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ABSTRACT
In this paper, we propose a new Accelerated Greedy Snake
Algorithm (AGSA) for faster convergence of the active con-
tour optimization problem. The new algorithm takes advan-
tage of the similarity in image pixel gradients to take larger
steps in the initial stages of the snake. Due to its fast conver-
gence, the snake can be initialized far away from the object
without any issues. This algorithm also uses some intelli-
gent techniques (e.g. re-sampling, relaxation) to maintain a
regular shape of the snake at all times while approaching the
final contour. Experimental results on three test cases are pre-
sented, where the convergence efficiency of our method has
been compared with three contemporary algorithms in terms
of number of iterations and computational time.
Index Terms— Snake, Greedy, Contour, Optimization

1. INTRODUCTION

Active contours are used in image processing to detect the
boundary of an object. They have been widely used in appli-
cations like medical imaging, object tracking, video surveil-
lance etc [1]. Before the use of active contours, low level
gradient-based techniques like Canny Edge Detector [2] were
used for detection of object edge boundaries. But these edge
detectors suffer from the problem of discontinuity and are
sensitive to noise [3]. On the other hand, active contours
provide a smooth and continuous (albeit approximate) bound-
ary. Active contours were first introduced by Kass et al. [3]
in 1988. In this technique, the object boundary points (pix-
els) are represented with the help of a parametric curve. The
points move around in the image to minimize the energy func-
tion. The energy function is defined in such a way that the
points will reach their minimum energy on the boundary of
the object. Since that seminal paper, there has been a lot of re-
search going on, mainly focusing on two aspects of the frame-
work: 1) Convergence the optimization problem and 2) the
energy function. The original paper solved the optimization
problem with the help of variational calculus. A faster Greedy
algorithm was presented in [4]. Variations of the Greedy algo-
rithm has been presented in [5] and [6], where the step sizes
and neighborhood patterns of the Greedy algorithm are var-
ied to achieve better convergence. The energy function has
also been changed over the time, mainly to fit specific ap-
plication needs. The Gradient Vector Flow (GVF) snake [7]
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provides a significant improvement, where the gradient vec-
tors are introduced over the image to attract the snake to the
object accurately, even if the initial snake is far away. This
method is one of the first few methods which could attract the
snake towards the concavity of an object boundary. However,
this method is sometimes avoided due to its slow speed. A
faster variation of a similar energy was presented in [8]. A
detailed description of the current snake algorithms and their
variations can be found in [9].

The primary focus of our research is the convergence as-
pect of the problem. Our goal is to provide a simple yet ro-
bust algorithm to attract the snake towards the object quickly,
even if the initial snake is far away. Traditionally, the snake
is initialized as a circle with a radius large enough to cover
the majority portion of the image. Although there has been
research on initializing the snake efficiently [10], most of the
special initializations are application specific. The traditional
approach is still a subject of interest for its robustness and
simplicity. However, with the traditional approach, snakes
might result in really slow convergence, specially if the im-
age is of significant resolution.

In this report, we propose a new Accelerated Greedy Snake
Algorithm (AGSA) for faster convergence of the snake. Our
approach is based on similarity of image pixel gradients in
the initial stages of the snake. If gradients have similar value,
larger steps can be taken without even considering the energy
function value. Our method is based on the Skippy Greedy
Snake Algorithm (SGSA) presented in [6]. We also incor-
porate some intelligent techniques like re-sampling and re-
laxation to keep the snake in shape while taking larger steps
(“accelerating”). Although the experiments presented here
are based on the initialization of the snake as a circle, other
types of initializations can be incorporated too.

The rest of the paper is organized as follows: Section 2
gives an overview of the active contour model. The Gradient
Snake Algorithm (GSA) [4], Fast Greedy Snake Algorithm
(FGSA) [5] and the Skippy Greedy Snake Algorithm (SGSA)
[6] are also described in this section. Section 3 describes
our proposed algorithm, the Accelerated Greedy Snake Al-
gorithm (AGSA). The intelligent techniques incorporated in
the method are also described here. Section 4 presents exper-
imental results for three test images, where we compare our
method to the GSA, FGSA and the SGSA in terms of num-
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ber of iterations and computational time. As we will see from
the results, our method provides significant improvement in
convergence speed.

2. OVERVIEW OF ACTIVE CONTOUR MODEL

An active contour is modeled as a parametric curve which
aims to minimize its internal energy by moving into a local
minimum. The position of the snake is given by the para-
metric curve v(s) = (x(s),y(s)). In practice, the snake is
considered as a set of control points v;,2 = 0,1,...,N — 1
which are positioned at an even distance of d from each other.
The snake constantly moves under the cost function (defined
later) and tries to position itself on the boundary of the object,
where it reaches local minima of the function.

The cost function or energy function of the snake can be
defined as follows:
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The Greedy Snake Algorithm works by examining the neigh-
borhood around each snake point and then moving to the po-
sition with the lowest energy. Let, each control point ex-
amines m neighbors, which are represented by v;(j),j =
1,2,...,m. The energy function defined in Equation (1) con-
sists of three different factors. The first factor £.;q5:(v;) gives
a measure of the elasticity and is defined as follows:
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where d denotes the average distance between all adjacent
points. This definition of first order term forces the control
points to be equally spaced.

The second factor €.y, (v;) in Equation (1) measures the
curvature energy and is defined as follows:

Vi—1 — 20; + Vigq
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The parts of the snake where the curve is stretched, the
elasticity term will have a high value, while in parts of the
snake where the curve is kinked, the curvature term will have
a high value. The influence that these two terms have on the
overall snake energy is controlled by the control parameters
« and 3, respectively. These two terms try to give the curve a
regular shape by preventing excessive bending or twisting.
The third factor &;,,,4(v;) in Equation 1 is the image en-
ergy force. This term takes into account the image gradient
values —||VI(z,y)|?, where I(z,y) represents the image in-
tensity values and V is the gradient operator. To eliminate
the effect of noise, a Gaussian smoothing operator is usually
used as a pre-processing step. While the internal energy tries
to keep a regular shape of the contour, the image energy tries
to attract the snake towards the object. Since image gradients
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provide higher values in case of edge-crossing, this energy
compels the snake to stick to the object boundary as much as
possible. This term is defined as follows:
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where E represents gradient values, F,,;, and E,,,, denotes
the minimum and maximum gradient values in v;’s local neigh-
borhood (m), respectively. The influence of this term on the
overall energy function (Equation (1)) is controlled by the pa-
rameter -y.

Overall, GSA results in competitive running times for the
convergence of the optimization problem. It also provides
some elegant solutions to some of the underlying problems
in the original Snake algorithm like strict control parameters,
shrinking of the snake etc. (details can be found in [4]). How-
ever, since the underlying optimization process is still the sim-
ple Greedy algorithm, there is room for improvements. Two
extensions of our interest are discussed in the following Sec-
tion, which mainly focus on faster convergence for the Greedy
optimization process.

2.1. The FGSA and SGSA Algorithms

Both of these algorithms were proposed by Lam et al. in 1994
and 2006, respectively [5, 6]. These two algorithms use the
same energy functions and definitions as defined in the previ-
ous section. The only difference is in the neighborhood of a
control point being examined.

o> FGSA ----> SGSA

5, =1 (© 5=2
1

2

Fig. 1. 1. Different patterns applied by (a) GSA (b) FGSA (c)
SGSA. 2. The Optimal Routes for GSA, FGSA and SGSA.

In the Fast Greedy Snake Algorithm (FGSA) [5], instead
of applying a fixed pattern like GSA, alternating patterns are
used in successive iterations. As can be seen from Figure
1.1(b), there are two patterns, cross-shaped and plus-shaped.
Hence, for the GSA, the number of pixels considered for one
control point in one iteration is 9, whereas for FGSA it is 5
(assuming a 3.X 3 neighborhood).

In the Skippy Greedy Snake Algorithm (SGSA) [6], the
search is done in two alternating step sizes, namely dy and
d1. Figure 1.1(c) shows the pixels considered when §y = 1
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and 6; = 2. When one control point uses step size dg, the
neighboring control points use step size d;. These step sizes
are switched in every iteration.

Figure 1.2 shows the routes traced by the three algorithms:
GSA, FGSA and SGSA. In this figure, it is assumed that the
optimal route that a control point can take lies diagonally,
from bottom-left to top-right. We can see from Figure 1.2 that
GSA takes the straight optimal route, whereas FGSA takes
a zigzag route. Hence, it may appear that FGSA is actu-
ally slower than GSA. However, since the number of pixels
considered is almost half in case of FGSA, the actual run-
ning time will be better, as shown in detail in [6]. In case of
SGSA, when §y = 1 and §; = 2, no optimal pixels are be-
ing skipped. However, SGSA can apply larger §; values in
the early stages, when skipping pixels will not overshoot the
function. The switch between early stage and “fine-tuning”
stage can be made when the number of control points that
moved in one iteration is less than a pre-defined threshold.

Although both FGSA and SGSA provide intelligent and

efficient alternatives to the Greedy algorithm, and consequently,

better running times as we see from the experimental results,
there are still some limitations:

1. The effect of taking larger step sizes J; in the earlier
stages of convergence as suggested by SGSA is not as
useful as it can be, since alternating step sizes are used
in neighboring control points to keep the snake in a con-
trolled shape. Even if §; is set to a large value, the
neighboring control points still have §o = 1. As a re-
sult, the curvature energy term will prevent the control
point with large step size to go to the position closest
to the object boundary. The alternating control points
are assigned large and small step size respectively so
that the snake cannot deform beyond repair. This ef-
fects the convergence time in turns. Since the experi-
ments provided in [6] uses special initial Snakes which
are already close to the object boundary, this effect is
negligible in their case. However, in case of a circular
initialization, the effect becomes apparent.

2. The switch to the fine-tuning stage (69 = 1,01 = 2)
is made when the number of moving control points are
less than a certain threshold. This may result in skip-
ping of important pixels, specially if the shape is not
regular and the optimal path is not ideal. One control
point may reach near the object boundary quicker than
the other control points. And if the switch is not made,
this control point may skip over some boundary pixels.

3. As we will see from the experimental results, both in
case of SGSA and FGSA, sometimes the control points
in the final active contour is not equally spaced. Al-
though the elasticity term defined in Equation (2) tries
to force the control points to be equally spaced, the ir-
regular step patterns or sizes overpowers the elasticity

energy. This problem can be solved by paying very
close attention to control parameter tuning, which is not
always feasible.

Despite these limitations, FGSA and SGSA provide signifi-
cant improvement over the traditional GSA.

3. THE ACCELERATED GREEDY SNAKE
ALGORITHM (AGSA)

In this section, we provide details of our proposed Acceler-
ated Greedy Snake Algorithm (AGSA), which tries to over-
come the limitations of the SGSA and FGSA by incorporating
some intelligent techniques. The purpose of this algorithm is
to provide a robust method, where even with a simple initial-
ization, the snake will converge to the optimal position very
quickly. The parameter tuning also does not have to be rigor-
ous.

The principal motivation behind our algorithm was the
observation that when a snake is initialized near the image
boundary, the underlying pixels in the initial iterations are
usually background pixels. In most of the images, background
pixels are highly correlated and have similar gradient values.
As a result, in the beginning, the optimal position of a snake
control point should be the pixel in the control point neigh-
borhood that is closest to the center of the snake, irrespective
of the Energy Function value. Hence, there is always an at-
traction towards the center when we are moving through the
background pixels. However, since we are ignoring the En-
ergy Function value here, the snake might deform badly. We
solve this problem by re-sampling the control points before
every iteration (explained later). We also incorporate the re-
laxation technique described in [4] to form sharp corners.

3.1. The Accelerated Step
Let, E, 42 and E,,,;, denote the maximum and minimum gra-
dient values in a control point neighborhood. Then:

1. We start by setting d; to a large value.

2. Whenever F,,q; — Emin < C, we jump to the neigh-
borhood pixel that is closest to the center of the snake,
ignoring the energy function value. Here, C denotes the
threshold which determines how similar the pixel gradi-
ent values should be to decide that they do not represent
object boundary.

3. Whenever F,, 4, — Enmin > C, we immediately switch
back to fine-tuning stage (09 = 1,67 = 2). The larger
difference in gradient values indicates that there might
be an underlying area of interest here. In this way, no
important pixels will be skipped.

The third step above might be susceptible to noise, since a
noisy pixel can generate false gradient value. However, this
can easily be overcome by continuously monitoring the value
of Eyar — Fmin even after switching back to fine-tuning
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Fig. 2. Effect of the accelerated step of AGSA.

stage. If we find that F,,4, — Epnin < C for some successive
iterations, we can switch back to step 1 again.

Figure 2 depicts the effect of the accelerated step. The
neighboring pixels of one control point are shown. As we can
see, the control point jumps to the pixel closest to the center
of the snake. Similarly, all control points jumps to such po-
sitions that the snake shrinks towards the center. Eventually,
one of the object boundary pixels will come within the range
of a control point. Then, we immediately switch back to fine-
tuning stage and slowly converge to the final snake. In that
way, we will be covering bigger grounds in the initial stages
without skipping any important pixels.

3.2. Re-sampling

Since we are ignoring the value of the energy function when
accelerating, our control points will move in an irregular way.
As aresult, they might come too close to each other, or move
away too far from each other. To avoid this problem, we use
re-sampling before every iteration as follows:

1. Whenever the distance between two successive control
points is less than a scalar multiple of the average dis-
tance, we remove one of them.

2. Whenever the distance between two successive control
points is greater than a scalar multiple of the average
distance, we add a new control point in between them.

The scalar multiples above can be varied according to need. In
this way, not only does the snake maintain a controlled shape,
the final contour consists of evenly spaced control points, as
we will see from the experimental results section.

3.3. Relaxation

This idea was first described in [4]. The curvature energy
&eury(v;) 18 re-computed for the control points before every
iteration. This re-computation is done to relax the control pa-
rameter (3 to form a sharp corner. Each control point is com-
pared with its two neighbor control points in terms of cur-

vature values. If the curvature value of one control point is
higher than its neighbors and higher than a pre-defined thresh-
old, then the magnitude of image gradient at that point is eval-
vated. If the magnitude is higher than another pre-defined
threshold, then for that particular control point S is set to 0.
In that way, a sharp corner can be formed at that point [11].

4. EXPERIMENTAL RESULTS

In this section, we provide the results of running the AGSA
algorithm on 3 test images. The images were of resolution
200X200, 200X 200 and 300X 300, respectively. The images
with the initial snake (50 control points) are shown in Figure
3(a). The results were compared with that of the GSA, FGSA
and SGSA in terms of number of iterations and computational
times.

To fairly compare the results, the control parameter values
were set to « = 1.2, 8 = 1,y = 1.2. The threshold C' for our
proposed method was set to 5. Both for SGSA and AGSA, §;
was set to 4 in the initial stage. As in [6], the switch to fine-
tuning stage in case of SGSA was made when the number of
moving control points were less than 10. For the relaxation
of (3, the curvature threshold was set to 0.3 while the image
gradient threshold was set to 120 (please refer to Section 3.3
for details).

1@ ) O @ @
B0) 2.0b) 7.0 7.0 7.0
Il R IH =X ..Il

3.(a) 3.(b) 3.(c) 3.(d) 3.(e)

Fig. 3. The original images and resultant images after apply-
ing the algorithms: (a) Original image (b) GSA (c) FGSA (d)
SGSA (e) AGSA.

Figure 3(b)-(e) shows the final contours achieved for the 3
images by running each algorithm. Table 1 shows the number
of iterations needed to converge and the corresponding com-
putational time for each algorithm on each image. As we can
see from the results, AGSA reduces the number of iterations
to less than half of that of SGSA. Although AGSA incorpo-
rates re-sampling and relaxation before each iteration, due to
the reduction in number of iterations, the computational time
is significantly improved. If we compare the results of GSA
and FGSA, we see that although FGSA requires more iter-
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Table 1. Comparison of number of iterations and computa-
tional time (in seconds) for the four algorithms on the three
images (best one bold-faced, second best emphasized).!

Image: — Image 1 Image 2 Image 3
Algorithm| | I T I T I T
GSA 101 | 3.7 | 125 | 4.01 | 104 | 3.92
FGSA 134 | 3.3 | 148 | 3.72 | 136 | 3.32
SGSA 95 |28 | 110|321 |97 | 299
AGSA 34 | 15140 |1.61 |38 | 1.55

ations, the computational time is reduced. This is because
FGSA considers only 5 pixels in the 3X 3 neighborhood (Fig-
ure 1.1(b)), where GSA considers all the 9 pixels. SGSA and
AGSA also considers all the 9 pixels, but due to their skippy
nature, the number of iterations and consequently, the com-
putational time is reduced.

We can immediately see the effect of re-sampling and re-
laxation if we compare the resultant images from Figure 3.
The blue dots denote the control points for which 5 has been
relaxed in case of GSA and AGSA. If we compare the result
of image 1 for AGSA and SGSA, we see that SGSA indeed
has some control points which are too far from each other
than the average distance. As a result, the bottom left corner
of the final contour is not well defined (Figure 3.1(d)). But
in case of of AGSA (Figure 3.1(e)), because of re-sampling,
the final control points are evenly spaced and the contour is
better-defined. In case of AGSA, the final snake for the three
images consisted of 36, 35 and 34 control points respectively,
reduced from the 50 points because of re-sampling. The cor-
ners are also sharper in case of AGSA due to relaxation.

For image 3 (and parts of image 1), we see that none of
the algorithms could go into the concave regions of the object
boundary. This is because we have not used any gradient vec-
tor force in any of these algorithms. The principal purpose of
our method was to demonstrate the power of its convergence.
Because of the flexibility and simplicity of the method, any
gradient vector force [7, 8] can be easily incorporated as a
valuable extension to the current method.

5. CONCLUSION AND FUTURE WORKS

A new Accelerated Greedy Snake Algorithm (AGSA) has been
presented in this paper. AGSA utilizes the fact that image
pixel gradients have similar values in case of background.
Hence, larger steps can be taken in the initial stages without
even considering the energy function value. To keep the snake
in a controlled shape and to achieve a smooth final result,
re-sampling and relaxation techniques were incorporated into
the algorithm. The proposed method provides better conver-
gence and consequently, reduced computational time even if
the initial snake is far away from the object. Our claim is ver-

lLegend: I — Number of Iterations; T — Computational time (sec-
onds).

ified by the provided experimental results, where we compare
our method with the GSA, FGSA and SGSA. We see that not
only our method provides reduced number of iterations and
better computational time, the final snake is smoother with
evenly spaced control points because of re-sampling.

In future, our objective is to incorporate some gradient
vector energy into the algorithm, so that the final snake can
reach the concavity of the objects. We will also focus on
coming up with a way to determine the optimal step size and
optimal control parameter values efficiently.
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