatic vision-
based take-off system. On January 16th, 2020, Airbus utilized image recognition technology which
it incorporated directly onto the aircraft. This achievement is part of the larder Autonomous Taxi,
Take-Off and Landing (ATTOL) project [18]. Vision-based taxi and landing tasks are targeted to
be completed by mid-2020. Image recognition has allowed for the effective take-off of an aircraft,
which entails a lower workload for the pilot and a safer flight due to the elimination of human
error. The aerospace industry has applied object recognition to assembly line fault detection and
autonomous take-offs to eliminate the effect of human error.

A key manufacturing industry example is the company, NanoNets. This company is
providing the model creating resources for manufacturing tasks such as AVI. NanoNets has
created their own proprietary CNN to detect faults in the assembly line and defects during a visual
inspection. With the promises of fast, accurate, and scalable object recognition algorithms, this
company allows for individuals and businesses to create custom models for tasks such as product
quality control, defect detection, and crop quality assessment. The use of the algorithm services is

Abhinav Sundar

10

available through APIs, docker, or mobile apps achieves the human factors considerations of
accessibility. Nanonets explained that deep learning and CV algorithms application into visual
inspection, allows for automatic inspections, lowers the cost of labour and removes human error
of imprecision of eyesight with unlimited performance [19]. As deep learning algorithms are
scalable, the performance continually increases with an increase in the amount of data available.

Abhinav Sundar

11

3.0 Algorithm Design

The design objectives, requirements and methodology are stated in this section. The focus
for this research was to assess the viability of an object recognition algorithm for the
implementation into aerospace manufacturing and maintenance tasks. The algorithms shall meet
the stated requirements for successful integration. The designed algorithm should be able to
efficiently identify the target object and display its results in an effective format. These objectives
and requirements were integrated into the design methodology to create two types of object
recognition models and algorithms. The design methods for both prediction-class and detection
class are stated in this section.

3.1 Design Objective and Requirements

3.1.1 Design Objectives

The object recognition algorithms successfully recognize and display the target object and
its name, when given an input image. For the designs to meet the goal the following objectives
were tested and met:

OBJ-MAIN-PREDICTION-001: The prediction-class object recognition algorithm
should be able to optically recognize the target object.

• Justification: The algorithm must be capable of recognizing the target component
of the inverter system with an input picture.

OBJ-MAIN-PREDICTION-002: The prediction-class object recognition algorithm
should be able to print the names and accuracy precision (AP) of the target object, with the highest
percentage at the top.

• Justification: In order to inform the user what object is recognized, the algorithm
must display its names and APs.

OBJ-MAIN-DETECTION-001: The detection-class object recognition algorithm should
be able to optically recognize the target object.

• Justification: The algorithm must recognize the object to calculate location,
bounding boxes and AP’s with object detection model.

OBJ-MAIN-DETECTION-002: The detection-class object recognition algorithm should
be able to output an image to with all target objects detected with bounding boxes, locations, names
and AP’s.

Abhinav Sundar

12

• Justification: In order to inform the user where the recognized object is, the
algorithm must display bounding boxes, locations, names, and AP’s of all objects
detected from the input image.

3.1.2 Design Requirements and Verifications:

Requirements were defined to meet the objectives stated in the previous section. The
requirements for each type of object recognition algorithm are as follows:

Table 1:Design Requirements - Prediction-class
Subcomponent Description Objective
Ground station Laptop Computer To process transfer-learning

python code and run object
prediction algorithm

Custom dataset 15 000 images of 13 classes of
objects of the Maxflight
V2002 Flight Simulator
inverter system

To provide data to be transfer-
learned for the creation of
prediction model

Neural Network InceptionV3 CNN To provide feature extraction
and transfer-learning
capabilities

Object Prediction Model Custom .h5 trained model To identify target set of
objects and display their
names and AP’s

Table 2: Design Requirements - Detection-class
Subcomponent Description Objective
Ground station Dell G7 Laptop with Nvidia

Geforce GTX 1050 GPU
To process transfer-learning
python code and create the
object detection model

Custom dataset 100 images of six class of
objects from two different
SUVs

To provide data to be transfer-
learned for the creation of
detection model

Neural Network YOLOv3 CNN To provide feature extraction
and transfer-learning
capabilities

Object Detection Model Custom .h5 trained model To identify target set of
objects and display their
names, bounding boxes,
locations and AP’s

Mobile Station Samsung Galaxy Note 9
Smartphone

To run object detection
algorithm with the custom
model

Abhinav Sundar

13

To ensure the above objectives were met following verification procedures were created to
test each subcomponent requirement:

Table 3: Design Requirement Verifications – Prediction-class
Test Category Qualification Testing Method
Model Testing Obtain a mean accuracy precision (mAP)

of at least 90%
AP analysis of model after
creation. AP’s are listed while
experiments are being run.

Object Recognition
Algorithm Testing

Algorithm must be able to recognize
target object in image and list the AP’s
and names of predicted objects in order
from highest to lowest AP

Trials with parts of the
inverter system, and different
inverters

Table 4: Design Requirement Verifications – Detection-class
Test Category Qualification Testing Method
Model Testing Obtain a mean accuracy precision (mAP)

of at least 85%
Separate AP analysis of model
after creation, displaying
IoU’s, AP’s and mAP’s of
each experiment

Object Recognition
Algorithm Testing

Algorithm must be able to recognize all
target objects in image and display the
AP’s, names, locations and bounding
boxes of detected objects

Trials with images of various
SUVs.

3.2 Methodology

The coding environment, libraries, design and testing processes are stated in this section.
Both object recognition algorithms aim to show their viability for aerospace manufacturing and
maintenance applications. Commercial applications of object recognition algorithms use
proprietary neural networks design for the sole purpose of the intended object recognition task.
However, this report focuses on the viability of an object recognition algorithm using pre-trained
convolutional neural networks such as InceptionV3 and YOLOv3. The language Python was used
with artificial intelligence-enabling libraries: ImageAI and Tensorflow. Both prediction-class and
detection-class algorithms were trained with custom datasets and pre-trained CNNs, which were
selected by a trade-off study. The functionality was verified, and the viability was confirmed with
an accuracy and application test.

Abhinav Sundar

14

3.2.1 Ground Station Setup

The ground station used for both prediction-class and detection-class algorithms was a Dell
G7 laptop with a Nvidia Geforce GTX 1050 GPU. The training, testing and object recognition
codes were made on the language Python. All the codes utilized a deep learning library called
“ImageAI”. This library allowed for the creation of the training, testing and application codes with
its self-contained deep learning and computer vision capabilities. It can be used for object
detection, video detection and object tracking, which are all essential for the successful
implementation into the aerospace manufacturing and maintenance field. For the purpose of this
thesis, the functions used were from the “ObjectPrediction” and “ObjectDetection” classes. Within
those classes, functions were called to set the model path, set the input picture path, set output
picture path, load the model, detect objects and print the objects name and AP, for the application
codes. The training and testing codes utilized functions that set the model type, called the model,
set the dataset path, set the training configuration values, trained the model and evaluated the
model [20]. Enabling both the use of the ImageAI library and the training and testing codes was
the Tensorflow library. This library, created by Google, enables fast numerical computing and was
used to transfer-learning onto deep learning models. A major advantage with this library is that it
can run on single CPU systems, GPUs, mobile devices and large scale distributed systems [21].
The code utilized tensorflow GPU version 1.13.1 for both prediction-class and detection-class.
This enabled the training, testing and application codes to run at faster speeds.

The prediction-class training and application codes were all run from the Dell G7 laptop.
The dataset was setup in folders and those paths were set using ImageAI functions. Once the
pretrained InceptionV3 model, TensorFlow GPU version 1.13.1 and ImageAI version 2.1.5 were
downloaded, the training code was run on the Nvidia GeForce GTX 1050 GPU. Once the model
was trained, the object prediction code was run on an aviation inverter, the flight simulator’s
inverter and wires. The full codes for training and application with explanations can be found in
Appendix A.

The detection-class training, and testing codes were run from Google colab to display the
viability of a cloud-based dataset and training system. A Google drive folder called “detection”
was mounted onto the Google Colab notebook and the dataset of 100 images and annotations of
two different SUVs were uploaded to it. Once the pretrained YOLOv3 model, TensorFlow GPU
version 1.13.1, and ImageAI version 2.1.5 were downloaded, the trained and test codes were run
using Google colab’s Nvidia K80 GPU. The completed model was then tested on Google Colab
and then transferred to the mobile station for application testing. The detection-class code was
tested on a Samsung Note 9 smartphone using a mobile python 3 IDE called “Pydriod 3”. This
program allowed for the effective functioning of the object detection code. The full codes for
training, testing and application with explanations can be found in Appendix B.

Abhinav Sundar

15

3.2.2 Dataset Collection and Preparation

Dataset collection and preparation was a key factor in the effectiveness and efficiency of
the transfer-learning step. The larger and more diverse the data set collected, the better the
reliability of the mAP will be. If the model is trained from the repetition of the same image, the
algorithm will only be able to recognize that specific object in that specific attitude. For the
prediction-class algorithm, due to a scarcity of aerospace components and the quantity of images
needed for good accuracy (minimum 500 per class of object) [20], only one system was selected
to for training. The inverter system of the MaxFlight V2002 Flight Simulator was selected for its
relation to aerospace inverter systems. This acted as a proof of concept for the implementation into
aerospace manufacturing and maintenance systems. The dataset collected contained 15 552 images
from different angles and lighting scenarios. Dataset preparation followed a train path and test path
with the images divided approximately 75% and 25%, respectively. Under each path, the images
were broken down into their respective object class folders (i.e. inverter, analog, digital, etc.). The
path flow of the dataset preparation is shown in the figure 6.

Abhinav Sundar

16

Figure 6: Dataset Preparation - Prediction-class

The dataset collection and preparation for the detection-class algorithm was more complex
as the training format required images and corresponding annotated xml files. The dataset was
comprised of 100 images and annotations of two types of SUVs: a 2016 Hyundai Santa Fe Sport
and a 2015 Lexus RX 350. Two dataset formats were compared for the dataset preparation. The
main objective of the dataset format selection was to test the accuracy. The formats compared were
the Pascal Visual Object Classes (VOC) and Microsoft Common Objects in Context (COCO)
formats.

Table 5: Dataset Format Comparison - Detection-class
 Microsoft COCO PASCAL VOC
mAP (%) [22] 21.6 73.4

Abhinav Sundar

17

As seen in the table 5, PASCAL VOC is 3.4 times more accurate for object recognition
tasks. The PASCAL VOC dataset preparation format and path flow is shown in figure 7.

Figure 7: Dataset Preparation - Detection-class

3.2.3 Transfer-Learning

Transfer-learning is the process of integration of a new related dataset to an older dataset
to increase accuracy and speed [23]. The more accurate the feature extraction, the higher the mean
accuracy precision of the new model. There are three main parts of transfer-learning: the input, the
neural network and the output. The inputs are custom datasets and pretrained models. The neural
networks used for prediction-class and detection-class are InceptionV3 and YOLOv3 CNNs,
respectively. The outputs are two new models.

Two neural networks were compared for prediction-class and three neural networks were
compared for detection-class. As the detection-class model was intended for live feed object
detection, the main requirement for the model was speed. The algorithms were listed as successful

Abhinav Sundar

18

if the results were properly displayed and accurate; and the mAPs of the results were above the
required mark of 90% and 85%, respectively.

For the prediction-class model, the compared CNNs were ResNet-50 and InceptionV3.
Both these CNNs have many feature extracting convolutional layers and have high object
recognition accuracies. The two main features compared between the ResNet-50 and InceptionV3
architectures are: CNN weight and accuracy on the ImageNet dataset. This data is from the
ImageNet project in which the dataset is comprised of 1.2 million images belonging to 1000
different classes (Reference from cv-tricks.com). The comparison between the CNNs are listed in
table 6, with the winning values italicized:

Table 6: CNN Comparison - Prediction-class [10][12]
 ResNet-50 InceptionV3
Weight (MB) 105 96
Accuracy (%) 93.0 94.4

For the same dataset, InceptionV3 outperformed the ResNet-50 in both weight and
accuracy. Therefore, the prediction-class model was trained using the InceptionV3 pretrained
CNN.

For detection-class, the comparison focus was on mAP and mainly inference time, which
is the time it takes for the model to predict the testing data. The neural networks compared for the
detection-class model were Faster R-CNN (Region-based Convolutional Neural Network), R-FCN
(Region-based Fully Connected Network), and YOLOv3. The compared neural networks have all
been trained with the Microsoft COCO object detection dataset format. The COCO format is not
optimal for object detection, therefore the researched data displayed low APs for all the neural
networks. The trade-off study between neural networks was compiled in table 7, with the winning
values italicized:

Table 7: CNN Comparison - Detection-class [16]
 Faster R-CNN R-FCN YOLOv3
mAP (%) 34.9 29.9 33
Inference time (ms) >100 85 51

Prediction-class and detection-class transfer-learning was a two-step process with dataset
collection and preparation, and the model creation (via transfer-learning), as the second step. The
training algorithm was created using the ImageAI manual, which stated all the functions and their
options. Figure 9 visualizes the flow of the transfer learning and the InceptionV3 general
architecture:

Abhinav Sundar

19

Figure 8: Transfer-learning Process - Prediction-class

Figure 9 explains the flow of the transfer learning and the YOLOv3’s DarkNet-53 based
feature extractor:

Abhinav Sundar

20

Figure 9: Transfer-learning Process - Detection-class

3.2.4 Accuracy and Application testing

During the training process, the AP value for each experiment was listed. Once the highest
AP was reached, the training process was stopped to ensure overfitting does not occur. The AP
was then verified with the satisfactory mark of 90%. The model was then tested with the object
prediction code a generic aviation inverter, and parts of the MaxFlight V2002 Flight Simulator
inverter system. The AP results were recorded in a table.

 For the detection-class code, the model was tested with a testing code that listed the mAP
of each model created. The training code saved models for each experiment only if the loss and
accuracy was better than the previous experiment. The model with that highest mAP was selected
to be used for the application testing. The selected model and JSON dataset file were moved to the
mobile station, and the station was setup for object recognition tasks. With Python 3, ImageAI and
Tensorflow, input images were given to the object detection code and outputs were obtained. The
code was tested with similar vehicles to prove accuracy. The output images and accuracies were
recorded.

Abhinav Sundar

21

4.0 Results and Discussion

4.1 Prediction-class

Prediction-class training took 16 653 seconds (4 hours 37 minutes 33 minutes) to reach
100% accuracy (7 experiments). In contrast, The mAP of the model was 99.97%, The generic
inverter image was found online [24].The results, discussion and limitations were explained in this
section. The prediction-class dataset was evaluated based on accuracy. The model and application
testing revealed exceptional accuracy. Figures 10 and 11 explained the results from the model
testing and application testing, respectively.

Figure 10: Model Testing - Prediction-class

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

m
A

P
(d

ec
im

al
)

Experiments

Prediction-class Model Testing

AP loss

Abhinav Sundar

22

Figure 11: Application testing - Prediction-class

 The prediction-class algorithm achieved and surpassed its design requirement. Model
testing showed an impressive maximum mAP of 99.97% at the seventh experiment. This proves
that with a sizeable dataset, the ability for the InceptionV3 CNN and the prediction-class algorithm
to complete an image classification task on aerospace-related components and subcomponents. A
key result was the identification of the Maxflight’s inverter system’s various wires. Such as small
component, once colour-coded, was identified by the prediction-class algorithm with almost 100%
accuracy. The accuracy of the generic aviation inverter was 99.56%, as shown in Figure 11, which
was also higher than the satisfactory mark of 90%. From the aspect of accuracy, the prediction-
class proves that it can be utilized for assembly, manufacturing and maintenance applications.

 The results showed exceptional accuracy, but there were limitations to its feasibility. These
values were exceptionally high for object recognition algorithms and are an outliner when
compared to literature review. AP’s of 99% are unreliable and unrealistic because the model was
created with an undersized and under-diversified dataset. The model was trained using only one
inverter system. In reality, this algorithm would not be able to recognize the sub-components of
any other inverter system. The issue was related to the testing part of the dataset. As the testing
images was of the same system, the model achieved exemplary results. Even with numerous
pictures from various angles and lighting conditions, the fact was that this model can very
accurately recognize only this inverter system. As exhibited in figure 11, the accuracy slightly
decreased with the generic aviation inverter. If the application testing was done on a generic
aviation wire, the code would not be able to recognize it successfully. To mediate this error, the
dataset would need various images of components from a diverse collection of inverter systems,
thus making the dataset large and diverse. The inaccessibility multiple aviation components were

95
95.5

96
96.5

97
97.5

98
98.5

99
99.5
100

Avia
tio

n I
nv

ert
er

U (R
ed)

PE (G
ree

n)

PE (G
ree

n+
Yell

ow
-24

0V
)

Max
Flig

ht
V20

02
 Full

…

A
P

(%
)

Object Classes

Prediction-class Application Testing

Abhinav Sundar

23

a major limitation for this thesis. The dataset collected was large but not diverse in component
brand and type. Another key limitation was the image classification object recognition task. This
task was only able to recognize the main object in an image. For the purposes of aerospace
manufacturing and maintenance applications, this model would not suffice to remedy this issue
the object detection algorithm was utilized. Both accuracy and feasibility were analyzed to show
the viability for object recognition in the aerospace applications.

4.2 Detection-class

Detection-class training took 30 832 seconds (8 hours 33 minutes 52 seconds), 2 seconds
per step for 160 steps per experiment, for a total of 100 experiments. The results, discussion and
limitations were explained in this section. The images that were tested were taken from the internet
[25]–[27], and are attached to the application results in appendix B . The detection-class results
were recorded and plotted to show the relation of accuracy versus, object instances and number of
experiments. These trends can be seen in figures 12 and 13. Furthermore, the application testing
results were compiled into five figures (Figures 14-18), which showed the highest accuracy of
each object class detection. The code results from the algorithm can be found in Appendix B.

Figure 12: Object Instances versus AP

0
10
20
30
40
50
60
70
80
90
100

0

50

100

150

200

250

300

350

SUV Truck car car seat door light side mirror wheel

AP
 (%

)

To
ta

l O
bj

ec
t I

ns
ta

nc
es

Object Classes

Object Instances versus AP (%)

Total Instances AP (%)

Abhinav Sundar

24

Figure 13: Model Testing - Detection-class

Figure 14: Detection Results - Lexus RX 350

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 20 21 22 23 25 30 38 58 62 70 81 93

m
A

P
(%

)

Experiments

Detection-class Model Testing

mAP (%) loss

75

80

85

90

95

100

SUV side mirror car seat light wheel door

A
P

(%
)

Object Classes

Lexus RX 350 Detection Results

Abhinav Sundar

25

Figure 15: Detection Results - Lamborghini Urus

Figure 16: Detection Results - Tesla Model X

75

80

85

90

95

100

SUV side mirror car seat light wheel door

A
P

(%
)

Object Classes

Lamborghini Urus Detection Results

75

80

85

90

95

100

SUV side mirror car seat light wheel door

A
P

(%
)

Object Classes

Tesla Model X Detection Results

Abhinav Sundar

26

Figure 17: Detection Results - Hyundai Elantra

Figure 18: Detection Results - Mercedes G-Wagon

75

80

85

90

95

100

SUV side mirror car seat light wheel door

A
P

(%
)

Object Classes

Hyundai Elantra Detection Results

75

80

85

90

95

100

SUV side mirror car seat light wheel door

A
P

(%
)

Object Classes

Mercedes G-Wagon Detection Results

Abhinav Sundar

27

The detection-class model testing results showed the highest mAP of 89.54% at the
thirteenth experiment as seen on figure 13. The mAP function showed a fifth-order polynomial
trend with the peak achieved at 89.54%. Model testing showed that the detection-class algorithm
using the YOLOv3 CNN achieved and surpassed the required mAP of 85%. The object instance
comparison in figure 10, showed the general trend that higher the number of instances of a target
object the higher the accuracy. Figure 10 also showed that the higher the complexity of the part
the lower the accuracy. This complexity factor was seen when comparing the AP results between
the side mirror (97%) and light (89%). As the headlights, rear lights and fog lights all had different
shapes and sizes, whereas the side mirror was a distinct protruding rectangular figure. The
application testing, shown by figures 14-18, display the strengths and weaknesses of the model.
The strengths were seen in figures 14 and 15, with all categories detected on the target SUVs and
at accuracies ranging from 94.3% to 99.87%. The raw code output and image detection results are
in Appendix B. These validates the set requirements and proves the viability of the implementation
of the detection-class algorithm in aerospace applications. Unlike prediction-class, this algorithm
detects all the objects within the frame and displays object name and location. This location
detection can be used for augmented reality-based assembly training and AVI.

 This object recognition outputted the same results as the Nanonets’ manufacturing object
detection algorithm. The accuracy surpassed industry standard, however, the accuracy obtained is
unrealistic due to the undersized and under-diversified dataset. Unlike Boeing’s video-based
foreign object detection algorithm, which only displayed the results in positive or negative colours,
the algorithm designed successfully identified the target and displayed the location, name and AP.
This shows that the designed algorithm incorporated better filter than the foreign object detection
system. The results were also obtained from a mobile device which proved the accessibility of the
algorithm. For the mobile station to be able to process the information quickly and effectively, the
model had to be limited in size and detailed in features extracted. The aerospace industry has not
applied object detection-enabled maintenance, therefore this implementation of a CNN-based
object detection algorithm was unique.

 The weakness and limitation of this detection-class algorithm was seen in figures 16, 17
and 18. Due to lack of data, the model detected multiple objects in one location. The lack of data
refers to the low number of images used and diversity of objects. The dataset was comprised of
images of two SUVs, this limits its ability to detect the components of other types of vehicles. A
reliable dataset such as ImageNet includes millions of pictures for thousands of classes of objects.
Such a dataset requires a lot of time to collect and format. Figure 16 and 18 showed that irregular
SUV figures did not recognize well, as the Tesla Model X has different style doors then most
SUVs, and the Mercedes G-Wagon has an unusual boxed figure. These features were not on the
SUVs that were trained. A limitation from the overall aspect of the thesis was the inability to access
a diverse dataset and manpower. The accessibility of a diverse dataset was affected by the novel
coronavirus, COVID-19. The development of this virus forced citizens to stay indoors in
quarantine. The lab and curricular resources were restricted causing a personal mental strain and

Abhinav Sundar

28

an inability to complete research tasks. This situation was handled as best as possible, and the
datasets that were used for this thesis had to be modified. Large AI-focused companies such as
Microsoft and Google have teams of employees working on dataset collection and preparation.
This allowed for the creation of large and diverse datasets which then are trained into CNNs for
highly reliable models. The detection-class algorithm utilized a hundred images and corresponding
annotations. With a more manpower, and a larger, diverse dataset, this detection-class algorithm
can be used in a variety of application for aerospace manufacturing, assembly and maintenance.

Abhinav Sundar

29

4.3 Degree of Requirements Matrix

Table 8: Degree of Requirements Matrix - Prediction-class
Requirement Achieved Comments
Model Testing

The model achieved an accuracy
of 99.97% mAP, which was well
above the required 90%.

Object Prediction Algorithm
Testing

The algorithm successfully
displayed name and AP of target
objects.

Table 9: Degree of Requirements Matrix - Detection-class
Requirement Achieved Comments
Model Testing

The model achieved an accuracy
of 89.54% mAP, which was well
above the required 85%

Object Detection Algorithm
Testing

The algorithm successfully
displayed name, location and AP
of all target objects

Abhinav Sundar

30

5.0 Conclusion

Object recognition in the aerospace industry is a relatively new area of study. The viability
object recognition algorithms are based on the ability for the algorithm to detect target components
accurately and quickly. This report determined that the accuracy of, both the prediction-class and
the detection-class were viable for the task, with excelling mAPs of 99.97% and 89.54%,
respectively. However, the prediction-class could not be used for aerospace tasks as it does not
present object location and could only recognize the main target object in the image correctly. This
is not the case for object detection, as the detection-class code displays locations, names and
accuracies. Limitations for both algorithms were mainly due to lack of dataset size and diversity.
Live-feed detection could not be completed for this report due to a sudden change in accessibility
situation, however, research has shown that the YOLOv3 architecture can detect object in live
video with acceptable frame rates. This report proved the viability, however, with further research,
the functionality of this algorithm can be increased to be commercially usable.

Abhinav Sundar

31

6.0 Future Considerations

Due to restrictions in time and manpower, this thesis was not able to explore the fields of
total object recognition viability for aerospace manufacturing, maintenance and assembly task. For
a complete viability test of object recognition algorithms, a proprietary CNN must be designed
based on the physical properties of the target objects. Future research must consider evaluating the
convolution’s functions, such as the non-linear activation function, based on the dataset. This
research will need to include a proposed network restructuring based on existing architectures.
Following the idea of YOLOv3, a hybrid network should be the first building block of the new
structure. Once the feature extraction concepts of residual networks and inception modules are
brought in, the core CNN can be modified by setting requirements and objectives for parameters
such as loss function and kernel/filter features. A proprietary CNN for aerospace manufacturing,
maintenance and assembly tasks will be able to show its full viability, strengths and limitations.

Abhinav Sundar

32

References

[1] “Computer Vision: What it is and why it matters | SAS.”
https://www.sas.com/en_us/insights/analytics/computer-vision.html#manufacturing
(accessed Apr. 12, 2020).

[2] “Everything You Ever Wanted To Know About Computer Vision.”
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-
vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e (accessed Apr. 12, 2020).

[3] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge.” Accessed:
Apr. 12, 2020. [Online]. Available: http://image-net.org/challenges/LSVRC/.

[4] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553. Nature
Publishing Group, pp. 436–444, May 27, 2015, doi: 10.1038/nature14539.

[5] “What is Deep Learning?” https://machinelearningmastery.com/what-is-deep-learning/
(accessed Apr. 12, 2020).

[6] “(444) Andrew Ng, Chief Scientist at Baidu - YouTube.”
https://www.youtube.com/watch?v=O0VN0pGgBZM (accessed Apr. 12, 2020).

[7] M. Nielsen, neural networks and deep learning. .

[8] “Gentle Dive into Math Behind Convolutional Neural Networks.”
https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-
networks-79a07dd44cf9 (accessed Apr. 11, 2020).

[9] “Deep Dive into Math Behind Deep Networks - Towards Data Science.”
https://towardsdatascience.com/https-medium-com-piotr-skalski92-deep-dive-into-deep-
networks-math-17660bc376ba (accessed Apr. 12, 2020).

[10] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context.”

[11] “ImageNet: VGGNet, ResNet, Inception, and Xception with Keras - PyImageSearch.”
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-
keras/ (accessed Apr. 12, 2020).

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.”
Accessed: Apr. 12, 2020. [Online]. Available: http://image-
net.org/challenges/LSVRC/2015/.

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Rethinking the Inception Architecture
for Computer Vision.”

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks.” Accessed: Apr. 12, 2020. [Online]. Available:
http://image-net.org/challenges/LSVRC/2015/results.

[15] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object Detection via Region-based Fully
Convolutional Networks.” Accessed: Apr. 12, 2020. [Online]. Available:

Abhinav Sundar

33

https://github.com/daijifeng001/r-fcn.

[16] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” Accessed: Apr. 12,
2020. [Online]. Available: https://pjreddie.com/yolo/.

[17] “NASA Tech Briefs - Google Books.”
https://books.google.ca/books?id=6abNhclGn6YC&pg=RA1-PA13&lpg=RA1-
PA13&dq=boeing+object+recognition+algorithms&source=bl&ots=fc5wknUyKl&sig=A
CfU3U0pRDg5PpsgPeppGmYTp7Psm8QKmQ&hl=en&sa=X&ved=2ahUKEwi3152C3u
ToAhUZlXIEHZ-NAIIQ6AEwDXoECA4QKQ#v=onepage&q=boeing object recognition
algorithms&f=false (accessed Apr. 13, 2020).

[18] “Airbus demonstrates first fully automatic vision-based take-off - Innovation - Airbus.”
https://www.airbus.com/newsroom/press-releases/en/2020/01/airbus-demonstrates-first-
fully-automatic-visionbased-takeoff.html (accessed Apr. 13, 2020).

[19] “Everything you need to know about Visual Inspection with AI.”
https://nanonets.com/blog/ai-visual-inspection/ (accessed Apr. 12, 2020).

[20] “ImageAI Documentation Release 2.1.5 ‘Moses Olafenwa’ ‘John Olafenwa,’” 2020.

[21] “Introduction to the Python Deep Learning Library TensorFlow.”
https://machinelearningmastery.com/introduction-python-deep-learning-library-
tensorflow/ (accessed Apr. 12, 2020).

[22] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger.” Accessed: Apr. 12,
2020. [Online]. Available: http://pjreddie.com/yolo9000/.

[23] Y. P. Lin and T. P. Jung, “Improving EEG-based emotion classification using conditional
transfer learning,” Front. Hum. Neurosci., vol. 11, Jun. 2017, doi:
10.3389/fnhum.2017.00334.

[24] “Astronics Power Conversion Products.” https://www.helis.com/database/news/power-
frequency-conversion/ (accessed Apr. 12, 2020).

[25] “Mercedes-AMG Unveils Limited-Edition G-Class Models | WardsAuto.”
https://www.wardsauto.com/technology/mercedes-unveils-limited-edition-g-class-models
(accessed Apr. 12, 2020).

[26] “Lamborghini Urus News and Reviews | Motor1.com.”
https://www.motor1.com/lamborghini/urus/ (accessed Apr. 12, 2020).

[27] “2016 Tesla Model X - New Tesla Model X Prices, Models, Trims, and Photos.”
https://www.motortrend.com/cars/tesla/model-x/2016/ (accessed Apr. 12, 2020).

Abhinav Sundar

34

Appendix A – Prediction class

Training Algorithm

from imageai.Prediction.Custom import ModelTraining

model_trainer = ModelTraining()

model_trainer.setModelTypeAsInceptionV3()

model_trainer.setDataDirectory(r"C:\Users\Abhinav\Desktop\simulator")

model_trainer.trainModel(num_objects=13, num_experiments=100, enhance_data=True,
batch_size=32, show_network_summary=True)

Abhinav Sundar

35

Training Algorithm Raw Results

Figure 19: Training Algorithm Raw Results - Prediction-class

Abhinav Sundar

36

Application Algorithm

from imageai.Prediction.Custom import CustomImagePrediction

import os

execution_path = os.getcwd()

model_path = "./model/model_ex-007_acc-1.000000.h5"

json_path = "./json/model_class.json"

input_path = "./input/U_Red.jpg"

prediction = CustomImagePrediction()

prediction.setModelTypeAsInceptionV3()

prediction.setModelPath(model_path)

prediction.setJsonPath(json_path)

prediction.loadModel(num_objects=13)

predictions, probabilities = prediction.predictImage((input_path), result_count=5)

for eachPrediction, eachProbability in zip(predictions, probabilities):

 print(eachPrediction , " : " , eachProbability)

Abhinav Sundar

37

Application Algorithm Raw Results

Figure 20: Aviation Inverter Prediction Results

Figure 21: MaxFlight Inverter Prediction Results

Figure 22: PE (Green) Wire Prediction Results

Figure 23: PE (Green+Yellow - 240V) Wire Prediction Results

Abhinav Sundar

38

Figure 24: U (Red) Wire Prediction Results

Abhinav Sundar

39

Appendix B – Detection-class

Training Algorithm

from imageai.Detection.Custom import DetectionModelTrainer

trainer = DetectionModelTrainer()

trainer.setModelTypeAsYOLOv3()

trainer.setDataDirectory(data_directory="/content/drive/My Drive/detection")

trainer.setTrainConfig(object_names_array=["SUV", "car", "Truck", "light", "side mirror", "car
seat", "door", "wheel"], batch_size=4, num_experiments=100,
train_from_pretrained_model="pretrained-yolov3.h5")

trainer.trainModel()

Abhinav Sundar

40

Modal Testing Algorithm

from imageai.Detection.Custom import DetectionModelTrainer

trainer = DetectionModelTrainer()

trainer.setModelTypeAsYOLOv3()

trainer.setDataDirectory(data_directory="/content/drive/My Drive/detection")

trainer.evaluateModel(model_path="/content/drive/My Drive/detection/models",
json_path="/content/drive/My Drive/detection/json/detection_config.json", iou_threshold=0.5,
object_threshold=0.3, nms_threshold=0.5)

Abhinav Sundar

41

Application Algorithm

Figure 25: Application Algorithm Code - Detection-class

Abhinav Sundar

42

Application Algorithm Raw Results

Figure 26: Lexus RX 350 Detection Results Raw

Abhinav Sundar

43

Figure 27: G-Wagon Detection Results Raw

Abhinav Sundar

44

Figure 28: Hyundai Elantra Detection Results Raw

Abhinav Sundar

45

Figure 29: Tesla Model X Detection Results Raw

Abhinav Sundar

46

Figure 30: Lambourghini Urus Detection Results Raw

