posted on 2021-06-08, 09:50authored byYeongGyun Ryu
An experimental study on flapping wing flexibility in hovering flight has been conducted to investigate the wing flexibility for insect-inspired flapping Micro Aerial Vehicles (MAVs). Hawkmoth-like wing models, derived from Manduca sexta, were made of Polycarbonate (PC) sheet with a spanwise length of 200 mm and an aspect ratio of 6.18. For the distributions of wing flexibility, the wing thickness was selected as the design variable: rigid wing (3 mm-thick) and flexible wings (2, 1, 0.8, 0.5, 0.35, 0.2, and 0.1 mm-thick). In the experiment, the wing models were constrained to the symmetrical and sinusoidal flapping motions with sweeping and rotating amplitudes of 120° and 90° in water tank with size of 3.5 m×1.0 m×1.1 m. Aerodynamic force and flow structures for flapping the wing were measured using a six-axis force/torque sensor and a high speed camera with a laser using Digital Particle Image Velocimetry (DPIV). To compare the flow structures of flexible wings with rigid wing, they were captured at the same chordwise cross-section as the rigid wing, 50% of wing length. Based on the experimental results, vortices and aerodynamic force. Consequently, the wing with thickness of 0.8 mm has better aerodynamic characteristics than other wings in hovering flight. This finding will be instrumental in identifying the range of wing flexibilities that improves the aerodynamic efficiency for the development of insect-inspired flapping MAVs.