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Abstract

Latency Efficient Cache Placement using Learning Techniques in

Mobile Edge Networks

Lubna Badri Mohammed, 2022

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University, Toronto, Ontario, Canada

Future wireless networks provide interesting research challenges with the exponential growth in

mobile data traffic, the advent of new high computational and real-time applications that cause

many-fold increases in traffic and require low latency from the network. The emerging need to

bring data closer to users and minimize the traffic off the macrocell base station (MBS) introduces

caches at the edge of the networks. Storing most popular files in user terminals (UTs) and small

base stations (SBSs) caches inside the mobile edge networks (MENs) is a promising approach to the

challenges that face future data-rich wireless networks. Caching in the mobile UT allows obtaining

requested contents directly from its nearby UT caches through device-to-device communication.

This thesis addresses several challenges faced in developing a solution for cache placement at

the edge of the network due to continuous changes in content popularity, user mobility, and the

number of users within each network. It also considers the challenges related to high computation

requirements of future applications that need to satisfy power and delivery time constraints. This

dissertation aims to overcome those challenges in developing new solutions by employing intelligence

and machine learning techniques (ILT) for mobile edge networks. We formulate the cache placement

problem as a latency-efficient cache placement optimization problem that considers four objectives,

to place contents in SBSs and UT caches. The multi-objective function takes advantage of user

mobility patterns to decide on each SBS and UT cache content. The function is resolved into a

weighted fusion decision with four objectives. Three of them are related to user mobility computed

from previous data sets, and one objective is related to content popularity. We study the impact

of user mobility on increasing the cache hit rate, which decreases the latency of downloading the

requested data content. The results show the effect of user mobility on reducing the total energy

consumed for transmitting the contents to the UTs. We propose a new cache placement algorithm
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based on user locations, contact probability, communication range, contact duration, and content

popularity, formulating cache placement decisions as a binary classification problem (to cache and

not to cache). Artificial neural networks (ANN), support vector machine (SVM), and logistic

regression (LR) are used to model cache placement decisions. We investigate the characteristics

of the input features (attributes) and the properties of these characteristics that affect supervised

machine learning approaches. The performance of the new cache placement models using supervised

learning techniques is evaluated to study the sensitivity of classification decisions with the change of

system parameters. Finally, we develop a semi-supervised self-training (SSST) classification model

for the cache placement problem. We assess the proposed SSST algorithm through experiments with

datasets on different learning techniques. The performance comparison of different machine learning

models was carried out with the same datasets. For the hit rate, we investigated the sensitivity

of the classification by the changes in the environment parameters to show the effectiveness of the

proposed theme.
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Chapter 1

Introduction

1.1 Overview

In recent years, an exponential increase in traffic load has been consistently noticed in wireless net-

works due to multimedia streaming applications and services, mobile video streaming, web browsing,

and social network inter-connections. Wireless devices are expected to generate much higher traf-

fic than wired network devices in the future. To handle these traffic explosions, mobile wireless

networks require continuous evolution and improvement of the performance in terms of power con-

sumption, data throughput, and utilization of network resources such as backhaul network capacity

and bandwidth [2]. Mobile edge networks (MENs) are one of the candidate solutions in wireless

networks. These networks include small cell networks (SCNs), among others. Each SCN has one

macro base station and several small base stations (SBSs) with short-range communication, low-

power, low-cost, and cache storage to store contents closer to users [3]. However, the demand for

contents by devices and many different applications and services results in constraints on latency,

energy consumption, and quality of services (QoS), which require novel approaches to solutions at

both architectural and algorithmic levels.

Considering these problems, researchers investigated the possibility of caching content items

locally and proactively at the edge of the mobile edge networks (i.e., caching in SBS and user

terminal (UT)) before users request them. The local cache is a promising approach to improve

the network backhaul link bottleneck, and quality of service [3] [4] by providing faster connectivity,

lower latency, and less power consumption. Furthermore, SBSs, which are also sometimes called
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Femto caches, caching helpers, or simply helpers, have generally high storage capabilities that are

used to build wireless distributed caching infrastructure [5]. Utilizing the advantages of storing

contents closer to UTs at the edge of the mobile edge networks allows users to download requested

contents from neighboring SBS caches or UT caches located within the SBS cell through device-SBS

or device-to-device (D2D) communication, respectively, which can reduce the latency while saving

power consumption and the network backhaul resources.

The performance of future services and applications are highly dependent upon user location,

data rate, and network resources. Internet with massive mobile traffic, many mobile users with

different moving speeds suffer from poor support for such services. Thus, user mobility patterns

should be considered while designing caching in MENs. Due to dynamic updates of user demands,

content popularity, and user mobility, it is difficult to decide which contents to cache, where to cache

them, and from where to deliver them using traditional decision-making techniques. Moreover, the

large amount of data needed to develop algorithms for cache systems estimates cache contents,

access, and delivery a complex and challenging task. To meet all these challenges, we explore in

this dissertation machine learning and intelligent decision-making techniques for storing, accessing,

and delivering the vast amount of data generated within the MENs through caching.

1.2 Objectives

This thesis investigates the problem of cache placement in MEN for mobile uses. Its focus is to

formulate the problem as an optimization problem solvable through machine learning techniques.

It presents the development of algorithms for cache placement by utilizing the data storage and

computing capabilities of mobile edge networks. Furthermore, it studies the impact of mobility

input attributes on the cache placement performance and the relationship between them and system

attributes’ effect on the performance of cache placement. The main focus is on using machine

learning and intelligent decision-making techniques to implement latency-efficient cache placement

algorithms.
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1.3 Contributions

This thesis shows the effective use of cache placement in mobile edge networks depending on mobility

input attributes of the wireless network, content popularity, and the cache placement model. We

analyze, predict, evaluate and explain the issues related to cache content placement performance

and its impact on wireless network quality of service. The contributions of this thesis are:

• We introduce a mobile edge network model, including network, mobility, content popularity,

transmission delay, and energy models. Finally, these models develop and solve the multi-

objective cache placement optimization problem and support performance analysis and new

algorithm design.

• We first propose a new formulation of the cache placement problem that considers four ob-

jectives to place contents in SBSs and UT caches. The multi-objective function sets the

advantages of user mobility patterns to decide on each SBS and UT cache content. To study

the effect of user mobility on the cache placement performance, we exploit how user speed,

user mobility pattern through different paths within a cell, user contact probability with other

users and SBSs, and communication range between previous users and SBSs locations along

previously used paths, could affect the cache placement decisions.

• We formulate the cache placement problem as a weighted fusion decision with four objectives.

Three of them related to user mobility computed from recorded data sets, and one about

content popularity. The results describe the impact of user mobility attributes on increasing

the cache hit rate, which decreases the latency of downloading the requested data contents.

Furthermore, the results show the impact of user mobility attributes on reducing the consumed

energy for transmitting the contents to the UT.

• Following the formulation of a multi-objective function that maximizes the cache hit rate, we

propose to formulate the cache placement as a binary classification problem that is solved

using machine learning techniques. The input attributes of four objectives form the caching

decision space. We find the hyperplane that separates the space into two regions corresponding

to the binary classification problem, to cache and not to cache.
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• We propose a semi-supervised self-trained learning technique (SSST) to design a cache place-

ment binary classifier in mobile edge networks. We first train a supervised classifier based

on the logistic regression (LR) learning technique using a small number of labeled samples.

Next, we use the label propagation algorithm to self-train the classifier and generate pseudo

labels using the trained classifier to predict class labels for all the unlabeled data. Then,

pseudo labels with the highest probability of being correct are added to the labeled training

set. Finally, we retrain the classifier to predict cache contents for the labeled test dataset and

use the results to evaluate the prediction accuracy.

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 discusses mobile edge networks (MENs) main

models, a literature survey of solutions for mobile edge computing and caching challenges in terms of

energy and latency, mobile edge computing applications and services, and their target requirements.

It introduces caching in MENs, caching schemes, and caching performance metrics. Comparisons

between different caching techniques in wireless networks and MENs. Then, we summarize the

challenges that are faced in the design of caching systems in MENs. Finally, we discuss various

types of machine learning and intelligent decision-making techniques that can be used in the design

of a caching system at the edge of the network. An illustration of the research in cache developments

for wireless networks that apply intelligently and learning techniques (ILTs) in a specific domain in

their design is also presented.

In Chapter 3, the proposed caching system model in MENs based on machine learning and

intelligent decision-making techniques is presented. The main system models, components, and

relationship of system models are defined. Problem formulation for latency efficient and energy-

efficient caching optimization are discussed. Illustrative examples for possible user requests, access,

and delivery are also discussed.

In Chapter 4, a new formulation of the cache placement problem is investigated that considers

four objectives to place contents in SBSs and UT caches. The multi-objective function sets the

advantages of user mobility patterns to decide on each SBS and UT cache content. The problem is

formulated as a weighted fusion decision with four objectives, three of them related to user mobility
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computed from recorded data sets and one objective related to content popularity.

In Chapter 5, we propose a new cache placement algorithm formulated as a binary classification

problem (to cache and not to cache) based on user locations, contact probability, communication

range, contact duration, and content popularity. Artificial neural networks (ANN), support vector

machine (SVM), and logistic regression (LR) are used to model cache placement decisions. We inves-

tigate the characteristics of the input features (attributes) and the properties of these characteristics

that affect supervised machine learning approaches. The performance of new cache placement mod-

els is investigated using supervised learning techniques by placing the proposed models in work with

different system parameters. These parameters are varied to study the sensitivity of classification

decisions with the change of system parameters.

In Chapter 6, we develop a semi-supervised self-training (SSST) classification model for cache

placement problem. We assess the proposed SSST algorithm through experiments with datasets

on different learning techniques. The performance comparison of different machine learning models

was carried out with the same datasets. The test was made by changing one of the system param-

eters, fixing the other parameters, and computing the hit rate to investigate the sensitivity of the

classification by the changes in the environmental parameters.

Finally, Chapter 7 presents the conclusion and future work.

1.5 Summary

The first chapter presents an overview of cache placement in mobile edge networks and the main

objectives of this thesis. This is followed by the research objectives, research questions, and signif-

icance of the study. Finally, the chapter concludes with the organization of the thesis. Figure 1.1

shows the block diagram flow chart of the thesis outline.
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Figure 1.1: Block diagram flow chart of thesis outline.
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Chapter 2

Literature Review

2.1 Introduction

The increasing growth in mobile data traffic and new mobile applications lead to limitations on

end-user demands and communications at mobile devices. For example, end-users require quality

of services (QoS), service reliability, service availability, lower latency, and efficient energy usage.

To overcome limitations such as computation capabilities, storage capacity, latency, and energy

consumption, a new wireless network paradigm is needed [6]. Mobile edge network (MEN) archi-

tecture has been presented as a promising solution for future wireless networks. Proposals for MEN

architecture have been presented from industry and academia. They are evolved from mobile cloud

computing by utilizing the computing power and data storage away from the mobile devices into

the cloud. MEN architectures are summarized in four main models depending on their services

and operations. They are mobile cloud computing (MCC), mobile edge computing (MEC), fog

computing, and caching [7].

The fundamental concept of MEN is to make network contents, services, and resources closer to

the network edge. This can be implemented through the architecture design of MEN that deploys

flexible computing and utilizes storage resources at the mobile network edges. Table 2.1 illustrates

the network layers for the main four MEN architectures [7].

MEC is a network architecture concept standardized by the European telecommunications stan-

dards institute (ETSI) and the industry specification group (ISG). MEC was acknowledged as a

prime emerging technology for 5G networks [8]. At the edge of the network, the IT service environ-
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ment and cloud-computing capabilities are provided within the radio access network (RAN) [9].

Cisco proposed fog computing as an extension of cloud computing to wireless network edges.

The aim is to accommodate the Internet of Things (IoT) applications closer to users. At the same

time, fog computing nodes are distributed in a wide area and collaborate among multiple end-users

to provide processing and storage [10].

Academic researchers at Carnegie Mellon University proposed a cloudlet that extends the mobile

device-cloud architecture. Cloudlet is defined as a resource-rich computer or cluster of computers

that are connected to the Internet, and nearby mobile devices [11]. Both Wi-Fi and mobile networks

are deployed to provide near-real-time applications and handoff of virtual machine images among

edge nodes when a device moves. In addition, Cloudlet can reduce the end-to-end latency between

the mobile device and the cloud [12].

Future mobile networks will challenge being heterogeneous because of different types of base

stations and the massive and diverse contents. This enables the MEC to proactively exploit many

low-cost storage devices at various network edges to cache popular contents during off-peak periods.

Caching can be deployed at different levels in mobile networks instead of fetching them from the

core network [7]. Reducing the number of network hops between the location of the contents and

the user requesting the contents will reduce the latency for retrieving the contents [13]. The caching

places which are considered as caching levels in MEN architectures are a macro base station (MBS),

a small base station (SBS), and user terminals (UTs), allowing for the device to device (D2D)

communications.

2.2 Mobile Edge Computing and Caching

This section presents the benefits of MEC and caching as a technology for the future wireless

network. There is a number of research work done to show the efficiency of MEC in terms of energy

consumption, latency requirements, and storage capacity for different applications and services.

According to Cisco visual networking index on the global mobile data traffic forecast updated

report for the years 2016 to 2021, there will be 11.6 billion mobile devices, and the 5G connec-

tion will generate 4.7 times more traffic than the average 4G connection by 2021 [45]. In addition

to an expansion in the number of user terminals and a considerable traffic increase, the develop-
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Table 2.1: Different mobile edge network architectures.

MEN Architecture Hierarchy (Layers) References

MEC Core network, MEC server, [14], [15], [16], [17], [18],

and mobile devices [19], [20], [21], [22], [23],

[24], and [25]

Fog Computing Cloud, fog, and mobile [26], [27], [28], [29], [30],

devices [31], [32], [33], and [34]

Cloudlet Cloud, Cloudlet, and mobile [35], [36], [37], [12], [38],

devices and IoT [39], and [40]

Edge Caching Core network, MBS, SBS, [41], [42], [25], [43], and [44]

and D2D

ments of new applications demand high computation capabilities, low latency, energy consumption,

and increased storage capacity. These challenges require future mobile networks to satisfy these

constraints [46].

The main idea of MEC is to bridge the gap between the capability limitations of storage and

computation in user terminals and their increasing demands. It is done by placing storage and

computation resources at the edge of the network closer to user terminals. Thus, MEC can reduce

latency and energy consumption. In addition, there are various techniques in the literature proposed

to process data locally at the edge of the network and accelerate data streams, which will reduce

the traffic bottleneck toward the network [47].

Table 2.2 and Table 2.3 present an overview of the main research work areas in the literature

that proposed possible solutions for mobile edge computing and caching network in terms of energy

and latency, respectively. The research areas can be categorized into the following main streams:

1. Computation offloading: The advances in computing technology and various applications

that require high computation power and resources to run complex programs have increased

lately. These applications use wireless networks and run on mobile devices with limited

capabilities to support the needed resources [48]. One of the solutions to solve this problem

is computation offloading. In computation offloading, the mobile devices transfer tasks to an
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external edge cloud and receive the results from the edge cloud. Offloading increases mobile

terminal capabilities by migrating the computation to more resourceful computers (servers)

at the edge of the network [49].

2. Task caching: Computation offloading considers computing capabilities at the edge of the

network by assuming enough hardware and software resources to execute the tasks. Enough

storage capacity for computation offloading is another critical challenge that faces future

wireless networks. In [50], the authors proposed task caching, which refers to caching the task

(application computation task) and its related data at the edge of the network.

3. Content caching: Contents requested by end-users in massive multimedia services over mo-

bile networks face network capacity limitations and increase backhaul link loads. Requesting

the same content by different users also causes network congestion and a waste of network

resources. The development of mobile edge caching techniques is another solution for wireless

networks. Content caching of the most popular files can prevent duplicate transmission of

the same contents and improve end-user QoS. Quality of service can be improved since down-

loading the contents from network edge (for example, base stations or end-user terminals)

reduces latency compared to downloading the contents from Internet content providers (core

network) [7].

4. Resource allocation: With multiple user terminals, MEC servers have much fewer com-

putational resources. Therefore, one of the main issues in the design of MEC is to consider

resource allocation. It is the process of allocating finite radio and computational resources to

multiple mobiles under resource constraints. There are two categories of resource allocation

schemes for MEC: centralized and distributed. The centralized resource allocation, the MEC

server is responsible for all mobile information, makes the resource allocation decisions, and

sends the decisions to mobile devices. While in distributed resource allocation, many tech-

niques, including game theory and decomposition techniques, are used to develop distributed

algorithms [51].

5. Multicast caching: To reduce the load of wireless links in traditional unicast connection-

based transmission and to avoid transmitting the same file multiple times to multiple users,
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multicast caching is proposed for base stations in 5G mobile networks [52]. In multicast

caching, the popular content is brought close to the users. The optimization objectives are

to minimize the average latency for all content requests and minimize the average energy

consumption [53].

6. Service chain management: Service chaining policy refers to the term that describes

executing multiple service functions in an ordered list to guarantee performance and security

requirements [54]. In MEC networks, lightweight data centers can be used at the edge of the

network. In these centers, operators deploy service chaining to steer traffic by managing a set

of service functions. Service chaining is realized by using the software-defined network and

network function virtualization technologies. Service chain management can reduce network

latency by offloading the workload or bandwidth from the core network service [55].

Mobile edge computing and caching is considered a promising solution that supports many

emerging applications and services with specific constraints of latency, energy, and reliability [56].

In the following section, the applications and services designed to use the MEC architecture charac-

teristics will be presented. In addition, latency which is considered as the primary critical constraint

to these services will be analyzed.

Table 2.2: Overview of techniques based energy efficient in mobile edge computing and caching.

Area Ref. Approach

Computation offloading [48] Markov decision process (MDP)

[57] Minority games theory

[58] Multi-label classification and deep supervised learning

[59] An approximation collaborative computation offloading

[60] Karush Kuhn Tucker Lagrangian multiplier method

[61] Dynamic sequential game theory

Task caching [50] Mixed integer non-linear programming

Content caching [62] Poisson point processes modelling

Continued on next page

11



Table 2.2 – continued from previous page

Area Ref. Approach

[63] Lagrange multiplier and duality

[64] Social-tie factor modelling

[65] Dual decomposition

Resource allocation [66] Mixed discrete-continuous optimization

[67] Dual-decomposition method and alternating

direction method of multipliers

Multicast caching [68] Graph theory

[69] Distributed potential game model

[70] Clustering based on game theory

Table 2.3: Overview of techniques based latency efficient in mobile edge computing and caching.

Area Ref. Approach

Computation offloading [71] Heuristic search, reformulation linearization

technique, and semi-definite relaxation

[72] Lyapunov stochastic optimization

[73] Lyapunov optimization

[61] Dynamic sequential game theory

[74] Markov decision process

Service chain [55] Hash-based group management

management

Content caching [75] Transfer learning

[41] Assessment tests of caching solution

based on open source open air interface

[56] Submodular optimization

Continued on next page
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Table 2.3 – continued from previous page

Area Ref. Approach

Resource allocation [76] Auction theory

[77] Nash bargaining game

2.2.1 MEC Applications and Services

2.2.1.1 Services Categories

The characteristics of MEC networks offer opportunities to a wide range of applications and services

to be beneficial to users, operators, and service providers [19]. Although low latency and high data

rates are essential to many applications, in some 5G services and applications, they must have

as low as 1 ms latency. Service scenarios supported by 5G can be characterized by the following

categories:

1. Consumer-oriented services : Computation offloading in MEC enables users to run new

applications on their end terminals. These applications tend to take full advantage of new

technologies that satisfy their restricted requirements. Examples of consumer-oriented services

are listed below:

• Augmented Reality (AR) and Virtual Reality (VR): Requires tracking of moving

objects in real time, such as driver-assistance system, telemedicine, flight training, remote

education, city, sport or musical event guide, or gallery guide [9], [78], [46], and [79].

• Image/Video Editing: Requires considerable computational power and energy. With

increasing performance requirements and image/video editing algorithms complexity, and

the mobile terminals short battery lifetime, the users need to offload these tasks to be

computed and implemented at the network edge [80], [19], [81], and [82]

• Gaming: Considered as a delay sensitive application that requires computing and stor-

age resources for on-line data processing and reliable decision making [83], [8], [47],

and [84].
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• Web Accelerated Browser: Accelerate the web applications execution by offloading

intensive computation from the end devices. Most browsing functions such as web con-

tent evaluation, optimized transmission, and application execution. Besides offloading

computation, this service aims to maximize the battery life of end-user devices [85],

and [86].

• Image/Voice/Video Recognition: Object detection, recognition, and classification

have many applications, from face recognition, vehicular license plate recognition, voice/images

classification, and home security. These algorithms implement complex computations

that can be offloaded away from the capturing devices to simplify the design of these

devices. Executing applications at network edges, the network can avoid congestion

caused by video stream uploading and result in lower latency in the overall application

execution [87], [51], [88], and [89].

2. Operator and Third Party Services: MEC offers new ways for information technology

to store, process, and analyze data and create new services that solve complex systems [90].

Operators of third parties start to recognize MEC technologies and transfer mobile network

functionality to the edges of the network [19]. Examples of this type of service are given

below:

• Internet of Thing: IoT connects everyday objects such as physical devices, vehicles,

home appliances, and other embedded items with electronics, software, sensors, actua-

tors, and network connectivity and brings the connected world into reality. IoT requires

intensive computation, massive storage, and data sharing capabilities. MEC enables the

environment for these requirements to allow objects to connect, execute tasks through

computation offloading, and exchange data through caching on edge, [91]. Example

of these services are: e-health [92], automatic driving [93], industrial automation [94],

etc [95] and [96].

• Big Data: It requires connecting billions of devices, collecting a massive amount of

information, analyzing the collected data, and executing intelligent techniques to un-

derstand the datasets. It requires implementing deep learning or similar techniques to

extract knowledge from a huge amount of data efficiently. MEC architecture provides
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the infrastructure to collect, store, and execute complex algorithms at the edge of the

network closer to user terminals [97]. Examples of services that can satisfy their require-

ments through adopting MEC architecture are: smart cities infrastructures [98] and

transportation [99], solving traffic congestion [100], waste management [101], electronic

vehicle charging [102], etc.

3. Network Performance and QoS Improvements Services: MEC assists network per-

formance improvement and/or improving quality of service (QoS) through radio analytics

applications and RAN-aware content optimization [19]. Examples of such services are:

• Radio/Backhaul Optimization: Radio/backhaul network traffic requirements can be

monitored, collected, analyzed in MEC. Then, running an optimization application on

MEC that can optimize overall network performance and improve QoS [67].

• Traffic Monitoring/Shaping: This type of service is used to control and re-route the

traffic in the MEC and perform the coordination between radio and backhaul links [67].

• Content Caching: The considerable increase in mobile data traffics, which leads to

increased data requests from the core network, emerges MEC design to include new

services that improve network performance and QoS by adding caching technology at

the edge of the network. Caching the most popular contents during off-peak traffic

periods is a solution to minimize duplicate transmission of the same files requested by

user terminals in temporal and spatial demands. Also, caching contents at the edge of

the network through wireless connection reduces the download latency of the same data

downloaded through backhaul links from core network [75] and [7].

2.2.1.2 Applications and Services Target Requirements

The previous section presented the most popular applications and services that current research

progresses promise to include in future wireless networks. We characterized them according to the

benefits from these services. The target requirements for these applications and services can be

measured in terms of bandwidth, latency, reliability, storage, and mobility. Table 2.4 illustrates the

target requirements for different services and applications [103], [46], [104], and [105]. The reliability

can be defined as the probability of successful transmission of a certain amount of data from one
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peer to another peer within a given deadline or time frame [106]. Additionally, storage indicates if

the target service requires storage capacity for its manipulated data, and mobility indicates if the

service needs processing of user terminals locations. Based on the requirements given in Table 2.4,

latency is highly critical in most of these applications and services.

In the next section, the sources of the latency in a mobile network and current approaches to

achieve low latency are discussed.

Table 2.4: Target requirements for different services and applications in future wireless networks.

App./Services Bandwidth Latency Reliability Storage Mobility

AR/VR 1 Mbps - 16 Mbps < 1ms ≤ 10−5 High High High

Image/Video 10 Mbps (5− 10) ms ≤ 10−7 High High

Editing

Gaming 10Mbps < 1ms ≤ 10−5 High Low

Image/Voice 1 Mbps - 1Gbps ¡1ms ≤ 10−5 High High

/Image Recognition

IoT (1− 100) Mbps < 20 ms ≤ 10−9 High High

Big Data (1− 100) Mbps < 20 ms ≤ 10−9 High Low

Radio/Backhaul > 1 Mbps (100− 1000) ms ≤ 10−7 Medium Low

Optimization

Traffic Monitoring (1− 10) Mbps 1000 ms ≤ 10−9 Medium High

/Shaping

2.2.2 Latency Sources in Mobile Networks

The total one way latency is the delay of a packet transmission in a mobile network which is

contributed by the RAN, backhaul , core network, and data center/Internet. Figure 2.1 illustrates

the contribution of latency through one way packet transmission. Total latency can be written as

follows [46]:

T = TRadio + TBackhaul + TCore + TTransport, (2.1)

where
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Figure 2.1: Total one way latency contribution in packet transmission.

• TRadio is the transmission time from the user terminal and eNB,

• TBackhaul is the time to build the connection between eNB and the core network,

• TCore is the core network processing time,

• TTransport is the data communication time between the core network and the data center/Internet.

The total end-to-end latency can be computed approximately as 2×T . In the following section, an

overview of the approaches to achieve low latency is presented.

2.2.3 Approaches to Achieve Low Latency

To achieve low latency, we need to enhance the four main latency contributors. In literature, various

techniques have been proposed to minimize each one of those latencies [46]. Figure 2.2 illustrates

the latency sources and the possible approaches for achieving low latency. These approaches can

be categorized as:

• RAN solutions such as frame/packet structure, advanced multiple access techniques, wave-

forms designs, modulation, channel coding, etc.
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• Caching includes device caching, small base station SBS caching, and macro base station MBS

caching.

• Core network development includes new core network entities such as software-defined network

(SDN), MEC, and network function virtualization ( NFV).

• MEC that enables caching such as service caching and data caching [51].

The focus of this research (the shaded area in Figure 2.2 ) is to find new solutions related to different

levels of caching (device caching, SBS caching, MBS caching) for MEC networks based on learning

techniques.

Figure 2.2: Latency sources and approaches for achieving low latency.

18



2.3 Caching in Mobile Edge Networks

Caching is presented as a promising technology solution to the challenges facing future wireless

networks and subsequent generations. Having many requests from connected users during peak

traffic hours, the massive increase in the amount of data exchanged within the network, and the

insufficient capacity of backhaul links can result in a long delay. The applications and services

described in the previous chapter required low latency communication. Caching concepts, different

caching schemes, comparisons between different caching techniques for different network topologies

and mobile edge computing (MEC) networks, and the limitations of caching techniques are presented

and discussed.

Caching refers to storing a certain amount of data at network edges, base stations, and user

terminals in the case of communication systems. Caching ability is measured by the size of stored

information whose unit is byte [107]. Caching supports the massive traffic in mobile networks

during peak time by enhancing information delivery capability and improving network throughput

and QoS for users over the long term. Enhancing user experience by improving throughput, latency,

and link capacity yields more significant network operators’ profits. According to CISCO, by 2021,

video traffic will be 82 % of all consumer Internet traffic, and the estimated total size would be

exceeding 3.3 Zettabyte per year [45].

The major applications and services that were discussed in Chapter 2 are based on audio and

video streaming. Mobile devices provide limited computation resources and storage capacity that

will not be able to meet the requirements of these services (see Table 2.4). The powerful technologies

available in MEC are needed to reduce and/or offer higher computation capabilities on network

edges. To reduce the latency, caching most popular videos at network edges through caching

functionality such that users effectively obtain their requested contents directly from caches instead

of using backhaul connections [107] and [108].

In each cell network, there is one MBS and several SBSs that are located close to the user

terminal (UTs). Although spectral efficiency will be enhanced because of increased spatial reuse,

such enhancements lead to intense interference and an increase in backhaul cost. For ultra-dense

small cell networks, inter-cell interference will highly reduce the spectral efficiency. SBSs share the

payload and serve multiple users based on the cooperative multi-point (CoMP) technique to solve
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cross-cell interference. Due to payload sharing between SBSs, the backhaul load will increase and

scale up with the increase of SBSs. A potential solution is by serving users’ requests locally from

caches located in SBSs and UTs that can eliminate the backhaul cost [109].

2.3.1 Types of Caching Schemes

The places that can be used to cache most popular contents within MENs are shown in Figure 2.3

and described below:

1. UT caching: Exploiting the storage resources in UTs is one of the key technology in 5G

networks [7]. In addition, caching in user devices allows the improvements of caching strategies

to allow D2D communications.

2. SBS caching: Each cell in MEN employs a large number of SBSs. SBS includes a higher

storage capacity than UT cache capacity. They are closer to the end-users and usually provide

higher data rates [7]. Therefore, utilizing caching in SBSs is a promising solution to improve

QoS in next-generation heterogeneous networks.

3. MBS caching: MBS covers a larger area within the heterogeneous network and can serve

more users. In addition, the storage capacity in MBS is higher than other caches within the

cell, leading to a higher probability of finding the requested file (hit).

To design a cache system, there are two separate phases: (1) cache placement phase and (2)

content delivery phase [110]. The contents are stored in cache memories within UTs, SBSs, and

MBS in the cache placement phase. Then, when users request the files during the delivery phase,

the contents are delivered from caches according to the caching delivery approach used.
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Figure 2.3: Architecture of mobile edge caching network.

2.3.2 Caching Performance Metrics

This research focuses on the performance metrics related to QoS and the energy efficiency of enabling

caching in MEC networks.

1. Latency In caching systems, the average content delivery latency is taken by a request de-

livered to the end-user. There are different types of latency generated in the caching system

during the delivery phase, depending on the source of the contents (user device, SB, or MBS).

Therefore, the latency metric is also referred to as delay, download time, or delivery time.

2. Cache Hit Rate Cache hit happened when the requested content found a copy in the cache.

Then, the cache hit rate indicates the number of cache hits divided by the total number of

requests. Another term can be derived from cache hit rate, which is the complement of cache

hits called cache miss rate. Cache miss rate indicates the number of cache misses divided by

the total number of requests. Thus, the total number of user requests equals the total number

of cache hits and cache misses. Depending on the cache type, cache hit rate can be referred

to as a local cache hit rate (UT cache hit rate), BS cache hit rate, and MBS cache hit rate,

respectively.

3. User Satisfaction When the request arrives at the SBS, and the content delivery starts, if
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the rate of content delivery is equal or higher than the bit rate of the content at the end of

service, this request is said to be satisfied. If the rate of the content delivery does not equal or

less than the bit rate of the requested contents, then the download of the requested delivery

will be interrupted, and the user will have less QoS [111].

2.3.3 Caching in Wireless Networks

Most research work in the literature cache either uncoded contents or uncoded parts of files during

the placement phase. In the case of coded file caching, the base station broadcasts the coded files

(linear combination of multiple files) to user terminals during the content delivery phase. Then, the

users can decode their files simultaneously [112].

During the delivery phase, the cache memory contents of the requested user are updated to

store new files. There are different techniques to implement cache replacement. Researchers have

proposed caching algorithms for wireless systems that range from simple algorithms to more ad-

vanced intelligent methods. These algorithms are divided into two main streams. The first is cache

replacement algorithms based on prior knowledge about content popularity, while the second is

cache replacement without prior knowledge about content popularity [113].

Table 2.5 shows a comparison of different caching techniques in literature in terms of their depen-

dency on content popularity, online learning, training phase, context-awareness, social awareness,

mobility awareness, and prediction ability.

In [114] and [115] least recently used (LRU) and least frequently used (LFU) algorithms are

used, respectively. These techniques are simple cache replacement algorithms that do not consider

future content popularity and update the caches continuously during the delivery phase. In the

LRU algorithm, the cache includes an ordered list which is updated to follow the recent access of

all cached contents. When the cache is full, the new content is placed in the least recently accessed

cache content. In the LFU algorithm, the cache includes an ordered list that is updated to follow

the access numbers to all contents. When the cache is full, the new content is placed in the least

frequently used cache content.

The content of cache can be changed based on prior knowledge of content popularity. The re-

search work in [116] and [117] use popularity statistics of different video files modeled using a Zipf
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distribution. The cache replacement algorithm by tracking variations in the popularity distribution

and updating cache content at user terminals and collaborative device-to-device communication is

combined with increasing the efficiency of content delivery. There is a trade-off between having

an optimal content replacement that predicts future requests efficiently and the speed of comput-

ing content popularity. Also, in these methods, there is no personalization of user context and

preferences.

In [118] and [119], authors exploited storing of video files closer to users in Femto caches. They

formulate the problem to increase the throughput by unloading the traffic from the main cellular

network. The work presented in [2] proposes caching and multicasting techniques, and caching

aims to allow popular content files at network edges to shorten the distance between contents and

requesters. At the same time, multicasting aims to serve identical requests happening at nearby

locations through common multicast streaming.

The exploiting of proactive caching contents based on file popularity and correlations among

users and files patterns are proposed in [3]. Files can be proactively cached during off-peak de-

mands using a machine learning algorithm and collaborative filtering with context awareness. The

procedure aims to predict the set of influential users and social structure and to proactively cache

strategic content on those UTs to utilize device-to-device communications. This approach requires

a training set of known content popularities and can learn to decide which content to place in the

cache during a training phase.

In [120], the cache strategy is modeled in a heterogeneous small cell network using a reinforce-

ment learning-based coded caching framework. Authors have designed an optimal cache placement

policy that uses the learned file popularity to find the optimal cache contents. The cache place-

ment policy takes into account the users’ connectivity to the SBS. At regular intervals, the cache

pre-fetches segments of the popular files to serve users’ requests.

The caching algorithm is presented in [121] based on contextual multi-armed bandits optimiza-

tion. In this algorithm, the SBS updates its contents regularly by observing the demand of cached

files and learning the popularity profile contexts over time. The objective of the multi-armed bandit

optimization is to maximize the number of cache hits. The objective of the multi-armed bandit

optimization is to maximize the number of cache hits.

In [122], a different extension of the multi-armed bandit framework is proposed. In this frame-
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work, the authors have exploited the topology of user connections by incorporating coded cache

contents. An optimal cache content placement strategy can be devised based on observations of

instantaneous demands that assume content popularity distribution.

While previous algorithms do not consider the future prediction of popular contents in the design

of cache replacement algorithm, the work in [123] and [124] aim to learn popularity trends. Their

works include the design of context-aware proactive caching. There is no prior knowledge about

content popularity in [123], while in [124] the cache replacement method learns the popularity of

contents and uses it to determine which contents to place in the cache and which contents to evict

from the cache.

2.3.4 Comparison of Different Caching Techniques in MEC

Different studies formulate the caching problem at the edge of the network. These proposals examine

the problem from different perspectives. In each study, the optimization problem is developed based

on input attributes manipulated by the optimization algorithm and the scheme of caching used in

the model. The performance indices in these proposals are overall delay, user satisfaction ratio,

offloading probability, and total throughput. However, they have one general objective: redirecting

user requests from the expensive and limited backhaul links to local cache storage at the edge of

MEC networks. Table 2.6 illustrates a comparison between different caching techniques in MEC

networks.

In [128], the authors studied the association between UTs and SBSs in small cell networks.

