Descriptive statistics

setwd("E:/Postdoc- Stephanie Melles/Paper 1 sem submission")
library(psych)
mt<-read.csv("summary statistics.csv")
describe(mt)
##               vars   n   mean     sd median trimmed    mad   min     max
## Site*            1 176   9.94   5.57  10.00    9.93   7.41  1.00   19.00
## Temp.C           2 165  12.83   4.94  13.10   12.84   5.49  1.80   25.40
## Mt.ppt           3 176   0.23   0.23   0.15    0.19   0.16  0.02    1.21
## DOC.mg.L         4 170  16.25   7.37  14.95   15.91   7.03  0.09   37.35
## Nitrate.ppm      5 103   0.16   0.18   0.11    0.13   0.05  0.05    1.64
## Sulphate.ppm     6 103   0.84   0.90   0.47    0.66   0.42  0.10    5.42
## Phosphate.ppm    7 103   0.37   0.22   0.17    0.37   0.01  0.16    0.62
## Iron             8 143 381.33 282.01 310.23  347.93 215.42  0.00 2134.70
## Precip_wk        9 176   3.43   3.17   2.64    2.91   2.37  0.00   15.06
## Yr_Dist.        10 176   7.12   9.09   2.00    6.06   2.97  0.00   24.00
## Geology         11 176   3.60   1.12   4.00    3.62   0.00  1.00    6.00
## Mixed           12 176  19.50   8.77  22.33   19.67   9.39  3.75   36.95
## Wet             13 176  35.75  13.58  35.17   34.93  10.28 12.61   65.00
## WV5             14 176   0.01   0.00   0.01    0.01   0.00  0.00    0.01
## Wet.Cover       15 176   3.62   3.47   2.36    3.12   3.30  0.01   11.66
##                 range  skew kurtosis    se
## Site*           18.00  0.02    -1.26  0.42
## Temp.C          23.60 -0.06    -0.74  0.38
## Mt.ppt           1.19  1.87     4.22  0.02
## DOC.mg.L        37.26  0.40    -0.22  0.57
## Nitrate.ppm      1.59  5.57    39.27  0.02
## Sulphate.ppm     5.31  2.36     7.03  0.09
## Phosphate.ppm    0.46  0.02    -2.02  0.02
## Iron          2134.70  2.23     9.55 23.58
## Precip_wk       15.06  1.86     3.86  0.24
## Yr_Dist.        24.00  0.84    -1.03  0.68
## Geology          5.00 -0.45     0.29  0.08
## Mixed           33.20 -0.19    -0.69  0.66
## Wet             52.39  0.55    -0.27  1.02
## WV5              0.01 -0.55    -0.14  0.00
## Wet.Cover       11.65  1.15     0.25  0.26
#Scaled summary statistics for roughness and phosphorus
scaledstatrough<-read.csv("roughness scaled summary statistics.csv")
describe(scaledstatrough)
##    vars   n mean sd median trimmed  mad  min   max range  skew kurtosis   se
## X1    1 176 8.95  2    9.3    9.06 1.63 4.43 12.08  7.65 -0.55    -0.14 0.15
scaledstatphosphate<-read.csv("phosphate scaled summary statistics.csv")
describe(scaledstatphosphate)
##    vars   n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 103 3.75 2.21   1.67    3.73 0.15 1.57 6.22  4.65 0.02    -2.02 0.22

#Principal component analyses - Figure 2 and Figure S1.

setwd("E:/Postdoc- Stephanie Melles/Paper 1 sem submission")
#Figure 2. 
library(FactoMineR)
library(factoextra)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(ggplot2)
mercurypca1<-read.csv("pcafigure2.csv")
head(mercurypca1)
##                                                   Geology Geology.1 Region
## 1            Basaltic and andesitic flows, iron formation         A     CF
## 2            Basaltic and andesitic flows, iron formation         A     CF
## 3            Basaltic and andesitic flows, iron formation         A     CF
## 4            Basaltic and andesitic flows, iron formation         A     CF
## 5            Basaltic and andesitic flows, iron formation         A     CF
## 6 Basaltic, dacitic, and andesitic flows, iron formations         B     CF
##        mhix Temp.C Mt.ppt DOC.mg.L Nitrate.ppm Sulphate.ppm Phosphate.ppm
## 1 0.9418975    5.7  0.044     9.16       0.154        3.093         0.592
## 2 0.9294352    7.7  0.020     4.68       0.116        2.152         0.157
## 3 0.9449565   11.4  0.119    19.70       0.171        4.293         0.592
## 4 0.9489639   10.5  0.051     9.77       0.166        2.442         0.157
## 5 0.9433831    9.3  0.075     7.75       0.181        2.592         0.599
## 6 0.9442036   10.3  0.630    19.34       0.168        0.429         0.592
##       Iron Precip_wk Yr_Dist.      Wet      WV5 Wet.Cover
## 1 247.4900  1.571429        0 55.71429 0.009663      0.01
## 2 232.9600  2.128571        0 55.71429 0.009663      0.01
## 3 742.3900  3.500000        0 55.71429 0.009663      0.01
## 4 240.8200  2.271429        0 55.71429 0.009663      0.01
## 5 352.9500  1.157143        0 55.71429 0.009663      0.01
## 6 457.2041  2.128571        0 18.18182 0.004431      0.01
#Subsetting the data and then standardizing the data
presencelanduse.pca1 <- PCA(mercurypca1[,4:16], graph = FALSE,scale=TRUE)
fviz_contrib(presencelanduse.pca1, choice = "ind", axes = 1:2)

res.desc <- dimdesc(presencelanduse.pca1, axes = c(1,2), proba = 0.05)
res.desc$Dim.1
## $quanti
##              correlation      p.value
## Wet.Cover      0.6518443 5.582980e-10
## Temp.C         0.4747458 2.515740e-05
## DOC.mg.L       0.4721889 2.819748e-05
## WV5            0.4315947 1.535403e-04
## Wet           -0.5934005 3.946600e-08
## Sulphate.ppm  -0.7770315 1.026552e-15
## 
## attr(,"class")
## [1] "condes" "list"
res.desc$Dim.2
## $quanti
##              correlation      p.value
## WV5            0.7821655 4.993508e-16
## Wet.Cover      0.4734967 2.660232e-05
## Wet            0.3121768 7.593693e-03
## Sulphate.ppm   0.3062099 8.897551e-03
## Iron          -0.4246162 2.012171e-04
## DOC.mg.L      -0.4653176 3.814274e-05
## Mt.ppt        -0.6226775 5.218960e-09
## 
## attr(,"class")
## [1] "condes" "list"
eig.val <- get_eigenvalue(presencelanduse.pca1)
eig.val
##        eigenvalue variance.percent cumulative.variance.percent
## Dim.1   2.2005786        16.927528                    16.92753
## Dim.2   1.8683581        14.371985                    31.29951
## Dim.3   1.5486474        11.912672                    43.21218
## Dim.4   1.4679059        11.291584                    54.50377
## Dim.5   1.2394159         9.533969                    64.03774
## Dim.6   1.0366538         7.974260                    72.01200
## Dim.7   0.9121358         7.016429                    79.02843
## Dim.8   0.7394327         5.687944                    84.71637
## Dim.9   0.7008610         5.391239                    90.10761
## Dim.10  0.5868503         4.514233                    94.62184
## Dim.11  0.3441403         2.647233                    97.26908
## Dim.12  0.2232037         1.716952                    98.98603
## Dim.13  0.1318163         1.013972                   100.00000
#Turning this into a biplot
landuse.presence1<-fviz_pca_biplot(presencelanduse.pca1, 
                                  # Individuals
                                  geom.ind = "point",
                                  fill.ind = mercurypca1$Region, col.ind = "black",
                                  pointshape = 21, pointsize = 2,
                                  palette = "jco",
                                  addEllipses = TRUE,
                                  # Variables
                                  col.var = "contrib",
                                  gradient.cols = "Dark2",
                                  legend.title = list(fill = "Groups", color = "Contrib",
                                                      alpha = "Contrib"),xlab = "PC1: 17.68%", ylab = "PC2:16.66%")+theme(legend.position="right")
landuse.presence1

library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.5-7
synoptic.dist <- vegdist(mercurypca1[,4:16],method='bray')
adonis(synoptic.dist~mercurypca1[,3])
## 
## Call:
## adonis(formula = synoptic.dist ~ mercurypca1[, 3]) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##                  Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  
## mercurypca1[, 3]  4    0.6019 0.150486  1.9218 0.10292  0.058 .
## Residuals        67    5.2465 0.078307         0.89708         
## Total            71    5.8485                  1.00000         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Figure S1.
presencelanduse.pca <- PCA(mercurypca1[,4:16], graph = FALSE,scale=TRUE)
fviz_contrib(presencelanduse.pca, choice = "ind", axes = 1:2)

res.desc <- dimdesc(presencelanduse.pca, axes = c(1,2), proba = 0.05)
res.desc$Dim.1
## $quanti
##              correlation      p.value
## Wet.Cover      0.6518443 5.582980e-10
## Temp.C         0.4747458 2.515740e-05
## DOC.mg.L       0.4721889 2.819748e-05
## WV5            0.4315947 1.535403e-04
## Wet           -0.5934005 3.946600e-08
## Sulphate.ppm  -0.7770315 1.026552e-15
## 
## attr(,"class")
## [1] "condes" "list"
res.desc$Dim.2
## $quanti
##              correlation      p.value
## WV5            0.7821655 4.993508e-16
## Wet.Cover      0.4734967 2.660232e-05
## Wet            0.3121768 7.593693e-03
## Sulphate.ppm   0.3062099 8.897551e-03
## Iron          -0.4246162 2.012171e-04
## DOC.mg.L      -0.4653176 3.814274e-05
## Mt.ppt        -0.6226775 5.218960e-09
## 
## attr(,"class")
## [1] "condes" "list"
eig.val <- get_eigenvalue(presencelanduse.pca)
eig.val
##        eigenvalue variance.percent cumulative.variance.percent
## Dim.1   2.2005786        16.927528                    16.92753
## Dim.2   1.8683581        14.371985                    31.29951
## Dim.3   1.5486474        11.912672                    43.21218
## Dim.4   1.4679059        11.291584                    54.50377
## Dim.5   1.2394159         9.533969                    64.03774
## Dim.6   1.0366538         7.974260                    72.01200
## Dim.7   0.9121358         7.016429                    79.02843
## Dim.8   0.7394327         5.687944                    84.71637
## Dim.9   0.7008610         5.391239                    90.10761
## Dim.10  0.5868503         4.514233                    94.62184
## Dim.11  0.3441403         2.647233                    97.26908
## Dim.12  0.2232037         1.716952                    98.98603
## Dim.13  0.1318163         1.013972                   100.00000
#Turning this into a biplot
landuse.presence<-fviz_pca_biplot(presencelanduse.pca, 
                                  # Individuals
                                  geom.ind = "point",
                                  fill.ind = mercurypca1$Geology.1, col.ind = "black",
                                  pointshape = 21, pointsize = 2,
                                  palette = "jco",
                                  addEllipses = TRUE,
                                  # Variables
                                  col.var = "contrib",
                                  gradient.cols = "Dark2",
                                  legend.title = list(fill = "Groups", color = "Contrib",
                                                      alpha = "Contrib"),xlab = "PC1: 16.93%", ylab = "PC2:14.37%")+theme(legend.position="right")
landuse.presence

synoptic.dist <- vegdist(mercurypca1[,4:16],method='bray')
adonis(synoptic.dist~mercurypca1[,2])
## 
## Call:
## adonis(formula = synoptic.dist ~ mercurypca1[, 2]) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##                  Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)   
## mercurypca1[, 2]  5    1.0924 0.218481  3.0319 0.18678  0.004 **
## Residuals        66    4.7561 0.072062         0.81322          
## Total            71    5.8485                  1.00000          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Structural equation model - Figure 3.

setwd("E:/Postdoc- Stephanie Melles/Paper 1 sem submission")
library(lavaan)
## This is lavaan 0.6-10
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
library(semPlot)
library(OpenMx)
## 
## Attaching package: 'OpenMx'
## The following object is masked from 'package:psych':
## 
##     tr
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## v purrr   0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x ggplot2::%+%()   masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x dplyr::filter()  masks stats::filter()
## x dplyr::lag()     masks stats::lag()
library(knitr)
library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
sem<-read.csv("figure3 sem.csv")
#Specifying the model based on the apriori circulated previously for feedback
modeltestsem <-'
#Latent variables
Watershed=~ Wet+WV51000+Geology+Yr_Dist.+X.wetcoverlog+Mixed
#Correlations
  Wet ~~      Yr_Dist.
  WV51000 ~~         Mixed
  WV51000 ~~        Temp.C
  Yr_Dist. ~~  Sulphate.ppm
  WV51000 ~~  Sulphate.ppm
   X.wetcoverlog ~~         Mixed
   Yr_Dist. ~~      DOC.mg.L
#Measurement
Wet  ~ Sulphate.ppm
 DOC.mg.L  ~       Temp.C
 DOC.mg.L~Sulphate.ppm
 Precip_wk~Phosphate10
Precip_wk~Nitrate.ppm
Wet  ~   X.wetcoverlog
 Geology  ~ X.wetcoverlog
 WV51000  ~  Sulphate.ppm
 Iron  ~       WV51000
WV51000 ~ X.wetcoverlog
DOC.mg.L  ~ X.wetcoverlog
Temp.C  ~ X.wetcoverlog
Temp.C  ~   Phosphate10
 Temp.C  ~  Sulphate.ppm
 Sulphate.ppm  ~ X.wetcoverlog
 Temp.C  ~   Nitrate.ppm 
Mt.ppt10~Watershed+Precip_wk+Iron+Temp.C+Sulphate.ppm+DOC.mg.L+Wet+Phosphate10+Nitrate.ppm+X.wetcoverlog
'
#Fitting the model to the dataframe
fittestsem <- cfa(modeltestsem, data = sem, missing='fiml',fixed.x=FALSE,std.lv=TRUE,estimator="MLR")

summary(fittestsem,fit.measures = TRUE, standardized=T,rsquare=T)
## lavaan 0.6-10 ended normally after 191 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        68
##                                                       
##   Number of observations                           176
##   Number of missing patterns                        12
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                                 44.031      45.372
##   Degrees of freedom                                 51          51
##   P-value (Chi-square)                            0.745       0.696
##   Scaling correction factor                                   0.970
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                               508.051     518.746
##   Degrees of freedom                                90          90
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  0.979
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.029       1.023
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.023
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -311.672    -311.672
##   Scaling correction factor                                  1.293
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)       -289.656    -289.656
##   Scaling correction factor                                  1.155
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                 759.343     759.343
##   Bayesian (BIC)                               974.936     974.936
##   Sample-size adjusted Bayesian (BIC)          759.597     759.597
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.036       0.039
##   P-value RMSEA <= 0.05                          0.992       0.988
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.038
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.051       0.051
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Watershed =~                                                          
##     Wet               0.132    0.019    6.930    0.000    0.132    0.790
##     WV51000          -0.267    0.056   -4.786    0.000   -0.267   -0.312
##     Geology           0.112    0.013    8.676    0.000    0.112    0.913
##     Yr_Dist.         -0.189    0.047   -4.007    0.000   -0.189   -0.325
##     X.wetcoverlog    -0.132    0.071   -1.841    0.066   -0.132   -0.389
##     Mixed            -0.040    0.018   -2.154    0.031   -0.040   -0.161
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Wet ~                                                                 
##     Sulphate.ppm      0.211    0.082    2.570    0.010    0.211    0.208
##   DOC.mg.L ~                                                            
##     Temp.C            0.309    0.159    1.944    0.052    0.309    0.225
##     Sulphate.ppm     -0.711    0.171   -4.146    0.000   -0.711   -0.471
##   Precip_wk ~                                                           
##     Phosphate10       0.031    0.025    1.247    0.213    0.031    0.097
##     Nitrate.ppm       0.792    0.375    2.111    0.035    0.792    0.153
##   Wet ~                                                                 
##     X.wetcoverlog     0.205    0.110    1.868    0.062    0.205    0.414
##   Geology ~                                                             
##     X.wetcoverlog     0.109    0.073    1.484    0.138    0.109    0.299
##   WV51000 ~                                                             
##     Sulphate.ppm      4.198    1.920    2.187    0.029    4.198    0.806
##   Iron ~                                                                
##     WV51000          -0.129    0.038   -3.373    0.001   -0.129   -0.232
##   WV51000 ~                                                             
##     X.wetcoverlog     1.294    0.344    3.760    0.000    1.294    0.511
##   DOC.mg.L ~                                                            
##     X.wetcoverlog    -0.217    0.048   -4.568    0.000   -0.217   -0.296
##   Temp.C ~                                                              
##     X.wetcoverlog     0.132    0.034    3.895    0.000    0.132    0.247
##     Phosphate10       0.081    0.012    6.537    0.000    0.081    0.380
##     Sulphate.ppm     -0.167    0.107   -1.561    0.119   -0.167   -0.152
##   Sulphate.ppm ~                                                        
##     X.wetcoverlog    -0.117    0.043   -2.724    0.006   -0.117   -0.240
##   Temp.C ~                                                              
##     Nitrate.ppm      -0.693    0.354   -1.961    0.050   -0.693   -0.203
##   Mt.ppt10 ~                                                            
##     Watershed         0.828    0.189    4.379    0.000    0.828    1.165
##     Precip_wk        -0.382    0.147   -2.591    0.010   -0.382   -0.147
##     Iron              0.127    0.086    1.483    0.138    0.127    0.085
##     Temp.C            0.921    0.292    3.149    0.002    0.921    0.234
##     Sulphate.ppm      0.322    0.418    0.771    0.441    0.322    0.075
##     DOC.mg.L          0.331    0.184    1.802    0.072    0.331    0.116
##     Wet              -4.176    0.916   -4.557    0.000   -4.176   -0.984
##     Phosphate10       0.017    0.049    0.345    0.730    0.017    0.020
##     Nitrate.ppm       3.794    0.978    3.879    0.000    3.794    0.283
##     X.wetcoverlog     0.688    0.668    1.030    0.303    0.688    0.328
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Wet ~~                                                                
##    .Yr_Dist.          0.023    0.005    4.568    0.000    0.023    0.377
##  .WV51000 ~~                                                            
##    .Mixed             0.044    0.013    3.339    0.001    0.044    0.194
##    .Temp.C           -0.026    0.008   -3.046    0.002   -0.026   -0.183
##  .Yr_Dist. ~~                                                           
##    .Sulphate.ppm     -0.022    0.007   -3.375    0.001   -0.022   -0.253
##  .WV51000 ~~                                                            
##    .Sulphate.ppm     -0.094    0.053   -1.755    0.079   -0.094   -0.629
##  .X.wetcoverlog ~~                                                      
##    .Mixed             0.017    0.006    2.613    0.009    0.017    0.222
##  .Yr_Dist. ~~                                                           
##    .DOC.mg.L         -0.018    0.009   -1.979    0.048   -0.018   -0.155
##   Phosphate10 ~~                                                        
##     Nitrate.ppm      -0.003    0.005   -0.697    0.486   -0.003   -0.076
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Wet               1.372    0.069   19.769    0.000    1.372    8.189
##    .WV51000           2.140    0.602    3.553    0.000    2.140    2.496
##    .Geology           0.588    0.039   15.144    0.000    0.588    4.788
##    .Yr_Dist.          0.556    0.044   12.667    0.000    0.556    0.955
##    .X.wetcoverlog     0.542    0.026   21.227    0.000    0.542    1.600
##    .Mixed             1.255    0.019   67.742    0.000    1.255    5.106
##    .DOC.mg.L          1.128    0.190    5.927    0.000    1.128    4.535
##    .Precip_wk         0.482    0.039   12.346    0.000    0.482    1.762
##    .Iron              2.941    0.139   21.180    0.000    2.941    6.179
##    .Temp.C            1.058    0.046   23.019    0.000    1.058    5.853
##    .Sulphate.ppm      0.308    0.030   10.350    0.000    0.308    1.871
##    .Mt.ppt10          5.032    1.272    3.957    0.000    5.032    7.082
##     Phosphate10       0.776    0.064   12.202    0.000    0.776    0.920
##     Nitrate.ppm       0.064    0.008    7.834    0.000    0.064    1.202
##     Watershed         0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Wet               0.012    0.003    4.348    0.000    0.012    0.426
##    .WV51000           0.870    0.410    2.121    0.034    0.870    1.184
##    .Geology           0.004    0.001    4.742    0.000    0.004    0.289
##    .Yr_Dist.          0.303    0.024   12.426    0.000    0.303    0.894
##    .X.wetcoverlog     0.097    0.020    4.975    0.000    0.097    0.849
##    .Mixed             0.059    0.006   10.255    0.000    0.059    0.974
##    .DOC.mg.L          0.043    0.009    4.886    0.000    0.043    0.700
##    .Precip_wk         0.073    0.007   10.428    0.000    0.073    0.969
##    .Iron              0.214    0.068    3.135    0.002    0.214    0.946
##    .Temp.C            0.023    0.003    6.678    0.000    0.023    0.701
##    .Sulphate.ppm      0.026    0.004    6.315    0.000    0.026    0.942
##    .Mt.ppt10          0.124    0.057    2.196    0.028    0.124    0.246
##     Watershed         1.000                               1.000    1.000
##     Phosphate10       0.712    0.045   15.683    0.000    0.712    1.000
##     Nitrate.ppm       0.003    0.001    1.988    0.047    0.003    1.000
## 
## R-Square:
##                    Estimate
##     Wet               0.574
##     WV51000          -0.184
##     Geology           0.711
##     Yr_Dist.          0.106
##     X.wetcoverlog     0.151
##     Mixed             0.026
##     DOC.mg.L          0.300
##     Precip_wk         0.031
##     Iron              0.054
##     Temp.C            0.299
##     Sulphate.ppm      0.058
##     Mt.ppt10          0.754