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ABSTRACT
In this paper, we propose a new Accelerated Greedy Snake

Algorithm (AGSA) for faster convergence of the active con-

tour optimization problem. The new algorithm takes advan-

tage of the similarity in image pixel gradients to take larger

steps in the initial stages of the snake. Due to its fast conver-

gence, the snake can be initialized far away from the object

without any issues. This algorithm also uses some intelli-

gent techniques (e.g. re-sampling, relaxation) to maintain a

regular shape of the snake at all times while approaching the

final contour. Experimental results on three test cases are pre-

sented, where the convergence efficiency of our method has

been compared with three contemporary algorithms in terms

of number of iterations and computational time.
Index Terms— Snake, Greedy, Contour, Optimization

1. INTRODUCTION

Active contours are used in image processing to detect the

boundary of an object. They have been widely used in appli-

cations like medical imaging, object tracking, video surveil-

lance etc [1]. Before the use of active contours, low level

gradient-based techniques like Canny Edge Detector [2] were

used for detection of object edge boundaries. But these edge

detectors suffer from the problem of discontinuity and are

sensitive to noise [3]. On the other hand, active contours

provide a smooth and continuous (albeit approximate) bound-

ary. Active contours were first introduced by Kass et al. [3]

in 1988. In this technique, the object boundary points (pix-

els) are represented with the help of a parametric curve. The

points move around in the image to minimize the energy func-
tion. The energy function is defined in such a way that the

points will reach their minimum energy on the boundary of

the object. Since that seminal paper, there has been a lot of re-

search going on, mainly focusing on two aspects of the frame-

work: 1) Convergence the optimization problem and 2) the

energy function. The original paper solved the optimization

problem with the help of variational calculus. A faster Greedy

algorithm was presented in [4]. Variations of the Greedy algo-

rithm has been presented in [5] and [6], where the step sizes

and neighborhood patterns of the Greedy algorithm are var-

ied to achieve better convergence. The energy function has

also been changed over the time, mainly to fit specific ap-

plication needs. The Gradient Vector Flow (GVF) snake [7]

provides a significant improvement, where the gradient vec-

tors are introduced over the image to attract the snake to the

object accurately, even if the initial snake is far away. This

method is one of the first few methods which could attract the

snake towards the concavity of an object boundary. However,

this method is sometimes avoided due to its slow speed. A

faster variation of a similar energy was presented in [8]. A

detailed description of the current snake algorithms and their

variations can be found in [9].

The primary focus of our research is the convergence as-

pect of the problem. Our goal is to provide a simple yet ro-

bust algorithm to attract the snake towards the object quickly,

even if the initial snake is far away. Traditionally, the snake

is initialized as a circle with a radius large enough to cover

the majority portion of the image. Although there has been

research on initializing the snake efficiently [10], most of the

special initializations are application specific. The traditional

approach is still a subject of interest for its robustness and

simplicity. However, with the traditional approach, snakes

might result in really slow convergence, specially if the im-

age is of significant resolution.

In this report, we propose a new Accelerated Greedy Snake

Algorithm (AGSA) for faster convergence of the snake. Our

approach is based on similarity of image pixel gradients in

the initial stages of the snake. If gradients have similar value,

larger steps can be taken without even considering the energy

function value. Our method is based on the Skippy Greedy

Snake Algorithm (SGSA) presented in [6]. We also incor-

porate some intelligent techniques like re-sampling and re-

laxation to keep the snake in shape while taking larger steps

(“accelerating”). Although the experiments presented here

are based on the initialization of the snake as a circle, other

types of initializations can be incorporated too.

The rest of the paper is organized as follows: Section 2

gives an overview of the active contour model. The Gradient

Snake Algorithm (GSA) [4], Fast Greedy Snake Algorithm

(FGSA) [5] and the Skippy Greedy Snake Algorithm (SGSA)

[6] are also described in this section. Section 3 describes

our proposed algorithm, the Accelerated Greedy Snake Al-

gorithm (AGSA). The intelligent techniques incorporated in

the method are also described here. Section 4 presents exper-

imental results for three test images, where we compare our

method to the GSA, FGSA and the SGSA in terms of num-
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ber of iterations and computational time. As we will see from

the results, our method provides significant improvement in

convergence speed.

2. OVERVIEW OF ACTIVE CONTOUR MODEL

An active contour is modeled as a parametric curve which

aims to minimize its internal energy by moving into a local

minimum. The position of the snake is given by the para-

metric curve v(s) = (x(s), y(s)). In practice, the snake is

considered as a set of control points vi, i = 0, 1, . . . , N − 1
which are positioned at an even distance of d from each other.

The snake constantly moves under the cost function (defined

later) and tries to position itself on the boundary of the object,

where it reaches local minima of the function.

The cost function or energy function of the snake can be

defined as follows:

ξsnake(v) =
N−1∑

i=0

[
α(ξelast(vi))+β(ξcurv(vi))+γ(ξimg(vi))

]
.

(1)

The Greedy Snake Algorithm works by examining the neigh-

borhood around each snake point and then moving to the po-

sition with the lowest energy. Let, each control point ex-

amines m neighbors, which are represented by vi(j), j =
1, 2, . . . ,m. The energy function defined in Equation (1) con-

sists of three different factors. The first factor ξelast(vi) gives

a measure of the elasticity and is defined as follows:

ξelast(vi) =
|d− ‖vi − vi−1‖|

maxj{|d− ‖vi(j)− vi−1‖|}
, (2)

where d denotes the average distance between all adjacent

points. This definition of first order term forces the control

points to be equally spaced.

The second factor ξcurv(vi) in Equation (1) measures the

curvature energy and is defined as follows:

vss(s) =
vi−1 − 2vi + vi+1

d2
. (3)

The parts of the snake where the curve is stretched, the

elasticity term will have a high value, while in parts of the

snake where the curve is kinked, the curvature term will have

a high value. The influence that these two terms have on the

overall snake energy is controlled by the control parameters

α and β, respectively. These two terms try to give the curve a

regular shape by preventing excessive bending or twisting.

The third factor ξimg(vi) in Equation 1 is the image en-
ergy force. This term takes into account the image gradient

values −‖∇I(x, y)‖2, where I(x, y) represents the image in-

tensity values and ∇ is the gradient operator. To eliminate

the effect of noise, a Gaussian smoothing operator is usually

used as a pre-processing step. While the internal energy tries

to keep a regular shape of the contour, the image energy tries

to attract the snake towards the object. Since image gradients

provide higher values in case of edge-crossing, this energy

compels the snake to stick to the object boundary as much as

possible. This term is defined as follows:

ξimg(vi) =
Emin − |E|

Emax − Emin
, (4)

where E represents gradient values, Emin and Emax denotes

the minimum and maximum gradient values in vi’s local neigh-

borhood (m), respectively. The influence of this term on the

overall energy function (Equation (1)) is controlled by the pa-

rameter γ.

Overall, GSA results in competitive running times for the

convergence of the optimization problem. It also provides

some elegant solutions to some of the underlying problems

in the original Snake algorithm like strict control parameters,

shrinking of the snake etc. (details can be found in [4]). How-

ever, since the underlying optimization process is still the sim-

ple Greedy algorithm, there is room for improvements. Two

extensions of our interest are discussed in the following Sec-

tion, which mainly focus on faster convergence for the Greedy

optimization process.

2.1. The FGSA and SGSA Algorithms
Both of these algorithms were proposed by Lam et al. in 1994

and 2006, respectively [5, 6]. These two algorithms use the

same energy functions and definitions as defined in the previ-

ous section. The only difference is in the neighborhood of a

control point being examined.

Fig. 1. 1. Different patterns applied by (a) GSA (b) FGSA (c)

SGSA. 2. The Optimal Routes for GSA, FGSA and SGSA.

In the Fast Greedy Snake Algorithm (FGSA) [5], instead

of applying a fixed pattern like GSA, alternating patterns are

used in successive iterations. As can be seen from Figure

1.1(b), there are two patterns, cross-shaped and plus-shaped.

Hence, for the GSA, the number of pixels considered for one

control point in one iteration is 9, whereas for FGSA it is 5
(assuming a 3X3 neighborhood).

In the Skippy Greedy Snake Algorithm (SGSA) [6], the

search is done in two alternating step sizes, namely δ0 and

δ1. Figure 1.1(c) shows the pixels considered when δ0 = 1
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and δ1 = 2. When one control point uses step size δ0, the

neighboring control points use step size δ1. These step sizes

are switched in every iteration.

Figure 1.2 shows the routes traced by the three algorithms:

GSA, FGSA and SGSA. In this figure, it is assumed that the

optimal route that a control point can take lies diagonally,

from bottom-left to top-right. We can see from Figure 1.2 that

GSA takes the straight optimal route, whereas FGSA takes

a zigzag route. Hence, it may appear that FGSA is actu-

ally slower than GSA. However, since the number of pixels

considered is almost half in case of FGSA, the actual run-

ning time will be better, as shown in detail in [6]. In case of

SGSA, when δ0 = 1 and δ1 = 2, no optimal pixels are be-

ing skipped. However, SGSA can apply larger δ1 values in

the early stages, when skipping pixels will not overshoot the

function. The switch between early stage and “fine-tuning”

stage can be made when the number of control points that

moved in one iteration is less than a pre-defined threshold.

Although both FGSA and SGSA provide intelligent and

efficient alternatives to the Greedy algorithm, and consequently,

better running times as we see from the experimental results,

there are still some limitations:

1. The effect of taking larger step sizes δ1 in the earlier

stages of convergence as suggested by SGSA is not as

useful as it can be, since alternating step sizes are used

in neighboring control points to keep the snake in a con-

trolled shape. Even if δ1 is set to a large value, the

neighboring control points still have δ0 = 1. As a re-

sult, the curvature energy term will prevent the control

point with large step size to go to the position closest

to the object boundary. The alternating control points

are assigned large and small step size respectively so

that the snake cannot deform beyond repair. This ef-

fects the convergence time in turns. Since the experi-

ments provided in [6] uses special initial Snakes which

are already close to the object boundary, this effect is

negligible in their case. However, in case of a circular

initialization, the effect becomes apparent.

2. The switch to the fine-tuning stage (δ0 = 1, δ1 = 2)

is made when the number of moving control points are

less than a certain threshold. This may result in skip-

ping of important pixels, specially if the shape is not

regular and the optimal path is not ideal. One control

point may reach near the object boundary quicker than

the other control points. And if the switch is not made,

this control point may skip over some boundary pixels.

3. As we will see from the experimental results, both in

case of SGSA and FGSA, sometimes the control points

in the final active contour is not equally spaced. Al-

though the elasticity term defined in Equation (2) tries

to force the control points to be equally spaced, the ir-

regular step patterns or sizes overpowers the elasticity

energy. This problem can be solved by paying very

close attention to control parameter tuning, which is not

always feasible.

Despite these limitations, FGSA and SGSA provide signifi-

cant improvement over the traditional GSA.

3. THE ACCELERATED GREEDY SNAKE
ALGORITHM (AGSA)

In this section, we provide details of our proposed Acceler-

ated Greedy Snake Algorithm (AGSA), which tries to over-

come the limitations of the SGSA and FGSA by incorporating

some intelligent techniques. The purpose of this algorithm is

to provide a robust method, where even with a simple initial-

ization, the snake will converge to the optimal position very

quickly. The parameter tuning also does not have to be rigor-

ous.

The principal motivation behind our algorithm was the

observation that when a snake is initialized near the image

boundary, the underlying pixels in the initial iterations are

usually background pixels. In most of the images, background

pixels are highly correlated and have similar gradient values.

As a result, in the beginning, the optimal position of a snake

control point should be the pixel in the control point neigh-

borhood that is closest to the center of the snake, irrespective
of the Energy Function value. Hence, there is always an at-

traction towards the center when we are moving through the

background pixels. However, since we are ignoring the En-

ergy Function value here, the snake might deform badly. We

solve this problem by re-sampling the control points before

every iteration (explained later). We also incorporate the re-

laxation technique described in [4] to form sharp corners.

3.1. The Accelerated Step
Let, Emax and Emin denote the maximum and minimum gra-

dient values in a control point neighborhood. Then:

1. We start by setting δ1 to a large value.

2. Whenever Emax − Emin < C, we jump to the neigh-

borhood pixel that is closest to the center of the snake,

ignoring the energy function value. Here, C denotes the

threshold which determines how similar the pixel gradi-

ent values should be to decide that they do not represent

object boundary.

3. Whenever Emax −Emin > C, we immediately switch

back to fine-tuning stage (δ0 = 1, δ1 = 2). The larger

difference in gradient values indicates that there might

be an underlying area of interest here. In this way, no

important pixels will be skipped.

The third step above might be susceptible to noise, since a

noisy pixel can generate false gradient value. However, this

can easily be overcome by continuously monitoring the value

of Emax − Emin even after switching back to fine-tuning
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Fig. 2. Effect of the accelerated step of AGSA.

stage. If we find that Emax−Emin < C for some successive

iterations, we can switch back to step 1 again.

Figure 2 depicts the effect of the accelerated step. The

neighboring pixels of one control point are shown. As we can

see, the control point jumps to the pixel closest to the center

of the snake. Similarly, all control points jumps to such po-

sitions that the snake shrinks towards the center. Eventually,

one of the object boundary pixels will come within the range

of a control point. Then, we immediately switch back to fine-

tuning stage and slowly converge to the final snake. In that

way, we will be covering bigger grounds in the initial stages

without skipping any important pixels.

3.2. Re-sampling
Since we are ignoring the value of the energy function when

accelerating, our control points will move in an irregular way.

As a result, they might come too close to each other, or move

away too far from each other. To avoid this problem, we use

re-sampling before every iteration as follows:

1. Whenever the distance between two successive control

points is less than a scalar multiple of the average dis-

tance, we remove one of them.

2. Whenever the distance between two successive control

points is greater than a scalar multiple of the average

distance, we add a new control point in between them.

The scalar multiples above can be varied according to need. In

this way, not only does the snake maintain a controlled shape,

the final contour consists of evenly spaced control points, as

we will see from the experimental results section.

3.3. Relaxation
This idea was first described in [4]. The curvature energy

ξcurv(vi) is re-computed for the control points before every

iteration. This re-computation is done to relax the control pa-

rameter β to form a sharp corner. Each control point is com-

pared with its two neighbor control points in terms of cur-

vature values. If the curvature value of one control point is

higher than its neighbors and higher than a pre-defined thresh-

old, then the magnitude of image gradient at that point is eval-

uated. If the magnitude is higher than another pre-defined

threshold, then for that particular control point β is set to 0.

In that way, a sharp corner can be formed at that point [11].

4. EXPERIMENTAL RESULTS

In this section, we provide the results of running the AGSA

algorithm on 3 test images. The images were of resolution

200X200, 200X200 and 300X300, respectively. The images

with the initial snake (50 control points) are shown in Figure

3(a). The results were compared with that of the GSA, FGSA

and SGSA in terms of number of iterations and computational

times.

