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Abstract

The role of the host immune response in determining the severity and duration of an influenza infection is still unclear. In
order to identify severity factors and more accurately predict the course of an influenza infection within a human host, an
understanding of the impact of host factors on the infection process is required. Despite the lack of sufficiently diverse
experimental data describing the time course of the various immune response components, published mathematical
models were constructed from limited human or animal data using various strategies and simplifying assumptions. To
assess the validity of these models, we assemble previously published experimental data of the dynamics and role of
cytotoxic T lymphocytes, antibodies, and interferon and determined qualitative key features of their effect that should be
captured by mathematical models. We test these existing models by confronting them with experimental data and find that
no single model agrees completely with the variety of influenza viral kinetics responses observed experimentally when
various immune response components are suppressed. Our analysis highlights the strong and weak points of each
mathematical model and highlights areas where additional experimental data could elucidate specific mechanisms,
constrain model design, and complete our understanding of the immune response to influenza.
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Introduction

The Centers for Disease Control and Prevention estimate that

in the United States deaths related to influenza ranged from about

3,000 to 49,000 deaths per season from the 1976/77 to the 2006/

07 flu seasons [1]. While virologists, microbiologists, and clinicians

have studied the influenza virus and the illness it causes for many

years, it is only relatively recently that mathematical modelling has

been used to provide insight into influenza infections [2,3].

Application of mathematical modelling holds great promise and

the analysis of various experimental data has furthered our

understanding of influenza. Models have been used to quantita-

tively determine key influenza kinetic parameters such as the

duration of the eclipse phase and the viral clearance rate [4,5].

They have also been used to optimize antiviral therapy regimens,

better characterize antiviral efficacy, and predict the emergence of

drug resistance [5–8]. Mathematical models of within-host

influenza infections can provide unique and valuable insights,

but they must correctly capture the dynamics of the disease for full

utility.

One major obstacle to creating a biologically accurate model of

influenza infections has been the incorporation of a biologically

realistic immune response. An accurate model of the key players of

the immune response is essential to capture the range of dynamics

of influenza infections particularly since the immune response is

thought to play an important role in eliminating the infection [9–

11]. Immune memory or strength of the immune response is also

believed to play an important role in shaping the severity of an

influenza infection [12–16]. Unfortunately, study of the host

immune response to influenza suffers from a paucity of data

describing the dynamics of both the adaptive and innate immune

responses during infection. Data from human patients are typically

for few time points [17–20]. Animal experiments are sometimes

more comprehensive [11,21–25], capturing levels of various

cytokines/chemokines [11,21,25] and immune cells [22–24] at

several time points. However, the immune response in animals is

known to differ from that in humans [26–29], particularly in Balb/

c mice, a popular experimental model lacking functional

expression of Mx, an IFN-induced protein that induces an

antiviral state in cells [29,30]. Deficiencies in data limit the

formulation of a comprehensive, quantitative picture of the

immune response to influenza.

In this context, mathematical modelling can provide valuable

insights and help guide investigation. Already, several mathemat-
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ical models for the course of an influenza infection within a host

have incorporated an immune response [2,4,22,23,31–36]. They

range from simple models that primarily aim to resolve the effects

of a few specific components of the host immune response using

simplifying assumptions [4,23,32–37] to complicated models with

many equations and parameters describing the detailed interac-

tions of immune response components [2,22,31]. Unfortunately,

since viral titer is often the only experimental quantity measured

over time, even adding a simple immune response with limited

additional parameters can be problematic as it becomes difficult to

ascertain biologically realistic parameters for the models [38].

Here, we amass previously published experimental and clinical

data on the time course and impact of various immune

components. These data are used to construct a picture of the

role of three key immune response components: antibodies (Abs),

cytotoxic T lymphocytes (CTLs), and interferon (IFN). We also

assemble a set of published mathematical models of influenza

infections that contain an explicit immune response. We confront

them with the experimental data to assess how well they reproduce

the time course of the immune response and the effect of

individual immune components on the viral titer. We quantita-

tively assess the relative contributions of Abs, CTLs, and IFN by

measuring their individual effect on various characteristics of the

influenza infection and we investigate the effect of antiviral

therapy in the presence and absence of an immune response. Our

analysis identifies key qualitative features of the immune response

to influenza that must be incorporated in mathematical models in

order for these models to serve as surrogates to experimental

investigation as valuable, credible influenza infection simulators

and predictors.

Results

Experimental evidence for the role of the immune
response

The course of an influenza infection within a host is typically

probed using viral titer time courses, sometimes supplemented by

symptom scores, cytokine concentration time courses, and rare

measurements of Ab levels on one or two days [18,20,39–42].

While this approach enables the identification of correlations

between immune factors and infection severity markers, it rarely

establishes causal relationships. Ideally, the characterization of the

role and efficacy of a specific immune response component would

follow an approach similar to that used for characterizing antiviral

efficacy: dose-ranging experiments in which increasing concentra-

tions of the antiviral are applied to isolate and quantify its effect on

the infection course. While such a procedure is virtually impossible

to perform for immune response components such as Abs or

CTLs, knock-out or suppression experiments in animals and the

occurrence of natural infections in immunocompromised patients

provide similar conditions. These types of studies provide

compelling evidence for the relative role and importance of the

host immune response in the control of influenza infections.

Clinical data. The infection of immunocompromised indi-

viduals provides a window into the course of the infection when

the immune response is severely attenuated. In many reported

cases of immunocompromised patients with influenza, virus was

shed for long periods of time, i.e., in some cases more than a year

[43–60], (Fig. 1). Underlying medical conditions, the influenza

viral strain, and antivirals used to treat immunocompromised

patients are given in Table 1.

The average duration of viral shedding for uncomplicated

seasonal influenza infections in healthy adults is *5 d [61]. In

contrast, immunocompromised patients shed virus for at least 14

d, with two reports of patients shedding virus for at least 18

months. Viral loads in the immunocompromised typically remain

high and fairly constant for the duration of the infection, despite

treatment with antivirals, indicating that the immune response is

an important component to clearing influenza infection in

humans. Unfortunately, the data presented in these reports do

not allow us to assess whether the lack of an immune response

leads directly to chronic infections or whether it causes a more

complex infection, such as an infection that spreads beyond the

upper respiratory tract [62,63] or one that includes a bacterial co-

infection [64,65], that is simply more difficult to clear even with

antiviral therapy.

Preclinical data. In animal models, the effect of individual

components of the immune response on the course and outcome

of the infection can be evaluated by down-regulating or

neutralizing a specific component of the immune response or its

activity. These studies use component-specific antisera [11,25],

genetic modification (knock-out) [13,66–69], or treatment with

toxins [70]. Unfortunately, these manipulations sometimes do not

fully remove the immune component [25,67,71] or removal of the

component also affects other components of the immune response

[11,72]. Additionally, the immune response in these animal

models might not be representative of that of a human host

[28,29]. Despite these shortcomings, experiments in animals can

help shape our understanding of the relative role of different

immune components. Published results of these experiments

conducted in mice (with the exception of Seo [13], which was

conducted in pigs) are assembled in Fig. 2 where graphs show the

viral titer time course for an influenza infection with a full immune

response or with one immune component disabled or destroyed.

We focused on published experimental data in which the

authors had disabled one or more of the following immune

responses: cytotoxic T lymphocytes (CTLs) which kill infected cells

[73,74]; antibodies (Abs) which bind and inactivate virus [75–77];

and interferon (IFN) which has many modes of action including

reducing the production of virus by infectious cells and establishing

an antiviral state in susceptible cells rendering them resistant to

infection [78–80].

For Abs, we found only one experiment with complete viral

time courses with and without various Ab isotypes. Iwasaki et al.

used either antisera to disable individual Ab isotypes (IgM, IgG,

and IgA) or B-cell depleted mice to disable all Abs [11]. In

addition to the viral titers shown in Fig. 2, Iwasaki et al. measured

time courses of each Ab isotype and IFN levels, but not CTL

levels. The thorough measurements made in this remarkable

experiment clearly establish that the antisera depleted Abs below

detection level while leaving the IFN response unaffected (not

shown here but appearing in the original publication). The viral

titer time courses show that Abs, specifically IgA and IgM Abs,

begin affecting viral titer levels around 6 days post-infection (dpi).

IgG Abs appear to have no effect on the course of the infection. In

the presence and absence of an Ab response, the viral titer first

peaks around 4 dpi after which it decreases slightly. At 6 dpi the

effect of Abs becomes apparent — without Abs viral titer increases

rapidly from this point, but with Abs there is a continued decline

in viral titer. These experiments indicate Abs play a critical role in

terminating the infection although they do not significantly affect

the initial viral titer peak.

Several experiments have studied the role of CTLs in influenza

infections. Three of the experiments presented here (Kris, Wells,

and Yap) use nude mice, which have a deteriorated or absent

thymus [66,67,69]. The remaining experiment by Neff-LaFord et

al. used TCDD, a toxin that depletes CD8z T cells [70]. Neither

of these methods completely eliminates the CTL response; nude

Assessing Models of the Influenza Immune Response
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mice have at least *1,000-fold lower CTL levels in their lungs

compared to normal mice [67] while the TCDD-treated mice

have CTL levels *15% that of untreated mice [71]. An additional

concern with these experiments is that the depletion of CTLs can

also affect the amount of IFN [11,72] since CTLs are in part

responsible for producing the IFN-c response [81]. It is also known

that nude mice have functionally impaired B cells [82] which

could lead to an inadequate Ab response in these mice. These

shortcomings could explain the wider variation in the predicted

role of CTLs. Neff-LaFord et al. found no significant difference in

viral titers between normal and CTL-depleted mice [70]. This

might be because TCDD treatment is not entirely effective at

disabling CTLs, or because data were only collected until 7 which

might be too early for CTLs to have significantly affected the viral

titer time course. The remaining three experiments suggest CTLs

begin to affect the viral titer time course anywhere between 5 to

8 dpi. In the absence of CTLs, all three experiments showed the

viral titer remaining elevated (but not growing as seen when

disabling Abs) for a long period of time. This suggests CTLs play a

role in the resolution of the infection but not in controlling viral

titer levels. These observations correspond with the immunocom-

promised patients discussed above who develop chronic influenza

infections with relatively constant viral titer levels.

Three experiments studied the effect of disabling IFN on the

course of an influenza infection. There are several types of

interferon: Type I interferons include IFN-a, IFN-b, and IFN-v

and type II interferons include IFN-c. The two types of IFN arise

from different genes [83], have different signalling pathways [84],

bind to different cell receptors [85] and lead to different antiviral

effects [86]. Mathematical models are not yet detailed enough to

differentiate between the different types of IFN, and the

experiments presented here appear to target both types of IFN,

and so we will not differentiate between the different types of IFN

for the remainder of the paper.

The three studies on the effect of IFN used different methods to

reduce or remove its effect. Garcı́a-Sastre et al. used mice that had

a targeted disruption to the STAT1 gene and as such could not

respond to IFN, and performed the experiments with two different

influenza A (H1N1) viruses: A/Puerto Rico/8/34 (PR8) and A/

Wisconsin/33 (WSN) [68]. Hoshino et al. used an anti-IFN (type

not specified) serum to neutralize the IFN response in mice

infected with PR8 [25]. Rather than modifying the host response,

Seo et al. compared infection with a wild-type PR8 virus to that

with a recombinant PR8 virus made resistant to the antiviral

effects of IFN via substitution of aspartic (D) with glutamic (E) acid

at position 92 of NS1 (D98E) [13]. While Hoshino et al. showed

that IFN largely remained below detection level during their

experiment, it is not possible to confirm the degree of IFN

inhibition in the Garcia-Sastre et al. and Seo et al. experiments as

their approach aimed to suppress IFN activity rather than IFN

itself [87–89]. In the experiments by Hoshino et al. and Seo et al.,

IFN begins acting early in the infection (1–2 dpi), generally

Figure 1. Duration of viral shedding in immunocompromised patients. (Left) The reported duration of viral shedding for individual
immunocompromised patients infected with influenza as chronicled in the literature is indicated by bar length. Infection outcome is indicated (died
or recovered) when known, or labelled as unreported with ‘?’. (Right) Viral titer time courses of immunocompromised patients infected with influenza.
Since all patients were treated with various courses of antivirals and given the prolonged shedding in these patients, recovery is most likely due to
the eventual success of antiviral therapy rather than to clearance of the infection by the limited host immune response.
doi:10.1371/journal.pone.0057088.g001
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reducing viral load and viral titer peak. This was not the case in the

two experiments by Garcia-Sastre et al. which measured no effect

on the control of a PR8 infection when the IFN response was

disabled, while more sustained titers were observed for WSN

infections in the absence of an IFN response. According to Garcia-

Sastre et al. the difference in the tissue tropism between the PR8 and

WSN strains is responsible for this difference, with PR8 spread

being limited by both tissue tropism and the IFN response and WSN

spread being limited only by the IFN response. Interestingly, both

Garcia-Sastre et al. and Hoshino et al. considered PR8 infections in

mice and reported lung homogenate titers, so differences in their

results are likely attributable to the different methods used to hinder

the IFN response. Overall, the data are not entirely consistent but

suggest that the presence of IFN decreases the viral load and that its

absence can lead to more sustained viral titer. However, the data

were too limited to show whether the absence of an IFN response

alone can lead to chronic infection.

Mathematical models to probe the role of the immune
response

Mathematical models are valuable tools in identifying the key

players of the immune response against an infection and in

Table 1. Details of infections of immunocompromised patients.

Paper Medical condition Strain Antiviral treatmenta

Antón [47] chronic lymphocytic leukemia A/pH1N1b ost, zvr

Baz [43] SCIDc (SCT)d A/H3N2 ost, amt, zvr

Boivin [48] chronic lymphoid leukemia A amt, rbv

Campanini [49] acute lymphoid leukemia A/H1N1 ost

Cohen-Daniel [51] acute monocytic leukemia (SCT) A/H3N2 ost

Couturier [52] (case 1) multiple myeloma (SCT) A/pH1N1 ost, zvr

Couturier [52] (case 2) multiple myeloma (SCT) A ost, zvr

CDC [50] (case 1) leukemia (SCT) A/pH1N1 ost

CDC [50] (case 2) leukemia (SCT) A/pH1N1 ost, rmt, zvr, rbv

Evans [60] Human immunodeficiency virus (HIV) A rmt

Gooskens [44] (case 1) SCID A/H3N2 ost

Gooskens [44] (case 2) Non-Hodgkin lymphoma (SCT) A/H3N2 ost

Gooskens [44] (case 3) Non-Hodgkin lymphoma A/H3N2 none

Gooskens [44] (case 4) Anaplastic large cell lymphoma (SCT) B none

Gooskens [44] (case 5) Non-Hodgkin lymphoma A/H3N2 none

Gooskens [44] (case 6) Non-Hodgkin lymphoma (SCT) A/H1N1 none

Gooskens [44] (case 7) Acute myelogenous leukemia (SCT) B none

Gooskens [44] (case 8) Acute myelogenous leukemia (SCT) A/H1N1 none

Gubareva [53] chronic myelocytic leukemia B rbv, zvr

Hill-Cawthorne [54] Hodgkin lymphoma (SCT) A/pH1N1 ost, zvr

Ison [55] (case 1) myelomonocytic leukemia (SCT) B ost, rbv

Ison [55] (case 2) chronic lymphocytic leukemia A/H3N2 ost, rmt, zvr

Klimov [56] (case 1) SCID (SCT) A/H3N2 amt

Klimov [56] (case 2) acute myelogenous leukemia (SCT) A/H3N2 amt

Mehta [57] (case 1) myelodysplastic syndrome (SCT) A/pH1N1 ost, pvr

Mehta [57] (case 2) acute myelogenous leukemia A/H1N1 ost, pvr, zvr

Pinsky [46] Wiskott-Aldrich syndrome (SCT) A/H1N1 unknown

Renaud [58] (case 1) acute myeloblastic leukemia (SCT) A/pH1N1 ost, pvr, rbv, rmt, zvr

Renaud [58] (case 2) acute myeloblastic leukemia (SCT) A/pH1N1 ost, rbv, rmt, zvr

Renaud [58] (case 3) chronic myeloblastic leukemia (SCT) A/pH1N1 ost

Renaud [58] (case 4) acute lymphoblastic leukemia A/pH1N1 ost, zvr

Renaud [58] (case 5) Hodgkin lymphoma A/pH1N1 ost, pvr, rbv, rmt

Renaud [58] (case 6) acute lymphoblastic leukemia (SCT) A/pH1N1 ost

van der Vries [59] chronic lymphocytic leukemia A/H1N1 ost, amt, zvr

Weinstock [45] acute lymphocytic leukemia A/H1N1 ost, amt, zvr, rmt

a Antiviral abbreviations are as follows: oseltamivir (ost), amantadine (amt), rimantadine (rmt), ribavarin (rbv), zanamivir (zvr), peramivir (pvr).
b A/pH1N1: 2009 pandemic H1N1.
c SCID: Severe combined immunodeficiency disease.
d SCT: Stem cell transplant.
doi:10.1371/journal.pone.0057088.t001
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resolving their mode of action and efficacy. In constructing a

mathematical model for the course of an influenza infection within

a host, one carefully considers which host factors to include in the

model, which to reduce to a simpler reaction, and which to omit.

Each mechanism is implemented in the model based on current

knowledge and intuition regarding host-virus interactions. The act

of engineering the host-virus interactions into a mathematical

model enables us to identify which postulated mechanisms behave

inappropriately when implemented and to distill the model down

to only those immune response components essential to repro-

ducing general infection kinetics.

Here, we review eight previously published models of within

host influenza infections that explicitly incorporate at least one of

the following immune responses: Abs, CTLs, and IFN

[2,4,6,22,23,31,32]. We limited our investigation to models with

parameters determined from experimental data. A summary of the

number of variables, parameters, and immune components

incorporated in each model is presented in Table 2, with details

provided in supplemental material S2. General schematics of the

models’ implementation of the adaptive immune response (Abs

and CTLs) and the innate immune response (IFN) are shown in

Fig. 3. In the case of the Miao et al. model [23], we re-fit their

model to their data using an alternative approach and distinguish

Figure 2. Experimental evidence for the effect of Abs, CTLs, and IFN. Published viral titer time courses for influenza infection in normal
(solid) or immunocompromised (dashed) mice (or pigs in Seo) where either the Abs (left column), CTLs (centre column), or IFN (right column)
responses were individually compromised by various means (e.g., toxins, antisera, knock-out). Data extracted from Iwasaki [11], Neff-LaFord [70] Kris
[66], Wells [67], Yap [118], Garcia-Sastre [68], Hoshino [25], and Seo [13].
doi:10.1371/journal.pone.0057088.g002
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these two fits of the same model as Miao split (our fit) and Miao

full (published). See the Methods section for details.

Each of these models can reproduce the experimental infection

kinetics against which they were originally validated. By perturb-

ing these models from their basic behaviour, we can test their

biological fidelity by determining whether in the presence of

immune suppression they reproduce the experimental kinetics

presented above. Fig. 4 presents the viral titer time course

predicted by each model under various conditions of immune

suppression while Fig. 5 explores the predicted effect of

suppressing Abs (second row), CTLs (third row), or IFN (fourth

row), individually, on the time course of viral titer and fraction of

infected and uninfected cells. To facilitate comparison of the

behaviour of the various models, all model parameters were scaled

so that in the presence of their full immune response, they produce

a viral titer time course that peaks at an arbitrary value of 1 (see

Methods for details). We assume the infection is symptomatic

during any period where the viral titer is above a value of 0.01 (1%

of the peak viral titer) as used previously by Dobrovolny et al.

[8,90], and this threshold is indicated by a dashed line in Fig. 5.

The models predict very different viral titer time courses when

immune responses are all disabled, ranging from chronic (Fig. 4,

Bocharov) or long-lasting (Fig. 4, Miao full) infections, to slowly

decaying (Fig. 4, Miao split) or very short-lived (Fig. 4, Baccam)

infections. In almost all cases, the infection is target-cell limited,

which means that the infection resolves because all cells have been

infected and have died (Fig. 5, left column). The exceptions are the

Bocharov model, which predicts a chronic infection, and the

Handel model, in which a small fraction of cells (*3%) are

preserved. The finite number of target cells in these models means

that viral growth will always be bounded with the upper limit on

the number of viruses given by Vmax~T0ptI , where T0 is the

initial number (or maximum number) of cells available for

infection, p is the production rate and tI is the average lifespan

of an infectious cell. Each target cell, once infected can only

produce a finite number of viral particles during its infectious

lifespan. As long as the number of target cells remains bounded,

which is the case in these models, virus will also remain bounded.

In the absence of an immune response, the viral titer time

course should resemble that seen in immunocompromised

patients, namely, sustained high viral titers that last for weeks or

even months, as discussed above. Instead, most of the mathemat-

ical models predict the infection will resolve without the aid of an

immune response within a week (Fig. 4). The exceptions are the

two Miao models, which produce long-lasting high viral titers, and

the Bocharov model, which predicts a true chronic infection. In

Miao full, the long-lasting infection is due to poor viral clearance

such that while the infection has resolved, the ineffective viral

clearance leads to high levels of lingering free virus. In Miao split,

it is due to the somewhat long average lifespan of infected cells

(*2 d). Unfortunately, neither of these mechanisms can cause the

weeks-long, sustained, high viral titers observed in immunocom-

promised patients. The Bocharov model seems to provide the best

representation of an infection in an immunocompromised patient

— the chronic infection persists because cell regeneration provides

an endless supply of susceptible cells that allow the infection to

persist. It is also important to note that completely disabling the

immune response in these models does not correspond to the

infection progression in the absence of an immune response.

Instead, it corresponds to an infection in which the immune

response components explicitly included in the model (e.g., IFN,

CTLs, Abs) have been disabled. For example, disabling Abs and

IFN in the Handel model, which does not explicitly include CTLs,

leaves the CTL response intact because the model implicitly takes

it into account via the remaining infection parameters of the model

(such as the lifespan of infected cells).

Going beyond the qualitative changes to the viral titer time

course brought about by Abs, CTLs, and IFN, Fig. 6 offers a

quantitative analysis of their relative contribution to decreasing

various measures related to the severity of the infection in a

patient. For example, we take the peak viral titer to be an

approximate measure of the degree of dissemination of the virus

within the patient with higher viral loads representing a more

disseminated infection. The duration of the symptomatic infection,

measured here as the time spent by the viral titer curve over a titer

of 0.01 (i.e., above 1% of its peak value, as used in [8,90]), gives a

measure of infection duration and helps distinguish short-lived

seasonal infections from more severe or chronic infections. The

area under the viral titer curve (AUC) is related to the total

amount of virus shedding, and so can be linked to the person-to-

person transmission rate of the infection [7,61,91]. Finally, the

fraction of dead cells at the end of the infection measures the

amount of epithelium destruction caused by the infection and can

be used to assess the severity of the infection. Together, these

measures provide an overview of the infection course which we use

to assess how effective various immune responses are in

modulating infection severity and patient outcomes. Fig. 6 presents

the percent increase in each severity measure that results from the

suppression of either Abs, CTLs, or IFN as determined from the

experimental data (bottom row) and from the mathematical

models (top row). The duration of experimental infections

presented in this figure depict a minimum percent increase

because the duration of infections cannot be measured exactly (see

supplemental material S1), but a minimum value can be estimated.

In addition to examining the models’ predictions of the infection

process in the absence of various immune components, we also

consider whether the models accurately replicate the time course

of the immune response itself. Fig. 7 compares the levels of Abs,

CTLs, and IFN over the course of an influenza infection observed

experimentally to those predicted by the mathematical models.

In the following sections, we’ll discuss the effect of Abs, CTLs,

and IFN, independently, in terms of their predicted kinetics and

respective significance in modulating infection severity according

to the various models.

Antibodies. In models that consider Abs (Bocharov, Hancio-

glu, Lee, Handel, Miao), the Abs act by binding to and removing

virus. The manner in which the generation and loss of Abs is

implemented, however, varies between models. In the Bocharov

model, Abs are produced by plasma cells whose formation is

determined by B cells and helper T cells. In the Hancioglu model,

Abs are produced by plasma cells that have been activated by the

presence of antigen presenting cells. In the Lee model, Abs are

produced by short-lived and long-lived plasma cells that have

differentiated from B cells. All of these models include decay of

Abs; the Bocharov and Hancioglu models also include loss of Abs

due to binding with virus. The Miao model uses actual Ab levels

from influenza-infected mice. The Handel model neglects Ab

decay and assumes Abs grow proportionally to both viral titer and

their own concentration, with the latter mechanism meant to

emulate clonal expansion of Ab-generating B cells, which are not

explicitly represented in the model.

The Ab time courses as predicted by each model are shown in

Fig. 7 (left column) along with experimentally determined Ab time

courses for comparison. It is interesting that several of the models

predict a much greater fold change in Abs over the course of the

infection than is actually observed experimentally [11,23]. Only

the Lee and Miao models match the *20-fold increase between

4–7 dpi that is seen in experiments. Abs in the Handel model
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begin at very low levels and appear to be rising too slowly. Abs in

the Hancioglu and Bocharov models also begin at low levels, but

they rise abruptly around 3–4 dpi.

It is of particular interest to compare the predictions of the Miao

split and Miao full models. These models differ only in their fitting

procedure; the equations and Ab data are the same. However, the

two models predict vastly different effects for Ab removal on the

course and severity of influenza infection (Fig. 4, second row). In

fitting the Miao split model, we assumed there is no immune

response in the first days of the infection, since the data indicates

the immune response up to that point is small. The Miao full fit

includes the immune response over the entire time course. It is

clear that even if the immune response is small during that initial

time frame, this initial kinetics difference can have a significant

impact on the predicted later time course of the disease.

Despite differences in the Abs and viral kinetics predicted by the

various models, all the models are mostly consistent on the

predicted effect and importance of Abs in the control of the

infection. The models suggest Abs are the most important in

reducing the duration of the infection and viral titer AUC (Fig. 6,

right). The experimental data suggest that Abs substantially reduce

the peak viral titer and viral titer AUC, while IgM and IgG

antibodies shorten the duration of the infection. While most

models predict that removal of Abs has little effect on the initial

peak viral titer (Fig. 5, second row, left), consistent with

experimental data, the Handel model, not surprisingly, best

reproduces the Iwasaki data [11] because it was fit against this data

(Fig. 4). The Bocharov model predicts that removal of Abs results

in a chronic infection, a feature consistent with chronic infections

of immunocompromised patients, but does not produce the

increasing viral titers seen in the Iwasaki data [11] (Fig. 4).

Most of the models predict the removal of Abs has little effect on

the fraction of infected cells over the course of the infection (Fig. 5,

second row, centre), although the Handel model predicts the

number of infected cells will have two peaks in the absence of Abs.

Most of the models also predict Abs are not effective in protecting

the epithelium by decreasing the fraction of cells infected and

killed by the infection (Fig. 5, second row, right, and Fig. 6, right

column) with the exceptions again being the Handel and Bocharov

models. The Handel model predicts the removal of Abs will result

Figure 3. Mathematical models of the adaptive (top) and innate (bottom) immune responses to influenza. The adaptive immune
response typically includes Abs and CTLs. The generation of Abs and CTLs are represented with different simplifying assumptions, so the actual
processes are not depicted here. All models reviewed here assume that Abs bind to and remove virus while CTLs cause the death of infectious cells.
The innate immune response is represented by IFN. Since IFN has many antiviral effects in vivo, models have different implementations of IFN’s effect.
Details of individual models are discussed in the text and in Supplement S2.
doi:10.1371/journal.pone.0057088.g003
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in *95% of susceptible cells being killed, whereas only *20% are

killed when Abs are present; this is because the rapid generation of

Abs greatly reduces the viral titer resulting in a less severe

infection. In the Bocharov model, whereas in the presence of Abs

the epithelium recovers and is fully regenerated, their absence

results in a chronic infection with continuous involvement of

*60% of the epithelium.

The results of our assessment of models incorporating Abs are

rather mixed. We find that while the Handel model most faithfully

reproduces the experimental predictions of viral titer time courses

in the presence and absence of Abs, it does not accurately capture

the dynamics of the Abs themselves. The Lee model provides a

better representation of the time course of Abs and the Miao

model uses experimentally measured Ab time courses, although

neither model properly replicates the effect of Abs on infection

kinetics.

Cytotoxic T lymphocytes. Models that incorporate CTLs

(Bocharov, Hancioglu, Lee, Miao) implement the action of CTLs

as binding to and removing infectious cells. Again, the implemen-

tation of the growth and decay of CTLs in different models causes

differences in the predicted dynamics. The Bocharov model

assumes that the growth rate of CTLs is proportional to the

population of antigen presenting macrophages and helper T cells.

The Hancioglu model assumes it is proportional to the population

of antigen presenting cells and other CTLs. In both models, CTLs

are removed either through binding with an infected cell or decay

at a constant rate. The Lee model assumes that activation,

proliferation, and decay of CTLs is proportional to availability of

mature dendritic cells, with no loss of CTLs due to binding with

infected cells. The Miao model uses data collected from influenza

infections of mice directly in their model rather than modelling

CTL kinetics (growth and decay) as an additional equation.

The CTL kinetics time course in Miao [23] indicates a sharp

rise of CTLs between 5–8 dpi with decay occurring in roughly

three stages: a sharp drop within *1–2 days followed by a slower

decay over the next *4–5 days and a much slower drop to pre-

infection levels over the next week (Fig. 7). A second experimen-

tally determined time course [24] shows a smaller change in CTLs,

with a rise in CTLs occurring between 7–10 dpi. Two of the

models, Hancioglu and Lee, predict the appearance of CTLs

somewhat earlier, around 4 dpi.

Despite differences in CTL and viral kinetics between models,

all consistently predict CTLs have little or no effect on the course

of the infection (Fig. 5, third row, and Fig. 6, centre column).

When effective, as in the Lee and Hancioglu models, they act to

mildly decrease infection duration and viral titer AUC. However,

removal of the action of CTLs in the models does not lead to

sustained, high viral titer or dramatically reduced viral clearance

in contrast with what is typically observed experimentally (Fig. 2,

centre column). While the models predict little change in the

severity of the infection when CTLs are removed, the experimen-

tal data suggest that CTLs can substantially reduce viral titer peak,

symptomatic duration and viral titer AUC. This discrepancy likely

arises because the experimental data against which these models

were fitted were insufficient to characterize both the Abs and

CTLs’ effects independently, causing the parameter fitting routines

to ascribe the effect of the combined Ab and CTL response to just

Abs. The relatively minor role for CTLs in the models may also be

due to the fact that CTLs rise to significant levels only late in the

infection process (6–8 dpi). Thus CTLs would not play a role in

arresting the infection, but instead would ensure it is cleared

effectively to prevent reinfection of newly regenerated epithelium

which, if re-infected, could fuel a chronic infection like those

established in immunocompromised patients. None of the models

predict the establishment of a chronic infection in the absence of

CTLs.

Interferon. The immune component that has the most

varied model implementations is IFN (Fig. 3). Although IFN is

known to have many antiviral effects [78–80,84], it is unclear

which effect has the most impact on the course of the infection and

should be included in a model. In the Bocharov model, IFN is

produced by IFN-secreting macrophages and disappears via

nonspecific clearance and absorption by target cells causing the

latter to become resistant to infection. This protection wanes over

time at a constant rate and these uninfected, protected cells

gradually become susceptible to infection once again. In the

Hancioglu model, IFN also confers a resistance to infection that

slowly decays over time. IFN in the Hancioglu model is produced

by both infected cells and antigen presenting cells and disappears

via absorption by uninfected cells and clearance at a constant rate.

In the Saenz model, IFN has a similar action but cells protected by

IFN first become partially resistant and can either become

permanently resistant or become infected. In the Saenz model,

Table 2. Summary of the models presented in this analysis.a

Model Nvar Npar Ndata Host Regen. Abs/CTL/IFN Other cells

Bocharov [2] 13 49 19 Human yes Abs/CTL/IFN Antigen-presenting macrophages, T and B helper cells,
B cells, plasma cells, IFN-producing macrophages.

Baccam [4] 6 9 36 Human no IFN —

Hancioglu [31] 10 28 0b Human yes Abs/CTL/IFN Antigen-presenting macrophages, plasma cells.

Lee [22] 15 48 42 Mouse yes Abs/CTL Dendritic cells, naive and effector CD4z T cells, naive
CD8z T cells, naive and activated B cells, Long- and
short-lived plasma cells.

Handel [6] 6 8 50 Mouse yes Abs/IFN —

Miao [23]c 6 8 64 Mouse yes Abs/CTL —

Saenz [32]d 8 12 96 Horse no IFN —

Pawelek [37]d 5 11 90 Horse no IFN —

a Nvar (number of variables), Npar (number of parameters), Ndata (number of data points), Regen. (whether the model includes cell regeneration).
b Model was not mathematically fit to data, but did have to conform to some general criteria.
c We consider two different parameter sets for this model (Miao split and Miao full). The differences between these two models are described in Methods.
d The Saenz and Pawelek models were fit to the same data.
doi:10.1371/journal.pone.0057088.t002
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Figure 4. Effects of the immune response on an influenza infection as predicted by mathematical models. The models summarized in
Table 2 are used to predict the viral titer time course for influenza infections under various conditions of immune suppression (the ‘–’ sign indicates
the component is suppressed). Viral titers for all models have been scaled to peak at 1.0 in the presence of the full immune response to facilitate
comparison.
doi:10.1371/journal.pone.0057088.g004
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IFN is produced by infected cells and by latently infected, partially

resistant cells and decays at a constant rate. The Pawelek model

was proposed as an improvement to the Saenz model and was fit

to the same data. In the Pawelek model, IFN is produced by

infected cells and causes target cells to become resistant to

infection. The resistance wanes over time and the resistant cells

will eventually become susceptible to infection. Additionally, IFN

stimulates production of natural killer (NK) cells which target and

kill infected cells. While NK cells are not explicitly included in the

model, their effect is assumed to be proportional to the amount of

IFN that stimulated their growth. In the Handel model, IFN grows

at a rate proportional to the viral load and decays at a constant

rate. IFN in the Handel model reduces the production rate of virus

by infectious cells, similar to the manner in which the action of

neuraminidase inhibitors is typically implemented in these models

[4,7,8,90]. In the Baccam model, IFN reduces the viral production

rate as in the Handel model, but also acts to lengthen the duration

of the eclipse phase in newly infected cells. IFN in the Baccam

model grows at a rate proportional to the number of infected cells

with a delay of half a day and decays at a constant rate.

IFN kinetics are somewhat consistent across experiments,

peaking typically around day 2–3 post-infection, except in [11]

where it peaks at 5 (Fig. 7, right column). With the exception of the

Bocharov model, the models generally agree with the experimental

Figure 5. Effect of suppressing Abs, CTLs, or IFN on an influenza infection as predicted by mathematical models. The effect of
suppressing each immune component on the time course of the viral titer (left column), and on the fraction of infected (centre column) and
uninfected (right column) cells during an influenza infection. The top row illustrates infection kinetics in the presence of a full immune response with
subsequent rows showing infection kinetics in the absence of Abs only (second row), CTLs only (third row), or IFN only (bottom row). The dashed
lines indicate an approximate symptomatic threshold as defined in [8,90].
doi:10.1371/journal.pone.0057088.g005
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time course for IFN concentration. The Bocharov model predicts

a dramatic rise in IFN almost immediately upon infection, after

which IFN remains constant from 1–4 dpi until the infection

begins to resolve. And because the Bocharov model predicts IFN

levels remain constant over much of the infection, IFN does not

contribute in a measurable way to the infection dynamics of that

model.

The models (Bocharov, Hancioglu, Handel, Saenz, Pawelek,

Baccam) consistently predict IFN confers significant protection of

the respiratory tract. Suppressing the effect of IFN in the models

leads to far larger numbers of dead cells (Fig. 5, bottom right, and

Fig. 6, upper right), with the exception of the Baccam model in

which all cells are consumed irrespective of IFN levels. The effect

of IFN on the viral titer time course is mostly consistent across the

different models (Fig. 5, bottom left), with its absence leading to

viral titers peaking later and at higher levels resulting in a longer-

lasting, more severe infection with a higher viral titer AUC

(Handel, Saenz, Baccam, Pawelek). This is consistent with

Figure 6. Immune kinetics and its effect on disease severity. The percent increase in peak viral titer, symptom duration, AUC of viral titer, and
proportion of dead cells when the effect of Abs (left), CTLs (centre), or IFN (right) is removed in various mathematical models (colour-coded) of
influenza infections (top row) or from experimental data (bottom row). Note that a negative percent increase for a given measure indicates a decrease
of that measure in the absence of that immune response.
doi:10.1371/journal.pone.0057088.g006

Figure 7. Time course of Abs, CTLs, and IFN. The time courses predicted by models (top row) and experimentally determined time courses
(bottom row) for Abs (left), CTLs (centre), and IFN (right). All data has been scaled to peak at 1.0. Experimental data are collected from mice unless
otherwise indicated.
doi:10.1371/journal.pone.0057088.g007
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experimental infections that examine the effect of IFN and predict

that absence of IFN leads to a higher viral titer peak, longer-lasting

infection with a larger AUC (Fig. 6, bottom right). The Pawelek

model depicts an interesting variation of these general dynamics;

while a lack of IFN increases the duration of symptomatic duration

of the infection (the time when viral titer is greater than 10{2), the

duration of the entire infection actually decreases in the presence

of IFN. The presence of IFN in this model causes a plateau in the

viral titer due to waning resistance causing low levels of virus to

linger. In the Hancioglu model, however, suppression of IFN

actually leads to a more subdued infection of shorter duration and

smaller viral titer AUC (Fig. 4). This is due to the protection

conferred to uninfected cells by IFN: as IFN levels decay and

protection wanes, these cells become available for infection at a

time when most susceptible cells have already been consumed. As

these cells progressively re-enter the depleted pool of susceptible

cells, they rekindle the infection, allowing it to go on a little longer.

Suppressing IFN in the Hancioglu model removes this partial

protection and allows the infection to proceed through all

susceptible cells without delay and resolve more rapidly. This

does not occur in the Saenz model because IFN protection in that

model does not wane.

The higher, delayed viral titer peak predicted by the models

when the action of IFN is suppressed is similar in the experimental

suppression experiments (Fig. 2, right column vs Fig. 5, bottom left

and Fig. 6, right column), but no model reproduces the longer-

lasting, sustained titers observed experimentally when IFN is

suppressed. Overall, the Handel, Saenz, Pawelek and Baccam

models all fare equivalently well when confronted with viral titer

data — they all display a higher viral titer peak and longer

infection duration in the absence of IFN, consistent with

experimental observations. If the extent of respiratory tract

damage could be measured in IFN suppression experiment, it

would be possible to test these models’ prediction regarding IFN’s

protective role.

Neuraminidase inhibitor treatment
An important application of within host models of in vivo

infections is to evaluate and optimize antiviral therapies; models

can be used to extract the efficacy of antiviral treatment from

patient viral titer time courses or to simulate a broad range of

doses to determine the best treatment protocols prior to clinical

trials. Models of viral decay rates for chronic infections with the

human immunodeficiency virus (HIV) or the Hepatitis B and C

virus under antiviral therapy have provided key insights into the

kinetic parameters driving the infection and the efficacy of the

therapy [35,92,93].

Unfortunately, several factors prevent within host models from

playing a bigger role in antiviral therapy optimization for

influenza. One such factor is the acute, short-duration nature of

influenza infections. Viral titers from uncomplicated influenza

infections are detectable for no more than 4–8 d. Unless samples

are taken at least daily, one can at best hope to obtain 8 time

points which are often insufficient to characterize the widely varied

viral kinetics across individuals over that period. Another

important obstacle has been the absence of a valid within host

model to capture the kinetics of severe influenza infections

characterized by more sustained viral titers. Indeed, mathematical

models provide a reasonable fit to viral kinetics from acute,

uncomplicated influenza infections, but none can believably

reproduce the chronic infections observed in immunocompro-

mised patients or the longer lasting infections seen in children

and/or in patients infected by novel, pandemic strains. This

weakness is an issue since it is primarily these cases that will

require antiviral therapy, whereas therapy is not typically

administered in uncomplicated cases. A major obstacle to

developing such models is the lack of knowledge and factual,

quantitative evidence as to what factor(s) are responsible for the

more severe, longer-lasting infections. At this time, possible

culprits include cell tropism, lack of pre-existing immunity, and

hypercytokinemia. But the relative role of each of these factors has

not been elucidated.

Using the models described above, we can investigate the

prediction of each model regarding the efficacy of treatment with

neuraminidase inhibitor (NAI), both in the presence and absence

of the immune responses that are implemented in each model.

NAIs inhibit release of newly produced virus from the surface of

the infected cells that produced them. Since viral release is not

explicitly represented in any of the mathematical models surveyed

here, the action of NAIs in all models is implemented as a

reduction in the rate of virus production by infected cells [94,95],

such that: p?(1{e)p, where 0veƒ1 is the antiviral efficacy and

represents the fraction of inhibition achieved. Prior to initiation of

antiviral therapy e~0, and for simplicity it is instantaneously set to

the desired value and held constant thereafter for the remainder of

the infection. Note that antiviral efficacy, e, can be related to

physiological antiviral concentrations through use of a PD model

relating effect to concentration of drug in the plasma, for example,

an Emax model [96]. Patients typically seek treatment shortly after

symptom onset, which typically occurs 1–2 dpi [20,39]. Therefore,

in all models, with the exception of the Handel model, treatment is

initiated when the viral titer crosses the symptomatic threshold, i.e.

1% of the peak viral titer. In the Handel model, we initiate

treatment at 36 hpi because the initial viral titer in this model is

higher than the symptomatic threshold we defined. We use a drug

efficacy of e~0:98, as estimated for NAIs in previous modelling

efforts [4,7], and examine the effects of NAI treatment in the

presence of a full immune response as well as in the absence of

various immune responses.

Most of the models predict treatment with NAIs results in a

rapid decay of the viral titer (Fig. 8), yielding a reduced viral titer

peak and a shorter infection. This behaviour is consistent with

what is typically observed in treated patients [39,97]. A glaring

exception is the Hancioglu model which predicts that although

NAIs will lower the peak viral titer, they will also increase the

duration of the infection because of the protective action of IFN.

When IFN therapy is applied in the Hancioglu model, it slows

infection progression such that IFN-protected cells lose their

resistance before the infection has been effectively cleared and

become infected. This coupled with target cell regeneration leads

to sustained infections in the presence of NAIs.

A further measure of a drug’s ability to minimize illness is the

degree to which it confers protection to susceptible cells and limits

damage. The effect of NAIs on the fraction of uninfected cells

(including those protected by IFN) untouched by the infection is

shown in Fig. 9 in the presence of the full immune response and in

the absence of various immune components. Most of the models

predict NAIs will provide significant protection of the epithelium

from damage. The most striking of these are the Baccam and Lee

models, which predict almost complete death of the epithelial layer

for untreated infection and almost complete protection with NAI

treatment. The exceptions are again the Hancioglu and Miao

models. The Hancioglu model predicts a longer-lasting infection

with NAI treatment that leads to greater cell death, while the Miao

model predicts a target cell limited infection even in the presence

of NAIs.
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Discussion

Approach to assessing models
Mechanistic models are valuable tools in identifying the key

players of the immune response against an infection and in

resolving their mode of action and efficacy [98]. In constructing a

mathematical model for the course of an influenza infection within

a host, one carefully considers which host factors to include in the

model, which to reduce to a simpler reaction, and which to omit

[99]. Each mechanism is implemented in the model based on

current knowledge regarding host-virus interactions. The act of

engineering the host-virus interactions into a model enables us to

identify which postulated mechanisms behave inappropriately

when implemented [100] and to distill the model down to only

those immune response components that are essential to

reproducing general infection kinetics.

The approach used here was aimed at assessing strengths and

weaknesses of currently available models of influenza infection.

Models have two sources of error that must be considered,

parameters and structure [101]. One way to assess the adequacy of

a mechanistic model is to compare model predictions with

experimental data that were not used for estimating parameters

in a process called validation aimed at determining whether a

model can be appropriately used for its intended purpose

[102,103]. Regardless of how well model simulations match the

data used to derive the model parameters, if the model cannot

reproduce data from other experiments, then it can be concluded

that the model structure or parameters are inadequate. We use the

commonly used approach of visual inspection to qualitatively

determine the ability of the model to reproduce the shape of the

time course data of viral titers and immune response. The

mechanistic basis of a model that consistently reproduces the

general trend of the data under different conditions (e.g., whether

viral titer goes up or down or does not change in response to a

component of the immune response turning on or off) can be

viewed with more confidence than that of a model that agrees with

data only under certain conditions or that fits only a portion of the

data (e.g., viral titer in the first two days) perfectly.

Our purpose is to gain insight into the role the immune system

plays in influenza infections and to determine whether current

mathematical models of influenza infection are consistent with

available data to develop a predictive human model. Most of the

data used in the assessment were preclinical and while we cannot

expect human viral and immune kinetics to match preclinical data

exactly, the trends are expected to be similar. Likewise, one would

not expect a model developed from data for a given influenza

strain in a specific type of mouse to perfectly predict infection

dynamics in a different mouse type or for a different influenza

strain, but it should qualitatively capture key features of infection

kinetics. Therefore, we focus here qualitatively on whether an

immune response causes an expected outcome in the model,

instead of performing a quantitative comparison.

Implications of species differences
We must be careful when extrapolating results from animals to

humans. Most of the preclinical data presented here comes from

mice, whose immune systems differ in some significant ways from

humans. Several mouse and human antibody classes differ [28,29],

particularly IgG antibodies, which appear to have evolved

independently in humans and mice [104] such that they have

different subclasses and functions. There are also differences in the

role of type I IFN [105,106]. In humans, type I IFN provides a

direct link between the innate and adaptive immune responses by

stimulating growth of Th1 cells. In mice, however, this signalling

pathway is not functional and growth of Th1 cells is stimulated by

Il-12 [106]. The time course and function of CTLs appears to be

similar in humans and mice for a primary infection [27]. In mice,

however, CTLs provide heterosubtypic immunity to infection,

which is not the case in humans who typically only have subtype-

specific immunity [107]. While these are important differences,

many of the models considered here do not include such specific

details. Current models are still trying to reproduce the general

features of influenza infection and the immune response. As

mathematical models become more detailed, these species

differences will need to be considered.

Of additional concern, mice are not natural hosts for influenza

and influenza viral strains sometimes need to be passaged several

times in mice before adapting to their new host [108], which leads

to changes in the RNA of the virus [109,110]. These viral genetic

changes can lead to changes in host immune response and viral

dynamics [108,110] making it difficult to extrapolate parameters

obtained from experiments in mice to dynamics in humans.

Limitations in available data
The preclinical experimental data we have gathered provides a

general picture of the role of Abs, CTLs and IFN. Experiments in

which a specific component of the immune response is suppressed

offer important insight into the role of individual components of

the immune response. Although the data are limited, they suggest

that CTLs emerge late in a primary infection and contribute

mainly to clearing the infection; that Abs emerge sometime

between 4–6 dpi and play a significant role in the resolution of the

infection; and that IFN emerges early, disappears rapidly, and

typically reduces the peak viral titer. Unfortunately, the sparsity of

the data leaves an incomplete picture.

In many of the experiments, we do not know whether the

immune component was completely suppressed as it was not

measured. In some experiments, viral titer data are not sufficient

for ascertaining whether the full range of effects of the suppressed

immune component has been captured. In the case of Abs, we

found only one experimental study, and while the experiment itself

was thorough, corroborating data from similar experiments would

make a stronger case for the role of Abs.

Finally, some of the data are contradictory and need further

investigation. For example, the data from [68] show little to no

increase in the peak viral titer when IFN is removed, while data

from [25] and [13] show a clear change in viral titer peak. This

apparent discrepancy could be due to a number of factors,

including insufficient data in the face of inter-host variability; an

insufficient suppression of the full range of action of IFN when its

action is suppressed only via STAT1 disruption; or the variability

of the IFN response induced by different strains.

Limitations in model structures
Despite the sparse data and the limitations of animal models, we

gleaned a general picture of the role of various immune

components and could thus test the accuracy of mathematical

models that include an immune response to influenza. As was

done in experiments, we systematically turned off the effect of each

of the immune components in the models. While all the models

assessed here were originally fit to experimental data and thus

correctly reproduce some facet of influenza infections, our simple

test produced surprising, and sometimes unrealistic, predictions.

Primary influenza infections (e.g., with novel strains) typically

last longer than secondary infections due to the delayed or weak

adaptive immune response mounted against them [9,10]. Immu-

nocompromised patients can shed virus for weeks or even months

[43–60]. It is important that mathematical models be able to
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reproduce infection dynamics in this vulnerable population to

enable exploration of optimal strategy for infection control in these

patients. Unfortunately, our analysis finds that only one model is

capable of producing a long-lasting or chronic infection in the

absence of an immune response, as well as shorter infections in the

presence of a full, competent immune response; the Bocharov

Figure 8. Simulations of the effect of NAI treatment on viral titer. The effect of NAI treatment on the course of influenza in various within
host influenza models in the presence of the full immune response and in the absence of various immune components. The vertical dotted line
indicates the time of treatment initiation. Inhibition of viral production is assumed to be 98%.
doi:10.1371/journal.pone.0057088.g008
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model is the most realistic model in this respect. Some of the

models (Baccam, Saenz, Pawelek) cannot simulate a sustained

infection because they do not include cell regeneration. Other

models (Handel, Lee, Miao) do not produce sustained infections

possibly because suppressing the immune response explicitly

included in these models does not correspond to complete

suppression: immune components that are not explicitly modelled

are implicitly present in other model parameters. For example, in

a model without explicit Ab response, data fitting will compensate

by setting the viral clearance rate to a larger number to implicitly

account for this loss.

Although the Bocharov model correctly produces a chronic

infection in the absence of the full immune response, it predicts

that suppressing CTLs and/or IFN will have no effect on viral

kinetics. This is particularly unfortunate given that this model

implements in detail the processes responsible for the production

of CTLs and IFN with a large, detailed set of delay differential

equations, all of which contribute nothing to shaping viral kinetics,

at least for the parameter values reported therein. The Lee model,

Figure 9. Simulations of the effect of NAI treatment on susceptible cells. The effect of NAI treatment on the course of remaining healthy
cells in various within host influenza models in the presence and absence of immune responses. Inhibition of viral production is assumed to be 98%.
doi:10.1371/journal.pone.0057088.g009
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which is even more complex, also shows very little difference in

viral kinetics when CTLs and Abs are turned off, which suggests

that perhaps the most important elements driving the infection are

lost in all the detail. Other models show a more varied response

when various immune components are turned off. The Hancioglu

model in particular can produce a wide range of behaviours, from

short infections to chronic infections with oscillating viral titers.

Unfortunately, these titers do not reflect what we see in the

experimental data, particularly with regards to their implementa-

tion of IFN. In their model, removal of IFN actually increases the

duration of the infection, often turning short infections into

chronic infections.

The simpler models, in spite of the smaller number of

parameters and equations, can also show interesting dynamics

when immune components are turned on and off. The Pawelek,

Baccam and Handel models predict a bimodal viral titer in the

presence of IFN and a single peak in the absence of IFN.

Unfortunately, this behaviour, although sometimes seen in other

experiments [4,111], was not seen in available experimental data

presented herein.

There are some limitations to the models presented here. All the

models assume a homogeneous target cell population, at least

before IFN creates a second class of less susceptible or resistant

cells. Dobrovolny et al. [90] showed that the assumption of a

heterogeneous cell population could lead to sustained viral titers

under certain conditions. While their model did not include an

immune response, it would be valuable to understand the role of

the immune response under these different infection dynamics.

Another limitation in the models discussed here is that they do not

link viral titer to clinical outcomes. Recently Canini and Carrat

[112] developed a model of influenza infection that included an

explicit description of the innate host response and the relationship

to clinical symptoms. This model was based on a population

analysis of viral kinetics and symptom dynamics data in 44 patients

in placebo groups inoculated with H1N1 (A/Texas/91) influenza

that had virus-positive nasal wash samples. This model was not

included in our analysis because it was published after the work

here was completed. It seems likely that limited data may have

caused similar issues to those of the models described here. The

model was based on viral titers in nasal washes and composite

symptom scores; data on the immune response were not included

in the study. However, this work made an important step forward

in linking the viral titer and immune response to clinical

symptoms, and the addition of a drug effect would take it another

important step forward.

Recommendations for further experiments
The ideal experiment for deducing the role of a particular

immune component requires comprehensive collection of data.

For example, Iwasaki et al. created mice with different immune

components knocked out (Abs and/or CTLs and/or IFN); they

infected the mice (and their normal counterparts) and measured

not only the viral titer, but also the fraction of dead cells, Abs and

IFN over time [11]. The only measurement that was missing was

CTLs. Viral titer from normal and knock-out animals show the

manner in which the immune component affects the infection time

course. Importantly, time course measurements of Abs, IFN, and

CTLs make it possible to verify that the immune component under

study was entirely eliminated, and that the other immune

components were not affected. Changes in viral titer can be

correlated with changes in the levels of specific immune

components.

Another experiment that would be helpful is one where the

‘‘dose’’ of a particular immune component could be controlled

and varied. In dose ranging experiments, usually performed for

antiviral drugs [5], different doses of Abs, CTLs, or IFN would be

applied to in vitro influenza infections and the time course of viral

titer be measured. These data can be used to test which

hypothesis, or mathematical implementation, for the role of Abs,

CTLs, or IFN best explains the infection dynamics. This type of

dose ranging experiment might be particularly useful in teasing out

the role of CTLs, which appear not to play a large role in primary

infections, but play a larger role in preventing or mediating a

secondary infection [15]. Experiments have shown that CTLs can

be effective at reducing viral loads if they appear early enough

during the infection [73], suggesting that it would be easier to

isolate their effect if studied in this context.

While the data presented here are a good start to these types of

experiments, a systematic set of experiments, with well-sampled,

complete time courses of all measured components, is needed to

help construct a model that correctly captures the dynamics of the

immune response. It is particularly important that the time course

be sampled frequently and for the full duration of the infection

(viral titer data from Seo et al. [13] is a good example), so that

biologically relevant parameters can be determined from the data.

There are practical limitations that must be considered in

designing such experiments. Frequent sampling of human subjects

might deter patients from participating in studies. It is difficult to

study viral and immune kinetics at the actual site of infection in

humans. Viral load is typically measured by collecting nasal

washes or nasal swab. We know, however, that viral kinetics of

nasal swabs differ from viral kinetics of tracheal aspirates [113].

The human immune response is typically measured by taking

blood samples, which is problematically invasive, but potentially

remedied by measuring levels of various immune components in

nasal wash [20]. It is unclear how levels of immune components in

serum or nasal wash are related to levels at the site of infection,

although antibody levels in serum and tracheobronchial secretions

are known to differ substantially [114,115]. For these reasons, it is

more practical to perform experimental studies in animal models.

Conclusions

In this paper, we examined preclinical and clinical studies of the

role of the immune response to formulate key features of an

immune response that should be captured by mathematical

models. We tested existing mathematical models that incorporate

an immune response to see if they qualitatively reproduce

important features of the immune response. An attempt to

validate the models using this general picture synthesized from

multiple types of data indicates that the models examined here fail

to accurately reproduce at least one aspect of the immune

response, even though the model parameter values are derived by

fitting experimental data. We hope this analysis will stimulate

more comprehensive experiments into the role of the immune

response in influenza infections and that the approach presented

here will be useful for building confidence in new models moving

forward.

Methods

Experimental data
Literature for preclinical or clinical data on the role of the

immune response during an influenza infection was found by

searching the Pubmed and Web of Science databases using the

keywords ‘‘influenza’’ and one of ‘‘antibodies’’, ‘‘interferon’’, or

‘‘cytotoxic T lymphocytes’’ to find studies of the dynamics of these

key immune components during influenza infection. We examined
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the search results for experimental studies that measured the levels

of Abs, CTLs or IFN during an influenza infection, or experiments

that measured viral titer when one of these responses was

suppressed. We extracted data from figures in those papers that

had data for three or more time points during the infection.

Table 3 lists the papers from which we extracted experimental

data, the figure from which data was extracted, and the type of

data extracted from each paper. We also searched the same two

databases using the keywords ‘‘influenza’’ and ‘‘immunocompro-

mised.’’ Table 1 is the resulting list of papers that report cases of

immunocompromised patients infected with influenza. Details of

their underlying medical conditions, the strain of influenza with

which they were infected, and the antivirals used to treat them are

tabulated. When possible, we extracted viral time course data for

immunocompromised patients. Unless otherwise noted, we used

Engauge Digitizer 4.1 [116] to extract the data.

Mathematical models
We searched the literature for in-host models of influenza that

incorporate at least one component of the immune response and

whose parameters were determined, at least in part, from

experimental data. We found eight models that fit our criteria:

Bocharov and Romanyukha [2], Hancioglu et al. [31], Lee et al.

[22], Handel et al. [6], Miao et al. [23], Saenz et al. [32], Pawelek

et al. [37] and Baccam et al. [4]. The models are summarized in

Table 2, and described in more detail in supplemental material S2,

which also contains model equations.

For each model, with one exception, we use the parameters

determined in the original paper. Miao et al. used two different

methods for fitting their model to their data. First, they included

the immune response from the start of the infection (the Overall

parameters in Table 2 of their paper). We refer to their model

using Overall parameters as the Miao full model. Second, they

explicitly assumed the immune response did not play a role during

the first 5 days of the infection by setting all parameters associated

with the immune response to zero for the first 5 days (the Early

and Adaptive parameters in Table 2 of their paper) [23]. Miao et

al. fitted their Early parameters using viral titer data up to day 5

post-infection and setting all immune response parameters to zero

(i.e., assuming the immune response up to that point is negligible).

They fitted their Adaptive parameters by using the viral titers from

day 5 onward leaving all parameters free. This resulted in two sets

of parameters: the Early parameters for infection kinetics prior to

day 5 and the Adaptive parameters representing the kinetics after

day 5.

It is possible parameters such as the rate of cell infection by virus

or the infectious cell lifespan change drastically as the immune

response emerges, perhaps through the action of cytokines which

are not explicitly represented in their model. The Early and

Adaptive parameters suggest the arrival of the immune response

leads to an increase in cell infection rate and in the infectious cell

lifespan, which is inconsistent with the action of immune-mediated

cytokines. Therefore, we developed an alternative fit that we refer

to as the Miao split model. The Miao split parameters were fit by

Table 4. Parameter values of the Miao split model using the
Miao et al. model and data [23].

Description* Parameter Value

Infectivity of virions ba 2.5|10{6 mL?EID{1
50 ?d21

Target cell regeneration rate rE 1.2|10{7 d21

Death rate of infectious cells dE� 0.47 d21

Viral titer clearance rate cV 6.9 d21

Viral production rate by infectious
cells

pa 100EID50?mL21?d21 (fixed)

Initial number of susceptible cells Ep(0) 6.5|105

Initial virus concentration V (0) 1473EID50?mL21(fixed)

Killing rate of infectious cells by CTLs kE 5.6|10{5 d21

Removal rate of virions by IgG Abs kVG 3.0|10{6mL?(pg?d)21

Removal rate of virions by IgM Abs kVM 6.5 mL?(pg?d)21

*See supplemental material S2 for a description of this model.
doi:10.1371/journal.pone.0057088.t004

Table 3. Summary of experimental data presented in this paper.

Paper Figure(s) Animal Straina Sampling site Type of data

Iwasaki [11] 1,7 mouse PR8 lung homogenates Viral titers with and without Abs

Neff-LaFord [70] 1 mouse HKx31 lung homogenates Viral titers with and without CTLs

Kris [66] 2 (lung) mouse PC73 lung homogenates Viral titers with and without CTLs

Wells [67] 2A mouse PC73 lung homogenates Viral titers with and without CTLs

Yap [69] 2 mouse WSN33 lung homogenates Viral titers with and without CTLs

Garcı́a-Sastre [68] 1 mouse PR8,WSN33 lung homogenates Viral titers with and without IFN

Hoshino [25] 2 mouse PR8 lung homogenates Viral titers with and without IFN

Seo [13] 2a pig PR8 nasal swabs Viral titers with and without IFN

Iwasaki [11] 2 mouse PR8 tracheobronchial wash Time course of IFN and Abs

Miao [23] 2b,db mouse HKx31 lung homogenates Time course of Abs and CTLs

McLaren [24] 3 ferret PC73 lung wash Time course of CTLs

Fritz [20] 5 human TX91 nasal lavage Time course of IFN-c

Hoshino [25] 3b mouse PR8 lung homogenates Time course of IFN

a Full names of the viral strains are A/Puerto Rico/8/1934 (H1N1) (PR8), A/Hong Kong/X31 (H3N2) (HKx31), A/Port Chalmers/1/73 (H3N2) (PC73), A/Wisconsin/1933
(H1N1) (WSN33), A/Texas/36/91 (H1N1) (TX91).
b Data was not extracted from the paper, but was provided to us by Hongyu Miao.
doi:10.1371/journal.pone.0057088.t003
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using their viral titer data, but up to day 5 post-infection all

immune system parameters were set to zero (as was done for the

Miao et al. Early parameters), and from day 5 onward all infection

parameters were fixed and only the parameters associated with the

immune response varied freely. The new Miao split model

parameters are listed in Table 4.

In order to easily compare model predictions, all models have

been scaled so their viral titer in the presence of their full immune

response arbitrarily peaks at a value of 1. We chose to scale the

models in the presence of their full immune response because it is

in this condition that each model was fit against experimental data.

The scaling factors, aV , were calculated from the viral titer peak,

Vp, such that aV ~1=Vp for each model and were used to scale all

variables and parameters containing units of viral titer. For

example, model parameter pa in Table 4 which has units of

EID50/mL/day, would be scaled such that pa?pa
:aV . All time

course data produced from a mathematical model and presented

herein are scaled in this manner. Note that although this scaling

changes how high the viral titer peaks, it does not change the

dynamical behaviour of the model or the shape of the curves.

Models were simulated using lsode for ordinary differential

equations or dde23 for delay differential equations in Octave 3.0.5

[117]. Individual immune components were turned off by setting

the parameter that controls their effect on cells or virus to zero.

For example, the effect of CTLs is often modelled using the term

{kCI in the differential equation for infected cells where C are

the CTLs, I the infected cells, and k the rate at which CTLs kill

infected cells. To determine the effect of turning off CTLs, we set

k~0, leaving the differential equation for CTLs untouched.
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