Toronto Metropolitan University
Browse
- No file added yet -

Optimally weighted local discriminant bases : theory and applications in statistical signal and image processing

Download (31.19 MB)
thesis
posted on 2021-06-08, 12:26 authored by Kamyar Hazaveh Hesarmaskan
This thesis is concerned with Local Discriminant Basis (LDB) algorithm, its properties, optimization and applications in feature extraction and classification. LDB algorithm targets features extraction from redundant dictionaries such as wavelet packets or local trigonometric bases at low computational complexity. As the main contribution of this thesis, an optimization process is introduced to further improve the accuracy of the overall scheme in applications when a region of interest can be specified by the experts in the field of application (based on LDB selected features) to further characterize signal classes in smaller regions. Audio signal and textured image classifications are practical applications that are studied in this thesis to test the efficiency of optimally weighted local discriminant basis algorithm (OLDB) as a feature extraction scheme. Various properties of the algorithm such as noise behavior and stability analysis are studied from an engineering perspective. The implementation aspects of the algorithm in one dimension are reviewed as well as in two dimensions that serve as implementation guidelines.

History

Language

eng

Degree

  • Master of Applied Science

Program

  • Electrical and Computer Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Thesis Advisor

Kaamran Raahemifar

Year

2002

Usage metrics

    Electrical and Computer Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC