Version 2 2023-05-02, 18:21Version 2 2023-05-02, 18:21
Version 1 2021-06-08, 10:51Version 1 2021-06-08, 10:51
thesis
posted on 2023-05-02, 18:21authored byAli Rashidian
This research studied the shear and flexural behaviour of fiber reinforced lightweight self-consolidating concrete (FRLWSCC) beams made of three different fibers such as: High-Density Poly Ethylene (HDPE), Crumb Rubber (CR) and Polyvinyl Alcohol (PVA) compared with lightweight self-consolidating concrete (LWSCC) beams. The performances of all beams were described based on load-deformation or moment-rotation response, strain developments, crack characterization, failure modes, ductility, stiffness and energy absorbing capacity. All FRLWSCC shear beams showed higher ultimate shear resistance, ductility and energy absorption capacity compared to LWSCC beams. All FRLWSCC flexural beams at failure exhibited higher flexural capacity, more cracks with smaller width, higher ductility, higher energy absorption capacity and lower stiffness compared to their LWSCC counterparts. FRLWSCC beams especially made of HDPE fibers showed better shear and flexural capacities besides satisfactory ductility performance. Experimental shear and flexural capacities of FRLWSCC beams were compared with those predicted from Code based and other existing equations.