Based on file availability in SBS and the backhaul congestion state, the SBSs decide which users

they should serve. The problem is formulated using one-to-many matching game theory. In [129],

two proactive caching scenarios are examined. The goal in both cases is to keep the user satisfaction

ratio above the required limit. In the first case, the contents are cached proactively at the SBSs

during low-peak demands. The cache procedure is built on a supervised machine learning algorithm

using regularized singular valued decomposition (SVD). This technique includes two parts. Training

the input matrix representing the users-to-files rating association and predicting what files each user

will request (file popularity matrix). In the second case, the contents are cached proactively in users’

devices. The centrality metric measures the social influence and its connection with other nodes
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(social community). Then, the k-means clustering method forms a set of influential users within

a community (users’ social ties). The proactive caching procedure considers each user’s number

of times each file is downloaded to form a user-to-files history matrix. The beta distribution is

assumed to denote the probability that a given user selects content. The popular contents cached

in influential users’ devices are chosen based on the Chinese restaurant process (CRP). By caching

at UT and enabling D2D communication, the load on SBS and backhaul loads are reduced [129].

In [130], optimal two one-tier caching placement is presented based on the difference of convex

programming. The objective of the optimization problem is to maximize the offloading probability.

The offloading happens in three cases:

1. Self offloading when the requested contents are found on UT (local cache),

2. D2D-offloading when the requested contents are found from near devices, and

3. SBS-offloading when the requested contents are found in near SBS.
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Table 2.5: Comparison of different caching techniques.

Cache Content Online Training Context Social Mobility Predict

Technique Popularity Learning Phase aware Aware Aware Ability

LRU and LFU [114] [115] Yes No No No No No No

PopCaching [124] Yes Yes No No No Yes No

Femtocaching (coded cache) Yes No No No No No No

Femtocaching (uncoded cache) [116] Yes No No No No No No

QoE-oriented resource efficiency [117] Yes No No No No No No

Multicast aware caching [2] Yes No No No No No No

Proactive caching Based ML [3] No No Yes Yes Yes Yes No

Distributed caching [120] Yes Yes No No No No No

Context-aware cache [113] [121] No Yes No Yes No Yes No

Optimal uncoded cache [122] Yes Yes No No No No No

Decentralized cache [125] Yes No No No Yes Yes No

Stackelberg game caching [126] Yes No No No No No No

Popularity prediction caching [127] Yes No Yes Yes No Yes No

Cache-aware user association [128] Yes No Yes No No No No

Social and spatial caching [129] Yes No Yes Yes Yes Yes No

Optimal caching placement [130] Yes No No No No No No

Clustered D2D caching [131] Yes No No No No No No

Joint caching [132] Yes No No No No No Yes

Cell-site-aware caching [133] Yes No No No No No No

Adaptive caching [134] Yes No Yes No No No Yes

Mobility-aware caching [109] Yes No No No No Yes No
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Their results show that popular contents must be cached under relatively low node density while

other contents must be cached evenly under relatively high node density.

In [131], the authors formulate the caching problem as a video recommendation system. Files

and users are clustered depending on video files preferences. After clustering all files and users,

the cache scheme is formulated in two phases: the D2D cooperative phase, where files are stored in

UTs, and caching phase, where files are stored in SBS. The optimal caching is designed based on the

greedy intra-cluster algorithm to obtain a minimum average file download time. The results show

that clustering files before applying the optimal caching algorithm can reduce the computational

complexity of many involved users and files.

The work in [132] proposed joint caching, routing, and channel assignment for video files in

a collaborative small cell cellular network. Their objective is to maximize network throughput

by using a conflict graph to characterize the communication links interference. The optimization

problem is modeled as a large-scale linear programming problem that is solved using the column

generation method. The algorithm selects a subset of variables that have potential improvements

to the objective function to minimize the optimization problem’s complexity. The optimization

problem is then divided into two sub-problems: restricted master problem (RMP) and pricing

problem (PP). Their results show that the overall throughput of the video data delivered to users

is considerably increased over the state-of-the-art Femto caching models.

In [125], proactive caching is designed based on traditional collaborative filtering by regularized

singular value decomposition to estimate the popularity matrix. Then transfer learning is used to

improve the estimation accuracy by transferring and learning hidden knowledge from other domains

such as social networks. Finally, an optimal caching strategy is implemented as a distributed

iterative algorithm to update the cache. Results show that the user satisfaction ratio increases with

the number of SBS compared to other caching approaches.

Authors in [126] investigate proactive caching for service providers to reduce redundant backhaul

transmission to edge nodes (ENs). The Stackelberg game is used to formulate the problem, and

it was decomposed into two sub-games, a storage allocation game and a number of user allocation

games. The service provider is modeled as a leader that decides the prices for the storage and

backhaul resources on ENs. ENs are modeled as the followers. Their results show lower backhaul

resources can be achieved with proactive caching-based game theory than centralized popularity-
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based and random caching. The authors discussed the complexity and scalability of edge caching

in wireless communication networks where there will be a large number of ENs, users, and service

demands and will involve a considerable amount of data. The complexity is defined as the number of

iteration steps of the caching algorithm, and the amount of information exchanged between network

edges. The performance of caching algorithm with the increase of network size is addressed as the

scalability of the caching algorithm.

The popularity estimation used in caching techniques for video files in work presented previously

is based on user request probability or the number of views of videos. The work in [127] computes

video popularity for published and unpublished videos using intelligence-based content-awareness.

The prediction of video popularity enhances cache placement decisions as well as the QoS in cellular

networks.

In [134], an adaptive caching scheme is proposed that takes into account users’ behavior, content

popularity, request statistics from users, and operating characteristics of the cellular network. The

network operating characteristics include network topology, link capacity, routing strategy, cache

size, and energy usage to read/write files from hardware storage (called cache deployment cost).

In addition, content popularity is predicted using the extreme learning machine (ELM) based on

contents features. The features of the contents are computed using a combination of human per-

ception models and network parameters. The adaptive caching scheme uses a mixed-integer linear

program (MILP) to cache the results of popularity estimators. The caching decision is made while

the network is not heavily utilized. Without affecting network quality of service, popular content

can be transferred between BSs.

The impact of mobility awareness in the cache placement algorithm is discussed in [109]. The

authors formulate the problem of caching coded segments at BSs and UTs, considering user mobility

and the content amount per transmission. The optimization problem is formulated as an integer

programming problem that can be solved by sub-modular optimization. Figure 2.4 illustrates

different caching techniques’ objectives in MEC.
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Figure 2.4: Different caching technique’s objectives in MEC.
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Table 2.6: Comparison of different caching techniques in MEC.

Ref. Methodology Caching Input Objective Constraints Performance

Location Attributes Index

[128] Game Theory SBS Content availability Maximize UT to SBS Backhaul capacity Overall delay

Delivery data rate association utility Storage size

[129] Regularized SVD SBS User to files rating Minimize backhaul load Backhaul rate User satisfaction

Cache storage ratio

[129] Eigenvector centrality UT Users’ social ties Minimize small cell SBS data rate User satisfaction

K-means clustering Users to files history load D2D data rate ratio

Chinese restaurant process UT storage

[130] Difference of Convex UT Content popularity Minimize total offloading UT storage Offloading

programming SBS D2D transmission range probability SBS cache storage probability

SBS transmission range

Users and SBS densities

[131] Greedy intra-cluster UT D2D download time Minimize total average storage capacity Delay loss

algorithm SBS BS download time file download time

[132] Column generation SBS User requests Minimize schedule Cache capacity Total throughput

method File popularity length Received file fraction

Files cached in SBS

Channel capacity and active time

[125] Regularized singular SBS The popularity matrix Maximize number of users Cache size User Satisfaction

value decomposition served by neighbouring ratio

based collaborative filtering SBS

[126] Stackelberg game SBS File demand probability Minimize the total Cache Capacity Total backhaul

EN storage cost backhaul resources SBS coverage resources and

Backhaul bandwidth Maximize EN utility Outage

Backhaul cost

[127] Intelligence based BS Video popularity Minimizes the backhaul Cache capacity offload ratio

content-aware load

[134] Mixed-Integer BS Content popularity Minimize content Initial file transferring cost Predictive

linear program Cache deployment downloading delay Cache deployment budge Type-I and Type-II error

[109] Greedy Algorithm BS Set of files Maximize cache hit rate BS capacity Cache hit rate

UT Set of coded segments UT capacity

Cache strategy matrix
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2.3.5 Challenges in Designing Caching Techniques

Following the study of different caching techniques in literature, we can summarize the following

challenges:

2.3.5.1 Content Popularity Modelling

To improve the performance of caching strategies, it is required to incorporate content popularity

in caching decision making [124]. Table 2.7 shows the methods used to model content popularity

in literature. In many works, the popularity of files is generally modeled using the Zipf distribu-

tion of all files. Zipf distribution gives a fixed popularity profile, and it is assumed that content

popularity is known in advance. Based on Zipf distribution, a small portion of Internet content is

highly popular while the rest is rarely requested [127]. In reality, content popularity needs to be

estimated depending on a number of related factors and not only on the content popularity distri-

bution. Examples of these factors are files’ preferences, users’ preferences, context, social network

characteristics, previous requests, etc. Also, content popularity must not be fixed, and it is expected

to change continuously with time, date, and location.

The approach in [135] assumes that the popularity of video contents is changing slowly, and the

popularity distribution of all files can be considered as fixed and known before the cache placement

algorithm. Therefore, they defined the popularity distribution of video files depending on a number

of views vs. the rank of videos in terms of views.

In [121], context-dependent popularity profiles are learned online while observing users’ demands

and their context information. The placement algorithm does not depend on prior knowledge of

content popularity, but it models users’ context-dependent demands of files following Zipf distribu-

tion. The context information used in modeling the content popularity is the maximum number

of users served by SBS, the fraction of female users, and the fraction of underage users. The total

number of files used in the Zipf distribution formula is divided according to the context information

of users.

In [127], the authors proposed a popularity prediction model for video files. The popularity

of video content is estimated from both published (statistical information) and unpublished video

(newly uploaded videos). The process consists of the following stages, (1) Feature extraction from
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Table 2.7: Content popularity modelling in caching techniques.

References Content Popularity Method

[114], [115], [118], [119], [2], [3], [122] Zipf distribution

[126], [128]- [132], and [109]

[135] Number of views vs

rank of videos in terms of views

[121] Context-dependent Zipf-like

distribution

[127] Feature extraction and popularity

prediction for unpublished videos

[125], [120], and [134] Popularity estimation based on

learning methods

unpublished videos based on deep neural network technique, (2) Clustering the features resulting

from stage 1 based on collaborative filtering technique, and (3) Fit a regression model to predict

the popularity of unpublished videos while using the statistical information of the published videos

as a training set to the regression model.

The approach in [125] used Zipf distribution as the training set to design a learning-based

approach. Their model estimates content popularity using regularized singular value decomposition

(RSVD)-based collaborative filtering (CF), and they improve estimation accuracy using the transfer

learning (TL) technique.

2.3.5.2 User Mobility

Most of the work discussed in previous sections assumes that users remain stationary while request-

ing and obtaining files. Unfortunately, research with this assumption does not include mobility as

an effective parameter while taking cache placement decisions.

A user may be served by any SBS located in the user communication range. Thus caching

technique that does not rely on user mobility may duplicate copies of the same contents at multiple

nearby SBSs to serve a user request. This results in a waste of cache storage capacity and limits
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the varieties of cache contents

Considering mobility on the caching design in future wireless networks, caching can be classified

into three categories based on cache location:

1. Cache in SBS:

In [136], [137], [138], and [139], file caching in SBS while user is in mobility is considered.

2. Cache in mobile UT:

In [140], [141], [142], [143], [144], and [145], user mobility-aware caching designs are proposed

by utilizing D2D communication links.

3. Cache in SBS and mobile UT:

In [138], [142], [139], and [146], the researchers proposed user mobility-aware cache placement

in SBS and mobile UT.

Caching efficiency can be improved by exploiting user mobility-aware cache placement in SBS,

and UT [142]. However, few cache placement techniques have taken the impact of user mobility [109].

Most existing approaches that estimate cache contents proactively and store the contents in SBSs

face redundancy problems. This has happened in some caching strategies that have neighboring

SBSs storing the same popular contents. Redundancy results in wastage of cache resources and

minimizes the cache storage capacity that is available for users. The interactions between network

edges should be taken into account while optimizing the caching strategy [147].

2.3.5.3 Power Constraint

Energy consumption becomes a more challenging problem in the design of wireless communications

due to the increase in energy price, the number of broadband wireless network users, and growing

demand of the contents in the future networks [148]. Delivering contents from SBS to UTs and

from UT to another UT will consume power and drain energy at both the network and UT. Cache

system should be designed to find an optimal transmit power and sustain the continuous growth

of power consumption [149]. Using caching could reduce the user requests redundancy and thus

decrease energy consumption.
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Table 2.8: Power consumption-aware caching systems.

References Contribution

[150] Proposed content caching for smart grid enabled wireless multimedia

transmission system with optimal power allocation to users.

[109] Proposed an optimal transmit power of SBSs and UT

in order to reduce the delivery energy cost.

[151] Developed a framework to minimize the total network power

consumption by a joint design of adaptive BS selection, backhaul

content assignment and multicast beamforming.

[152] Proposed optimal allocation cooperative caching scheme for

Industrial Internet of Things (IIoT) in 5G heterogeneous networks

with minimum energy consumption.

[153] Formulate the optimal caching placement at the wireless

edge that maximize the energy efficiency of heterogeneous

wireless networks.

[154] Design a green content caching and mobile userbase station

(MU-BS) association mechanism in the SCNs.

[155] Propose two energy-efficient caching in heterogeneous networks:

scalable video coding (SVC)-based fractional caching and SVC-

based random caching.

The challenging problem is that by adapting the caching system to reduce power transmission,

sometimes the cached contents are never requested by users, which causes additional waste of energy.

Therefore, formulating a cache system requires involving this trade-off. Table 2.8 illustrates power

consumption-aware caching algorithms proposed for wireless networks.

2.3.5.4 Quality of Service (QoS)

The Quality of Service (QoS) is a network performance characteristic that is experienced by the end-

user. Two metrics can refer to the quality of service, and they are latency and throughput. These
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constraints are two important metrics that need to be considered while formulating the problem of

caching at the edge of MEN, as illustrated earlier on caching in future wireless networks.

1. Latency: In caching systems, latency refers to the average content delivery latency expe-

rienced by the end-use [107]. According to cache types, latency can be classified into three

types:

(a) Average latency of delivering the requested content from another nearby UT cache

through D2D communication.

(b) Average latency of delivering the requested content from nearby BS cache.

(c) Average latency of delivering the requested content from nearby MBS cache.

The latency is also referred to as delay, download time, and content delivery deadline.

New services and applications will appear in future wireless networks, such as augmented

reality (AR) and virtual reality (VR), with tight latency requirements than typical video

streaming. This adds challenge to the design of the caching system to optimize the source of

content to deliver it to the end-user within the delivery deadline. Caching at the edge of the

network promises to reduce the latency required for requested data access and delivery.

2. Throughput: In caching systems, the throughput refers to the data units that can be de-

livered through the network per unit time interval [107]. In MEC, this metric is used as a

joint indicator of network transmission capabilities. Authors in [163] discuss throughput ca-

pability in decentralized coded and uncoded caching in a multihop D2D communication for

next-generation cellular networks. In addition, they illustrate the effect of using the UT cache

placement strategy on the increase of throughput capabilities.
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Table 2.9: Latency computation in caching schemes.

References Contribution

[156] Proposed latency-centric placement and delivery strategies for

cloud and cache-aided wireless networks.

[143] Propose cooperative vehicle-aided content edge caching scheme

to minimize the content delivery latency.

[157] Proposed hybrid content caching algorithms for joint content

caching control in BSs and cloud units (CUs) subject to

finite service latency.

[158] Proposed a joint caching and association strategy to minimize

the average requested content download delay.

[159] Proposed an optimal cooperative content caching and delivery policy

aiming to minimize the average downloading latency.

[160] Proposed two content caching policies: caching popular files and

greedy caching in BS and D2D with the aim to minimize

transmission delay.

[161] Proposed probabilistic caching placement-aided throughput in stochastic

wireless D2D caching networks to measure the density

of successfully served requests by local device caches.

[162] Proposed deterministic caching algorithm and enable D2D

connections based on reinforcement learning to minimizing the download

latency.

36



Table 2.10: Throughput computation in caching schemes.

Reference Contribution

[160] Throughput scaling depends on video content popularity

when the number of files grows asymptotically large.

[164] Proposed femtocaching and D2D collaboration to improve video throughput.

[160] Proposed two content caching policies: caching popular files and

greedy caching in BS and D2D and investigate the behavior of the average

throughput per request.

[165] Proposed optimal file placement for deterministic and random

caching with the aim to increase throughput for high user

density wireless video network.

[162] Proposed deterministic caching algorithm based on reinforcement

learning to maximize system throughput.

2.4 Machine Learning and Intelligent Decision-Making Tech-

niques Based Caching Systems

The next generations of wireless networks need to be designed to satisfy the highly dynamic and

massive growth in capacity demand, the number of users, and the higher traffic density. Caching in

mobile edge networks (MENs) targets the increase of network throughput and improvement of the

QoS that enables energy and latency efficient performance of future applications and services. New

challenges to consider in the design of caching in MENs are: estimating content popularity, users

mobility, providing near-zero latency, and power-efficient communication through a higher level of

cache system management and automation. To meet all these challenges, a new approach in the

design of a cache system is needed. The merging of machine learning (ML) and artificial intelligence

(AI) techniques with the applications of big data analytics can monitor the considerable amount of

data generated within the MENs. This can provide a potential tool to model networks, and users’

behavior at a large scale [166]. Modern ML and AI systems depend on observed data to recognize
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patterns that can help learn and make decisions on unseen data sets. Therefore, the development

in data collection methods and computation capabilities have potential effects on building ML

systems [167].

In this section, various types of machine learning and intelligent decision-making techniques are

discussed. These techniques can be used to design an optimal caching system at the edge of the

network. This is done by interacting with the environment and learning the strategies of optimal

cache placement and cache delivery to minimize energy consumption and latency of delivering the

requested content to the users.

2.4.1 Intelligent Learning Techniques (ILTs)

Machine learning arises as a subfield approach to Artificial Intelligence (AI) that makes machines

able to access data and extract knowledge and learn from the data. Adding more data to the

training set, ML algorithms can model the data and automate for learning new data patterns and

updating its algorithms, called incremental learning.

ML techniques can be programmed to optimize some performance criteria by using training data

sets from experience. ML techniques apply to problems that can not be solved algorithmically or

expressed directly but can be identified through examples that reflect the appropriate solution. ML

algorithms find patterns in a given data set (data mining), and then the program makes a decision

based on what it learns from previous events [168]. AI, ML, and deep learning (DL) techniques

are overlapped terms. As they go from rule-based AI systems to ML and then to DL approaches,

more complex features and input-output relationships can be modeled and learned. AI solves

problems that can be described by a list of formal and mathematical rules. ML algorithm creates

a model based on learning the features extracted from input data and the output labels. Thus, it

enables models to understand the features in the data and extract intelligence that improves system

performance. DL is a subset of ML that can be used to create more complex models. DL models

consist of multiple processing layers that can learn representations of data within various levels,

and abstractions [169].

The authors in [170] give a higher level of description to the relationships between AI, ML, and

DL, showing the flowchart of the main components as illustrated in Figure 2.5.
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Figure 2.5: Flowchart of flow of operations in AI, ML, and DL
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2.4.2 Machine Learning and Intelligent Decision Making Techniques

for Optimal Caching Design

In next-generation wireless networks, ultra-dense heterogeneous networks, which are highly dy-

namic and complex, will add many challenges for network design and management. In addition,

the wireless network will face massive data consumption from users and machines, which adds more

complexity and challenges, as explained in section 2.2. The design of MENs that includes distribu-

tion of computational resources and storage devices in the form of local caches enables the utilization

of decision theory, complex ML, and AI approaches to providing possible solutions for the grow-

ing challenges. Developing an optimal caching system with frequent changes of input parameters

(users’ mobility, file requests probability, and contents popularity) to maximize network through-

put, minimize power consumption, and minimize content download time, is a highly computational

complexity problem. Machine learning and intelligent decision-making techniques-based approach

allow combining reasoning, learning, prediction, and decision-making algorithms to efficiently find

solutions for optimal cache design.

In the literature, there is a number of research work in cache developments for future wireless

networks that applied learning and/or decision approaches in a specific domain in their design.

Table 2.11 illustrates a summary of these research and the solution they provided. In addition, a

brief review of some of these techniques is given in the following.

2.4.2.1 Decision Theory

When the problem requires selecting one action from several possibilities, we will need to formulate

a decision-making problem. In statistical theory, the branch that deals with such issues is called

statistical decision theory or hypothesis testing [171].

In probability theory, there are a variety of information fusion operators. Mainly they can be

classified into three groups [172] as follows:

1. Conjunctive operators: Can be used for merging agreeing sources, and they search for

values when all the sources agree.

2. Disjunctive operators: Can be used for merging conflicting sources.

40



3. Trade-off operators: Can be used for partially in conflict sources.

2.4.2.2 Machine Learning

ML techniques model the functional relationship between input datasets and output actions to

optimize some parameters. The resulted model can estimate an output as close as possible to the

actual value. ML techniques can be categorized into two main groups: supervised and unsupervised

learning depending on whether the data is labeled or not. Supervised learning aims to model input

and output datasets (labeled data) while unsupervised learning aims to model the hidden structure

from unlabelled data sets.

ML can explore and extract knowledge from users and network characteristics in caching systems

to build an intelligent decision-making system to make decisions for cache placement, cache access,

and cache delivery options.

Some ML techniques have been applied in a caching system, such as Reinforcement Learning

(RL) and Deep Learning.

1. Reinforcement Learning: In reinforcement learning, the machine interacts with its dy-

namic environment through trial and error interactions. As a result of the interactions, the

agent learns actions by receiving input of the current state of the environment and chooses the

following action based on possible actions. The agent action affects (changes) the state of the

environment. The machine receives a value of the transition state, which can be rewards or

penalties. The goal is to learn a trajectory of actions that maximize the rewards (or minimize

the penalties) over its lifetime. Reinforcement learning learns the optimal policy that models

environment states and actions that will maximize (or minimize) its objectives [173]. Figure

2.6 shows an illustration of the agent and the environment interaction [174].

In [175], SBSs prefetch popular contents during off-peak traffic hours and send the contents

to the edge of the network during peak periods. The cache control unit in the SBS is designed

to learn, track, and adapt to the work dynamics. The authors proposed an optimal online

caching policy by developing a Q-learning algorithm. The Q-learning scheme is introduced

with a linear function approximation to offer fast convergence, reduce complexity, and obtain

scalability over large networks
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Table 2.11: ILTs for caching system

Learning Technique Paper Technical Solution

Regularized SVD [4] Proactively cache files based on file popularity,

K-means clustering correlation among users, and exploit influential users.

RSVD based CF and TL [125] Estimate the content popularity and improve

the estimation accuracy.

Deep learning [176] Predict content popularity.

Extreme learning [134] Estimate the popularity of cache content based

machine (ELM) on the features of the content

Deep belief network (DBN) [177] Extract semantic information of user playback pattern.

CF [111] Predict the content popularity distribution.

ML on Hadoop framework [178] Estimate content popularity.

Clustering technique [179] Track the evolution of content popularity over time.

Clustering technique [180] Content popularity based users clustering.

Reinforcement learning [181] Enabling access points to learn the optimal

fetching-caching decisions.

Q-learning [175] Learn, track, and adopt optimal policy when the

underlying transition probabilities are unknown.

Rank-Directed Sparse [182] Estimate content popularity.

Bayesian Learning

TL [183] Estimate content popularity.

Deep neural network (DNN) [184] Propose caching placement and content delivery.

Bayesian and reinforcement [162] Predict individual content request probability

learning

Genetic algorithm [185] Proposed near optimal hierarchical collaborative caching.

FSS [186] Proposed fuzzy soft-set decision cache placement.

Q-Learning [175] Proposed an optimal online caching policy.

Continued on next page
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Table 2.11 – continued from previous page

Deep Learning [184] Proposed cache placement, user association, and

content delivery.

Figure 2.6: The agent-environment interaction system.

2. Deep Learning: Deep learning represents the form of learning that creates complex features

by using multiple transformation steps. Much larger quantities of data are used during learning

steps. Deep learning techniques show the ability to explore information included in massive

data sets more effectively than traditional ML techniques. Deep learning implies learning

complex artificial neural networks (ANN) that extract patterns progressively in the datasets.

In traditional ANN, the three-layer perceptron (input, hidden, and output layers) learns by

training the hidden and output layers to adapt to the interesting task. In deep learning, more

hidden layers are added to the network to subject features to the sequence of transformations.

Each layer’s transformation represents an inference. Thus, modeling complex inferences can

be made easier using a series of computational steps. The depth of the ANN represents the

complexity of the learning algorithm. Some ANN learning algorithms include feedback loops.

There are several ANN deep learning techniques such as deep multilayer perceptrons, deep

convolutional neural networks (CNNs), and recurrent neural networks [187].

Authors in [184] proposed a deep neural network (DNN) to train an optimization problem for

cache placement, user association, and content delivery in advance and before applying these

optimization algorithms in real-time caching.
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2.5 Summary

This chapter presents mobile edge computing and caching and the literature survey of solutions

for mobile edge computing and caching challenges in terms of energy and latency. This is followed

by discussing caching schemes, caching performance metrics, and comparing different caching tech-

niques in mobile edge networks. Next, a summary of the challenges that face the design of the

caching system in MENs is discussed. Finally, we present various types of machine learning and

intelligent decision-making techniques that can be used to design a caching system at the edge of the

network. The following chapter will present our mobile edge network system models and formulate

the cache placement problem as a multi-objective optimization problem.
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Chapter 3

Mobile Edge Network System Model

3.1 Introduction

This chapter introduces our cache system model of the mobile edge networks (MENs) to provide

cache content placement, cache content access, and cache content delivery. It considers different

storage capacities, users’ mobility, content popularity distribution, latency, and power consumption.

The system model includes the following models: network model, cache content model, transmission

model, mobility model, and power consumption model. Then, the problem formulations related to

finding the optimal solution for cache content placement with minimum latency and cache content

delivery with minimum power consumption are presented and discussed.

3.2 System Model

In the following sections, we define the main models, identify essential components, and address

the role of each element in the whole system.

3.2.1 Network Model

As illustrated in Figure 3.1, we consider a mobile edge network with multiple small base stations

(SBSs) and user terminals (UTs). Each macrocell consists of one MBS connected to a gateway of

the core network via a high-speed interface, N SBSs, which are connected to the MBS through

backhaul links, and M UTs connected to neighboring devices through D2D communication and
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to SBSs. The sets of SBSs and UTs are denoted by s={s1, s2, · · · , sN} and u={u1, u2, · · · , uM},

respectively. There are cache storage in each MBS, SBS, and UT with different storage capacities.

Within one macro cell, cache storage capacities can be defined by two sets cs={cs1 , cs2 , · · · , csN}

and cu={cu1 , cu2 , · · · , cuN} for SBSs and UTs caches, respectively. Assume that MBS has enough

cache capacity to store F files defined by the set f={f1, f2, · · · , fF}.

As discussed in Chapter 2, MEN provides the communication and caching abilities that enable

SBSs and UTs to store and transmit contents at different network levels. This framework is called

multilayer caching-networking framework [107]. In our work, we assume four possible cache content

delivery approaches as shown in Figure 3.1 and described below:

(a) Local cache content delivery: Delivering the requested content from UT local cache.

(b) D2D cache content delivery: Delivering the requested content from neighboring UT

cache when the other UT device is within the D2D communication range.

(c) SBS cache content delivery: Delivering the requested content from SBS cache that is

associated with the UT.

(d) MBS cache content delivery: Delivering the requested content from MBS in the macro-

cell. This happens when the requested content is missed, resulting in ”cache miss” in local

cache, D2D cache, and SBS cache, respectively.

3.2.2 Cache Content Model

The content library consists of F files and stored at the MBS cache. Each file fz has the same size.

The size of file fz is denoted as flz . It is assumed that each mobile UT receives one file, and each

SBS receives a certain amount of files depending on the cache’s file size and storage capacity. The

files are requested from the main library based on their popularity distribution. The popularity of

the F files are denoted by the set p, where p={p1, p2, · · · , pF}. The set p can be characterized by

Zipf popularity distribution. If the files are arranged from the highest popular file to the lowest

popular file, the popularity of the i− th ranked content can be shown by Eq. (3.1) [188]:
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Figure 3.1: An illustration of the network model showing the five cache content delivery approaches:

(a) local cache, (b) D2D cache, (c) SBS cache, and (d) MBS cache.

pi =

1
fγi∑F
i=1

1
iγ

. (3.1)

The distribution for file fi is characterized by the exponent factor γ also called the skewness of

the popularity. When γ = 0, the popularity is uniform over contents. As γ grows, the popularity

becomes more skewed. Zipf popularity distribution has been widely used in the research literature,

and we also use it in our model.

3.2.3 Mobility Model

Assume that the connectivity of users in the D2D communication and the small cell network (com-

munication between mobile UT and SBS) is a peer-to-peer connectivity model [109]. Modeling

user mobility depends on spatial and temporal properties. The spatial properties provide physical

location information of user mobility patterns, while the temporal properties provide time-related

information [142]. User mobility can be modeled by assuming a pairwise contact process that follows

an independent Poisson process. The work in [189] implies that the occurrence time of pairwise
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contact events can be predicted on a large time scale. The Poisson process is used to count contacts

between UTs and between UTs and SBSs occurring at a specific rate.

To establish successful communication between mobile UT ui and SBS sj, ui must be within the

communication radius of SBS sj. For independent Poisson process, the pairwise contact duration

T SBSi,j between mobile UT ui and SBS sj follows the exponential distribution with parameter λSBSi,j .

Here, λSBSi,j represents the contact rate between mobile UT ui and SBS sj. The contact duration

T SBSi,j when mobile UT ui is within the communication range of SBS sj can be defined as follows [109]:

T SBSi,j = {(t− t0) : ||ltj − lti|| < dSBS, t > t0}, (3.2)

where t0 represents the most recent time when mobile UT ui enters the communication range dSBS

of SBS sj. The locations of SBS sj and mobile UT ui at time t are represented by ltj and lti,

respectively.

Similarly, to establish successful communication between mobile UT ui and mobile UT uk, the

shortest distance between the two devices must be within the communication range dD2D. The

contact rate between mobile UT ui and mobile UT uk is represented by λUTi,k . The contact duration

TUTi,k when mobile UT ui and mobile UT uk are within the communication range of dD2D can be

defined as follows [109]:

TUTi,k = {(t− t0) : ||lti − ltk|| < dD2D, t > t0}, (3.3)

where t0 represents the most recent time when mobile UT ui enters the communication range dD2D

of mobile UT uk, and lti and ltk represent the locations of UT ui and UT uk at time t, respectively.

3.2.4 Transmission Model

Let the matrices (hUT )M×F and (hSBS)N×F represent the cache hit references for M UTs and N

SBSs, respectively, such that:

hUTi,z =

 1, when the file fz is cached in UT ui (hit)

0, otherwise (miss),
(3.4)
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hSBSj,z =

 1, when the file fz is cached in SBS sj (hit)

0, otherwise (miss),
(3.5)

where z = 1, · · · , F , i = 1, · · · ,M , and j = 1, · · · , N .

Let TUTdk,z denote the time required for UT ui to download the file fz from UT uk. Assume that

the file length is a random variable that follows a log-normal distribution [190] [191] and is denoted

by flz for file z. Then, TUTdk,z is given by [192]:

TUTdk,z =
flz
Rui
k,z

, (3.6)

where k = 1, · · · ,M and Rui
k,z is the data rate at which file fz is downloaded by UT ui from UT uk

through D2D link. Similarly, T SBSdj,z
denotes the download time required for UT ui to download the

file fz from SBS sj. Thus, T SBSdj,z
is given by [192]:

T SBSdj,z
=

flz
R
sj
i,z

, (3.7)

where R
sj
i,z is the rate of file fz of the UT ui from SBS sj link. When the requested file is not found

in nearby UTs and SBSs, then the file will be downloaded from MBS through backhaul links.

Assume that TBdz is the backhaul download time from MBS for file fz. The latency of the backhaul

download depends on the used technical solution. For 5G, the latency can be 200 µsec or 65-350

µsec if the technology used is mmWave 60 GHz or 70-80 GHz, respectively [193]. The download

time of the file fz can be derived by combining (3.7) and (3.6) with the backhaul download time,

as follows:

Tdz =

gz∑
v=1

{
TUTdk,v × h

UT
i,v + T SBSdj,v

× hSBSj,v + TBdv [(h
UT
i,v = 0) ∩ (hSBSj,v = 0)]

}
∀z ∈ {1, · · · , F},∀k ∈ {1, · · · ,M},∀j ∈ {1, · · · , N},∀i ∈ {1, · · · ,M}.

(3.8)

Equation (3.8) means that the download time for file fz is computed by the summation of the

download time required for file fz. Files may be cached in UT device and/or SBS. If the file is

not cached in UTs (hUTi,v = 0) and SBSs (hSBSj,v = 0) then it will be downloaded from MBS through

backhaul link.
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3.2.5 Energy Consumption Model

In this subsection, the power consumption model is adapted from [109]. Two different models are

considered:

1. Energy consumption for D2D caching:

We assume that the interference of D2D communication is not considered. When UT uk

transmits the cached contents to UT ui, the components of power consumption of UT uk are

given as follows:

• βUT is the inverse of power amplifier efficiency factor of mobile UT uk, ,

• PukT is the mobile device transmission power of mobile UT uk,

• PukC is the circuit power consumption of mobile UT uk,

• PukH is the energy consumption of caching hardware devices of mobile UT uk.

Then, power consumption of UT uk, ∀k is given by:

Puk = βUT × PukT + PukC + PukH ,∀k ∈ {1, · · · ,M}.

Neglecting the energy consumed for delivering the cache contents, the power consumption can

be written as:

Puk = βUT × PukT + PukC ,∀k ∈ {1, · · · ,M}. (3.9)

When UT uk transmits file fz of length flz to UT ui, the energy consumption can be computed

as [109]:

Euk
z =

flz
Ri,k

.(βuk × P
uk
T + PukC ),∀k ∈ {1, · · · ,M}, (3.10)

where the data rate Ri,k of D2D communication between UT ui and UT uk can be calculated

as follows:

Ri,k = WUT
i,k log2

(
1 +
PukT .di,k

−αUT

σ2
UT

)
,∀i ∈ {1, · · · ,M},∀k ∈ {1, · · · ,M}, (3.11)

and

• WUT
i,k is the channel bandwidth from UT uk to UT ui,
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• di,k is the distance between ui and uk,

• σ2
UT is the average noise power for D2D communication,

• αUT is the path loss factor.

2. Energy consumption for SBS caching

Similarly, to compute the energy consumption to transfer file fz from SBS sj to UT ui, we

assume there is no interference between SBSs. The downlink speed Ri,j is given below:

Ri,j = W SBS
i,j log2

(
1 +
PsjT .di,j−αSBS

σ2
SBS

)
,∀i ∈ {1, · · · ,M},∀j ∈ {1, · · · , N}, (3.12)

where

• W SBS
i,j is the downlink transmission bandwidth from SBS sj to UT ui,

• PsjT is the SBS transmission power,

• di,j is the distance between ui and sj,

• σ2
SBS is the average noise power in communication with SBS,

• αSBS is the path loss factor.

Then, the components of power consumption of SBS sj are given as follows:

• βSBS is the inverse of power amplifier efficiency factor,

• PsjC is the offset of site power.

When SBS sj transmits file fz of length flz to UT ui, the energy consumption can be computed

as [109]:

Esj
z =

flz
Ri,j

.(βSBS × P
sj
T + PsjC ). (3.13)

Table 3.1 defines the various system parameters used in our system model.

3.3 Problem Statement

This dissertation aims to find solutions to achieve latency-efficient and energy-efficient caching

strategies in mobile edge networks (MENs). The solution is designed based on the relationship
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between the MEN model and the objective of obtaining minimum latency that satisfies wireless

network applications/services (discussed in section 2.2.1).

Table 3.1: System model parameters and their definitions.

System Definition Fixed/

Symbols Variable

N Number of SBSs F/V

M Number of user terminals F/V

s Set of SBSs F/V

u Set of user terminals F/V

cs Set of cache storages in SBSs F/V

cu Set of cache storages in user terminals F/V

F Number of files in MBS storage library F/V

f Set of files in the library F/V

p Set of files popularity V

γ Skewness of the Zipf distribution popularity F/V

T SBSi,j Contact duration of mobile UT ui and SBS sj. F/V

λi,j Contact rate of mobile UT ui and SBS sj. F/V

dSBS Communication range between SBS and UT F

dD2D Communication range of two UT devices F

TUTi,k Contact duration of mobile UT ui and UT uk. F

hUTi,z Cache hit references of UT ui and file fz. V

hSBSi,z Cache hit references of SBS sj and file fz. V

flz Length of file z V

T SBSdj,z
Download time required for UT ui to download file fz from SBS sj. V

TUTdj,z Download time required for UT ui to download file fz from UT uk. V

TBdz Backhaul download time. F

R
sj
i,z Date rate of file fz of the UT ui to download from SBS. V

Rui
k,z Data rate of file fz of the UT ui to download from UT uk. V
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βUT Inverse of power amplifier efficiency factor. F

PukT Mobile device transmission power. F

PukC Circuit power consumption of mobile UT uk. F

PukH Energy consumption of of caching hardware devices. F

Puk Power consumption of UT uk in D2D communication F

Euk Energy consumption in D2D communication of UT uk. V

WUT
i,k Channel bandwidth from UT uk to UT ui F

di,k Distance between UT uk and UT ui V

di,j Distance between UT ui and SBS sj V

σ2
UT Average noise power for D2D communication. V

αUT Path loss factor for D2D communication. V

αSBS Path loss factor for SBS to UT communication. V

W SBS
i,j Downlink transmission bandwidth from SBS sj to UT ui F

PsjT SBS transmission power F

Esj Energy consumption in SBS caching communication V

σ2
SBS Average noise power V

LUT Set of locations of all UTs in one macrocell. V

LSBS Set of locations of all SBSs in one macrocell. F

The proposed cache system design consists of three separate phases, obtained by adding a phase

to the two phases of the cache system used in popular approaches in the literature (refer to section

2.3.1). Figure 3.2 shows the main elements of the proposed cache system objectives and their related

system models and cache phases.
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Figure 3.2: Main elements of the proposed CSOs for mobile edge networks.

The cache phases are given as follows:

1. Cache Placement Phase: In this phase, each cache is filled with the appropriate contents.

We need to formulate an optimization problem that decides which contents to cache and where

to place these contents to satisfy the objective function, which requires maximizing the hit

rate. Maximizing the hit rate leads to maximizing QoS parameters that are, in our case, the

latency of downloading the files and throughput of the network, respectively.

To decide which contents to store in UT and SBS caches, both the mobility and cache content

models are included in the design of cache placement strategy within the download latency

constraints.
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The mobility model helps decide cache content placement, which depends on users’ mobility,

communication radius, and contact duration. The cache content model helps to cache the

most famous content based on Zipf’s popularity distribution.

2. Cache Access Phase: Users send their requests to download content. The files are stored

in UTs and SBSs caches at the edge of the network. Therefore, downloading the requested

contents requires deciding from where to bring these contents: either from nearby UT or SBS

caches.

Given the transmission model, the decision can be formulated to achieve the objective function

that requires minimizing the download time that results in an energy-efficient solution.

3. Cache Delivery Phase: In reality, the download time affects the energy efficiency of the

cache policy and the power consumption during the downloading of the requested content.

Therefore, the cache delivery phase aims to obtain the optimal transmission power within

contact duration.

Therefore, we need to build a multi-objective optimization function for cache access and

delivery phases, deciding where to download the requested contents. Each objective has

a weight factor depending on the overall efficiency and flexibility in operating the caching

system.

3.3.1 Latency Efficient Caching

Several sources contribute to the total latency of a wireless network. Using MENs that enable

caching is one of the promising solutions to establish latency-efficient wireless networks (as discussed

in section 2.2.3). Caching at the edge of the network (UTs, SBSs, and MBS caches) minimizes

the total latency by providing the requested files closer to the users. This requires minimizing

the probability of downloading the files from the core network and maximizing the probability of

downloading the files from edge caches.

Consider a mobile edge network (MEN) described in section 3.2 with N SBSs, M UTs, and F

files in the main library. At time t0, the set of locations of the UTs (LUT ) are variable values and

given as follows:
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LUT = {lUT1 , lUT2 , · · · , lUTM }

and the set of locations LSBS of the SBSs are fixed values and given as follows:

LSBS = {lSBS1 , lSBS2 · · · , lSBSN }

The contact durations of SBSs and UTs are given in (3.2) and (3.3), respectively. We can

compute the matrix (TUT )(M×M) that represents the contact durations between UT ui and UT uk

in device to device (D2D) communications for i = 1, 2, · · · ,M and k = 1, 2, · · · ,M . Then,

TUT =



0 tUT1,2 · · · tUT1,M

tUT2,1 0 · · · tUT2,M

...
... · · · ...

tUTM,1 tUTM,2 · · · 0


. (3.14)

Each individual element of the matrix represented as tUTi,k , is zero for i = k and non-zero other-

wise, tUTi,k = 0 means that the contact duration for local caches is zero (tUT1,1 = 0, tUT2,2 = 0, etc.).

The matrix (T SBS)(M×N) represents the contact durations between UT ui and SBS sj in UT to

SBS communications for i = 1, 2, · · · ,M and j = 1, 2, · · · , N . Then:

T SBS =



tSBS1,1 tSBS1,2 · · · tSBS1,N

tSBS2,1 tSBS2,2 · · · tSBS2,N

...
... · · · ...

tSBSM,1 tSBSM,2 · · · tSBSM,N


, (3.15)

where each individual element of the matrix is represented as tSBSi,j . Combining the two matrices

(3.14) and (3.15) results in (T UT,SBS)M×(M+N) such that:
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T UT,SBS =



0 tUT1,2 · · · tUT1,M tSBS1,1 tSBS1,2 · · · tSBS1,N

tUT2,1 0 · · · tUT2,M tSBS2,1 tSBS2,2 · · · tSBS2,N

...
...

...
...

...
...

tUTM,1 tUTM,2 · · · 0 tSBSM,1 tSBSM,2 · · · tSBSM,N


. (3.16)

The matrix given by (3.16) includes the contact durations between all UTs and other UTs and

SBSs within one cell. Similarly, a matrix DUT ,SBS can be defined for the communication ranges at

time t, when both UT ui and UT uk are within the D2D communication range dD2D, and UT ui

and SBS sj are within the communication range dSBS, respectively. Then, (DUT ,SBS)M×(M+N) can

be written as follows:

DUT,SBS =



0 dUT1,2 · · · dUT1,M dSBS1,1 dSBS1,2 · · · dSBS1,N

dUT2,1 0 · · · dUT2,M dSBS2,1 dSBS2,2 · · · dSBS2,N

...
...

...
...

...
...

dUTM,1 dUTM,2 · · · 0 dSBSM,1 dSBSM,2 · · · dSBSM,N


, (3.17)

where dUTi,k and dSBSi,j are the distances between UT ui and UT uk and the distances between UT ui

and SBS sj, respectively. A value of dUTi,k = 0 means that the communication range for local caches

is zero (dUT1,1 = 0, dUT2,2 = 0, etc.). They are computed as follows:

dUTi,k =

 ||li − lk||, if ||li − lk|| < dD2D

0, if i = k,
(3.18)

and

dSBSi,j = ||li − lj||if ||li − lj|| < dSBS. (3.19)
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The contents are requested based on their popularity by following the Zipf popularity distribution

given in (3.1). Each user requests content fz with the probability of pz, where, p1 represents the

most popular file with popularity rank 1 and pF represents the least popular file with popularity

rank F , respectively. Then, the popularity vector is given as below:

p = [p1, p2, · · · , pF ]. (3.20)

According to the mobility model discussed in section 3.2.3, the number of contacts between

UTs and other UTs and SBSs follows Poisson distribution. Then, PUT,SBS
m is a matrix of size

(M×(M+N)) that represents the probability of UT to contact other UTs or SBSs. Each individual

element of the matrix is represented as PUT
mi,k

and P SBS
mi,j

for the probability of UT ui to contact with

UT uk, and for the probability of UT ui to contact with SBS sj, respectively, such that:

PUT,SBS
m =



pUTm1,1
pUTm1,2

· · · pUTm1,M
pSBSm1,1

pSBSm1,2
· · · pSBSm1,N

pUTm2,1
pUTm2,2

· · · pUTm2,M
pSBSm2,1

pSBSm2,2
· · · pSBSm2,N

...
...

...
...

...
...

pUTmM,1 pUTmM,2 · · · pUTmM,M pSBSmM,1
pSBSmM,2

· · · pSBSmM,N


. (3.21)

If we consider the mobility of users within the cell, then the most popular files need to be encoded

and cached at different locations within the cell. The user may request these files while moving. If

the user can download the file from nearby UTs or SBS without the need to use a backhaul link,

then the hit rate (defined in section (2.3.2)) will be increased. To maximize the cache hit rate,

which means maximizing the probability of downloading the files from edge caches, we need to

decide where to place the files. The attributes that contribute to finding the possible solution for

cache placement that increases cache hit rate are as follows:

1. File popularity probability, p,

2. Contact duration of UTs and SBSs, T UT,SBS.

3. Communication ranges, DUT,SBS.
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4. User terminal UT contact probability PUT,SBS
m .

Depending on the above attributes, we decide where to place the files in UT and SBS caches

during the cache placement phase. Assume that the file size is fixed. Then, while achieving maxi-

mum cache hit rate, the total number of files cached in UT and SBS caches should be within cache

storage capacities in UTs and SBSs, respectively.

Assume that matrix (AUT )M×F represents the cache strategy of the files that are cached in UTs,

where ak,z ∈ AUT represents file fz that can be served by UT uk (k = 1, · · · ,M). Let matrix

(ASBS)N×F represent the cache strategy of the files cached in SBSs, where aj,z ∈ ASBS represents

portion of encoded data of file fz that can be served by SBS sj ∀j ∈ {1, · · · , N}. Then,

aUTk,z =

 1, if fz ∈ uk

0, if fz /∈ uk,
(3.22)

aSBSj,z =

 1, if fz ∈ sj

0, if fz /∈ sj,
(3.23)

Define matrix A = [AUT : ASBS](M+N)×F as the cache strategy matrix that needs to be solved

using cache placement algorithm, such that:

A =



aUT1,1 aUT1,2 · · · aUT1,F

aUT2,1 aUT2,2 · · · aUT2,F

...
...

...

aUTM,1 aUTM,2 · · · aUTM,F

aSBS1,1 aSBS1,2 · · · aSBS1,F

aSBS2,1 aSBS2,2 · · · aSBS2,F

...
...

...

aSBSN,1 aSBSN,2 · · · aSBSN,F



. (3.24)
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To find the contents of matrix A, either one or zero (cache or not cache), we need to formulate

the individual objective functions that contribute to the solution.

Given the files popularity p, the algorithm should select the files with the higher probability of

being requested by users. Then, the objective function is written as:

maximize
< A >

:
M+N∑
i=1

A(i, :)× pTz . (3.25a)

subject to :
F∑
z=1

ai,z × flz ≤ Cui , ∀i ∈ {1, · · · ,M}, (3.25b)

F∑
z=1

aj,z × flz ≤ Csj , ∀j ∈ {1, · · · , N}, (3.25c)

For F files in the library, we have many possible solutions on which files to be placed in each

UT and SBS cache. According to the objective function in (3.25a), the files with the maximum

probability of popularity will be selected to be stored on UT and SBS caches. The constraints

(3.25b) and (3.25c) mean that the total number of files stored in UT and SBS can not exceed the

storage capacity Cui and Csj of UT ui and SBS sj, respectively.

At time t, the contact duration T UT,SBS and communication range DUT ,SBS can be computed

as in (3.16) and (3.17), respectively. The users should obtain their requested contents within

the deadline denoted by Td, while they are within the communication range dD2D and dSBS for

D2D communication and UT to SBS communication, respectively. It is defined as the time frame

required to successfully transmit a certain amount of data from one peer to another peer while

both peers are within the communication range. Then, the algorithm should select the place to

store the contents. The probability of having successful communication from caches closer to users

(minimum distance between users and caches) is maximized. The objective functions for contact

duration and communication range can be formulated as follows:

maximize
< A >

:
M∑
i=1

F∑
z=1

T UT,SBS(i, :)× A(:, z) (3.26a)

subject to : 0 < ti,k < Td, ∀i ∈ {1, · · · ,M}, ∀k ∈ {1, · · · ,M}, (3.26b)

0 < ti,j < Td, ∀i ∈ {1, · · · ,M}, ∀j ∈ {1, · · · , N}, (3.26c)
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and

minimize
< A >

:
M∑
i=1

F∑
z=1

DUT,SBS(i, :)× A(:, z) (3.27a)

subject to : 0 < di,k < dUT , ∀i ∈ {1, · · · ,M}, ∀k ∈ {1, · · · ,M}, (3.27b)

0 < di,j < dSBS, ∀i ∈ {1, · · · ,M}, ∀j ∈ {1, · · · , N}. (3.27c)

Finally, we need to maximize the probability that UT ui contacts with another UT uk and SBS sj,

then the objective function is written us:

maximize
< A >

:
M∑
i=1

F∑
z=1

PUT,SBS
m (i, :)× A(:, z) (3.28a)

For the latency efficient caching, we can use the weighted sum method to solve the multi objective

functions given in (3.25a), (3.26a), (3.27a), and (3.28a) by selecting weights wLx (x = 1, · · · , 4) for

each objective function that aims to achieve latency efficient caching. Then, for M UTs and N

SBSs we have the following:

f1 =
M+N∑
i=1

A(i, :)× pTz ∀z ∈ {1, · · · , F}, (3.29)

f2 =
M∑
i=1

F∑
z=1

T UT,SBS(i, :)× A(:, z), (3.30)

f3 =
M∑
i=1

F∑
z=1

DUT,SBS(i, :)× A(:, z), (3.31)

and

f4 =
M∑
i=1

F∑
z=1

PUT,SBS
m (i, :).A(:, z), (3.32)

Then, formulate one objective function for cache placement that maximizes the probability of UT

ui to download the requested files from nearby UTs and SBSs within contact durations, as follows:
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maximize
< A,wLx >

:
4∑

x=1

g(A,wLx ) (3.33a)

subject to
F∑
z=1

ai,z.flz ≤ Cui , ∀i ∈ {1, · · · ,M}, (3.33b)

F∑
z=1

aj,z.flz ≤ Csj , ∀j ∈ {1, · · · , N}, (3.33c)

aUTk,z ∈ [0, 1], ∀k ∈ {1, · · · ,M}, (3.33d)

aSBSj,z ∈ [0, 1], ∀j ∈ {1, · · · , N}, (3.33e)

4∑
x=1

wLx = 1, (3.33f)

wL1 , w
L
2 , w

L
3 , and wL4 > 0, (3.33g)

where

g(A,wLx ) = wL1 .f1 + wL2 .f2 − wL3 .f3 + wL4 .f4, (3.34)

and Cui and Csj are the cache storage capacity of UT ui and SBS sj, respectively.

The objective function in (4.1a) represents the policy to cache placement in UTs and SBSs

such that the cache hit rate is maximized. This is carried out by proactively caching the popular

contents and ensuring minimum latency by placing the contents closer to UTs before their requests

depending on their location within the macrocell. The constraints (4.1b) and (4.1c) mean that

the total files stored in UT and SBS can not exceed the storage capacity of UT cache Cui and the

storage capacity of the SBS cache Csi , respectively. The inequalities in (4.1d) and (4.1e) indicate

the non-negativeness of the optimization variables, which means that we either do not cache or

we cache one complete file in each cache. The last constraints (4.1f) and (4.1g) indicate that the

summation of all the weights equals one and weights are positive, respectively. The solution to

(4.1a) depends on the cache content model and mobility model presented in sections 3.2.2 and 3.2.3

respectively, number of UTs, and number of SBSs in one cell.

3.3.2 Latency and Energy Efficient Caching

After placing the cache contents based on files popularity and users’ mobility, files are stored in UTs

and SBSs caches. Then, users send their requests to download the file. At this point, the problem
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of deciding from where to download the requested file includes two essential objectives to achieve

latency and energy-efficient operation. The first objective is to download the file with minimum

download time, and the second objective is to deliver the file to the UT with minimum transmission

power.

For cache access phase, (3.6) and (3.7) can be used to compute the download time depending

on both file fz length and data rate between UT ui and another UT uk and between UT ui and

SBS sj, respectively. Then, TUT,SBSd is a matrix of size (M × (M + N)) that represents the time

required for UT ui to download the file fz from another UT uk and/or from SBS sj respectively,

such that:

Td
UT,SBS =



0 tUTd1,2 · · · tUTd1,M tSBSd1,1
tSBSd1,2

· · · tSBSd1,N

tUTd2,1 0 · · · tUTd2,M tSBSd2,1
tSBSd2,2

· · · tdSBS2,N

...
...

...
...

...
...

tUTdM,1 tUTdM,2 · · · 0 tSBSdM,1
tSBSdM,2

· · · tSBSdM,N


. (3.35)

For the cache delivery phase, if the file is cached in UT and/or SBS caches, then we can compute

the energy consumption to transfer the file fz from another UT and/or from SBS through D2D

communication and SBS communication using (3.10) and (3.13), respectively. Then, EUT,SBS is a

matrix of size (M × (M +N)) that represents the the transmission power required to transfer the

file fz from UT uk and/or from SBS sj to UT ui respectively, such that:

EUT,SBS =



0 eUT1,2 · · · eUT1,M eSBS1,1 eSBS1,2 · · · eSBS1,N

eUT2,1 0 · · · eUT2,M eSBS2,1 eSBS2,2 · · · eSBS2,N

...
...

...
...

...
...

eUTM,1 eUTM,2 · · · 0 eSBSM,1 eSBSM,2 · · · eSBSM,N



. (3.36)

63



Then, achieve minimum time to file fz from another UT uk and/or from SBS sj into UT ui, is

formulated as follows:

arg min
<x>

: qi,z1 (x)[a] (3.37)

subject to : aUTk,z = 1,∀k ∈ {1, · · · ,M}, [b] (3.38)

aSBSj,z = 1,∀j ∈ {1, · · · , N}, [c] (3.39)

where

qi,z1 = TUT,SBS
∗

d (i, :)� A(:, z)T ∀i ∈ {1, · · · ,M}, ∀z ∈ {1, · · · , F}. (3.40)

TUT,SBS
∗

d denotes the normalized download time. The objective function (3.37) helps to decide from

which caches to download the file fz resulting in minimum download time. Constraints (3.38) and

(3.39) guarantee the file fz is cached in UT uk cache and/or SBS sj cache.

The second objective function that aims to achieve minimum energy consumption for delivering

the file fz from UT uk and/or SBS sj to UT ui can be formulated as follows:

arg min
<x>

: qi,z2 (x)[a] (3.41a)

subject to : 0 < PukT ≤ P
uk
max,∀k ∈ {1, · · · ,M}, [b] (3.41b)

0 < PsjT ≤ P
sj
max,∀j ∈ {1, · · · , N}.[c] (3.41c)

where

qi,z2 = EUT,SBS∗(i, :)� A(:, z)T ∀i ∈ {1, · · · ,M}, ∀z ∈ {1, · · · , F}, (3.42)

EUT,SBS∗ is the normalized energy consumption in D2D communication and in SBS communica-

tion defined in (3.10) and (3.13), respectively. The objective function in (3.41a) aims to minimize

the energy consumption for delivering the file fz to UT ui from UT uk and/or from SBS sj. The

symbol � indicates an element by element multiplication (Hadamard product). The constraint in

(3.41b) and (3.41c) guarantee the transmit power PukT of UT uk and the transmit power PsjT of SBS

sj are less than or equal to Pukmax and Psjmax, respectively.

For the latency and energy-efficient caching, we can use the weighted sum method to solve the

multi-objective functions given in (3.37) and (3.41a) by selecting weights wEy (y = 1, 2) for each

objective function that aims to achieve latency and energy-efficient caching. Values in (3.35) and
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(3.50) are measured on different scales. Thus, we need to normalize both matrices by scaling all val-

ues between 0 and 1. Then, we formulate one objective function for cache access and cache delivery

that minimizes the latency and energy consumption for accessing and delivering the requested files

from nearby UTs and SBSs, respectively, as follows:

arg min
<x>

: qi,z(x)[a] (3.43a)

subject to : aUTk,z = 1, k ∈ {1, · · · ,M}, [b] (3.43b)

aSBSj,z = 1, j ∈ {1, · · · , N}, [c] (3.43c)

0 < PukT ≤ P
uk
max, k ∈ {1, · · · ,M}, [d] (3.43d)

0 < PsjT ≤ P
sj
max, j ∈ {1, · · · , N}, [e] (3.43e)

wE1 + wE2 = 1, [f ] (3.43f)

wE1 and wE2 > 0, [g] (3.43g)

where

q(x)i,z = wE1 × q1 + wE2 × q2

= wE1 × (TUT,SBS
∗

d (i, :)� A(:, z)T ) + wE2 × (EUT,SBS∗(i, :)� A(:, z)T )

∀i ∈ {1, · · · ,M},∀z ∈ {1, · · · , F}.

(3.44)

The objective function in (3.43a) represents the policy to cache access and cache delivery from

UTs and SBSs such that minimizing the latency to download a requested file fz and minimizing

the transmission power of the same file fz. The constraints (3.43b) and (3.43c) guarantee the file fz

is cached in UT uk and/or SBS sj, respectively. The constraint in (3.43d) guarantees the transmit

power PukT of UT uk is less than or equal to Pukmax. The constraint in (3.43e) guarantees the

transmit power PsjT of SBS sj is less than or equal to Psjmax. The last two constraints (3.43f) and

(3.43g) indicate that the summation of the weights equals one and weights are positive, respectively.

The solution to (3.43a) depends on the transmission model and power consumption model presented

in sections (3.2.4) and (3.2.5), respectively, number of UTs, and number of SBSs in one cell.
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3.4 Illustrative Example

To illustrate how to formulate the caching problem and find the solution in MEN, consider an

example of cache placement, cache access, and cache delivery at the edge of MEN. Assume a small

cell network having one MBS, five mobile UTs (M=5), three SBS (N = 3), and 50 files in the

library (F = 50). Considering the contact duration between UTs and between UTs and SBSs,

communication ranges of mobile users in D2D communication and UT to SBS communication, and

content popularity that follows Zipf popularity distribution to decide which contents should be

cached at the edge of the network. Figure (3.3) shows an illustration of this example.

Figure 3.3: An illustration example of caching problem in mobile edge network (MEN).

The cache phases can be explained through the following steps:

3.4.1 Step 1: Cache Placement Phase

This step is before user requests. Assume, at time t0, the set of locations LUT of the UTs are

variable values and are given, such that

LUT = {lUT1 , lUT2 , lUT3 , lUT4 , lUT5 }
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and the set of locations LSBS of the SBSs are fixed values and equals to:

LSBS = {lSBS1 , lSBS2 , lSBS3 }

At time t, we can compute the contact durations of UTs and SBSs given in (3.2) and (3.3),

respectively. The contact duration for 5 UTs and 3 SBS results in a matrix (T UT,SBS)5×8 which

includes the contact durations between all UTs and other UTs and SBSs within one cell, such that:

T UT,SBS =



0 tUT1,2 tUT1,3 tUT1,4 tUT1,5 tSBS1,1 tSBS1,2 tSBS1,3

tUT2,1 0 tUT2,3 tUT2,4 tUT2,5 tSBS2,1 tSBS2,2 tSBS2,3

tUT3,1 tUT3,2 0 tUT3,4 tUT3,5 tSBS3,1 tSBS3,2 tSBS3,3

...
...

...
...

...
...

tUT5,1 tUT5,2 tUT5,3 tUT5,4 0 tSBS5,1 tSBS5,2 tSBS5,3



. (3.45)

The D2D communication range dD2D between UT ui and UT uk and the communication range

dSBS between UT ui and SBS Sj can be computed as given in (3.18) and (3.19), respectively, to

form matrix (DUT ,SBS)5×8 that can be written as follows:

DUT,SBS =



0 dUT1,2 dUT1,3 dUT1,4 dUT1,5 dSBS1,1 dSBS1,2 dSBS1,3

dUT2,1 0 dUT2,3 dUT2,4 dU,T2,5 dSBS2,1 dSBS2,2 dSBS2,3

dUT3,1 dUT3,2 0 dUT3,4 dUT3,5 dSBS3,1 dSBS3,2 dSBS3,3

...
...

...
...

...
...

dUT5,1 dUT5,2 dUT5,3 dUT5,4 0 dSBS5,1 dSBS5,2 dSBS5,3



. (3.46)

The contents are requested based on their popularity by following Zipf popularity distribution

given in (3.1). The total number of files in the library is given as 50 files (F = 50) such that f =
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{f1, f2, · · · , f50}. Each user requests contents fz randomly and independently with the probability

of p is a vector of size (1× F ) such that:

p = p1, p2, · · · , p50, (3.47)

where p1 represents the most popular file with rank 1 and p50 represents the least popular file with

rank 50, respectively. Then, most popular files are placed in cache locations selected by the cache

placement algorithm. According to the mobility model discussed in section (3.2.3), the number of

contacts between UTs and other UTs and SBSs follows the Poisson distribution. So then, PUT,SBS
m

is a matrix of size (5× 8) that represents the probability of UT to contact with other UTs or SBSs,

and can be written as follows:

PUT,SBS
m =



pUTm1,1
pUTm1,2

pUTm1,3
pUTm1,4

pUTm1,5
pSBSm1,1

pSBSm1,2
pSBSm1,3

pUTm2,1
pUTm2,2

pUTm2,3
pUTm2,4

pUTm2,5
pSBSm2,1

pSBSm2,2
pSBSm2,3

pUTm3,1
pUTm3,2

pUTm3,3
pUTm4,4

pUTm3,5
pSBSm3,1

pSBSm3,2
pSBSm3,3

...
...

...
...

...
...

pUTm5,1
pUTm5,2

pUTm5,3
pUTm5,4

pUTm5,5
pSBSm5,1

pSBSm5,2
pSBSm5,3



. (3.48)

Given the size of caches in UT devices Cui such that Cui = Cu1 , Cu2 , · · · , Cu5 and SBSs Csj such

that Csj = Cs1 , Cs2 , Cs3 , respectively. Files can be cached from main library into UT caches and

SBS caches by designing a cache placement algorithm that implements the following tasks:

1. Input the datasets: (pz)(1X50), (DUT,SBS)(5X8), (T UT,SBS)(5X8), (P
UT,SBS
m )(5X8),

(Cui)(1X5), and (Csj)(1X5).

2. Set the constraints specified in (4.1b)-(4.1g) as follows:

• Equation (4.1b): The total size of files stored in each UT ui cache must not exceed the

corresponding cache size Cui
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• Equation (4.1c): The total size of files stored in each SBS sj cache must not exceed the

corresponding cache size Csj

• Equation (4.1d): We have two options for the UT uk cache, either store full file aUTk,z = 1

in the cache or do not store the file aUTk,z = 0 in the cache.

• Equation (4.1e): We have two options for the SBS sj cache, either store full file aSBSj,z = 1

in the cache or do not store the file aSBSj,z = 0 in the cache.

• Equation (4.1f): The sum of weights of all objective functions must not exceed 1,
∑4

x=1 w
L
x =

1.

• Equation (4.1g): Weights of all objective functions must be positive numbers, wL1 , w
L
2 , w

L
3 ,

and wL4 > 0.

3. Solve the objective function in (3.25a): Select the files to be cached associated with the highest

probability of popularity pz. This can be done by finding all the possible solutions for each row

in matrix A. For each UT and SBS, which represent one row in matrix A, we have (2F = 250)

possible solutions. We need to find a solution that maximizes the probability of storing the

most popular files while satisfying the given problem constraints. The following example

explains one possible solution for one cache (either UT cache or SBS ca che) associated with

one row in matrix A.

Example 1 Assume the files popularity is given as:

pz = [0.97 0.76 · · · 0.58 · · · 0.001](1X50)

For the first UT u1, one of the possible solutions can be:

A(1, :) = [1 1 · · · 1 · · · 0](1X50), then

A(1, :)× pTz = 0.97 + 0.76 + · · ·+ 0.58 + · · ·+ 0 = 2.31

For the second UT u2, one of the possible solutions can be:

A(2, :) = [1 0 · · · 0](1X50), then

A(2, :)× pTz = 0.97 + 0 + · · ·+ 0 = 0.97
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This process is carried out for all rows, and the resulting scores from all the rows (2.31, 0.97, · · · )

is added together. This process is repeated for different combinations of matrix A until we reach

the maximum value of this accumulated score. The matrix A corresponding to this maximum

score is our solution.

4. Solve the objective function in (3.26a): For each column of matrix A, there are number of

possible solutions to place 1 or 0 corresponding to cache or not cache the file fz. Then for each

column in matrix A, we have (2(M+N) = 2(5+3) = 28) possible solutions. We need to find the

solution by deciding where to store the file fz to maximize the contact duration between each

UT ui and the corresponding UT uk and/or SBS sj in matrix (T UT,SBS)(5X8). This means

maximizing the probability of achieving successful communication. In the following example,

one possible solution for one column of matrix A is explained:

Example 2 Assume the contact duration between UT u3 and other UTs and other SBSs is

given in the third row of the matrix (T UT,SBS)(5X8), asfollows :

T UT,SBS(3, :) = [15.2 66.6 0 109 102 15.2 65.6 114.6](1X8)

For the first file f1, one of the possible solutions to cache or not cache the file in all the available

UT and SBS caches can be as follows:

A(:, 1) = [0 1 0 1 1 0 0 1]T(8X1), then

T UT,SBS(3, :)× A(:, 1) = 0 + 66.6 + 0 + 109 + 102 + 0 + 0 + 114.6 = 392.2

For the second file f2, one of the possible solutions to cache or not cache the file in all the available

UT and SBS caches can be as follows:

A(:, 2) = [0 1 0 1 1 0 1 1]T(8X1), then

T UT,SBS(3, :)× A(:, 2) = 0 + 66.6 + 0 + 109 + 102 + 0 + 65.6 + 114.6 = 457.8

This process is carried out for all columns, and the resulting scores from all the columns (392.2, 457.8, · · · )

are added together. This process is repeated for different combinations of matrix A until we reach

the maximum value of this accumulated score. The matrix A corresponding to this maximum score

is our solution.
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5. Solve the objective function in (3.27a): For each column of matrix A, there are a number of

possible solutions to place 1 or 0 corresponding to cache or not cache the file fz. Then for

each column in matrix A, we have (2(M+N) = 2(5+3) = 28) possible solutions. We need to find

the solution by deciding which place to store the file fz to minimize the communication range

between each UT ui and the corresponding UT uk and/or SBS sj in matrix (DUT,SBS)(5X8).

This means maximizing the probability of achieving successful communication. In the follow-

ing example, one possible solution for one column of matrix A is explained:

Example 3 Assume the communication range between UT u4 and other UTs and other SBSs

is given in the fourth row of the matrix (DUT,SBS)(5X8), as follows:

D(4, :) = [22.56 11.58 129.14 0 17.4 22.6 11.5 129.14](1X8)

For the first file f1, one of the possible solutions to cache or not cache this file in all the

available UT and SBS caches can be as follows:

A(:, 1) = [1 0 1 1 1 0 0 0]T(8X1), then

D(4, :)× A(:, 1) = 22.56 + 0 + 129.14 + 0 + 17.4 + 0 + 0 + 0 = 169.1

For the second file f2, one of the possible solutions to cache or not cache this file in all the

available UT and SBS caches can be as follows:

A(:, 2) = [0 0 0 1 1 1 1 0]T(8X1), then

D(4, :)× A(:, 2) = 0 + 0 + 0 + 17.4 + 22.6 + 11.5 + 0 = 51.5

This process is carried out for all columns. The resulting scores from all the columns (169.1, 51.5, · · · )

are added together. This process is repeated for different combinations of matrix A until we

reach the minimum value of this accumulated score. The matrix A corresponding to this

maximum score is our solution.

6. Solve the objective function in (3.28a): For each column of matrix A, there are a number of

possible solutions to place 1 or 0 corresponding to cache or not cache the file fz. Then for

each column in matrix A, we have (2(M+N) = 2(5+3) = 28) possible solutions. We need to find

the solution by deciding which place to store the file fz to maximize the probability that UT
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ui contacts with the corresponding UT uk and/or SBS sj in matrix (PUT,SBS
m )(5X8). In the

following example, one possible solution for one column of matrix A is explained:

Example 4 Assume the probability of contact between UT u5 and other UTs and other SBSs

is given in the fifth row of the matrix (PUT,SBS
m )(5X8), as follows:

Pm(5, :) = [0.51 0.03 0.16 0.007 0.103 0.09 0.1 0](1X8)

For the first file f1, one of the possible solutions to cache or not cache the file in all the

available UT and SBS caches can be as follows:

A(:, 1) = [0 0 0 1 1 1 0 1]T(8X1), then

Pm(5, :)× A(:, 1) = 0 + 0 + 0 + 0.007 + 0.103 + 0.09 + 0 + 0 = 0.2

For the second file f2, one of the possible solutions to cache or not cache this file in all the

available UT and SBS caches can be as follows:

A(:, 2) = [1 1 0 0 1 1 0 0]T(1X8), then

Pm(5, :).A(:, 2) = 0.51 + 0.03 + 0 + 0 + 0.103 + 0.09 + 0 + 0 = 0.733

This process is carried out for all columns. The resulting scores from all the columns (0.2, 0.733, · · · )

are added together. This process is repeated for different combinations of matrix A until we

reach the maximum value of this accumulated score. The matrix A corresponding to this

maximum score is our solution.

7. Repeat steps 3-6 to cover all the possible solutions (rows and columns of matrix A).

8. Solve the weighted sum of multi-objective function given in (4.1a): For matrix A, we have

2((M+N)XF ) = 2(8X50) = 2400 possible solutions. Also, the weights of each objective function

are a variable that can be optimized to select the settings that achieve the highest cache hit

rate.

9. Use the selected solution of matrix A to store files in UT caches and SBS caches.

At the end of this phase, most popular files are placed in caches proactively prior to a user

request. Figure 3.4 shows an example of the cache placement phase, illustrating all the input data

sets, the output, and the contents of UT caches and SBS caches.
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3.4.2 Step 2: User Request Contents

This step starts when user requests contents. User can obtain contents through local cache, D2D

caching, SBS caching, or MBS caching. Deciding from where to download the file is made in the

next phase. Figure 3.5 illustrates an example, where UT5 requests file f3. The file f3 are stored in

UT2, UT3, SBS2, and SBS3.

Figure 3.5: An Illustration example of user request phase.

3.4.3 Step 3: Cache Access and Cache Delivery Phase

The cache system receives the request in this step and decides where to download the files to achieve

energy-efficient cache access and delivery. Where to download the files depends on the minimum

download time (cache access decision) and minimum transmission power (cache delivery decision).

From matrix A resulting from cache placement phase and the given size of files flz , we compute

the locations table of files in UTs and SBSs devices. Figure 3.6 shows an example of the locations

table of the cached files.

