
Sensors 2013, 13, 8750-8770; doi:10.3390/s130708750
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Multi-View Human Activity Recognition in Distributed Camera
Sensor Networks
Ehsan Adeli Mosabbeb 1, Kaamran Raahemifar 2,* and Mahmood Fathy 1,*

1 Computer Engineering Department, Iran University of Science and Technology, Narmak,
Tehran 16846-13114, Iran; E-Mail: eadeli@iust.ac.ir

2 Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street,
Toronto, ON M5B 2K3, Canada

* Authors to whom correspondence should be addressed; E-Mails: kraahemi@ee.ryerson.ca (K.R.);
mahfathy@iust.ac.ir (M.F.); Tel.: +1-416-979-5000 (ext. 6097) (K.R.); Fax: +1-416-979-5280 (K.R.).

Received: 24 April 2013; in revised form: 10 June 2013 / Accepted: 1 July 2013 /
Published: 8 July 2013

Abstract: With the increasing demand on the usage of smart and networked cameras
in intelligent and ambient technology environments, development of algorithms for such
resource-distributed networks are of great interest. Multi-view action recognition addresses
many challenges dealing with view-invariance and occlusion, and due to the huge amount
of processing and communicating data in real life applications, it is not easy to adapt these
methods for use in smart camera networks. In this paper, we propose a distributed activity
classification framework, in which we assume that several camera sensors are observing
the scene. Each camera processes its own observations, and while communicating with
other cameras, they come to an agreement about the activity class. Our method is based
on recovering a low-rank matrix over consensus to perform a distributed matrix completion
via convex optimization. Then, it is applied to the problem of human activity classification.
We test our approach on IXMAS and MuHAVi datasets to show the performance and the
feasibility of the method.

Keywords: human activity recognition; camera sensor networks; consensus; convex
optimization; matrix completion; nuclear norm

Sensors 2013, 13 8751

1. Introduction

A camera sensor network (CSN) is defined as a set of vision sensors, which can communicate through
a network. Each of these smart camera nodes also has its own processing element and memory. With
such settings, many applications could be addressed, due to the ease of deployment and their robustness.
For instance, creating smart homes, intelligent environments and robot coordination are some great
potential applications, which can lead us to a better quality of life. Traditional systems make each
camera transmit its own image data or low-level features over the network to a centralized processing
unit, which analyzes everything in a centralized fashion (Figure 1(a)). However, this needs a huge
amount of processing and communication and requires dealing with a large amount of data. To address
this problem, we can develop distributed algorithms, in which each camera deals with its own image
(data) and communicates with other cameras in the network. To analyze the whole scene, the cameras
collaborate and come to a decision together via fusing their own local analysis (Figure 1(b)) [1,2].

Figure 1. (a) Centralized camera network setup; (b) distributed camera network setup.

Smart Camera

Processing Unit

(a) (b)

Human action recognition has been proven to have many applications, including vision-based
surveillance [3,4], human-computer interaction [5], patient and healthcare monitoring systems [6], smart
homes and environments [7] and a lot more [8,9]. This makes it a very important field in computer vision
studies. With the development of smart camera technology and networks, the huge amount of processing
for such high level applications could be performed in a more robust and scalable way. Several previous
works have developed many computer vision applications in such distributed environments [1]. Some
also have targeted the activity recognition problem [10–12].

Understanding the events and activities of humans in video sequences is a challenging task, due to
several different issues, including: (1) the large variability in the imaging conditions, as well as the
way different people perform a particular action; (2) the background clutter and motion; (3) the high
dimensionality of such data is another significant challenge for recognition problems; and (4) a huge
amount of occlusion in real-world environments. Many previous works have targeted these challenges
by introducing different sets of features [13,14] and classifiers and have achieved good results. One of the
best methods to overcome many of these challenges is to analyze the activities from multiple views and,
therefore, acquire more information about the activity for better understanding. However, this makes it
even harder, since there will be more amounts of data to be processed, and on the other hand, the fusion
of the information across the views is a hard task. Therefore, camera sensor networks could create a great

Sensors 2013, 13 8752

bed for such applications, where the processing could be distributed among the cameras and the decision
about the scene could be made in a distributed manner via communication and fusion of features.

Rank Minimization has recently gained a lot of attention, due to the simple, effective success in
solving many problems. As noted by [15], the minimization of the rank function can be achieved using
the minimizer obtained by the nuclear norm, which is calculated as the sum of singular values. In the
field of computer vision, nuclear norm minimization has been applied to many problems, such as camera
calibration [16], structure from motion [17], image segmentation [18] and image categorization [19].

In this paper, we develop a method for the recognition of human activities portrayed in multi-view
video sequences. Our method is based on matrix completion, which finds the best action label(s) for each
test scene. Each view is composed of a single smart camera, which locally processes its video sequence
and decides about the activity being performed in the scene via communication. A sample configuration
of the smart cameras for activity recognition is depicted in Figure 2. Each scene is represented with a
number of fixed length histograms of densely sampled features, which captures both the visual content
and the temporal changes in the scene. This makes the method independent from the video content, view
point and imaging conditions. In real applications, there is a lot of clutter and noise present in the scene,
from the background and/or the imaging conditions, besides the variability in performing the actions by
the subjects. Our low-rank matrix recovery framework is capable of taking out the noise and the outliers,
efficiently. In this paper, a consensus-based distributed algorithm for matrix completion is presented and
is applied for activity recognition in camera sensor networks. The algorithm is based on singular value
thresholding to minimize the nuclear norm and enjoys a convex formulation. The minimization problem
is solved via the Alternating Direction method of Multipliers (ADM) [20].

In the rest of the paper, the next section reviews the previous work, Section 3 explains our distributed
matrix completion technique and the proceeding section explains the proposed activity recognition
approach in detail. Section 5 outlines a set of experiments for distributed activity recognition. Finally,
Section 6 concludes the paper.

Figure 2. Sample camera network setup for human activity recognition.

Sensors 2013, 13 8753

2. Related Works

Action and activity recognition methods from single-view video sequences could be categorized
into three classes: (1) models that directly utilize bag-of-words (BoWs) representations [21,22];
(2) approaches that decompose an action into smaller parts for capturing the local spatial or temporal
structure of the activity and to better model the interaction between parts [23]; (3) approaches that use
the global spatio-temporal templates, such as motion history, spatio-temporal shapes, the human model
changing in time or other templates [24]. These approaches try to retain the visual shape and structure of
the activity. As shown by Laptev et al. [13], compared to simple bag-of-words [21], approaches encoding
the spatio-temporal layout of a video using a fixed space-time grid enhance the recognition rates.

Several multi-camera and distributed action recognition approaches have also been proposed in the
literature [10–12,25–28], which aimed at extending single-view techniques for the multi-view case.
Sirvastava et al. [10] use spatio-temporal interest points from each single view. This method is
specifically designed for a network of low-powered camera sensors. Song et al. [11] use a Markov
chain with a known transition matrix to model the actions. There are also several papers proposing
fusion strategies for multi-view action recognition [29]. Wu et al. [25] use the best view as a simple
strategy for fusion, whereas [12] uses data from all views for the classification task. In [11], the authors
use a probabilistic consensus method for fusing the similarity scores of neighboring cameras.

Matrix completion is a great tool for classification purposes, where the instances are classified through
convex optimization for best labels and, simultaneously, finding the error and outliers present in the
data. The problem of matrix completion and rank minimization is initially a non-convex optimization
problem [30,31], which is simply based on factorizing the matrix into two matrices of a rank of at most r.
However, recently, rank minimization has gained attention and is achieved by using the minimizer
obtained with the nuclear norm [15]. In order to solve this convex rank minimization problem, many
approaches are developed, such as Iterative Thresholding [15,32], Fixed Point Continuation [33], the
Augmented Lagrangian Multipliers method [32] and the Alternating Direction method [34].

Distributed algorithms for matrix factorization and low rank recovery mostly include using parallel or
distributed programming models, such as MapReduce and Hadoop. For instance, [35,36] are designed
for MapReduce and [37] for the second version of Hadoop. The drawbacks of these models are that
they are limited to the restrictive programming models and mostly suffer from run-time overheads.
Furthermore, the cluster management is hard, and optimal configuration of the nodes is not obvious.
Other approaches in this area include introducing a separable regularization for the nuclear norm,
which makes the process distribution much easier [38,39]. These approaches use the Alternating
Direction method or Stochastic Gradient Descent approaches for the optimization process. However,
these regularizations or approaches that factorize the main matrix into two lower-rank matrices suggest
non-convex objectives.

In this paper, a distributed algorithm is proposed, which uses a convex formulation of matrix
completion and is applied to the problem of multi-view activity recognition in a network of
smart cameras.

Sensors 2013, 13 8754

3. Distributed Matrix Completion

3.1. Network Setup

Let’s assume that the network of the processing nodes or the smart cameras is modeled with a
connected undirected graph, G = (V , E), with V = {1, . . . , Np} as the set of camera nodes and E ⊂ V×V
representing the nodes that can communicate with each other. With this definition, each node, i, can have
some neighbors denoted by Ni = {j ∈ V : (i, j) ∈ E} and the degree, di = |Ni|.

3.2. Matrix Completion for Classification

Matrix Completion is the process of recovering a matrix from a sampling of its entries. We want to
recover a data matrix, D, from a matrix, D0, in which we only get to observe a number of its entries,
which is comparably much smaller than the total number of elements in the matrix. Let Ω denote the set
of known entries. With sufficiently large measurements and uniformly distributed entries in the matrix,
we can assume that there is only one low-rank matrix with these entries [15]. As denoted by [15,30],
if a matrix has rank r, it should have exactly r nonzero singular values. Thus, the rank function could
be simply defined as the number of non-vanishing singular values (σk). Therefore, a simple estimate of
the rank function can be defined as ‖D‖∗ =

∑d
k=1 σk(D), which is called the nuclear or trace norm.

Recently, this formulation has been used for classification tasks. The task is to learn the connection
between the space of features, X , and the space of labels, Y , from Ntr training instances. Let m be the
number of different classes, n the dimensionality of the feature space, N the number of total instances
and Ntr and Ntst the number of training and testing instances, respectively.

Figure 3. Data matrix, D0, which contains training and testing instances, each as a
single column.

y11 y12 . . . y1Ntr

...
...

ym1 ym2 . . . ymNtr

y1(Ntr+1) y1(Ntr+2) . . . y1(Ntr+Ntst)
...

...
ym(Ntr+1) ym(Ntr+2) . . . ym(Ntr+Ntst)

x11 x12 . . . x1Ntr

x21 x22 . . . x2Ntr

...
...

xn1 xn2 . . . xnNtr

x1(Ntr+1) x1(Ntr+2) . . . x1(Ntr+Ntst)

x2(Ntr+1) x2(Ntr+2) . . . x2(Ntr+Ntst)
...

...
xn(Ntr+1) xn(Ntr+2) . . . xn(Ntr+Ntst)

DXtr : Train Instance Features DXtst : Test Instance Features

DYtr : Training Labels DYtst : Testing Labels

As noted by Goldberg et al. [33] the problem of classifying Ntst test entries can be cast as a
matrix completion task. To this end, we can concatenate all labels and features into a single matrix
(as illustrated in Figure 3). If a linear classification model holds, this matrix should be rank-deficient.
In this formulation, the classification process would be defined as filling the unknown entries in Ytst,
such that the nuclear norm of D0 is minimized. This could be done via a convex minimization

Sensors 2013, 13 8755

process [33,34,40]. In practice, we have errors and incomplete data in the training features and labels.
Therefore, we define the set of known entries in D0 as ΩX and ΩY and zero out unknown entries:

D =

DY

DX

D1

 =

Ytr Ytst

Xtr Xtst

1>

 +

EYtr 0

EXtr EXtst

0>

 (1)

where Ytr ∈ Rm×Ntr and Ytst ∈ Rm×Ntst are the training and testing labels and Xtr ∈ Rn×Ntr and
Xtst ∈ Rn×Ntst are the training and testing feature vectors, respectively. Therefore, the classification
process would be posed as finding the best Ytst and the error matrix, E, such that the rank of
D = D0 + E is minimized [33]. This would be equivalent to [40]:

min
D

γ‖D‖∗ +
1

|ΩX |
∑
ij∈ΩX

cx(EXij
) +

λ1

|ΩY |
∑
ij∈ΩY

cy(EYij
)

subject to D = D0 + E,

D1 = 1>

(2)

where cy(.) is a log loss function and cx(.) is a least squares error. These two terms are to avoid
trivial solutions and to penalize large distortions of D. The parameters, γ and λ1, are positive trade-off
weights [33,40]. This minimization problem can be solved using a Fixed Point Continuation (FPC)
method [33] or an Alternating Direction method (ADM) [34].

3.3. Distributed Nuclear Norm Minimization for Matrix Completion

As shown by [33,41], as long as the error matrix, E, is sufficiently sparse, we can exactly recover
the low-rank matrix, D, from D0 = D + E by solving the convex optimization problem, Equation (2).
Let us, for simplicity, replace the second and the third terms in the objective function in Equation (2)
with f(EX) and g(EY), respectively. By introducing a Lagrangian multiplier, the Lagrangian function
would be:

L(D,E,L) = γ‖D‖∗ + f(EX) + g(EY) + +〈L ,D0 −D− E〉+
µ

2
‖D0 −D− E‖2

F (3)

Using the iterative thresholding or the singular value thresholding (SVT) algorithm [41,42] and the
Alternating Direction method, Problem (2) could be solved by updating each variable, while keeping
the others fixed. D and E are calculated by minimizing L(D,E,L), and then, the amount of violation,
D0 −D − E, is used to update L . A shrinkage operator as a proximal operator for the nuclear norm
could be defined as:

Sε[x] =

x− ε if x > ε

x+ ε if x < −ε

0 otherwise.

(4)

With the singular value decomposition of a matrix, USV>, we can apply an Alternating Direction
method (ADM) for recovering the low-rank matrix, D, via an iterative optimization procedure, as

Sensors 2013, 13 8756

proposed by [32,41]. For this purpose, we need to iterate to optimize the above Lagrangian function
for the E and D matrices. The error matrices, EX and EY, would have a closed form solution, by
solving the following two subproblems in each kth iteration:

EXk+1
= argmin

EX

1

µk
f(EXk

) +
1

2
‖EXk

− (D0X −DXk+1
+

Lk

µk
)‖2
F

EYk+1
= argmin

EY

1

µk
g(EYk

) +
1

2
‖EYk

− (D0Y −DYk+1
+

Lk

µk
)‖2
F

(5)

where µk is the step parameter and is increased in each iteration. On the other hand, the nuclear norm
of the matrix, D, is minimized using the SVT algorithm [42], where the proximal operator, Sε[.], is
applied on the singular values of the matrix, D0 − Ek + µ−1

k Lk, to construct the matrix, D, in each kth

iteration as:
(U,S,V) = svd(D0 − Ek + µ−1

k Lk)

Dk+1 = USµ−1
k

[S]V>.
(6)

The constraint, D1 = 1>, is enforced by keeping the last row of Ek equal to 0>. Furthermore, for all
unknown entries, (i, j) ∈ ΩY , the choice of Ek(i, j) = 0 holds [32].

In order to parallelize this algorithm, we need to distribute the entries present in D0 between the
processing nodes. Therefore, we will have separate E matrices for each node, and accordingly, we
will require the use of the corresponding Lagrangian multipliers. Suppose that we split the data matrix,
D ∈ R(n+m)×(Ntr+Ntst), into Np parts, Di ∈ Rni×(Ntr+Ntst). Therefore, we can assume that the original
data matrix is formed as:

D = [D1
>,D2

>, . . . ,DNp

>]> ∈ R(n+m)×(Ntr+Ntst). (7)

Therefore, the Lagrangian multiplier, L , and the error matrix, E, would also be split in the same
manner. Now, we will have an equivalent problem, as in Equation (2), for each single processing node,
i. The Lagrangian function, from each node’s point of view, would be:

γ‖D‖∗ + f(EXi
) + g(EYi

) + 〈Li,Di −D0i
− Ei〉+

µ

2
‖Di −D0i

− Ei‖2
F (8)

where Lis are the Lagrange multipliers. The only shared problem between the nodes is the
minimization of the nuclear norm of the whole data matrix, where we need to calculate the SVDof the
J = D0 − Ek + µ−1

k Yk matrix, collaboratively. First, suppose we want to compute 1
Np

J>J:

C =
1

Np

J>J =
1

Np

Np∑
i=1

Ji
>Ji =

1

Np

Np∑
i=1

Ci. (9)

Ci = Ji
>Ji could be denoted as the local correlation matrix. As could be seen, this problem would be

distributed on the nodes. This is very easy to compute through consensus, since it is a simple averaging

Sensors 2013, 13 8757

of data present in each node. Initially, each node has a local state, ci(0) = Ci; in each iteration, nodes
receive the internal state of their neighbors and update:

ci(t+ 1) = ci(t) +W(t)
∑
j∈Ni

(cj(t)− ci(t)) (10)

whereW(t) is initially set to (maxi{di})−1 and decreased through time. It is shown [43] that each state
converges to the average of the initial values in each node (limt→∞ ci = C), no matter how the network
configuration is and if there is partial noise in the communications. The consensus would be achieved
when |ci(t+ 1)− ci(t)| ≤ ε, with ε as a very small constant threshold.

Note that C is a (n + m) × (n + m) matrix, independent from Np. Therefore, if the number of
processing nodes and the number of data splits grow, C still could be correctly recovered. In order to
compute the SVD of the matrix, J, we need to calculate matrices, U ∈ R(n+m)×r, V ∈ Rr×(Ntr+Ntst)

and Σ ∈ Rr×r, with r as the rank of the matrix: J = UΣV>. To do this, we can compute the SVD of
C, which would be equal to V(1

Np
Σ2)V>. Therefore, after distributed averaging, each node can recover

V, and if they know Np, they also can recover Σ. These two matrices will be common for all the nodes
and easy to calculate, and they can compute their own share of the matrix, U as: Ui = JiVΣ−1.

As a result, the SVD operation could be calculated in a distributed manner, and each node can recover
the complete matrix, Σ, and then it can apply the shrinkage operator and iterate to optimize the rank of
the data matrix. In order to minimize the rank of the matrix, D, in each kth iteration, the following set
of instructions should be executed on each node, i, until a consensus is achieved:

Jik = Di0 − Eik + µ−1
k Yik

Ci = Jik
>Jik

Calculate C via consensus using Equation (10),

(V,
1

Np

Σ2,V>) = svd(C)

Ui = JikVΣ−1

Dik+1
= UiSτ [Σ]V>

(11)

In summary, this algorithm consists of two stages: first, calculating C via consensus over the network
and, then, performing the iterative thresholding algorithm for minimizing the nuclear norm. The first
stage is performed by iterating on Equation (10), while receiving the local Ci variables from the
neighboring nodes, in each iteration. This is continued until the Ci variables converge. We can benefit
from a joint treatment and create an inexact version of the algorithm, where the iterative operations for
calculating the Cis is not performed completely to reach the convergence. Only one iteration gives us a
fast good estimate of the C matrix and would satisfy the convergence properties of the whole algorithm.
When a good estimate could be achieved for the optimization subproblem, ADM would still converge,
probably with more numbers of iterations [32]. The distributed matrix completion algorithm on each
processing node, i, is outlined in Algorithm 1.

Sensors 2013, 13 8758

Algorithm 1 Distributed matrix completion algorithm for recognition, on the ith processing node.

Input: Initial portion of the data matrix for the ith node, Di = D0i
, and parameter, λ.

Output: ith portion of the completed matrix, Di

Li0 = 0, µk > 0, ρ = 1.1,Ei0
= 0

while not converged do
1. Fix all other variables and update Dik+1

= argmin
Di

1
µk
‖Dik‖∗ + 1

2
‖Dik − (D0i

+ Eik
− Lik

µk
)‖2
F

by:
Jik = Di0 − Eik

+ µ−1
k Lik

ci(k) = Jik
>Jik

Send ci(k) to all the neighbors, Ni,
Receive all cj(k)s from the neighbors, Ni,
ci(k) = ci(k) +W(k)

∑
j∈Ni

(cj(k)− ci(k))

(V, 1
Np

Σ2,V>) = svd(ci(k))

Ui = JikVΣ−1

Dik+1
= UiSτ [Σ]V>

2. Fix all other variables and update
EXik+1

= argmin
EXi

1
µk
f(EXik

) + 1
2
‖EXik

− (D0Xi
−DXik+1

+
Lik

µk
)‖2
F

3. Fix all other variables and update
EYik+1

= argmin
EYi

1
µk
g(EYik

) + 1
2
‖EYik

− (D0Yi
−DYik+1

+
Lik

µk
)‖2
F

4. Set the Eik
=

[
EYik

> EXik

> 0>
]>

,
5. Update the multiplier, Li:

Lik+1
= Lik + µk(Dik+1

−Di0 − Eik+1
)

7. Update parameter, µk+1, as: µk+1 = min(ρµk, 1010) and k = k + 1.
8. Check the convergence condition:

(Dik −D0i
− Eik

→ 0)
end while

4. Distributed Activity Recognition

Our task is to recognize activities present in the scene, which are captured with a networked set
of cameras, as also illustrated in Figure 2. The distributed environment, as described in Section 3.1,
is composed of a number of cameras with processing power and communication skills. Each scene is
represented with a fix-length feature vector from each camera’s view point. The recognition task would
be to classify these feature vectors into one of the predefined activity classes. This is performed in a
distributed manner via consensus, as will be described in this section.

4.1. Scene Representation

To represent each video from each view, we use histograms of densely sampled features, which extract
features from space-time video blocks and sample from five dimensions, (x, y, t, σ, τ). σ and τ are the
spatial and temporal scales, respectively. We use a histogram of gradient (HoG) and a histogram of
optical flow (HoF) [13]. These histograms are computed on a regular grid at three different scales.

Sensors 2013, 13 8759

For each descriptor (HoG, HoF), an independent dictionary is used. This is done by using K-means
and quantizing all descriptors to the closest `2 distance dictionary element. The concatenation of both
histograms forms the scene descriptor from a camera’s view point. These histogram features have
been extensively used for object and activity recognition in a single view [8,23] and also extended for
multi-view [10]. With these feature vectors, there is no need to perform any background subtraction,
tracking or silhouette extraction, which makes the algorithm faster and independent from contextual
noise. As a result, each scene, i, is composed of a histogram feature vector, hj

i, from the jth view.
Therefore, scene Si is described by {h1

i ,h
2
i , . . . ,h

Nc
i }. These sets of features are almost independent

from variations in the activity orientation. However, in order to further make sure that the orientation
of the activities with regard to the cameras does not strengthen noise and outliers, we employ a cycling
approach, as proposed by [10]. This is explained in more detail in the next subsection.

4.2. Training and Testing Scenarios

We can assume that both train and test action sequences are captured by Nc cameras. With the
above representation, each scene is described with a histogram of quantized features from each view.
Therefore, each camera has its own part of the scene description. We can model the distribution of the
data matrix, D0 for our case, as shown in Figure 4. The data matrix (as in Equation (1)) is split between
the processing nodes, row-wise. Each node will hold one part of the data segment (both train and test).
The label’s sub-matrix (upper row in Figure 4) is also assigned to a single node.

Figure 4. A model for the data split between the processing camera nodes (distributing
segments of each activity between the nodes).

DYtr DYtst

DXtr1 DXtst1

DXtr2 DXtst2

...
...

DXtrNc
DXtstNc

Local Processing

Consensus: Matrix
Rank Minimized

Cam1

Cam2

CamNc

We construct the matrix, D0, by assigning each column to training or testing samples. During the
process of capturing the sequences of each action, the subject could be facing any of the cameras
performing the action. For training, the samples are formed, such that all the sequences have the same
orientation formation. Therefore, in order to enhance the recognition results, for each test sequence,
we need to determine the orientation for which the action can best perform the recognition. The
correspondence could be determined using a circular shift. For instance, consider an action scene,
Si = {h1

i ,h
2
i ,h

3
i ,h

4
i }, in case of four camera views. The circularly shifted versions are:

Sensors 2013, 13 8760

{h1
i ,h

2
i ,h

3
i ,h

4
i }, {h4

i ,h
1
i ,h

2
i ,h

3
i }, {h3

i ,h
4
i ,h

1
i ,h

2
i } and {h2

i ,h
3
i ,h

4
i ,h

1
i }, which cover all possible

conditions, where the action may face any of the cameras.
When performing a matrix completion, for determining the labels, all four combinations are

considered, and the one with the least amount of absolute error in the corresponding row of the error
matrix, EX, is chosen, and the action class would be determined by its corresponding column in DY.

5. Experiments

In this section, we setup several experiments on some well-known multi-view activity datasets
and compare the recognition results with some state-of-the-art distributed and centralized methods.
We choose previous methods, which have reported results with the same experimental setup for
comparisons. We also compare the execution times of our distributed matrix completion algorithm with
those of the original centralized version of the algorithm, solving Equation (2) using ADM, on the same
datasets. The recognition accuracies are calculated as the average of per-class recognition rates, for each
experiment. Recognition results for each single view are also computed by running a matrix completion
scheme on the features from that specific view.

5.1. Human Action Datasets

In order to validate our approach, we carried out experiments using the IXMAS [44] and MuHAVi
[45] datasets. Figure 5 shows some sample frames from these datasets.

Figure 5. Sample frames from the action datasets. (a) IXMAS; (b) MuHAVi.

cam1 cam2 cam3 cam4

(a)
cam1 cam3 cam4 cam6

(b)

The IXMAS dataset has 13 action classes (check watch, cross arms, scratch head, sit down,
get up, turn around, walk, wave, punch, kick, point, pick up, throw over head and throw from
bottom up) performed by 12 subjects, each 3 times. The scene is captured by 5 cameras, and the
calibration/synchronization parameters are provided. In order to be consistent with a setup similar to
those in the previous work [10,44], we discard images from camera 5, which is the top view and does
not have much informative information for our purpose. This dataset is a challenging one, due to the fact

Sensors 2013, 13 8761

that subjects freely choose their position and orientation. Therefore, each camera has captured different
viewing angles, which makes the recognition task harder.

The MuHAVi dataset contains 17 action classes (walk turn back, run stop, punch, kick, shotgun
collapse, pull heavy object, pickup throw object, walk fall, look in car, crawl on knees, wave arms, draw
graffiti, jump over fence, drunk walk, climb ladder, smash object and jump over gap) performed by
7 actors, recorded in 25 fps with challenging lighting conditions. In our experiments, we choose four
(two side and two corner) cameras for evaluations. A manually annotated subset (MuHAVi-MAS) is
also available, which provides silhouettes for two of these views (front-side and corner) for two actors,
labeled 14 (called MuHAVi-14). We run our experiments on the whole dataset, since we did not require
the manually annotated silhouettes, but we compare our method with some state-of-the-art methods
on MuHAVi-14.

5.2. Experimental Setup

To setup this experiment, we have simulated the network environment, where each camera process is
implemented in a single process on a processing core of a Corei7-3610QM CPU, and the communication
is done via IPC. The network of the cameras is considered to have a fully connected topology.

For extracting the spatio-temporal interest points and to form the histogram feature vectors, we set
σ = 2 and τ = 3. For the feature extraction phase, the size of the space-time patches are considered
to be 18 × 18 pixels and 10 frames. The samplings are also done with 50% overlap, as also introduced
by [46]. For evaluating the experiments, the leave-one-out cross-validation strategy is employed, where
videos of one subject are used for testing, and videos of the remaining subjects are considered as the
training instances.

5.3. Results

IXMAS: Figure 6 shows the results of the classification on each individual camera for the IXMAS
dataset, compared with the distributed algorithm that uses the data from all the views. This figure shows
how the distributed algorithm can outperform each of the single views, and that is because it can describe
each action in a more descriptive way from different views. Figure 7 outlines the confusion matrix of the
distributed activity recognition, and Table 1 shows the overall recognition rate in comparison with some
state-of-the-art methods. As is obvious, the WaveHand action is the most deceptive one and could be
mistaken with other actions. Different experiments from different previous work use 11 or all 13 actions
from the dataset. We run our method and report results on both. Figures 8 and 9 also show the class-level
recognition accuracies in comparisons with some state-of-the-art methods. As could be seen in these
figures, our method has better recognition rates, even for those actions that are not well-recognized by
other competitors.

MuHAVi: The classification results for every individual camera using our method, in comparisons
with our distributed algorithm, are shown in Figure 10, and as expected, the distributed algorithm
achieves better recognition results. In this figure, the results for each camera indicate a training and
testing scenario on that single view, while the all-view method trains and tests our distributed algorithm.
The confusion matrix is also plotted in Figure 11 and the overall recognition rate in comparison

Sensors 2013, 13 8762

with some state-of-the-art methods is shown in Table 2. A class-level comparisons with another
state-of-the-art method is provided in Figure 12. This dataset is not as challenging as the IXMAS dataset,
since the subjects are not performing the actions freely. The subjects perform the actions with predefined
orientations. That is why our method and most of the previous methods get better recognition results on
this dataset, compared to the IXMAS dataset.

Figure 6. Recognition results for each of the single views and all four views, on the IXMAS
dataset with training and testing on 11 actions and 10 subjects.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CheckWatch

CrossArms

ScratchHead

SitDown
GetUp

TurnAround

Walk
WaveHand

Punch
Kick

PickUp

Camera 3
Camera 4
Camera 1
Camera 2
All−view Distributed Alg

Figure 7. The confusion matrix of the recognition output on the IXMAS dataset.

Check Watch
 0.91 0 0 0 0 0.04 0 0.04 0 0 0

Cross Arms
 0.09 0.82 0 0 0 0.02 0 0.02 0.04 0 0

Scratch Head
 0 0.03 0.8 0 0 0.02 0 0.02 0.03 0.1 0

Sit Down
 0 0 0 0.95 0.02 0 0.03 0 0 0 0

Get Up
 0 0 0 0 0.94 0.06 0 0 0 0 0

Turn Around 0 0 0 0 0 1 0 0 0 0 0

Walk 0 0 0 0 0 0.18 0.82 0 0 0 0

Wave Hand
 0.07 0.09 0.04 0.02 0.01 0 0 0.69 0.08 0 0

Punch
 0 0 0 0.03 0 0.04 0 0 0.87 0 0.06

Kick
 0 0 0 0 0 0 0.04 0 0 0.96 0

Pick Up
 0 0 0 0.08 0 0 0 0.02 0.02 0 0.87

Ch
ec

k
W

at
ch

Cr
os

s A
rm

s

Sc
ra

tc
h

He
ad

Si
t D

ow
n

Ge
t U

p

Tu
rn

 A
ro

un
d

W
al

k

W
av

e
Ha

nd

Pu
nc

h

Ki
ck

Pi
ck

 U
p

Sensors 2013, 13 8763

Table 1. Overall accuracy results on the IXMAS dataset, using all four cameras. # Sub. and
Act. in the table are the number of subjects and the number of actions taken into account
for evaluation in the method, respectively.

Approach # Act. # Sub. Method Accuracy

Srivastava et al. [10] 10 11 Distributed 81.4%
Weinland et al. [44] 10 11 Centralized 81.3%

Our Method 10 11 Distributed 87.5%
Liu and Shah [47] 13 12 Centralized 82.8%
Reddy et al. [48] 13 12 Centralized 66.5%
Wu and Jia [49] 12 12 View-invariant 91.67%

Our Method 13 12 Distributed 85.9%

Many actions are very hard to recognize if they are viewed from a specific view point. However,
our distributed algorithm achieves better recognition rates, compared to each single view of the same
dataset. As could be seen, our method outperforms several distributed or centralized methods, both as
an overall recognition system or in the class-level. Only Wu and Jia [49] achieve better results on these
datasets. They use a non-linear classification method with a specific kernel designed for view-invariant
classification, while our method enjoys a linear classification scheme, which is capable of being adapted
for any large-scale or distributed classification problem.

Figure 8. Class-level recognition results of the IXMAS dataset with 11 actions, in
comparison with Shao et al. [50] and Weinland et al. [44].

0

0.2

0.4

0.6

0.8

1

CheckWatch

CrossArms

ScratchHead

SitDown
GetUp

TurnAround

Walk
Wave

Punch
Kick

Pickup

Shao et al. 2011
Weinland et al. 2007
Our Method

Sensors 2013, 13 8764

Figure 9. Class-level recognition results of the IXMAS dataset with 13 actions, in
comparison with Reddy et al. [48] and Liu and Shah [47].

0

0.2

0.4

0.6

0.8

1

CheckWatch

CrossArms

ScratchHead

SitDown
GetUp

TurnAround

Walk
WaveHand

Punch
Kick

Point
PickUp

Throw

Reddy et al. 2009
Liu and Shah 2008
Our Method

Figure 10. Recognition results for each of the single views and all four views, on the
MuHAVi dataset.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ClimbLadder

CrawlOnKnees

DrawGraffiti

DrunkWalk

JumpOverFence

JumpOverGap

Kick
LookInCar

PickupThrowObject

PullHeavyObject

Punch
RunStop

ShotGunCollapse

SmashObject

WalkFall

WalkTurnBack

WaveArms

Camera 3
Camera 4
Camera 1
Camera 6
All−view Distributed Alg

Sensors 2013, 13 8765

Figure 11. The confusion matrix of the recognition output on the MuHAVi dataset.

ClimbLadder 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CrawlOnKnees 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DrawGraffiti 0 0 .96 0 0 0 0 0 0 0 0 0 0 .04 0 0 0

DrunkWalk 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0

JumpOverFence 0 .08 .06 0 .81 .05 0 0 0 0 0 0 0 0 0 0 0

JumpOverGap 0 0 0 .08 0 .92 0 0 0 0 0 0 0 0 0 0 0

Kick 0 0 0 0 0 0 .92 0 0 0 .08 0 0 0 0 0 0

LookInCar 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0

PickupThrowObject 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0

PullHeavyObject 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0

Punch 0 0 0 0 0 0 .10 0 .08 0 .82 0 0 0 0 0 0

RunStop 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0

ShotgunCollapse 0 0 0 0 0 0 0 0 0 0 0 0 .96 0 .04 0 0

SmashObject 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0

WalkFall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0

WalkTurnBack 0 0 0 .02 0 0 0 0 0 0 0 .06 0 0 0 .92 0

WaveArms 0 0 0 0 0 0 0 .06 0 0 0 0 0 0 0 0 .94

Cl
im

bL
ad

de
r

Cr
aw

lO
nK

ne
es

Dr
aw

G
ra

ffi
ti

Dr
un

kW
al

k

Ju
m

pO
ve

rF
en

ce

Ju
m

pO
ve

rG
ap

Ki
ck

Lo
ok

In
Ca

r

Pi
ck

up
Th

ro
w

O
bj

ec
t

Pu
llH

ea
vy

O
bj

ec
t

Pu
nc

h

Ru
nS

to
p

Sh
ot

gu
nC

ol
la

ps
e

Sm
as

hO
bj

ec
t

W
al

kF
al

l

W
al

kT
ur

nB
ac

k

W
av

eA
rm

s

Figure 12. Class-level recognition results of the MuHAVi dataset, in comparison with
Wu and Jia [49].

0

0.2

0.4

0.6

0.8

1

ClimbLadder

CrawlOnKnees

DrawGraffiti

DrunkWalk

JumpOverFence

JumpOverGap

Kick
LookInCar

PickupThrowObject

PullHeavyObject

Punch
RunStop

ShotGunCollapse

SmashObject

WalkFall

WalkTurnBack

WaveArms

Wu and Jia 2012
Our Method

Sensors 2013, 13 8766

In order to evaluate the boost in the run time, the execution times of the runs on the two versions of
the algorithm are calculated. Figure 13 shows the execution time of each set of data together with the
communication and load overheads. As is obvious, the distributed algorithm gets the same recognition
results in a shorter time, as expected. The centralized matrix completion algorithm is run on the same
machine in which the distributed algorithm was simulated, but on a single core. Note that these reported
execution times do not include the circular shifting between the cameras.

Figure 13. Execution times for the distributed and centralized matrix completion on human
activity recognition datasets. (a) IXMAS Dataset; (b) MuHAVi Dataset.

Centralized MC Distributed MC
0

500

1,000

1,500

2,000

Method

Ti
m

e
(s

)

Process
Communication + Load

Centralized MC Distributed MC
0

500

1,000

1,500

2,000

Method

Ti
m

e
(s

)

Process
Communication + Load

(a) (b)

Table 2. Overall accuracy results on the MuHAVi dataset. The data column shows the subset
of the data used for evaluation for each of the methods.

Approach Data Method Accuracy

Singh et al. [45] MuHAVi-14 Centralized 82.4%
Chaaraoui et al. [51] MuHAVi-14 Centralized 91.2%

Wu and Jia [49] All of the dataset View-invariant 97.48%
Our method All of the dataset Distributed 95.59%

6. Conclusion and Discussions

In this paper, we have described a distributed action recognition algorithm, based on low-rank matrix
completion. We have proposed a simple distributed algorithm to minimize the nuclear norm of a matrix,
and then, we have adapted an inexact augmenting Lagrangian multiplier method to solve the matrix
completion problem. We have tested the algorithm on IXMAS and MuHAVi datasets and achieved good
results. With the experiments outlined in this paper, we show that our matrix completion framework
could be well adapted for the classification of a scene in a distributed camera network. Therefore, it is a
proof-of-concept study for using such algorithms in distributed computer vision algorithms.

As mentioned before, we have developed a distributed classification framework for human action
recognition, which can also be used for distributed classification tasks. Matrix completion is a great tool
for dealing with noisy data. As could be seen in the formulations, the error and outliers are identified
during the minimization task. Activity recognition data, due to its many variations across subjects and

Sensors 2013, 13 8767

imaging/illumination conditions, is a set of data with many potential outliers, and that is why our method
could achieve acceptable results, compared to the other state-of-the-art method.

As a direction for future work, we need to perform the training and testing procedures incrementally,
where huge amounts of data could be summarized into smaller matrices and used for testing purposes.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Tron, R.; Vidal, R. Distributed computer vision algorithms. IEEE Signal Process. Mag. 2011,
28, 32–45.

2. Aghajan, H.; Cavallaro, A. Multi-Camera Networks: Principles and Applications; Academic Press:
Waltham, MA, USA, 2009.

3. Choi, J.; Dumortier, Y.; Prokaj, J.; Medioni, G. Activity Recognition in Wide Aerial Video
Surveillance Using Entity Relationship Models. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, 2012 (SIGSPATIAL ’12), Redondo
Beach, CA, USA, 6–9 November 2012; pp. 466–469.

4. Ng, L.L.; Chua, H.S. Vision-Based Activities Recognition by Trajectory Analysis for Parking Lot
Surveillance. In Proceedings of 2012 IEEE International Conference on Circuits and Systems
(ICCAS), Kuala Lumpur, Malaysia, 3–4 October 2012; pp. 137–142.

5. Zhu, Y.; Xu, G.; Kriegman, D.J. A real-time approach to the spotting, representation, and
recognition of hand gestures for human-computer interaction. Comput. Vis. Image Underst.
2002, 85, 189–208.

6. Martnez-Prez, F.E.; Gonzlez-Fraga, J.N.; Cuevas-Tello, J.C.; Rodrguez, M.D. Activity inference
for ambient intelligence through handling artifacts in a healthcare environment. Sensors 2012,
12, 1072–1099.

7. Fatima, I.; Fahim, M.; Lee, Y.K.; Lee, S. A unified framework for activity recognition-based
behavior analysis and action prediction in smart homes. Sensors 2013, 13, 2682–2699.

8. Aggarwal, J.; Ryoo, M. Human activity analysis: A review. ACM Comput. Surv. 2011, 43,
doi:10.1109/NAMW.1997.609859

9. Xu, X.; Tang, J.; Zhang, X.; Liu, X.; Zhang, H.; Qiu, Y. Exploring techniques for vision based
human activity recognition: Methods, systems, and evaluation. Sensors 2013, 13, 1635–1650.

10. Srivastava, G.; Iwaki, H.; Park, J.; Kak, A. Distributed and Lightweight Multi-Camera Human
Activity Classification. In Proceedings of Third ACM/IEEE International Conference on
Distributed Smart Cameras, Como, Italy, 30 August–2 September 2009; pp. 1–8.

11. Song, B.; Kamal, A.; Soto, C.; Ding, C.; Farrell, J.; Roy-Chowdhury, A. Tracking and activity
recognition through consensus in distributed camera networks. IEEE Trans. Image Process. 2010,
19, 2564–2579.

Sensors 2013, 13 8768

12. Ramagiri, S.; Kavi, R.; Kulathumani, V. Real-Time Multi-View Human Action Recognition
Using a Wireless Camera Network. In Proceedings of ACM/IEEE International Conference on
Distributed Smart Cameras, Ghent, Belgium, 22–25 August 2011; pp. 1–6.

13. Laptev, I.; Marszałek, M.; Schmid, C.; Rozenfeld, B. Learning Realistic Human Actions from
Movies. In Proceedings of Conference on Computer Vision & Pattern Recognition, Anchorage,
AK, USA, 24–26 June 2008; pp. 1–8.

14. Ryoo, M.S.; Aggarwal, J.K. Spatio-Temporal Relationship Match: Video Structure Comparison
for Recognition of Complex Human Activities. In Proceedings of International Conference on
Computer Vision, Kyoto, Japan, 27 September–4 October 2009; pp. 1593–1600.

15. Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math.
2009, 9, 717–772.

16. Zhang, Z.; Matsushita, Y.; Ma, Y. Camera Calibration with Lens Distortion from Low-Rank
Textures. In Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, 20–25 June 2011; IEEE Computer Society: Washington, DC, USA, 2011;
pp. 2321–2328.

17. Dai, Y.; Li, H.; He, M. Element-Wise Factorization for N-View Projective Reconstruction. In
Proceedings of the 11th European Conference on Computer Vision: Part IV, Heraklion, Greece,
5–11 September 2010; pp. 396–409.

18. Cheng, B.; Liu, G.; Wang, J.; Huang, Z.; Yan, S. Multi-Task Low-Rank Affinity Pursuit for Image
Segmentation. In Proceedings of International Conference on Computer Vision, Barcelona, Spain,
6–13 November 2011; pp. 2439–2446.

19. Cabral, R.; de la Torre, F.; Costeira, J.P.; Bernardino, A. Matrix completion for weakly-supervised
multi-label Image classification. IEEE Trans. Pattern Anal. Mach. Intell. 2013, in press.

20. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3,
1–122.

21. Schuldt, C.; Laptev, I.; Caputo, B. Recognizing Human Actions: A Local SVM Approach.
In Proceedings of IEEE Computer Society International Conference on Pattern Recognition,
Cambridge, UK, 23–26 August 2004; Volume 3, pp. 32–36.

22. Wu, S.; Oreifej, O.; Shah, M. Action Recognition in Videos Acquired by a Moving Camera
Using Motion Decomposition of Lagrangian Particle Trajectories. In Proceedings of International
Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1419–1426.

23. Raptis, M.; Kokkinos, I.; Soatto, S. Discovering Discriminative Action Parts from Mid-Level Video
Representations. In Proceedings of International Conference on Computer Vision and Pattern
Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1242–1249.

24. Bobick, A.F.; Davis, J.W. The recognition of human movement using temporal templates.
IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 257–267.

25. Wu, C.; Khalili, A.H.; Aghajan, H. Multi-view activity recognition in smart homes with
spatio-temporal features. In Proceedings of the Fourth ACM/IEEE International Conference on
Distributed Smart Cameras, Atalanta, GA, USA, 31 August–4 September 2010; pp. 142–149.

Sensors 2013, 13 8769

26. Holte, M.; Tran, C.; Trivedi, M.; Moeslund, T. Human pose estimation and activity recognition
from multi-view videos: Comparative explorations of recent developments. IEEE J. Sel. Top.
Signal Process. 2012, 6, 538–552.

27. Gu, Y.; Yuan, C. Human Action Recognition for Home Sensor Network. In Proceedings of the
2012 International Conference on Information Technology and Software Engineering; Lu, W.,
Cai, G., Liu, W., Xing, W., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2013; Volume 212;
pp. 643–656.

28. W Parameswaran, V.; Chellappa, R. View invariance for human action recognition. Int. J. Comput.
Vis. 2006, 66, 83–101.

29. Banos, O.; Damas, M.; Pomares, H.; Rojas, I. On the use of sensor fusion to reduce the impact of
rotational and additive noise in human activity recognition. Sensors 2012, 12, 8039–8054.

30. Fazel, M. Matrix Rank Minimization with Applications. Ph.D. Thesis, Stanford University,
Stanford, CA, USA, March 2002.

31. Xu, Y.; Yin, W.; Wen, Z.; Zhang, Y. An alternating direction algorithm for matrix completion with
nonnegative factors. Front. Math. China 2012, 7, 365–384.

32. Lin, Z.; Chen, M.; Wu, L.; Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery
of Corrupted Low-Rank Matrices, University of Illinois at Urbana-Champaign Technical Report
UILU-ENG-09-2215 (2009); 2009; pp. 1–20.

33. Goldberg, A.B.; Zhu, X.; Recht, B.; Xu, J.M.; Nowak, R.D. Transduction with Matrix Completion:
Three Birds with One Stone. In Neural Information Processing Systems; Curran Associates, Inc.:
Vancouver, BC, Canada, 6–9 December 2010; pp. 757–765.

34. Yang, J.; Yuan, X. Linearized augmented Lagrangian and alternating direction methods for nuclear
norm minimization. Math. Comp. 2013, 82, 301–329.

35. Gemulla, R.; Nijkamp, E.; Haas, P.J.; Sismanis, Y. Large-Scale Matrix Factorization with
Distributed Stochastic Gradient Descent. In Proceedings of the 17th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; ACM:
New York City, NY, USA 2011; pp. 69–77.

36. Liu, C.; Yang, H.C.; Fan, J.; He, L.W.; Wang, Y.M. Distributed Nonnegative Matrix Factorization
for Web-Scale Dyadic Data Analysis on Mapreduce. In Proceedings of the 19th International
Conference on World Wide Web (WWW’10), Raleigh, NC, USA, 26–30 April 2010; ACM:
New York, NY, USA, 2010; pp. 681–690.

37. Teffiioudi, C.; Manshadi, F.M.; Gemulla, R. Distributed Matrix Completion. In Proceedings of
the IEEE International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012;
pp. 655–664.

38. Recht, B.; Ré, C. Parallel stochastic gradient algorithms for large-scale matrix completion.
Math. Prog. Comp. 2013, 5, 201–226.

39. Mardani, M.; Mateos, G.; Giannakis, G. Distributed nuclear norm minimization for matrix
completion. In Proceedings of IEEE 13th International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), Cesme, Turkey, 17–20 June 2012; pp. 354–358.

Sensors 2013, 13 8770

40. Cabral, R.S.; de la Torre, F.; Costeira, J.P.; Bernardino, A. Matrix Completion for Multi-Label
Image Classification. Advances in Neural Information Processing Systems (NIPS), Curran
Associates, Inc.: Granada, Spain, 12–17 December 2011; pp. 190–198.

41. Candès, E.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 11.
42. Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion.

SIAM J. Optim. 2010, 20, 1956–1982.
43. Tron, R.; Vidal, R. Distributed Computer Vision Algorithms through Distributed Averaging. In

Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado
Springs, CA, USA, 21–25 June 2011; IEEE Computer Society: Washington, DC, USA, 2011;
pp. 57–63.

44. Weinland, D.; Boyer, E.; Ronfard, R. Action Recognition from Arbitrary Views using 3D
Exemplars. In Proceedings of 2007 IEEE International Conference on Computer Vision, Rio
de Janeiro, Brazil, 14–20 October 2007; pp. 1–7.

45. Singh, S.; Velastin, S.A.; Ragheb, H. MuHAVi: A Multicamera Human Action Video Dataset
for the Evaluation of Action Recognition Methods. In Proceedings of the 7th IEEE International
Conference on Advanced Video and Signal-Based Surveillance, Boston, MA, USA, 29 August–1
September 2010; IEEE Computer Society: Washington DC, USA, 2010; pp. 48–55.

46. Wang, H.; Ullah, M.M.; Kläser, A.; Laptev, I.; Schmid, C. Evaluation of Local Spatio-Temporal
Features for Action Recognition. In Proceedings of British Machine Vision Conference, London,
UK, 7–10 September 2009; p. 127.

47. Liu, J.; Shah, M. Learning Human Actions via Information Maximization. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), Anchorage, AK, USA,
23–28 June 2008; pp. 1–8.

48. Reddy, K.K.; Liu, J.; Shah, M. Incremental Action Recognition Using Feature-Tree. In Proceedings
of IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4
October 2009; pp. 1010–1017.

49. Wu, X.; Jia, Y. View-Invariant Action Recognition Using Latent Kernelized Structural SVM. In
Proceedings of 12th European Conference on Computer Vision—Volume Part V, Firenze, Italy,
7–13 October 2012; pp. 411–424.

50. Shao, L.; Wu, D.; Chen, X. Action Recognition Using Correlogram of Body Poses and Spectral
Regression. In Proceedings of the IEEE International Conference on Image Processing, Brussels,
Belgium, 11–14 September, 2011; pp. 209–212.

51. Chaaraoui, A.A.; Climent-Prez, P.; Flrez-Revuelta, F. Silhouette-based human action recognition
using sequences of key poses. Pattern Recognit. Lett. 2013, in press.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Related Works
	Distributed Matrix Completion
	Network Setup
	Matrix Completion for Classification
	Distributed Nuclear Norm Minimization for Matrix Completion

	Distributed Activity Recognition
	Scene Representation
	Training and Testing Scenarios

	Experiments
	Human Action Datasets
	Experimental Setup
	Results

	Conclusion and Discussions
	Conflict of Interest

