Toronto Metropolitan University
Browse

The impact of colour visual attention for video summarization

Download (7.83 MB)
thesis
posted on 2023-04-13, 18:17 authored by Yiming Qian
A High Definition visual attention based video summarization algorithm is proposed to extract feature frames and create a video summary. Specifically, the proposed framework is used as the basis for establishing whether or not there is a measurable impact on summaries constructed when choosing to incorporate visual attention mechanisms into the processing pipeline. The algorithm was assessed against manual human generated key-frame summaries presented with tested datasets from the Open Video Dataset (www.open-video.org). Of the frames selected by the algorithm, up to 68.1% were in agreement with the manual frame summaries depending on the category and length of the video. Specifically, a clear impact of agreement rate with the ground truth is demonstrated when including colour-attention models (in general) into the summarization framework, with the proposed colour-attention model achieving stronger agreement with human selected summaries, than other models from the literature.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Electrical and Computer Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2014

Usage metrics

    Electrical and Computer Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC