Toronto Metropolitan University
Browse

Models And Mining Of On-Line Social Networks

Download (1.54 MB)
thesis
posted on 2021-05-23, 14:52 authored by Yanhua Tian
Power law degree distribution, the small world property, and bad spectral expansion are three of the most important properties of On-line Social Networks (OSNs). We sampled YouTube and Wikipedia to investigate OSNs. Our simulation and computational results support the conclusion that OSNs follow a power law degree distribution, have the small world property, and bad spectral expansion. We calculated the diameters and spectral gaps of OSNs samples, and compared these to graphs generated by the GEO-P model. Our simulation results support the Logarithmic Dimension Hypothesis, which conjectures that the dimension of OSNs is m = [log N]. We introduced six GEO-P type models. We ran simulations of these GEO-P-type models, and compared the simulated graphs with real OSN data. Our simulation results suggest that, except for the GEO-P (GnpDeg) model, all our models generate graphs with power law degree distributions, the small world property, and bad spectral expansion.

History

Language

English

Degree

  • Master of Science

Program

  • Applied Mathematics

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2011

Usage metrics

    Applied Mathematics (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC