The current study explores the concept of Molecular Imprinting Technology (MIT) and evaluates the ability of a molecularly imprinted hydrogel polymer (MIP) to preferentially uptake the template drug propranolol from aqueous solution. The extent of the molecular affinity and recognition was challenged by introducing a secondary competing structure during uptake. The release of propranolol as a response to environmental stimuli was investigated. The MIP was synthesized with copolymers methyl methacrylate (MMA) and N,N-dimethyl acrylamide (DMAA). Morphology was studied by scanning electron microscopy (SEM), ptake, displacement, and release experiments were studied by fluorescence spectroscopy. The SEM studies did not indicate the presence of molecularly imprinted cavities. The MIPs demonstrated preferential uptake in comparison to the non-imprinted (NIP) counterpart. The displacement studies revealed that uptake by the MIP is not very selective. The release studies demonstrated that ropranolol release can be tailored to respond to environmental stimuli such as temperature and, especially, pH.