To fairly compare the results, the control parameter values

were set to α = 1.2, β = 1, γ = 1.2. The threshold C for our

proposed method was set to 5. Both for SGSA and AGSA, δ1
was set to 4 in the initial stage. As in [6], the switch to fine-

tuning stage in case of SGSA was made when the number of

moving control points were less than 10. For the relaxation

of β, the curvature threshold was set to 0.3 while the image

gradient threshold was set to 120 (please refer to Section 3.3

for details).

Fig. 3. The original images and resultant images after apply-

ing the algorithms: (a) Original image (b) GSA (c) FGSA (d)

SGSA (e) AGSA.

Figure 3(b)-(e) shows the final contours achieved for the 3
images by running each algorithm. Table 1 shows the number

of iterations needed to converge and the corresponding com-

putational time for each algorithm on each image. As we can

see from the results, AGSA reduces the number of iterations

to less than half of that of SGSA. Although AGSA incorpo-

rates re-sampling and relaxation before each iteration, due to

the reduction in number of iterations, the computational time

is significantly improved. If we compare the results of GSA

and FGSA, we see that although FGSA requires more iter-
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Table 1. Comparison of number of iterations and computa-

tional time (in seconds) for the four algorithms on the three

images (best one bold-faced, second best emphasized).1

Image:→ Image 1 Image 2 Image 3

Algorithm↓ I T I T I T

GSA 101 3.7 125 4.01 104 3.92

FGSA 134 3.3 148 3.72 136 3.32

SGSA 95 2.8 110 3.21 97 2.99
AGSA 34 1.51 40 1.61 38 1.55

ations, the computational time is reduced. This is because

FGSA considers only 5 pixels in the 3X3 neighborhood (Fig-

ure 1.1(b)), where GSA considers all the 9 pixels. SGSA and

AGSA also considers all the 9 pixels, but due to their skippy

nature, the number of iterations and consequently, the com-

putational time is reduced.

We can immediately see the effect of re-sampling and re-

laxation if we compare the resultant images from Figure 3.

The blue dots denote the control points for which β has been

relaxed in case of GSA and AGSA. If we compare the result

of image 1 for AGSA and SGSA, we see that SGSA indeed

has some control points which are too far from each other

than the average distance. As a result, the bottom left corner

of the final contour is not well defined (Figure 3.1(d)). But

in case of of AGSA (Figure 3.1(e)), because of re-sampling,

the final control points are evenly spaced and the contour is

better-defined. In case of AGSA, the final snake for the three

images consisted of 36, 35 and 34 control points respectively,

reduced from the 50 points because of re-sampling. The cor-

ners are also sharper in case of AGSA due to relaxation.

For image 3 (and parts of image 1), we see that none of

the algorithms could go into the concave regions of the object

boundary. This is because we have not used any gradient vec-

tor force in any of these algorithms. The principal purpose of

our method was to demonstrate the power of its convergence.

Because of the flexibility and simplicity of the method, any

gradient vector force [7, 8] can be easily incorporated as a

valuable extension to the current method.

5. CONCLUSION AND FUTURE WORKS

A new Accelerated Greedy Snake Algorithm (AGSA) has been

presented in this paper. AGSA utilizes the fact that image

pixel gradients have similar values in case of background.

Hence, larger steps can be taken in the initial stages without

even considering the energy function value. To keep the snake

in a controlled shape and to achieve a smooth final result,

re-sampling and relaxation techniques were incorporated into

the algorithm. The proposed method provides better conver-

gence and consequently, reduced computational time even if

the initial snake is far away from the object. Our claim is ver-

1Legend: I −→ Number of Iterations; T −→ Computational time (sec-

onds).

ified by the provided experimental results, where we compare

our method with the GSA, FGSA and SGSA. We see that not

only our method provides reduced number of iterations and

better computational time, the final snake is smoother with

evenly spaced control points because of re-sampling.

In future, our objective is to incorporate some gradient

vector energy into the algorithm, so that the final snake can

reach the concavity of the objects. We will also focus on

coming up with a way to determine the optimal step size and

optimal control parameter values efficiently.
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