posted on 2021-05-23, 18:29authored bySaeed Pouryazdian
Electroencephalogram (EEG) is widely used for monitoring, diagnosis purposes and also for study of brains physiological, mental and functional abnormalities. EEG is known to be a high-dimensional signal in which processing of information by the brain is reected in dynamical changes of the electrical activity in time, frequency, and space. EEG signal processing tends to describe and quantify these variations into functions with known spatio-temporal-spectral properties or at least easier to characterize. Multi-channel EEG recordings naturally include multiple modes. Matrix analysis, via stacking or concatenating other modes with the retained two modes, has been extensively used to represent and analyze the EEG data. On the other hand, Multi-way (tensor) analysis techniques keep the structure of the data, and by analyzing more dimensions simultaneously, summarize the data into more interpretable components.
This work presents a generalized multi-way array analysis methodology in pattern classification systems as related to source separation and discriminant feature selection in EEG signal processing problems. Analysis of ERPs, as one of the main categories of EEG signals, requires systems that can exploit the variation of the signals in different contextual domains in order to reveal the hidden structures in the data.
Temporal, spectral, spatial, and subjects/experimental conditions of multi-channel ERP signals are exploited here to generate three-way and four-way ERP tensors. Two key elements of this framework are the Time-Frequency representation (TFR) and CANDECOMP/PARAFAC model order selection techniques we incorporate for analysis. Here, we propose a fully data-driven TFR scheme, via combining the Empirical Mode Decomposition
and Reassignment method, which yields a high resolution and cross-term free TFR. Furthermore, we develop a robust and effective model order selection scheme that outperforms conventional techniques in mid and low SNRs (i.e. 010 dB) with a better Probability of Detection (PoD) and almost no extra computational overhead after the CANDECOMP/PARAFAC decomposition.
ERP tensor can be regarded as a mixture that includes different kinds of brain activity,
artifacts, interference, and noise. Using this framework, the desired brain activity could
be extracted out from the mixture. The extracted signatures are then translated for
different applications in brain-computer interface and cognitive neuroscience.