Toronto Metropolitan University
Browse
- No file added yet -

The effects of water temperature on fatty acid content in the diatom, navicula pelliculosa

Download (1.25 MB)
thesis
posted on 2021-05-24, 15:22 authored by Ellen Cameron
Algae are critical to aquatic ecosystems and provide nutritious food to primary consumers due to their ability to synthesize essential fatty acids, in particular, long-chain polyunsaturated fatty acids (LC-PUFA). Aquatic ecosystems are experiencing increases in surface water temperatures as a result of anthropogenic climate change. Elevated water temperatures can potentially cause thermal stress for algae and disrupt critical physiological and biochemical mechanisms. As a response to temperature changes, fatty acid composition in membranes shifts in order to maintain membrane fluidity. To gain a better understanding of how elevated temperature influences fatty acid composition, growth experiments of a cosmopolitan freshwater diatom species, Navicula pelliculosa, were performed in a temperature-controlled laboratory environment. Diatom cultures were grown under different thermal regimes to examine the effects of temperature and time on LC-PUFA content. Temperature treatments were found to elicit an asymmetrical response in FA content, potentially resulting in reduced LC-PUFA availability.

History

Language

English

Degree

  • Master of Science

Program

  • Molecular Science

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2017

Usage metrics

    Molecular Science (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC