Toronto Metropolitan University
Browse

No-Reference Image Quality Assessment Of Large FLAIR MRI Datasets

Download (33.95 MB)
thesis
posted on 2021-10-14, 20:50 authored by Joshua P. Seguin
The study of neurodegenerative diseases have found promise through white matter lesions best visualized in FLAIR MRI; however, algorithms experience difficulty in generalizing to large multicenter datasets due to the variance of image quality and characteristics. This thesis presents a quality control tool that combines image quality assessment with outlier rejection algorithms; this tool is unique as it is specifically designed for large multicenter FLAIR MRI datasets. An image processing approach evaluates each volume by: intensity-based features, sharpness/blur-based features, signal- and contrast-to-noise ratios, noise field characteristics, motion artifact prevalence
and a total IQ score. The performance of this tool was evaluated on labelled ADNI and CCNA data reporting F1 scores of 0.82, and 0.85, respectively. Applications for this tool include potential rescan or longitudinal scanner study alongside the immediate application of outlier removal for
large FLAIR datasets.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Biomedical Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Thesis Advisor

April Khademi

Year

2020

Usage metrics

    Biomedical Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC