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A Phantom-free Method to Image the Ultrasound
Attenuation Coefficient Slope Using
Decorrelated Compounding in Synthetic
Transmit Aperture Ultrasound Imaging

Khalid Abdalla, Na Zhao, and Yuan Xu, Member, IEEE

Abstraci— We propose a method that employs the decorrelated compounding method [Zhao2022DCjasael] to
reduce speckle variation in ultrasound images for estimating the attenuation coefficient in Synthetic Transmit
Aperture (STA) imaging. The transducer bandwidth was divided into several overlapping sub-bands. Each sub-
band’s RF signals are processed by using the decorrelated compounding to reconstruct an image, the derivative
of which over depth yields the attenuation coefficient of each sub-band. The attenuation coefficient slope (ACS)
was estimated by taking the derivative of the attenuation coefficient over frequency. This method was validated
through numerical simulations and empirical experiments involving a tissue-mimicking commercial phantom
and a two-layered phantom composed of beef over the commercial phantom. For all data sets, an ROl with a 1
cm window size was utilized to estimate attenuation. Simulations with five phantoms preset at 0.7 dB/cm.MHz
resulted in an average attenuation coefficient of 0.73. The experimental phantom was similarly set at 0.7
dB/cm.MHz, and yielded an attenuation coefficient of 0.72. In the beef-phantom composite, the average ACS was
1.1 dB/cm-MHz for beef and 0.68 + 0.03 dB/cm-MHz for the phantom. The results highlight the effectiveness of
this approach for estimating the attenuation coefficient slope. The synthetic aperture technique combined with
decorrelated compounding offers benefits over traditional B-mode imaging in terms of phantom-free feature,
good spatial resolution, and accurate quantification of tissue properties due to the high SNR and minimum-
diffraction effect in ultrasound images. The estimated attenuation coefficient can be used as a biomarker for
diagnosis, treatment monitoring, and other quantitative ultrasound methods like particle size estimation.

Index Terms— Attenuation coefficient, Image reconstruction , Ultrasonic imaging, Synthetic Transmit Aperture

[. INTRODUCTION

ACS has shown promise in monitoring therapy response, char-

Ultrasound imaging plays a vital role in medical diagnostics,
providing real-time visualization of anatomical structures and
assisting in detecting and characterizing various diseases [1].
A fundamental parameter in ultrasound imaging is attenuation
coefficient slope (ACS), which provides valuable information
about tissue composition and can aid in diagnosing and
monitoring pathological conditions [2]. ACS is instrumental
in assessing liver diseases, like fibrosis and steatosis, offering
insights into tissue damage and assisting in treatment planning
[3]. It has also been applied in breast imaging to distinguish
between benign and malignant lesions, thereby enhancing
diagnostic accuracy and reducing unnecessary biopsies [4].
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acterizing tumors, and assessing the progression of diseases
in organs like the kidney and prostate [S5, 6]. It also plays
a role in other Quantitative Ultrasound (QUS) methods, like
particle size estimation[l, 7]. Consequently, accurate ACS
estimation is paramount for a multitude of clinical applications
in ultrasound imaging.

Several frequency-domain techniques have been developed
to estimate the ultrasound attenuation coefficient. For instance,
the spectral-shift method estimates ACS by measuring the
downshift in the center frequency of the radio-frequency sig-
nals with depth. This method operates on the assumption that
the spectral shape of the RF envelope resembles a Gaussian
curve[8, 9]. Conversely, reference phantom methods, which
include the spectra difference method, spectra log difference
method, and the hybrid method, use phantoms with known
ACS and scattering properties to account for the frequency and
depth-dependent system effects. These system effects typically
include the diffraction effect [term D(f, z) in Eq. 1], which
represents the effect of the ultrasound beam converging and
diverging on the attenuation estimation in B-mode imaging.
Since the diffraction effect depends on both the frequency
and depth, it can significantly impact the quality and inter-
pretability of ultrasound attenuation estimation [10—12]. In the
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pursuit of improving the estimation accuracy while preserving
spatial resolution, recent studies have explored alternative
approaches. One such approach involves incorporating regu-
larization techniques with a spatial prior, which has shown
promise in enhancing both the precision and resolution of
quantitative ultrasound (QUS) estimation in homogeneous re-
gions [12-14]. Spatial and frequency compounding techniques
were used to enhance the precision of quantitative ultrasound
parameters and considerably decrease the variance for ACS [8,
15-17]. However, the clinical implementation of the reference-
phantom method has been slow, hindered by the need to scan
a well-calibrated reference phantom with the same clinical
equipment and settings used to acquire data from the patient
[18].

Ping et al. [19] introduced the reference frequency method
that normalizes the system effects by calculating the ratio
between the power spectra of each frequency and its adjacent
frequency to estimate ACS without a well-calibrated phantom.
Despite its effectiveness, the requirement for a predefined
frequency range and the use of a large analysis window of 2.5
cm length can limit its feasibility in detecting lesions and other
abnormalities within heterogeneous media. Rafati[20] applied
the reference frequency method to homogeneous and hetero-
geneous phantoms with parametric regularization to reduce
image artifacts. Such limitations emphasize the continuous
need for methodological advancements in this field, especially
as the complexity and variability of clinical scenarios increase.

All the above methods used B-mode imaging, which relies
on a single transmit-receive aperture. The attenuation coef-
ficient slope was estimated from each individual A-line and
averaged over many A-lines. The Synthetic Transmit Aperture
(STA) has emerged as a promising approach to address the
limitations of conventional B-mode ultrasound imaging [21].
Unlike B-mode imaging which focuses at one point, the
Synthetic Transmit Aperture (STA) image can be optimally
focused at every point at a high frame rate. In synthetic
aperture images, transducer elements transmit an unfocused
spherical wave covering the entire image, one element at a
time, while all or a part of the aperture samples the received
signals. If the nonlinear effect is ignored, the STA data set has
more information than B-mode one because B-mode data can
be synthesized from STA data, while the process to recover
STA data from B-mode one is subject to introducing noise
in principle and needs regularization. Furthermore, synthetic
aperture techniques can effectively suppress speckle noise,
improve lateral resolution, and mitigate the impact of tissue
heterogeneity [22-24]. These advantages make the synthetic
aperture technique a valuable tool for ACS estimation in
clinical practice.

Recently, we developed a method to reduce the image
intensity fluctuation due to speckles in the STA images. We
applied a decorrelation procedure to the traditional compound-
ing method in STA. The decorrelated compounding (DC)
method substantially reduced the speckle variation compared
to the conventional B-mode imaging [22, 25]. In this work,
we propose to use this method for robust ACS estimation in
the STA technique. Since DC reduces the speckle variation
significantly, a smaller window size can be used to estimate

ACS. Consequently, the image resolution is better than the B-
mode based attenuation estimation method. In addition, the
image is optimally focused at every pixel in STA, so the
diffraction effect in ACS estimation can be minimized, which
makes the reference phantom unnecessary. In summary, the
proposed method has the benefits of reference-phantom-free
feature, higher spatial resolution, and accurate quantification of
tissue properties due to the high SNR and minimum diffraction
in ultrasound images.

The structure of this paper is as follows: Section 2 pro-
vides an introduction to the modeling of backscattered ultra-
sound signals and presents the theoretical foundation for ACS
estimation. Additionally, the experimental setups, including
simulations and tissue-mimicking phantoms, are explained. In
Section 3, the results from both the simulation and phantom
studies are presented. Section 4 focuses on evaluating the
performance of ACS estimation in synthetic aperture imaging.
This section also discusses potential future research directions.
Finally, Section 5 concludes the paper.

[I. METHOD
A. Theory

In approximation, the pressure amplitude of the backscat-
tered signals obtained from a region of interest (ROI) at depth
z from the transducer with frequency f can be modeled as
[10, 26].

S(f,2) = P(f).D(f,2).BSC(f, 2).A(f, 2) ey

P(f) is the transducer response function at frequency f,
D(f, 2)is the diffraction effect, BSC(f, z)is the backscatter
coefficient within the gated window, A(f, z) represent the total
attenuation along the propagation path from the transducer
to the beginning of the ROI. For most tissue,A(f,z) can be
approximated as [27].

A(f, 2) = exp(—2u(f)2) 2)

where p(f) (dB/cm.MHz) is the frequency-dependent attenua-
tion coefficient. Notice that we have a factor of 2 in the above
equation because the pressure amplitude rather than the power
spectrum or intensity is studied here. For biological tissues, it
is usually assumed u(f) = «f for simplicity, where « is the
attenuation coefficient slope of the ROI in dB/em. M H z.

In this paper, we assume BSC(f,z) doesn’t change with
depth within a homogeneous region of interest (ROI) used
to estimate attenuation. This assumption limits our methods
to uniform regions of the sample. This limitation will be
addressed in the discussion section. In STA, the image is
optimally focused at all pixels. Therefore, D(f,z) can be
assumed as a constant in the ROI. Taking the natural logarithm
of equation (1),the attenuation coefficient (1 )can be expressed
as the derivative of pressure amplitude over the depth (2)
direction,

Oln(S(f.2) _
R = 3)

To effectively estimate the attenuation, a ROI window of size
1 cm x 1 cm, centered at depth z , is employed. This analysis
window is specifically designed to ensure both precision
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and uniformity in evaluation. Within this window, there are
50 vertical lines, each spaced 0.22 mm apart laterally. To
enhance the signal-to-noise ratio of the estimated ACS, results
from the central 30 acoustic lines within this window are
averaged. Notably, to ensure consistency across the analyses,
a substantial overlap of 98% is maintained for all selected
analysis windows. To implement the derivative over the depth
and frequency, linear regression was applied to the ROI to
obtain p first, and then «, the attenuation coefficient slope. In
order to mitigate potential errors arising from the nonlinear-
ity of frequency-dependent attenuation in the phantoms, the
fitting for the attenuation coefficient slope was restricted to a
frequency range of 2 -5 MHz [28]. It is important to note that
these window dimensions and overlaps were kept constant for
all the results presented in this study.

B. Decorrelated compounding in STA

The method of Decorrelated Compounding in Synthetic
Transmit Aperture (DC in STA) [29] was adapted to obtain the
pressure amplitude of the backscattered signals S(f,z). The
DC in STA can effectively reduce the speckle variations, im-
proving attenuation coefficient estimation accuracy. The aper-
ture domain and frequency spectrum of RF data were divided
into sub-aperture and sub-band signals using a translating and
overlapping filter. The Delay-and-Sum operator was applied
to these sub-aperture and sub-band signals, reconstructing
a series of sub-images. The eigenvectors and eigenvalues
of the covariance matrix for the sub-images were used to
remove the correlation among sub-images before incoherent
compounding in [29]. Theoretically, the averaged variance
of N uncorrelated sub-images can be reduced by a factor
of /N. Therefore, the decorrelation procedure can improve
the speckle variance reduction performance by removing the
correlations among sub-images compared to the traditional
incoherent compounding.

In this paper, we only applied decorrelted compounding to
the sub-images within the same temporal sub-band spectrum
to obtain the attenuation coefficient corresponding to the sub-
band frequency. The compounding result for each sub-band
is denoted as the pressure amplitude S(f,z), where f is the
central frequency of the selected sub-band. We used a sub-
aperture of 32 elements, a quarter of the full array probe,
to reconstruct one sub-image. The step size between the two
adjacent sub-apertures was 16 elements. These configurations
were the same in the transmission and receiving apertures, re-
sulting in 7 sub-apertures along the transmission and receiving
dimensions. The total number of sub-apertures/sub-images for
one sub-band was Ngco = 49. Therefore, the speckle SNR is
expected to improve by 7 times. The bandwidth of a sub-band
and the step size for the adjacent two sub-bands were 0.6 MHz
and 0.3 MHz, respectively.

C. Simulation and experiment configurations

The method used to estimate the frequency-dependent atten-
uation coefficient was tested using the simulated and experi-
mental RF data. For simulation model, The Field II Simulation
package was employed to generate simulated raw RF data

from phantoms that generate speckles [30]. A phased array
transducer consisting of 128 elements, with a width of 2.79
cm and operating at a nominal frequency of 3.47 MHz, was
positioned 3 mm above the phantoms. The probe configuration
used in the simulation matched that of the experimental
probe. In the Field II program, a scattering medium with
an ACS a = 0.7 dB/cm-MHz and sound wave velocity of
1540 m/s were adopted. A complete set of synthetic aperture
data was sampled at a rate of 13.88 MHz.The dimensions
of the reconstructed image were 4 cm in the axial direction
and 2.79 cm in the lateral direction. In order to investigate
the fluctuation characteristics of the backscattered spectrum
signals, five independent scattering mediums were used to
generate the backscattered signals. The attenuation coefficient
slope (dB/cm-MHz) was measured for each simulated phan-
tom, yielding five unique values representing the attenuating
properties of these phantoms. To obtain a more accurate and
reliable estimate, the average attenuation coefficient slope
across these five simulations was then calculated. In addition,
the standard deviation (STD) was computed, providing a
measure of the variance in the attenuation coefficients of the
different phantoms.

We used the Verasonics Vantage Research Platform (Vera-
sonics Inc., Kirkland, WA) to acquire the experimental RF
data in a model 040GSE (CIRS Inc., Norfolk, VA) phantom.
The attenuation coefficient in the imaged areas werea = 0.7
and 0.5 dB/cm-MHz and the acoustic wave velocity was
1540 m/s according to the specifications provided by the
manufacturer. The STA data were processed by applying the
delay-and-sum beamforming to reconstruct the sub-images
from the sub-band and sub-aperture RF signals. Then the
decorrelated compounding was used to reduce the speckles
in the sub-images for the attenuation coefficient estimation. In
addition to the aforementioned simulation and experimental
setups, a beef sample was positioned above the CIRS phantom,
employing the same configuration as the previous experiments.
The purpose of including the beef sample was to mimic the
presence of a tissue-like structure in the imaging scenario.
This additional element served to assess the performance and
robustness of the proposed method in a more realistic setting
and to evaluate the axial spatial resolution .

[1l. RESULTS

A. Comparison between DC and DAS in pressure
amplitude and atteuantion coefficient estimation

As a comparison with the DC method, the delay and sum
(DAS) approach was first used to estimate the attenuation
coefficient slope in the CIRS phantom of 0.7 dB/cm.MHz
(Fig. 1). Fig. 1(a) shows the plots of the pressure amplitude vs.
depth at three sub-bands in a ROI and the corresponding linear
fittings to estimate the attenuation coefficients; Fig. 1(b) shows
the plot of the attenuation coefficients vs. sub-band frequency
and the corresponding linear fitting to estimate the attenuation
coefficient slope. The ACS in Fig. 1(b) is 0.96 dB/cm.MHz,
deviating from the actual value 0.7 dB/cm.MHz significantly.

In contrast, similar plots from the decorrelated compounding
method are presented in Fig. 2 from a simulation phantom, the
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Fig. 1. (a) the plots of the pressure amplitude vs. depth at three
sub-bands in an ROI in a CIRS phantom of 0.7 dB/cm.MHz and the
corresponding linear fittings to estimate the attenuation coefficients; (b)
the plot of the attenuation coefficients vs. sub-band frequency and the
corresponding linear fitting to estimate the attenuation coefficient slope.

CIRS phantom, and the beef sample. The pressure amplitude
plots in Fig. 2 show a much smaller than Fig. 1 due to
the decorrelated compounding method, resulting in a more
accurate estimation of the attenuation coefficient and ACS.

Figure 3 compares the ACS vs. depth plot using the DC
method (blue) and delay and sum (DAS) approach (red). The
DC approach provides much more stable estimates of the ACS
along the depth than the DAS method.

B. Simulation results

The average ACS values of five identical and independent
simulated phantoms are plotted as a function of depth in Fig.
4. The standard deviation among the five phantoms is plotted
as the error bar. In evaluating the accuracy of the attenuation
coefficient slope, a relative error of up to 15% was considered
acceptable [31].

C. Tissue-mimicking experimental phantoms

To evaluate the ACS estimation performances quantitatively
in tissue-mimicking experimental phantoms, we selected a
uniform region of CIRS phantoms. Fig. 5 and Fig. 6 illustrate
the plots of the estimated slope of attenuation coefficients
versus depth for the CIRS phantom of 0.7 dB/cm.MHz and
0.5 dB/cm.MHz, respectively. The estimates of ACS obtained
using the proposed method are consistently close to the actual
values .

D. Beef - Tissue-mimicking phantom analysis

Fig. 2(a) illustrate the plots of the estimated slope of
attenuation coefficients versus depth for a composite sample
with a piece of beef on top of the CIRS phantom of 0.7
dB/cm.MHz. The estimates of ACS in the CIRS phantom are
again consistently close to the actual values. Fig. 2(a) can be
considered as a n edge spread function because there is an
interface between two different materials. The magnitude of
the derivative of a edge spread function [Fig. 2(b)] gives a line

spread function, the FWHM of which can be used as a metric
for spatial resolution along the axial direction.

In the beef sample part of Fig. 2(b), the average ACS
was measured to be 1.1 dB/cm-MHz, which aligns with the
literature-reported value [32, 33]. Similarly, in the phantom
region, the average attenuation coefficient was determined to
be 0.72 dB/cm-MHz, closely matching the expected value
of 0.7 dB/cm-MHz. However, noticeable fluctuations in the
attenuation values were observed at the interface region be-
tween the beef and the phantom. These variations can be
attributed to the large specular reflection signals due to the
acoustic impedance mismatch between the two materials. It
should be noticed that the specular reflection signals have a
different spectrum from the signal scattered from particles.
Consequently, the spectrum-based method will not work with
the specular reflection signals. In addition, the assumption of a
uniform backscattering coefficient [BSC/(f, z) in Eq. 1] inside
the 1-cm ROI is violated at the beef-phantom interface due to
the large specular reflection.

The axial resolution of the proposed method at the given
configuration was estimated to be 0.7 cm through the full-
width-at-half-maximum (FWHM) of the line spread function
(LSF) (Fig. 7 (c)). Consequently, the proposed method suc-
cessfully discriminates between the two regions, namely the
beef sample and the phantom, enabling reliable differentiation
based on their distinct attenuation characteristics.

IV. DISCUSSION
A. Additional comments on the results

It should be pointed out that the attenuation coefficient
estimated from the experimental data is not the true value,
but has a constant difference from the true value for each
plot of attenuation coefficient vs. frequency. This is because
there was a time-gated compensation (TGC) from ultrasound
scanners. However, this TGC depends only on the depth,
not on the signal frequency. Therefore, the effect of TGC
will be a constant shift of the attenuation coefficient for all
frequencies. That’s why TGC will not affect the estimation
of ACS. However, when comparing Fig. 2 (b) and (d), we
can find that the attenuation coefficient in b is slightly larger
than (d) at the same frequency. This is probably due to the
TGC in experiments, which is lacking in simulation studies.
TGC usually amplifies the signal at a larger depth more
strongly. Therefore, TGC will make the attenuation coefficient
appear smaller, as shown by our results. Nevertheless, TGC
information is usually available. Therefore, we can remove the
effect of TGC on the attenuation estimation and produce the
true attenuation coefficient of tissues on top of the ACS.

It can be noticed that the ACS from the location very close
to the probe (depth < 1.5¢m) in Fig. 4 and 5 gradually
increases to the true value. This might be due to the oblique
path from the probe elements to the imaged point when the
image pixel location is close to the probe. When we use
the derivative of pressure amplitude over depth to estimate
the attenuation coefficient, the results will be smaller than
the truth. Similar to the well-known fact that there is a
natural focus due to the diffraction effect at the near-field
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Fig. 2. (a), (c), and (e) are the plots of the pressure amplitude vs. depth at various sub-bands in an ROl in a simulation phantom, a CIRS phantom
of 0.7 dB/cm.MHz phantom, and a beef phantom, respectively. (b), (d), and (f) are the corresponding plots of the attenuation coefficients vs. sub-
band frequency and the corresponding linear fitting to estimate the attenuation coefficient slope in a simulation phantom, a CIRS phantom of 0.7

dB/cm.MHz phantom, and a beef phantom, respectively.

boundary of an unfocused transducer, there might be a pressure
amplitude peak in STA images around 3 cm depth for the given
parameters in our study. A weak focus can result in a decrease
in the estimated attenuation coefficient.

In Fig. 4, there is a dip of ACS at 3 cm depth. Since the

results are the average of five identical independent phantoms,
the dip should not be caused by medium fluctuation. We
suspect the dip is due to some minor diffraction effect.

The decorrelated compounding technique has brought no-
table improvements in the image signal-to-noise ratio (SNR)
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for both simulated and experimental images. Generally, there
is a trade-off between the spatial resolution and the estimation
accuracy in quantitative ultrasound. This enhanced SNR, as
achieved by our method, is pivotal as it directly translates to
more accurate and reliable estimations of attenuation coeffi-
cients. In the future, we can explore the feasibility of reducing
the window size with parametric regularization [20] to improve
spatial resolution.

Another benefit of using STA is the large range of depth of
imaging ACS. As shown in Fig. 4 and 5 ACS can be imaged
reasonably well from around 1-cm depth to 8-cm depth from
one frame of image data. This is possible because optimum
focusing can be achieved at all points in STA images and
the diffraction effect is minimum in STA. Since the proposed
method needs no reference phantom due to the minimum
diffraction effect, its translation to clinical application should
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Fig. 5. a) Image illustrating the selected ROI in the CIRS phantom of

0.7 dB/cm.MHz. b) estimation of attenuation coefficient slope along the
depth in the CIRS phantom
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spread function .

be easier than the reference-phantom method.

One advantage of the proposed method is that it first
estimates the attenuation coefficient, and then the attenuation
coefficient slope. There is no assumption of linear frequency
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dependence of the attenuation coefficient, as in other methods.
Since it is known that the attenuation coefficient of many
tissues depends on the frequency in a nonlinear way, this
advantage can provide further information for diagnosis by
using atteuation coefficent as a bio-marker.

B. Challenges to be addressed in future studies

The observed fluctuations in the attenuation values at the
interface region between the beef sample and the tissue-
mimicking phantom ( Fig. 7) can be attributed to several
factors. Previous studies have reported similar fluctuations
involving interface regions between different materials [26,
34]. It’s imperative to note that such interfaces inherently
present challenges in consistent estimations. These fluctuations
can arise due to the differences in the acoustic properties
and scattering characteristics of the two materials, resulting
in variations in the attenuation values along the interface.
Additionally, the presence of interfaces can lead to partial
reflection and refraction of the ultrasound waves, causing
interference patterns and resulting in attenuation variations
[35]. One approach to handle this challenge is to estimate
the attenuation and tissue backscattering coefficients simulta-
neously, as shown in B-mode in [26]. We plan to explore this
approach in STA in the future study.

The goal of this paper is to demonstrate the feasibility of
the proposed method. There are still many parameters to be
optimized for improved image quality. For example, the ROI
size, the linear fitting methods, and the decorrelated com-
pounding parameters (sub-aperture size, sub-band width, and
the corresponding step sizes). Additionally, we will investigate
reducing the computation load of the method so that it can
be used for clinical investigations. A comparison between the
current B-mode methods (spectral-based methods) [20] and
the proposed STA method will be made.

Although the proposed method is based on STA data, it
can be easily extended to B-mode data. The best option is to
recover STA data from the pre-beamformed B-mode channel
data through the decoding process with regularization [36, 37].
Then the proposed method can be applied to the recovered
STA data. As discussed before, there is some information loss
in this recovery process. Therefore, it will be an interesting
future study to investigate how this decoding process will
affect the performance of the proposed method. In clinics,
harmonic imaging is very common because of the ability to
suppress the aberration. Harmonic imaging can only be done
in B-mode, not in STA mode. Therefore it is desirable to be
able to extend our method to B-mode data.

V. CONCLUSION

In conclusion, we proposed to apply decorrelated com-
pounding method to estimating the attenuation coefficient
in STA. The attenuation measurements obtained using the
synthetic aperture technique in the simulations of the tissue-
mimicking phantom and the analysis of the beef phantom
highlight the effectiveness of this approach for estimating the
attenuation coefficient. The synthetic aperture technique offers

benefits over traditional B-mode imaging in terms of accu-
rate quantification of tissue properties. Further research and
comparative studies are warranted to validate the findings and
explore the full potential of the synthetic aperture technique
in clinical applications.
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