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The Dynamic Finite Element (DFE) formulation is a superconvergent, semianalytical method used to perform vibration analysis
of structural components during the early stages of design. It was presented as an alternative to analytical and numerical methods
that exhibit various drawbacks, which limit their applicability during the preliminary design stages. The DFE method, originally
developed by the second author, has been exploited heavily to study the modal behaviour of beams in the past. Results from
these studies have shown that the DFE method is capable of arriving at highly accurate results with a coarse mesh, thus, making
it an ideal choice for preliminary stage modal analysis and design of structural components. However, the DFE method has
not yet been extended to study the vibration behaviour of plates. Thus, the aim of this study is to develop a set of frequency-
dependent, trigonometric shape functions for a 4-noded, 4-DOF per node element as a basis for developing a DFE method for
thin rectangular plates. To this end, the authors exploit a distinct quasi-exact solution to the plate governing equation and this
solution is then used to derive the new, trigonometric basis and shape functions, based on which the DFE method would be

developed.

1. Introduction

For decades, thin plates have been used to model the vibration
behaviour of low curvature two-dimensional structures hav-
ing very small thicknesses compared to the other dimensions.
Their versatility has led to them being used especially in
the aerospace industry, where they have found extensive
applications. At the onset of airframe design, engineers are
required to simulate the vibration behaviour of the airframe
component to determine the operational range of frequencies
and the mode shapes that arise under real-life conditions.
When such a modal analysis is carried out, the effects of
loading and boundary conditions and the contributions from
any nearby vibrating entities are also incorporated as these
factors could modify the vibration characteristics of the entire
system. Thus, in order to avoid the dangers of resonance
that could occur if the operational and resonant frequencies

overlap, it is imperative that the results obtained from the
preliminary modal analysis are highly accurate.

Among the many methods available for vibration anal-
ysis, the analytical methods yield the highest accuracy but
one major hurdle in using these methods is that they
require the closed form solution to the governing partial
differential equation. This can be a very tedious process, if
at all a tractable one. To circumvent this problem, many
simplifying assumptions have been incorporated in to the
existing exact methods and, as a result, they exhibit many
limitations. Having lost their generality, these exact methods
are then only applicable to specific plate shapes and plates
subjected to certain boundary conditions, as briefly discussed
below.

For example, the Navier method [1], which is one of the
most popular analytical methods, transforms the governing
partial differential equation into an algebraic expression by



using a double Fourier trigonometric series; however, it is
only applicable to plates having at least two edges simply
supported. Levy [2, 3] made a noteworthy contribution to
plate vibration analysis by utilizing a single Fourier trigono-
metric series to solve the governing equation. Nevertheless,
the Levy method is also only applicable to plates that
have at least two edges simply supported. Furthermore,
this method is not applicable to nonrectangular plates and
bending-twisting coupling effects could not be investigated.
As evident, the implementation of Fourier series expansions
to analyse the vibration of plates has been very common
due to their orthogonality, completeness, and stability [4].
However, the conventional Fourier series method consists
of a convergence problem along the boundary edges due
to discontinuities in displacement and its derivatives [4].
Thus, it is a method that is only applicable to a few very
simple boundary conditions. In the Improved Fourier Series
Method (IFSM), modifications have been made to eliminate
all of the discontinuities and accelerate convergence [5].
It has also made this method applicable to many plate
types and boundary conditions; however, even with the
modifications IFSM still remains an analytical method that
falls short in adaptability when applied to study the vibra-
tion behaviour of complex, real-life structural configurations
that could be approximated as thin plates or thin plate
assemblies.

The Dynamic Stiffness Method (DSM) is also another
exact method that has been heavily exploited by researchers
to study the vibration of a variety of plate configurations. Bos-
colo and Banerjee [6] used DSM to determine the vibration of
plates using both Classical Plate Theory and first-order shear
deformation theory. Later, they exploited the DSM method
to perform exact in-plane free vibration analysis of plates and
plate assemblies [7]. This was followed by the development of
an exact spectral-dynamic stiffness method for free flexural
vibration analysis of orthotropic composite plate assemblies
by Liu and Banerjee [8, 9]. Using the novel spectral-dynamic
stiffness method, the same authors [10] subsequently con-
ducted an investigation into the free vibration of plates
subjected to arbitrary boundary conditions. Despite these
advancements, the applicability of DSM method remains lim-
ited to special cases and plates subjected to simple boundary
conditions. It also requires extensive equation reformula-
tion to accommodate any changes made to the structural
configuration.

Numerical methods such as the conventional finite ele-
ment method (FEM) are heavily used for modal analy-
sis. However, FEM requires a large number of elements
to converge to an accurate solution, especially for higher
modes as they are based on polynomial shape functions
[11]. Despite the need for a large number of elements, the
comprehensive nature of conventional FEM makes it more
suitable for use during the advanced stages of design where
the structural complexity increases and a more detailed
analysis of the vibrational characteristics of the structure is
required. However, during the early stages of design, where
minimizing time and resources consumed on preliminary
analysis is as important an objective as the accuracy of the
results itself, conventional FEM fails to meet its objective
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as it cannot produce results to an acceptable degree of
precision with a small number of elements. For higher
mode numbers and for larger structures this error increases
exponentially. Thus, this inconsistency in accuracy and rate
of convergence calls for a new method that is tailored for
the demands of the early stages of design. That is, a method
that yields results both swiftly and to an highly accurate
ballpark.

Another frequently used collocation scheme is the Differ-
ential Quadrature (DQ) method first introduced by Bellman
et al. [12, 13] in the early 1970s. It is not only simple, but
also easy to implement and use [14]. Also, it is capable of
yielding highly accurate results for lower frequencies using a
considerably smaller number of grid points thus consuming
less virtual storage and computational effort [14]. Despite
these advantages, one of the major drawbacks of this method
is that it is difficult to apply to problems involving differential
equations with multiple end conditions at the system (line)
boundaries such as the fourth-order differential equation for
thin plates [15]. Another disadvantage of the DQ method is
that its accuracy drops when applied to study the vibration
behaviour of complicated geometries [16].

It is here that the importance of the Dynamic Finite
Element (DFE) method, as an alternative semianalytical
procedure for vibration analysis and modelling of structural
components during the preliminary design stages, is real-
ized. Although relatively new, the DFE method is a well-
established, semianalytical method developed by Hashemi
[17]. Since its inception, the DFE method has been used
in beam, beam-like, and blade vibration modelling and
analysis. Hashemi and his coworkers (see, e.g., [18-20])
have extensively studied the free vibration of various beam
configurations, such as isotropic, sandwich, composite, and
thin-walled beams subjected to diverse loading configura-
tions, using the Dynamic Finite Element (DFE) method.
The results have consistently shown the DFE method to
have a higher accuracy and rate of convergence compared to
conventional FEM owing to the increased efficiency of the
frequency-dependent, trigonometric shape functions based
on the exact solutions to the governing equation which the
DFE method employs. In one study [19], application of the
DEFE formulation to the free vibration analysis of a sandwich
beam resulted in a quasi-exact formulation. In a more recent
study [20], investigating the vibration of bending-torsion
coupled beams subjected to axial load and end moment, it was
found that the DFE method required eight times less elements
than conventional FEM to produce results with a percent
difference of less than one percent. However, the DFE method
has not yet been fully extended to model plate vibration
problems. As the above-mentioned contrasting choice of
shape functions is the main distinction between the DFE
and FEM methods, the logical first step towards developing
a DFE solution to the thin plate problem is to formulate the
pertinent dynamic shape functions. With that in mind, the
primary objective of this study is to develop a set of viable and
robust frequency-dependent, trigonometric shape functions
for a 4-noded, 4-DOF per node element and to this end
a quasi-exact solution to the thin rectangular plate govern-
ing equation was pursued by following a unique approach
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FiIGURE 1: Conforming four-node rectangular elements with
16-DOF ensuring C' continuity.

that, to the best of the authors’ knowledge, has never been
presented.

2. Theoretical Background

Consider the 4-noded, 4-DOF per node rectangular element
shown in Figure 1. The four degrees of freedom are flexural
displacement w, slope in the x-direction, 0,, slope in the y-
direction, 6,, and curvature, 0,,. It is an element that gives
C' continuity, in that, along the element interfaces, there is
continuity of w as well as the first derivative of w normal to
the interface (dw/0on). Having four nodes with 4-DOF per
node requires 16 shape functions; however, in order to form
the shape dynamic shape functions it is important to find the
quasi-exact solutions for the plate governing equation. In an
earlier conference publication [21], the authors presented the
first four trigonometric shape functions determined during
the preliminary stages of this research, along with a very brief
introduction of the quasi-exact solution process. However,
for further clarity the details of the quasi-exact solution are
explicitly outlined below. Thus, from Classical Plate Theory
(CPT) the governing general equation for a thin rectangular
plate could be written as shown [22] in

4 4 4 2
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where p is the mass density, /1 is the thickness of the plate, and
D represents the plate modulus defined as

ER®

In (2), E is Young’s Modulus of the plate and » is Poisson’s
ratio.

If the transformation shown in (3) takes the following
form:

w(x, y,t) = W (x, y) s where W (x, y) = e™e?” (3)

then the characteristic equation for the governing differential
can be written as

2
FUNYCT I S L (4)

Decomposing the plate equation into two separate beam-like
expressions representing each spatial coordinate direction of
the plate gives the following expression.

2 2
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In (5), k; and k, are the mass distribution constants along
the x- and y-directions, respectively. The ratio k, /k, could be
described as the aspect ratio of the plate. As shown in (5), by
introducing these constants the governing partial differential
equation could be decomposed and rewritten as the sum of
two beam-like expressions () and (x *). Expressing the plate
governing equation as a sum of the two beam-like expressions
shown in (5) makes the process of determining the roots
much simpler. Two constraints were stipulated at the outset
of introducing the mass distribution constants in order to
maintain the integrity of the plate governing equation and
those are as follows. The constants k, and k, could take any
positive numerical value between 0 and 1. However, the sum
of the two constants should be equal to one (i.e., 0 < k; and
ky < 1l,and k|, +k, = 1).

It is important to note here that the values taken by
the mass distribution constants will dictate the shape of
the plate. For example, both k; and k, being equal to 0.5
would represent a square plate and other values of k; and
k, would yield various rectangular plate shapes. In both
expressions (*) and (*#) of (5), A is considered to be the
spatial variable in the x-direction. Similarly, B is treated as
the spatial variable in the y-direction. Each expression ()
and (x=) in (5) is treated as an individual equation and the
quadratic formula is applied on each one of them separately
to determine the roots. When applying the quadratic formula
on expression (), A is allowed to vary and B is held constant.
Similarly, when determining the solutions for expression
(%), Bis allowed to vary and A is treated as a constant. After
mathematical manipulation and simplification the following
roots are found for expression (*) of the plate governing



equation.

A= \jiklw\l%. (6)
D

Similarly, the roots for the term () in (5) would be

R o
D

The mathematical manipulations involved in arriving at the
roots shown in (6) and (7) are not included here for brevity.
Thus, (6) will give four roots, A; (i = 1,2,3,4), for the
expression (). These roots, of which two are real and two
are imaginary, are defined in

A =-A,= \/klw\/”_h = B, (8)

oh
A,=-A,= i\jklw\]% =a,. )

Similarly, (7) yields four roots, B, (i = 1,2,3,4), for
the expression (##). Once again, out of these four roots
two are real and two are imaginary and they are defined
in

oh

B, =-B, = kzw\/ % = B, (10)
. oh

B,=-B, = z\jkzw\/% = a,. 1)

It is important to note here that the roots shown in (8),
(9), (10), and (11) satisfy their individual expressions sep-
arately but together any real-real or imaginary-imaginary
combination (A; and B;) of these roots also satisfies (5) in
general. Thus, each real-real and imaginary-imaginary pair of
roots (A; and B;) is an exact solution to the plate governing
equation and there are 8 such pairs of exact solutions.
However, if a real-imaginary combination of roots (A; and
B;) is substituted in to the characteristic equation, it could be
seen that such a pair does not satisfy the entire characteristics
equation in general, although on their own each of these roots
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satisfies its respective beam-like expressions (*) and ().
There are 8 such real-imaginary combinations that could be
made from the solutions presented in (8), (9), (10), and (11)
and these pairs (A; and B;) are not exact solution to the
plate governing equation. Thus, out of the 16 combinations
of roots that could be developed, 8 satisfy the governing
equation fully, but the other 8 fail to do so and as such
the solution becomes a quasi-exact solution to the plate
governing equation.

Since the solution is assumed to take the form defined
by (3), the final 16-term quasi-exact solution for a thin plate
could be written as follows.

4 4
Z C,-eA"xDjer" = Z Z EijeA"Xery, (12)

j=1 i=1 j=1

w(x,y) =

4
i=1

where E;in (12) are the unknown coefficients defined in

E;=C; D (13)

Thus, the nonnodal approximation of the solution function,
W, and the test function, W, written in terms of generalized
parameters are as follows.

W= (P(Em), * la},

oW = <P (£>"I)>f * {8a},

(14)

where & and # are the nondimensionalized natural coordi-
nates in the x- and y-directions, respectively.

The basis functions of the approximation space are shown
in Table 1. These basis functions are designed as combinations
of the solutions to the characteristic equations as they are
derived from the quasi-exact solution of the governing
equation. These basis functions have been developed such
that when the natural frequency w and subsequently roots,
&, &y, By and B, of the characteristic equations tend to zero,
the resulting basis functions change to those of a standard
thin plate element in the classical FEM, incomplete quintic
polynomial [11].

The roots By, ay, f,, and a, were defined previously
and marked as expressions (8) through (11), respectively. The
expansion terms in Table 1 could be more concisely written as
follows.

(P(w))y=(by by by by b5 b by by by by by by, bys by bys byg). (15)

Replacing the generalized parameters, (a) and (Ja) in (14),
with the nodal variables, (w,0,,0,,0,,1,..,w;0.,40,40.,4)

and (dw,60,,060,,80,,,,...,6w,00,,60,,060, ,), and rewrit-
ing (14) will result in

W, = 2], @),

(16)
oW, = [B,], 8a} .

The matrix [P, ] ; is defined as
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TABLE 1: Trigonometric basis functions for thin plate.

Symbol FEM DFE
b, 1 cos (o) cos (ocyr])
(cos (ocyn) sin (ocx:f))
b, x
(cos (a, ) sin (1))
b; Y «,
. cosh (f3,£) cos (ocyn) ~ cos (a, &) cos (a, 1)
b * a2+ B’
sin (ocif) sir:(oc n)
. . o010
<%y
5 cosh (/3},11) cos (e, &) — cos ( yn) cos (&)
b 4 o+ ﬁ
R sinh (f3,£) cos (ocyn) ~ sin (a, &) cos (a, )
& * al+ B’}
cosh (B,&) sin (« 17) — cos (e, &) sin (er, 1)
B <y a, ocy +a f’ ;
5 cosh (ﬁyn) sin (oc &) - c};)s ( yn) sin (a,&)
bg Xy (Xx(xyz +a, l;yz
s sinh (,Byn) cos (e, &) — sin (ocyr]) cos ()
blO y o 3 +ﬂ 3
y TPy
sinh (B,£) sin () — sin (&) sin (., 77)
b *y a (xy3 +a B’ ;
yx v x
) S, cosh (&) cosh (B, 1) — cosh (B,£) cos (a,n) — cos (a,&) cosh ( B,17) + cos (e, &) cos (o, 17)
? 7 ala) v B+ fla, BB,
5 sinh (Byr]) sin (@, &) — sin (ayn) sin (&)
s Y o’ ta B’
x%y xPPy
) s 5 sinh (8,&) cosh (B,7) — sinh (B,£) cos (ocyr]) — sin (e, &) cosh ([J’yn) + sin (a, &) cos (a, 1)
" * (xxsayz + “xsﬁyz + ﬂxatxyz + ﬁx?’ﬁyz
) ) 5 cosh (B,&) sinh (B,#) - cosh (B,&) sin ((xyn) - cos (e, &) sinh ([3/1) + cos (a, &) sin (a, )
° 7 ala, +alp] +Bla BB
b 5 s sinh (8,&) sinh (B,7) - sinh (B,£) sin ((xyr]) - sin (a, &) sinh (ﬁyn) +sin (e, &) sin (a, 1)
“ i oo, +alB+ Blo, + BB,
[ bl (0’ 0) bz (0> 0) b3 (09 0) b4 (0) 0) b13 (0> 0) b14 (O) O) blS (0’ 0) bls (07 0) ]
blx (0’ 0) b2x (O) O) b3x (0, 0) b4x (0’ 0) - 13x (0 0) b14x (0’ 0) ble (0> 0) b16x (0> 0)
(0 O) be (0 0) b3y (0 0) (0 0) - 13y (0 0) 14y (Os 0) 15y (0 O) l6y (O 0)
lxy (O 0) bey (0 0) bey (0 0) 4xy (0 0) 13xy (0 0) ldxy (O’ 0) 15xy (0 0) 16xy (0 0)
| | |
17)
| | |
b (0,1) b(0,1) b(0,1) b(0,1) bi3(0,1) b, (0,1) b5(0,1) b (0, 1)
blx 0,1) be 0,1) b3x (0,1) b4x (0,1) — — b3, (0,1) b, (0,1) b5, (0,1) by, (0,1)
L (0,1)  O1) by (0,1) — — by, (0,1) by, (01) by, (0,1) by, (0,1)
L 1xy (0 1) bZ 3xy (0 1) 4xy (O 1) 13xy (O 1) 14xy (O 1) 15xy (O 1) b16xy (O> 1) 4
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FIGURE 2: DFE (a) and FEM (b) shape function for w, at node 1.
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FIGURE 3: DFE (a) and FEM (b) shape function for 6, at node 1.

Thus, (14) and the [P,] £ Matrix in (17) could be combined in

where
the following manner to construct nodal approximations for T
flexural displacement, W (¢, ). {wa} = (w1, 01,015,015, w3, 0404, 04) (20)
» (N(&n) = <N1f’N2f> N3¢ Nyg» N5y Ne o Ny g, Ny,
W& ) = (PER), (2], fw,}

(21)

(18) N9f’N10f’N11f’N12f’N13f’N14f’N15f’N16f>'

(N ’7)>f fien} The definitions of the frequency-dependent trigonometric
shape functions for flexure, N; through N4, are explic-
itly presented in expression (A.l) in Appendix. Also, it is
important to emphasize that these new DFE shape functions,
which have not been presented for a thin plate element, are
unique in their own right and are entirely different from
W (& m)} = (NEn) {w,} (19 the DFE shape functions for a beam [17-20] presented by

In (18), (N (&, 7)) ; is the frequency-dependent trigonometric
shape function for flexure which could also be rewritten as
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FiGUrEe 4: DFE (a) and FEM (b) shape function for 0, at node 1.
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F1Gure 5: DFE (a) and FEM (b) shape function for Gx},l at node 1.

Hashemi and his coworkers in the past. Although developing
the QDFE method for a thin rectangular plate, currently
in the final stages of its development, is beyond the scope
of this paper, for the readers’ interest it could be stated
that having derived the frequency-dependent, trigonometric
shape functions, developing the Quasi-Exact Dynamic Finite
Element method now becomes a four-step process, first of
which is the application of further integration by parts to the
discretized form of the governing differential equation from
the conventional FEM formulation. The second step would
be to use this further integrated equation together with the
DFE shape functions presented here to develop the element
stiffness matrices. Once the element matrices are formed,
they are assembled using an assembly scheme similar to

conventional FEM, and the system boundary conditions are
reinforced as the penultimate step to form the global stiffness
matrix and the nonlinear Eigenvalue problem. Finally, the
frequency domain is swept to determine frequencies that
would result in a zero determinant for the systeny’s (global)
dynamic stiffness matrix. These are the Eigenfrequencies of
the plate and their corresponding Eigenvectors are the mode
shapes of the system.

3. Results and Discussion

The sixteen new dynamic (frequency-dependent), Trigono-
metric Flexural Shape Functions (DTFSF) for nodes 1 to 4
of the 16-DOF thin plate element (Figure 1) are plotted next
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FIGURE 6: DFE (a) and FEM (b) shape function for w, at node 2.
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()

to the corresponding FEM (incomplete quantic) polynomial
shape functions [11] in Figures 2-8. The DTESF plots have
been created for the following parameters: E = 200 GPa, p
= 7800kg/m’, h = 0.004m, » = 0.3, k, = 0.6, k, = 0.4, and
a low frequency of 9.36 Hz. As expected, regardless of the
frequency, w, for both the DTFSF and FEM shape functions
the flexural displacement w; is 1 at node 1, where the natural
coordinates £ and 7 are zero. The slope 8, (dw/d¢) is also
1 at node 1 for both shape functions N, and N,j;. Here,
the subscript f denotes the frequency-dependent DTFSF and
the subscript H stands for the polynomial shape functions
used in conventional FEM. Similarly, the gradients of the
shape functions N;; and N;;; which approximate the slope
0,, (Ow/0n) assume a value of 1 at node 1 too. Furthermore,

Nogr &1

(b)
FIGURE 7: DFE (a) and FEM (b) shape function for w; at node 3.

the slope 0,,; which could also be expressed as 0*w/0Edn
becomes 1 at node 1 for both shape function types. Thus,
it is evident from Figures 2-8 that the new DTEFSF shape
functions are identical to the conventional FEM polynomial
shape functions [11] in how the flexural displacements, slopes,
and curvatures are approximated.

The new DTEFSF shape functions are also frequency-
dependent. That is, they oscillate and change with varying
frequency w. In order to illustrate their dependency on
frequency, the DTFSF shape functions, N, 4 to Ny, are also
plotted at two different frequencies w, = 82.06 Hz and w,
= 206.67 Hz, where w; < w, (see Figures 9-12). It is also
important to note that while dependent on the frequency w
elsewhere, the trigonometric shape functions for bending are
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FIGURE 8: DFE (a) and FEM (b) shape function for w, at node 4.

Nyg &)

FIGURE 9: Shape function N ; at w; (a) and w, (b).

designed to be independent of the frequency at the element
boundaries and as such they take the following values at
each node, same as those in the conventional FEM shape
functions. At node 1, Ny =1and Nyy = N3p = Nyp = 0.
At the second node, N5, = 1 and Ng; = N;; = Ng; = 0.
Similarly at node 3, Ny = L and Nygp = Njjp = Njpp = 0.

Finally, at node 4, Ny3; = 1and Ny4¢ = Ny5p = Ny = 0.

4. Conclusion

In this study a quasi-exact solution was sort for the thin
plate governing differential equation based on Classical Plate
Theory. The solution was derived by pursuing a unique
process whereby the characteristic equations were rearranged
as the sum of two beam-like expressions and applying

the quadratic formula on each expression separately to
determine the roots. Using this quasi-exact solution to the
plate governing equation, a set of new trigonometric basis
functions were formed such that when the natural frequency
tends to zero the trigonometric shape functions tend to
their polynomial counterparts used in conventional FEM.
Subsequently, sixteen novel dynamic (frequency-dependent)
Trigonometric Shape Functions (DTFSF) were developed for
a four-node, four-DOF per node rectangular plate element.
The identical nature of the DTFSF and polynomial shape
functions were then graphically illustrated and the frequency-
dependent nature of the shape functions was also exemplified.
The research is underway to exploit these innovative dynamic
bases and shape functions as the framework for a new, Quasi-
Exact Dynamic Finite Element formulation better suited for
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FIGURE 10: Shape function N; at w; (a) and w, (b).

(®)

FiGURe 11: Shape function Ny, at w, (a) and w, (b).

modelling the vibration behaviour of structural components (ﬂy sinh ( ﬁy) sin (ocy (n- 1)))
commonly modelled as thin, rectangular 2D elements during - P cos (a,&)
the early stages of design.

y

+ cosh (B,&) — cos («, ) cosh (B, (& - 1))
- cosh (B,) cos (a, (£ - 1))
+ (‘xx sin (ax) sinh (ﬁx (E - 1)))

Bx
Nyp = { [cos (ocyr]) + cosh (ﬁyn) - cos (ocy) . .

_ (ﬁx sinh (ﬁx) s ((xx (E — 1))) ] } { |:2 cos ((X )
- cosh (ﬁy (n- 1)) - cosh (ﬁy) cos (ocy (n- 1)) o, x

(Oéy sin (“y) sinh (ﬁy (n - 1))) (sin (er,) sinh (B,) ((XxZ _ :sz))
+ 5, -cosh (B,) + @5

Appendix
Frequency-Dependent Shape Functions
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FIGURE 12: Shape function N5 at w; (a) and w, (b).

_ 2] [2 cos (a, ) cosh (B,)

 (sin() sinl(a ofy/s;y))(“f B)) 2] } ,

NZf = { [ﬁx (COSh (ﬁx) sin ((xx (E - 1)) —sin ((xxg)

+sin (a, ) cosh (B, (£ -1)))
+a, (cos () sinh (B, (£ — 1)) — sinh (B,£)

+ sinh (B,) cos (a, (£ = 1)))] | cos (“y”)

+ cosh (ﬁ},n) - cos (ocy) cosh (ﬂy (n- 1))
- cosh (ﬁy) cos (ocy (n- 1))
((xy sin (ocy) sinh (ﬂy (n- 1)))
By
~ (,By sinh (ﬁy) sin (oc}, (n-1))) ] } {ocxﬁx [2

&y

+

- COs (“x) cosh (ﬁx)

(sin (@) sinh (B,) (a,” = B,%)) ] [
* (‘xxﬁx) ’ ’

- cos (ocy) cosh (,By)

Njp = - {[ﬁy (cosh (ﬁy) sin (ocy (n- 1))

—sin (“yﬂ) +sin (ocy) cosh (ﬁy (n-1)))

+a, (cos (ocy) sinh (,By (n- 1)) —sinh (ﬁyn)
+sinh (ﬁy) cos (ocy (n- 1)))] cos (a,)

+ cosh (B,&) — cos () cosh (B, (£ - 1))
— cosh (B,) cos (e, (€ - 1))
. (e, sin (a, ) sinh (B, (E - 1)))

B

_ (B.sinh (B,) sin (o, (€ - 1)))” {ayﬁy [2

Oy

- cos (a,.) cosh ()

| (sin(a) simh (8,) (2 - B.%)) _ ] [
(‘xxﬁx) ’ ’

- cos (ocy) cosh (ﬁy)

N (sin (“y) sinh (ﬁy) (‘xyz - ﬁyz» : 2] }_
(“yﬁy) ,
Ny = {[ﬁy (cosh (ﬁ},) sin (oc), (n- 1)) - sin (ocyn)
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+sin (a, ) cosh (B, (- 1)))

+a, (cos (a, ) sinh (B, (- 1)) - sinh (B,)
+sinh (B, ) cos (a, (- 1)))]

[B« (cosh (B, ) sin (e, (§ - 1)) — sin (e, )
+sin (at,) cosh (B, (€ - 1)))

+ a, (cos (a) sinh (B, (§ - 1)) — sinh (B,£)

+sinh (B,) - cos (e, (€ - 1)))]} {(xxocy/)’xﬁy [2

- cos (a,) cosh (B,)

(sin (@) sinh (B,) (2> - B.%)) ] [
* (8,) ik

- oS ((x},) cosh (ﬁy)

(sn() sin1(1 ofy/s;y))(af 5) 2] } ,

N, - { [ (1) + cosh (B,1) — cos ()

- cosh (ﬁy (n- 1)) — cosh (ﬁy) cos ((xy (n- 1))

(ocy sin (ocy) sinh (ﬂy (n- 1)))
By
(ﬁy sinh (ﬁy) sin (cxy (n- 1)))

Xy

+

- | cos (o, (E=1)) +cosh (B, (£-1))

— cos (o) cosh (B,) - cosh (B,£) cos (a)

Bx

, GusntaDanh 4] } { [2 s

Xy

(sin () sinh (B,) (‘sz - ﬁxz))
()

-cosh (B,) +

_z] [2 (a) cosh (B,)

. (sin (o, ) sin? off;y))(%z ~B)) 2] } ,

Shock and Vibration

Ngs = {[ﬁx (sin (o, (€ = 1)) + cosh (B,&) sin ()

—sin (a, &) cosh (B,)) + e, (sinh (B, (£ - 1))
+ cos (e, &) sinh () — sinh (B,&) cos (a,.))]

. [cos (ocyq) + cosh (/Syq) —cos ((xy)

- cosh (ﬁy (n- 1)) — cosh (,By) cos ((xy (n- 1))

(cxy sin (ocy) sinh (,8), (n- 1)))
By

_ (Bysinh (B,)sin (a, (1 - 1))) ” {vcxﬁx [2

Xy

+

- cos (a,) cosh ()

+ (Sin (et,) sinh (B,) (“xz _ﬁxz)) - 2] |:2

- cos (ocy) cosh (ﬁy)

, (sin(x) sinl(l Offgy))(%z A7) 2] } :

Moy == {18, (cosn (8, )sn s, (- 1)

—sin (O‘yﬂ) +sin (ocy) cosh (,By (n- 1)))

+a, (cos (ocy) sinh (ﬁy (n- 1)) —sinh (ﬁyn)
+ sinh (/Sy) cos (Oty (n- 1)))] [cos (o, (£-1))

+ cosh (B, (§ — 1)) — cos (&) cosh (B,)

— cosh (B,£) cos () — (e, sinh (ﬁgf) sin (a,))
, (Bysin (a,§) sinh (/,’x))” {“ , [ZCOS o
Oy Yy x

(sin (e,) sinh (B,) (Oéxz - ﬁxz))

- cosh (B,) +

- 2] [2 cos (a, ) cosh (B, )

. (sin (ar, ) Sin}(l(ffgy))(%z B _ 2] ]» ,
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N =={[B, (cosh (B, )sin (a, (1~ 1))
—sin (a,7) +sin (ar, ) cosh (B, (1 - 1)))
+a, (cos (a, ) sinh (B, (- 1)) - sinh (B, )
+sinh (B, ) cos (a,, (- 1)))]
[ B (sin (o, (§ = 1)) + cosh (B,£) sin (ax,)
= sin (&) cosh (B,)) + a, (sinh (B, (§ - 1))
+ cos (@) sinh (B,) = sinh (B,£) - cos (a,))] |

. {ocxocyﬁxﬁy [2 cos (ay) cosh (B,)

(“xﬁx)
- COS (ocy) cosh (ﬁy)

. (sin (o, ) sin?ofy/”;y))(“yz ~57)) 2”» ,

e |

Ny, = { [cos (cxy (n- 1)) + cosh (ﬁy (n- 1))

- cos (ayq) cosh (ﬁy) — cosh (ﬁﬂ) cos (ocy)

((xy sinh (ﬁyn) sin (ocy))
By

N (B, sin (ac,17) sinh (B, ))

&y

+ cosh (B, (€~ 1)) ~ cos (@) cosh (8,)
(o, sinh (8,8 sin (a,))

] [cos (a, (€-1))

— cosh (B,&) cos («,)

B.
+%mmmm@wHPm@)

Xy

(sin () sinh (B,) (“xz - :sz))

JHmwmw%>

. (sin (o, ) sinl(lofy/)’gy))("‘y2 ~57)) 2”» ,

-cosh (B,) +

mﬁﬁm@mm—mmm%mmm

—sin (a,&) cosh (B,)) + e, (sinh (B, (£ - 1))
+ cos (a, &) sinh (B,) — sinh (B,&) cos («,))]

. [cos ((xy (1-1)) + cosh (ﬁy (n-1))

- cos (ocyq) cosh (ﬁy) — cosh (,Byr]) cos ((xy)

) ((xy sinh (ﬁyl’l) sin (“y))

By
. (B, sin (ocyz) sinh (B, )) ] } {(xxﬁx [2 cos (e,
oo 5 (s () (w2~ 5.))

(axﬁx)
- 2] [2 cos (ocy) cosh ([J’y)

 (sin () sinl(loffgy))(%z -8°) 2] } :

Nyp= {[ﬁy (sin (“y (n- 1))

o ()i () - sin (o) cos ()

+a, (sinh (ﬁy (n- 1)) + cos (ocyn) sinh (ﬁy)

- sinh (ﬁyn) cos (ocy))] [cos (a, € -1))

+ cosh (B, (§ - 1)) = cos (a,&) cosh ()

- cosh (B,&) cos (o) — (@, sinh (,3;5) sin (a,.))
. (B, sin («, &) sinh (B,)) ] } {“ ; [2 o)

(sin () sinh (B) (o = B.%))
((xxﬁx)

- 2] [2 cos (a,) cosh (B,

(sn(a,) sin1(1 Ofyﬁgy))(%z B 2] } ,

-cosh (B,) +

13
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Ny = 16, Linley (1=0) + cosh(Byn) s Nugs = - {[ﬁx (cosh (B.)sin e (€= 1)
(

—sin (ocyn) cosh (ﬂy)) (smh B, (n-1))
+ cos (ocyn) sinh (ﬂy) sinh (ﬁyn) cos ( ))]
-[B, (sin (e, (§ = 1)) + cosh (B,&) sin ()

—sin (a, &) + sin (a, ) cosh (B, (£ - 1)))
+ a, (cos (a,) sinh (B, (£ = 1)) — sinh (B,£)

- sin (o) cosh (B,) + c (sh (B, (£ - 1) + sinh (B, cos (o, ¢ = 1))] | cos (o, (7= 1)
+ cos (&) sinh (B,) — sinh (B,£) - cos ("‘x))” + cosh (ﬁy (n- 1)) - cos (ocyn) cosh (ﬁy)
: {ocxocyﬁxﬁy [2 cos () cosh (S3) — cosh (ﬁyn) cos (“J’)
~ (cxy sinh (ﬁyn) sin (ocy))
(Sin (‘Xx) sinh (ﬁx) (‘xxz - ﬁx2)> 2:| |:2 ﬁy
' (x.£.) )
, (Bysin(ayn)sinh (8,)) ] } {a g [ZCOS (@)
- cos (oc},) cosh (ﬁy) %y
N (sin (ocy) sinh ([3},) (ocy2 - /.)’yz» ~ 2] }_1 ’ - cosh (ﬁx) N (Sin ("‘x) sinh (ﬁx) (“xz - ﬁxz))
(“yﬁy) ((xxﬁx)
Ny = { [cos(08) - cosh 6.6) - cos ) - 2} [2 cos (o) cosh (8,)
“cosh (B, (& - 1)) - cosh (B,) cos (a (€ - 1) (i) sinh (8,) (o = B,%)) 2] } ,
.\ (a, sin («,) sinh (B, (€ - 1))) (“Jfﬁy)
ﬁx .
(B sinh (B,) sin (o, (€ - 1)) et = {[ﬁ s (snet (1-1)
%x + cosh (ﬁyn) sin (ocy) —sin ((xyn) cosh (ﬁy))
| cos (“y (n- 1)) + cosh (/3;/ (n- 1)) +a, (sinh (ﬁy (n- 1)) + cos (oc},q) sinh (/3),)
- cos (ocyn) cosh (ﬁy) — cosh (ﬁyn) cos ((xy) ~sinh (ﬂy”) cos (O‘y))] [COS (@,8) + cosh (B,5)
B ((xy sinh (,Byq) sin (ocy)) - cos (a,) cosh (B, (£ — 1)) — cosh (B,)
By -cos (a, (€ -1))
N (,8 sm( yz) sinh (/3},)) ] } { [2 cos (a,) . (a, sin (a,,) si/r;h (B, (£-1)))
(sin (o) sinh (B,) (o” - B”)) _ (Bysinh (B,) sin (. (- 1)) {a [
-cosh () + (@) o, ] } By |2

—2:| [2 cos (ocy) cosh ([3),) - cos () cosh (B,)
N (sin (er,.) sinh (B,) (ocx2 - [j’xz)) ) 2] [2

, Gin(a)sinh (8,) (" - B,7)) _2”‘1 (@B.)
(“yﬁy) ’ . cos (‘Xy) cosh (ﬁy)
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. (sin (ay)sin?offgy))(“yz ~5’)) _2”» ,

Niss = —{[B. (cosh (B,) sin (a, (€ = 1))
= sin (e, &) + sin (et,) cosh (B, (€ - 1)))
+a (cos (at,) sinh (B, (€ ~ 1)) ~ sinh (B,£)
+sinh (B, ) cos (a, (§ - 1)))]
(B, (sin (e, (- 1)) + cosh (B, ) sin a )
= sin (a,17) cosh (B, )) + ax, (sinh (B, (7 - 1))
+ cos () sinh (8, ) — sinh (B,7) - cos (w, )]}

: {axayﬁxﬁy [2 () cosh (B)

 Ginfa)sinh (8 (a* = 7)) 2] [2
(“xﬁx)

- cos (ocy) cosh (By)

N (sin (“y) sinh (ﬁy) (“J'2 - /’)yz))
(“yﬁy)

-1
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