Compute the download time of the stored file to be downloaded by UT ui from another UT uk

and/or from SBS sj using (3.6) and (3.7), respectively. Such that:
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T UT,SBSd =



tUTd1,1 tUTd1,2 tUTd1,3 tUTd1,4 tUTd1,5 tSBSd1,1
tSBSd1,2

tSBSd1,3

tUTd2,1 tUTd2,2 tUTd2,3 tUTd2,4 tUTd2,5 tSBSd2,1
tSBSd2,2

tSBSd2,3

tUTd3,1 tUTd3,2 tUTd3,3 tUTd4,4 tUTd3,5 tSBSd3,1
tSBSd3,2

tSBSd3,3

...
...

...
...

...
...

tUTd5,1 tUTd52 tUTd5,3 tUTd5,4 tUTd5,5 tSBSd5,1
tSBSd5,2

tSBSd5,3



. (3.49)

Compute the transmission power between UT ui that requests the file and other UT uk and

SBS sj using (3.10) and (3.13), such that:

EUT,SBS =



eUT1,1 eUT1,2 eUT1,3 eUT1,4 eUT1,5 eSBS1,1 eSBS1,2 eSBS1,3

eUT2,1 eUT2,2 eUT2,3 eUT2,4 eUT2,5 eSBS2,1 eSBS2,2 eSBS2,3

eUT3,1 eUT3,2 eUT3,3 eUT3,4 eUT3,5 eSBS3,1 eSBS3,2 eSBS3,3

...
...

...
...

...
...

eUT5,1 eUT5,2 eUT5,3 eUT5,4 eUT5,5 eSBS5,1 eSBS52 eSBS5,3



. (3.50)

Then the design of cache access and cache delivery algorithm requires implementing the following

steps:

1. Input the datasets: A(8X50), (T UT,SBSd)(5X8), (EUT,SBS)(5X8) and the files location table illus-

trated in (Figure (3.6)).

2. Set the constraints specified in (3.43b)-(3.43g) as follows:

• Equation (3.43b): The file fz must be cached in UT uk in order to download them.
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• Equation (3.43c): The file fz must be cached in SBS sj in order to download them.

• Equation (3.43d): The transmit power PukT of UT uk must be less than or equal to Pukmax

in order to select uk to download the file.

• Equation (3.43e): The transmit power PsjT of SBS sj must be less than or equal to Psjmax

in order to select SBS sj to download the file.

• Equation (3.43f): The sum of weights of the two objective functions must not exceed 1,

wE1 + wE2 = 1.

• Equation (3.43g): Weights of the two objective functions must be positive numbers,

wE1 and wE2 > 0.

3. Solve the objective function in (3.37): For each UT ui,∀i ∈ 1, 2, · · · ,M and each file fz ∀z ∈

1, 2, · · · , F , there are (M + N) possible locations to download from M UT and/or N SBS

caches, if the files are cached. We need to select the locations that result in minimum download

time. The aim is to achieve latency-efficient caching (this is the cache access objective). In

the following example, the computation is performed for one user and one file to explain the

procedure of selecting from where to download the requested file:

Example 5 For the same example given in section 3.4.2, we assumed UT u5 requests file f3

and this file are stored in u2, u3, s2, and s3.

For UT u5, the download time of the file from all other UTs and SBSs are given in the fifth

row of the matrix (T UT,SBSd)(5X8), as follows:

T UT,SBS
∗

d (5, :) = [63 97 80 92 63 17 9 3](1X8).

Then, the normalized download time T UT,SBS
∗

d (5, :) is given as:

T UT,SBS
∗

d (5, :) = [0.6383 1 0.8191 0.9468 0.6383 0.1489 0.0638 0](1X8)

File f3 status in matrix A is given in the third column of matrix A, such as:

A(:, 3)T = [0 1 1 0 0 0 1 1]T(1X8), then

T UT,SBS
∗

d (5, :)� A(:, 3)T = [0 1 0.8191 0 0 0 0.0638 0](1X8)
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Thus, we have multiple locations for the files, and we need to select the locations that result in

minimum download time. In this example, the priority for downloading the files will be given

to the cache location in the order s3, s2, u3, and u2, respectively.

4. Solve the objective function in (3.41a): For each UT ui,∀i ∈ 1, 2, · · · ,M and each file fz ∀z ∈

1, 2, · · · , F , there are (M + N) possible locations to download from M UT and/or N SBS

caches, if the files are cached. We need to select the locations that result in minimum energy

consumption for delivering the file fz. The aim is to achieve energy-efficient caching (this is

the cache delivery objective). In the following example, the computation is performed for one

user and one file to explain the procedure of selecting from where to download the requested

file:

Example 6 For the same example given in section 3.4.2, we assumed UT u5 requests file f3

and the file is stored in u2, u3, s2, and s3.

The energy consumption for delivering the files from all UTs in D2D communication and

all from SBSs in SBS communication to UT u5 are given in the fifth row of the matrix

(EUT,SBS)(5X8), as follows:

EUT,SBS(5, :) = [214 85 72 102 53 15 6 10](1X8).

Then, the normalized energy consumption EUT,SBS∗(5, :) is given as:

EUT,SBS∗(5, :) = [1 0.3798 0.3173 0.4615 0.2260 0.0433 0 0.0192](1X8)

File f3 status in matrix A is given in the third column of matrix A, such as:

A(:, 3)T = [0 1 1 0 0 0 1 1](1X8), then

EUT,SBS∗(5, :)� A(:, 3)T = [0 0.3798 0.3173 0 0 0 0 0.0192](1X8)

Thus, we have multiple locations for the files, and we need to select the locations that result

in minimum energy consumption. In this example, the priority for downloading the files will

be given to the cache location in the order s2, s3, u3, and u2, respectively.
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5. Solve the weighted sum of multi-objective function given in (3.43a): Select from where to

download the requested file. Also, the weight of each objective function (latency and energy)

is a variable that can be optimized to select the settings that achieve higher performance.

6. Download the files from the selected locations.

7. If file fz is not found in UT and SBS caches, then download the requested file from MBS.

8. Stop cache access and cache delivery algorithm.

Figure 3.6: An Illustration example of files distributed in UTs and SBSs caches.

Figure 3.7 shows an example of the cache access and cache delivery phase, illustrating all the

input data sets, the output, and the contents of UT caches and SBS caches.

3.5 Summary

This chapter presented, mobile edge network (MEN) as a network model that enables the use

of caching capabilities at the edge of the network in the macro base station (MBS), small base

stations (SBSs), and user terminals (UTs). First, we defined the main system models, components,

and relationship of system models. Then, problem formulation for latency efficient and energy-

efficient caching optimization was proposed. Illustrative examples followed this for possible user

requests, access, and delivery. The following chapter will use the weighted-sum fusion decision to

solve the cache placement optimization problem formulated in this chapter.
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Chapter 4

Cache Placement Using Weighted-Sum

Fusion Decision

4.1 Introduction

Cache placement at the edge of the network faces several challenges due to continuously changing

content popularity, user mobility, and the number of users within each network. In addition, more

challenges appear in caching at MENs due to high computation requirements of future applications

that need to satisfy power and delivery time constraints. Existing studies are based on user mobility

to carry out cache placement at the edge of the wireless network. In [194], the authors study the

influence of using the statistical traffic and users’ context information on the resources needed and

network locations for pre-caching the contents. The considered information includes file popularity,

user location, and mobility pattern. The authors propose two procedures for cache placement: the

first one studies the correlation between users and files and uses a support vector machine (SVM)

to predict which contents to place on SBS caches depending on users’ preferences. The second

procedure studies the social context of cache placement by placing contents on a set of user devices

considered influential users within the network. Then D2D communications can be established

between those users and other users in the network. Their results highlighte the importance of

investigating context awareness and social ties between users to reduce peak data traffic demands

via proactive caching. The authors in [123] consider context-aware proactive caching. The authors

formulate a multi-armed bandit optimization problem that considers user mobility by computing
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connected users’ preferences and users’ service priorities within a specific time slot. The content

popularity is varied over time by considering the movement of users and the connection of a new

set of users. The algorithm proposed by the authors uses online learning of context-specific content

popularity of connected users, which can include personal preferences, equipment, and user service

priority provided by an operator. In [75], the authors use the transfer learning approach to learn the

content popularity. First, they classify the training dataset using a K-means clustering algorithm

based on access feature correlation during the specific time interval. Then, the algorithm classifies

the content on the same cluster with a more considerable access feature correlation. They formulate

a proactive content caching optimization model to minimize the average transmission cost while

increasing the cache hit rate. The authors used a greedy algorithm to solve the proactive cache

problem.

In [137], the authors consider realistic cache placement features by describing user mobility via

a set of frequently visited locations within a cell, where one or more SBSs cover each location.

The influence of mobility-awareness in cache placement algorithm is studied in [109]. The authors

formulate the problem of coded segments caching at base stations (BSs) and user terminals (UTs),

considering users’ mobility and the amount of data content per transmission. User mobility is

presented as a peer-to-peer connectivity model based on the parameters of contact duration and

frequency. The problem is formulated as an integer programming problem, which is solved using

sub-modular optimization. In [195], authors propose proactively loading content based on the

balance between user trajectories and traffic requirements. The contents are placed in cells other

than the congested cells. User mobility patterns are modeled using a semi-Markov renewal process.

In most of the work above, the impact of user mobility on caching strategy has been considered

from one perspective: users’ content preferences, frequently visited places by users, users’ social

context, content segmentation and placement of the segments in multiple cache locations, or users’

contact probabilities. However, cache placement performance improvement by simultaneously con-

sidering different user mobility attributes and their relationship can directly affect cache placement

decisions is a challenging problem that calls for detailed investigations. In this chapter, we propose

a mobility-aware latency-efficient cache placement algorithm based on weighted fusion decisions.

This chapter investigates a new formulation of the cache placement problem, considering four

objectives to place contents in SBSs and UT caches. The multi-objective function sets the ad-
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vantages of user mobility patterns to decide on each SBS and UT cache content. The problem is

formulated as a weighted fusion decision with four objectives related to user mobility computed

from recorded data sets and one related to content popularity.

The aim of the formulated multi-objective function is cache hit rate maximization. This aim is

achieved by maximizing file content popularity, maximizing the contact duration between a mobile

user and the cache where the desired contents are stored, minimizing the communication range

between the mobile user and cache, and maximizing the UT contact probability. Identification

of the effect of user mobility on the cache placement performance is an essential feature of this

new formulation. User mobility is considered by analyzing the impact of user speed, user mobility

patterns through different paths within one cell to identify highly used paths in the wireless network,

user contact probability with other users and SBSs, and communication ranges between previous

users and SBSs locations along previous used paths.

The simulation results are computed for up to 10, 000 user requests from mobile users from

10, 000 random locations over three different paths in a single wireless network cell. The file requests

are made according to the Zipf popularity distribution. The evaluation of our work is implemented

by comparing the results of our proposed cache placement algorithm with three different cache

placement techniques. These techniques are popularity, random, and mobility cache placement.

Our results describe the impact of user mobility attributes on increasing the cache hit rate,

which decreases the latency of downloading the requested data content. Furthermore, the results

show the impact of user mobility attributes on reducing the consumed energy for transmitting the

contents to the UT.

4.2 Cache Placement Based On Decision Theory

The weighted sum method is used to solve the multi-objective functions given in (3.25a), (3.26a),

(3.27a), and (3.28a) and achieve latency efficient cache placement. Different weights wx (x =

1, · · · , 4) can be chosen for each objective function in order to achieve latency efficient caching.

Subsequently, for M UTs and N SBSs, a single objective function for cache placement is formulated

that maximizes the probability that a UT ui downloads the requested files from UTs and SBSs are

within the contact durations. An objective function for cache placement is formulated, maximizing
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the probability that a UT ui downloads the requested files from UTs and SBSs within the contact

durations. The objective function can be written as follows:

maximize
< A,wx >

4∑
x=1

g∗(A,wx) (4.1a)

subject to

F∑
z=1

ai,z.flz ≤ Cui ,∀i ∈ {1, · · · ,M} (4.1b)

F∑
z=1

aj,z.flz ≤ Csj ,∀j ∈ {1, · · · , N} (4.1c)

aUTk,z ∈ [0, 1],∀k ∈ {1, · · · ,M} (4.1d)

aSBSj,z ∈ [0, 1],∀j ∈ {1, · · · , N} (4.1e)

4∑
x=1

wx = 1 (4.1f)

w1, w2, w3, and w4 > 0, (4.1g)

The weighted sum of the normalized objective values is as follows:

g∗(A,wx) = w1.
M+N∑
i=1

A(i, :)× pTz ∀z ∈ {1, · · · , F},

+ w2.
M∑
i=1

F∑
z=1

T ∗UT,SBS(i, :)× A(:, z)

− w3.
M∑
i=1

F∑
z=1

D∗UT,SBS(i, :)× A(:, z)

+ w4.

M∑
i=1

F∑
z=1

PUT,SBS
m (i, :)× A(:, z),

(4.2)

where, pTz , T ∗UT,SBS, D∗UT,SBS, and PUT,SBS
m represent the file popularity probability, normalized

contact duration, normalized communication range, and contact probability, respectively.

The objective function in (4.1a) represents the cache placement strategy for UTs and SBSs such

that the cache hit rate is maximized. This is achieved by proactively caching popular contents

and ensuring minimum latency by placing contents in the vicinity of the UTs before their requests,

depending on their locations within a macrocell. The constraints in (4.1d) and (4.1e) indicate that
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the entries of the solution matrix are binary variables, corresponding to either caching or not caching

a complete file unit in each cache. Finally, the last constraints (4.1f) and (4.1g) make sure that the

sum of all the weights equals one and that individual weights are positive, respectively.

The problem of deciding optimal cache placement at SBSs to maximize the probability of finding

the desired files through its local SBSs without using backhaul links or downloading from MBS

(which means to minimize the total overall delay of all UTs) has been proven in [196] as an NP-

hard problem.

In [137], it was shown that the caching problem of files in SBSs while compromising users moving

in and out of the SBS coverage area to minimize the probability that the request reaches MBS (which

means to maximize cache hit rate) is an NP-hard problem. While in [197], it has been proved that

the cache placement is an NP-hard problem for caching in UTs through D2D communication to

maximize the total amount of data offloaded to caches. Their proof considers input parameters:

the mobility of UTs, files popularity, and cache storage capacity.

The problem targeted in our work aims to find which files to cache at SBSs and UTs to maximize

the cache hit rate considering users’ mobility, content popularity, and cache storage capacity. There-

fore, the cache placement algorithm defined in (4.1a) is an NP-hard problem. Therefore, we need

to find an efficient solution to build a model that can learn the hidden features in the input data

sets, features of system attributes and their relationships, the relationship between cache placement

in previous decisions, and their input attributes to predict next decisions that may improve overall

system performance.

The problem of cache placement involves a decision-making problem, where we have several

possibilities on which contents to cache and where to cache these contents. We need to select one

action among these possibilities based on the available information.

The main task of the decision theory is to design decision rules that optimize the objective

functions subject to certain constraints. In our case, the cache placement model gives two possible

decisions for each file fz in the main library, either 1 or 0, indicating to cache or not to cache the

file, respectively. In this approach, contact duration probability, communication range probability,

and user terminal UT contact probability will be checked and multiplied by weight w1, w2, w3, and

w4, respectively.
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Then, the summation of the weighted and normalized variables is compared with a threshold

value. The file will be placed only if the weighted sum is above a threshold. The weighted decision

fusion algorithm steps are illustrated in Algorithm 1. The complexity of the cache placement

problem increases with the increase in the number of users, the number of SBSs, and the number

of files in MBS. We proposed a multi-objective optimization problem to reduce the complexity

computation required to solve the cache placement algorithm to find matrix A of size (M +N)×F .

As a result, the complexity of computing each objective (steps 1 to 4) is reduced to O(N2). In the

weighted-sum approach, each condition controls the effect of that condition on the final decision.

The management and implementation of Algorithm 1 is centralized in the MBS.

Algorithm 1 : Cache Placement Based Weighted-Sum Approach

Input: (T ∗UT )(MXM), (T ∗SBS)(MXN), (D∗UT )(MXM), (D∗SBS)(MXN), (P
UT
m )(MXM),

(P SBS
m )(MXN), (Cui)(1XM), (Csj)(1XN), and p.

1: Find maximum of (T UT )(MXM) and (T SBS)(MXN)

2: Find minimum of (DUT )(MXM) and (DSBS)(MXN)

3: Find maximum of (PUT
m )(MXM) and (P SBS

m )(MXN)

4: Find maximum of p

5: Compute the weighted-sum of the results obtained from steps 1, 2, and 3 to form matrix A

6: Place selected files on SBS and UT caches following matrix A

Output: Cache strategy matrix A

4.3 Simulation Results

Simulation results are provided to evaluate the impact of different variables on the cache placement

performance in MEN with four different caching strategies:

• Popularity caching [109]: It assumes that we place the most popular contents in each SBS

and UT cache.

• Random caching [109]: It assumes that we place contents in SBS and UT caches randomly.

• Mobility aware caching [137]: Where user mobility is modeled by a set of highly visited
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locations in the macrocell. A set of SBSs may cover each location. Users may connect with

multiple SBSs at different times while on the move. Contents are delivered by considering

user mobility and contact duration limits. Under this strategy, we assume the files are stored

and delivered as one file.

• Weighted-sum approach caching: It assumes that in cache placement we place contents in

SBSs and UTs depending on: file popularity probability, p, contact duration of UTs and

SBSs, T UT,SBS, communication ranges, DUT,SBS, and user terminal UT contact probability

PUT,SBS
m .

The four strategies will be evaluated by computing the hit rate. The simulation is implemented

on a certain subarea with area dimension, and a number of SBSs [197]. We assume the macrocell

includes one MBS, 15 SBSs, and there are three different paths that users pass through as shown

in Figure 4.1. The simulation results are computed for up to 10, 000 user requests sent from mobile

users in 10, 000 random locations in different paths. The simulation parameters are illustrated in

Table 4.1. One of the parameters is varied. The remaining are fixed during each simulation to

compare the impact of system parameters on the performance of the three caching algorithms. The

results are computed by taking the mean value of the measured values from three different paths.

Initially, we assume all the parameters have equal weights, which means w1 = w2 = w3 = w4 = 0.25

and the threshold is 0.5 to take the 50% of the effect of each input attributes.
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Figure 4.1: A 500m × 500m macro cell with one MBS, 15 SBSs, and three paths.

Table 4.1: Simulation parameters

Parameter Value

Number of files in MBS 100

Number of SBSs (N) 5, 10, 15

SBSs cache size (10-100)% of MBS library

UTs cache size (50)% of SBSs cache size

File size 2 MB

SBS data rate (2, 4, 8, 16)Mbps

SBS communication range (50, 75, 100, 200)m

User speed (10, 20, 30) m/sec

Number of user requests 10,000

We assume user mobility parameters follow the work in [109]. It is defined as an independent

Poisson process, the pairwise contact duration between mobile UT and SBS follows the exponential

distribution with parameter λSBSi,j , such that Γ(10, 1/100) represents the contact rate between mobile

UT and SBS. The algorithms are implemented using Python 3 in Anaconda environment.
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Figure 4.2: Impact of cache size (% of the total library size) on the hit rate.

4.3.1 Impact of Cache Size:

Figure 4.2 shows the impact of cache size, which can range from 10% to 100% of the total library

size. As expected, increasing the cache size will increase the cache hit rates. This is because more

files can be cached when the cache size is larger.

In all cache placement algorithms, the cache hit rate increases near linearly with the cache size

increase. Mobility caching and weighted-sum approach perform better than popularity and random

caching algorithm. The performance of weighted-sum caching is very close to mobility caching and

outperforms it in larger cache size (cache size above 60% of the main library).

4.3.2 Impact of Number of SBSs:

Figure 4.3 shows the impact of cache size on the hit rate when number of SBSs = 5, 10, and 15.

We observe the cache hit rate increases linearly with the increase of cache size and the increase of

the number of SBSs. This is because when the number of SBS increases with the increase of cache

size, more files are stored in the caches, increasing the possibilities of finding the requested content.
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Figure 4.3: Impact of cache size (% of the total library size) on the hit rate with different number

of SBSs.

The Weighted-sum approach outperforms other caching techniques for all number of SBSs.

4.3.3 Impact of SBS Data Rate:

We explore the impact of changing the SBS data rate on cache placement algorithm performance

as shown in Figure 4.4. SBSs data rates vary from 4 to 16 Mbps. Increasing the SBS data rate

increases the hit rate in cache placement algorithms since SBSs can transfer more data during

contact with the UT. The hit rate in the weighted-sum approach outperforms other techniques for

all data rates. When the data rate is 4 Mbps, the hit rate in popularity caching exceeds random

and mobility caching. Hence, for higher data rates (8 and 16 Mbps), mobility caching outperforms

the popularity and random caching. This is because increasing the SBS data rate with fixed file

size allows the user to complete downloading the contents within available time while moving from

one location to another location.
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Figure 4.4: Impact of cache size (% of the total library size) on the hit rate with different values of

SBSs data rate.

4.3.4 Impact of SBSs Communication Range:

Figure 4.5 presents the influence of SBS communication range varying from 75 to 200 m on the

cache hit rate. As the results show, the cache hit rate increases in all algorithms when the commu-

nication range increases. As the SBS communication range increases, the number of SBSs within

the communication range of the UT increases, so the possibility of finding the requested files within

the caches of all the covered SBSs is higher. When the SBSs communication range is equal to 75m

and 100m, the weighted-sum approach gives better results than mobility, popularity, and random

caching algorithms. Also, the results show when the communication range is 200m, popularity

caching provides a higher hit rate than random and mobility algorithms. In popularity caching

during the cache placement phase, the popular files are placed in all SBSs and UTs within the wire-

less network cell. Thus, increasing the communication range covers more SBSs, which increases the

possibility of finding the requested contents on one of the SBS or UT caches. Although popularity

caching, in this case, results in higher performance, there is a penalty of losing energy while storing
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Figure 4.5: Impact of cache size (% of the total library size) on the hit rate with different values of

SBSs communication range.

files in some SBSs that UTs will never reach (have low contact probability or outside communication

range between SBS and UT). More studies are required to decide the trade-off between the energy

consumption used to store files in SBSs and UTs and the obtained SBS hit rate.

4.3.5 Impact of User Terminal Speed:

We investigated the impact of user speed on caching strategy performance. We assume user speed

can be 10, 20, or 30 m/s. Figure 4.6 illustrates the impact of changing user speed on cache hit

rate for different values of cache size. It is observed that the weighted-sum approach outperforms

popularity, random, and mobility caching for all user speeds. Also, mobility caching outperforms

popularity and random caching at user speed 10 and 20 m/s. While at higher user speed (30

m/s), popularity caching gives a higher hit rate than random and mobility caching. This is because

user mobility is considered while caching contents in SBSs along the paths in weighted-sum and

mobility approaches. UT can download the contents from SBSs along the path while moving from
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Figure 4.6: Impact of cache size (% of the total library size) on the hit rate with different values of

user speed.

one location to another. When user speed increases, popularity caching outperforms mobility and

random caching at all values of cache size. When user speed is higher (30 m/s), there is not enough

time to download the content within the file deadline time. At higher user speed, the hit rate

decreases and reaches zero for all strategies (not shown in the figure). This is because, at higher

user speed, the available time to download the contents is less than the file download time. Users

will not be able to download the contents from SBSs while moving along the paths. Contents will

be downloaded from MBS.

4.3.6 Impact of SBS Normalized Energy Consumption:

For cache size equal 20% and 80% from the MBS librabry size, we investigate the impact of changing

number of SBSs, SBSs data rate, SBSs communication range, and user terminal speed on the SBS

normalized energy consumption for transmitting the contents from SBSs to UTs in the Figures 4.7,

4.8, 4.9, and 4.10, respectively.
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Figure 4.7: The impact of number of SBSs on the SBS normalized energy consumption.

As the figures show, the energy consumption in SBSs increases with the increase in the cache

size. As the cache size increases, the cache hit rate increases which means contents are mostly

downloaded from SBSs and UTs. Increasing energy consumption for transmitting the contents

from SBSs to UTs means decreasing the energy consumption for downloading the exact contents

from MBS. In popularity and random caching techniques, the increase of cache size does not result

in a significant increase in the hit rate, which means contents are neither found in SBSs caches

nor UT caches and are delivered to user terminals from MBS. While in mobility and weighted-sum

techniques, the increase in cache size increases SBSs energy consumption. The increase depends on

the impact factors (number of SBSs, SBSs data rate, SBSs communication range, and user terminal

speed ).

4.3.7 Impact of Weighted-Sum Threshold:

Figure 4.11 shows the impact of changing the threshold value from 0.25 to 1 on the cache hit rate.

As expected, the hit rate increases when the threshold decreases. Setting a small threshold value

means allowing any of the input attributes to contribute to content caching. This may result in

caching contents even if only one of the input attributes has a high probability. For example, caching

93



4 6 8 10 12 14 16
Data Rate (mbps)

0.0

0.2

0.4

0.6

0.8

1.0

SB
S 
No

rm
al
ize

d 
En
er
gy
 C
on
su
m
pt
io
n

Popularity: 20%
Popularity: 80%
Random: 20%
Random: 80%
Mobility: 20%
Mobility: 80%
Weighted-sum: 20%
Weighted-sum: 80%

Figure 4.8: The impact of number of SBSs on the SBS normalized energy consumption.

popular content in SBS or UT cache may be out of the communication range of the UTs.

4.4 Summary

We proposed a new mobility-aware and latency-efficient cache placement algorithm for MENs. The

algorithm simultaneously considers varying storage capacities, content popularity, contact probabil-

ity, user mobility, contents-downloading latency, and energy consumption to transmit the contents

to UTs. Its goal is to maximize the cache hit rate, which eventually minimizes the required content

latency. We used an approach based on weighted-sum to decide to place contents at the edge of the

network. Simulation results are used to analyze the impact of cache size, number of SBSs, SBSs

data rate, SBS communication range, user terminal speed, SBS normalized energy consumption,

and weighted-sum threshold on cache placement performance. Finally, we compare our proposed

algorithm with respect to existing cache placement techniques. In the following chapter, we will

propose a new solution to the cache placement problem by formulating it as a classification problem

and solving it using the supervised learning technique.
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Figure 4.9: The impact of SBS communication range on the SBS normalized energy consumption.

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
User Speed (mps)

0.0

0.2

0.4

0.6

0.8

1.0

SB
S 

No
rm

al
ize

d 
En

er
gy

 C
on

su
m

pt
io

n

Popularity: 20%
Popularity: 80%
Random: 20%
Random: 80%
Mobility: 20%
Mobility: 80%
Weighted-sum: 20%
Weighted-sum: 80%

Figure 4.10: The impact of user terminal speed on the SBS normalized energy consumption.
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Chapter 5

Cache Placement Using Supervised

Learning Techniques

In this chapter, a new formulation of the cache placement problem is investigated. This is based on

our formulation in [211] presented in the last chapter of a latency efficient multi-objective function

that aims to maximize the cache hit rate by maximizing the file content popularity, maximizing

the contact duration between the mobile user and the cache that stores the required contents,

minimizing the communication range between the mobile user and the cache, and maximizing

the UT contact probability. In the formulation mentioned above and solution, we assumed equal

weights for all input parameters. We focus on the values of weighted-sum (WS ) cache placement

input attributes to model the relationship between these values and the hit rate when the users are

moving. Weights are assigned to each input to assess the contribution of input attributes on cache

placement decisions.

5.1 Introduction

Various cache placement schemes have been designed for edge caching in wireless networks. However,

most existing literature on cache content placement algorithms maximizes the cache hit rate by

placing content based on content popularity changes. This is because a few popular files cause a

large number of content requests. Using popular files, cache placement may result in replication

of the same file in many caches in one cell. In [198], the authors presented a cache placement
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algorithm where the decision of cache or not cache (1 or 0) is converted into a convex optimization

problem where the decision is relaxed to any value in [0,1]. Using an optimization technique, a

non-integer solution is found and converted into an integer solution. In this algorithm, the authors

took content popularity distribution as an input to the optimization problem and specified the

problem’s constraints based on the network topology.

A deterministic caching approach was used for cache placement based on computational greedy

algorithms. In [199], an optimal greedy algorithm was proposed for cache content placement.

The authors exploited the search for optimal contents by balancing between the content diversity

in caches within the wireless network cell and the channel diversity gain. The authors in [200]

designed the cache placement with the objective to minimize the delay of delivering the file to the

end-users. They proved that the objective function was a monotone non-increasing super-modular

function that a greedy algorithm could solve to obtain a locally optimal solution. Deterministic

caching approaches can improve network performance only with the assumption that UTs stay at

the exact locations for several hours [200].

To enlarge the set of cached files and exploit caching diversity, cooperative caching and device-to-

device (D2D) caching approach was presented in [201], [202], and [203]. The D2D approach utilizes

UT caches to improve network performance. The D2D cache placement algorithms considered

content popularity, distances between users in one cell, and the social association between users [204].

An asymptotically optimized online learning content placement and content delivery algorithm was

proposed in [204]. The algorithm used a distributed online learning approach based on stochastic

gradient descent (SGD) at individual edge servers. Studies that use multi-winner auction theory for

cache placement-based D2D communication showed that the network throughput increased linearly

with the number of UTs in one cell [205].

A learning-based proactive caching was investigated to predict the content demand of users.

In [206], the authors used singular value decomposition (SVD) to predict content preferences. In

[207], the users-to-content association was used to predict content popularity using non-negative

matrix factorization (NMF) machine learning. This is a linear model that learns through one layer

relationship between the user and the contents. Multi-layer learning was proposed in [208] that

used a deep neural network, which provides a nonlinear model for the association between users

and the content demands. Distributed deep learning (DDL) was proposed in [209] in which deep
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learning was used to predict users’ demand at the edge of the network. Then, the trained models

were collected by the central server from the MENs, and the global model was updated accordingly.

The cache placement problem was studied from the perspective of user mobility. In [3], the

authors presented the effects of exploiting the statistical traffic pattern and users’ context informa-

tion, such as file popularity, user location, and mobility pattern on the number of resources needed

and at which network location the content should be pre-cached. Context-aware proactive caching

was also considered in work proposed in [123]. The authors formulated a multi-armed bandit op-

timization problem. They considered user mobility by computing connected users’ preferences and

users’ service priorities in a given time slot. The content popularity was considered to change over

time by considering users’ movements and connections between new users. In [137], the authors

addressed realistic features of cache placement by describing user mobility via the set of highly

visited locations within the cell where one or more SBSs covered each location. The impact of

mobility-awareness in cache placement algorithm was discussed in [109]. The authors formulated

the problem of caching of coded segments at base stations (BSs) and UTs taking into account user

mobility and the content amount per transmission. User mobility was presented as a peer-to-peer

connectivity model with contact duration and contact frequency perspectives. The problem was

formulated as an integer programming problem and solved by sub-modular optimization.

In most previous works, such as that in [3], [123], [137], and [109], the impact of user mobility on

caching strategy was considered from one of the following perspectives: either from users’ content

preferences, highly visited places by the users, user social context, content segmentation and multi-

casting of segments to multiple cache locations, or users contact probability. However, improving

the quality of service by increasing the cache hit rate that minimizes the latency of downloading the

contents and increases the cache hit rate that reduces the total energy consumption requires learn-

ing techniques to model cache placement. Learning techniques can exploit different user mobility

attributes and the relationship between these attributes that can affect cache placement decisions.

This is a challenging problem and motivates further investigations. The future wireless network

should be more adaptive to user mobility, data rate, delay, number of SBSs and user terminals,

and many other network information and parameters. To improve the adaptiveness to the dynamic

changes in wireless networks, network intelligence should be used to model network status and

update future predictions. This is an open research challenge requiring the design of edge caching
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strategies that can automatically adapt the wireless network changes [210].

The multi-objective cache placement optimization is formulated as a classification problem. The

formulation of cache placement as a binary classification was investigated in [212]. The authors

considered the input propriety of video contents and user context requesting the video contents

are the input attributes that defined the space of cache decision. The input attributes included

the number of views, likes, shares, comments, language, user subscription, and user past views.

Unlike previous work, we explore mobility input attributes such as user locations, contact duration,

communication ranges, contact probability between UTs and SBSs, content popularity, and the

correlation between these input attributes that can separate the decision space into two regions

cache and not to cache.

Unlike existing techniques, we propose a new cache placement algorithm formulated as a binary

classification problem (to cache and not to cache) based on user locations, contact probability,

communication range, contact duration, and content popularity. Artificial neural networks (ANN),

support vector machine (SVM), and logistic regression (LR) are used to model cache placement

decisions. We investigate the characteristics of the input features (attributes) and the properties of

these characteristics that affect supervised machine learning approaches.

We investigate the performance of new cache placement models using supervised learning tech-

niques by placing the proposed models in work with different system parameters. These parameters

are varied to study the sensitivity of classification decisions with the change of system parameters.

5.1.1 Input Attributes Influence Weights

The cache placement decision is a binary decision (place or not to place the contents) that results in

one of two cases: either the content is found (Hit = 1), or the content is not found (Hit = 0) in UT

and SBS caches when the user requests the content. We will use the binary classification conditional

probabilities presented in [213]. As mentioned before, in cache placement, we have four input

attributes: file popularity probability (Λz), normalized contact duration (T ∗UT,SBS), normalized

communication range D∗UT,SBS, and contact probability PUT,SBS
m . Each input attribute has its

influence on the cache placement decision, which is represented by the weights. The combination

of these influence weights gives an influence score for cache placement decisions.
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To formulate the influence of weights, we assume the influence weight for the cache placement

decision for each input attribute to be between −1 and +1. That means the certainty of the decision

(place) produces a weight of +1, and the certainty of the decision (not place) produces a weight of

−1. Thus, the influence weight of the input attribute value represents the influence weight for an

input attribute on cache placement decision relative to its opposite. For any input attribute, the

sum of the conditional probabilities for each possible result is 1 as the events are mutually exclusive,

shown as follows:

Pr(Hit | Ii) + Pr(Miss | Ii) = 1, (5.1)

where Ii is the value of the input attribute ∀i ∈ {1, · · · , 4}. Consider that the cache hit is positive,

and the probabilities can be mapped between the range of 0 to +1. Then, the cache miss is negative,

and the probabilities can be mapped between the range -1 to 0. The range of mapped probabilities

for any input attribute is between -1 to +1. Since each weight represents its influence on both

probabilities, we can compute the influence weight for an input attribute for both cache states as

follows:

wi = Pr(Hit | Ii) + Pr(Miss | Ii). (5.2)

Assume for a given period; there are V number of user requests. Each request results in a hit or a

miss, then the hit rate (h) can be computed as follows:

h =
Total Number of Hits

Total Number of Requests (V)
. (5.3)

To demonstrate the calculations for influence weights, assume Pr(Hit | Λz) = 0.6, Pr(Hit |

T ∗UT,SBS) = 0.8,Pr(Hit | D∗UT,SBS) = 0.9, and Pr(Hit | PUT,SBS
m ) = 0.4. Then, Pr(Miss | Λz) =

−0.4, Pr(Miss | T ∗UT,SBS) = −0.2, Pr(Miss | D∗UT,SBS) = −0.1, and Pr(Miss | PUT,SBS
m ) =

−0.6 which are mapped between 0 and −1. According to (5.2), the file popularity probability in-

fluence weight (w1), normalized contact duration influence weight (w2), normalized communication

range influence weight (w3), and contact probability influence weight (w4) are equal to 0.2, 0.6, 0.8,

and −0.2, respectively. Figure 5.1 shows an example of input attribute influence weights on the two

classes of the cache placement problem.
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5.1.2 Classification Based Influence Scores

We can compute a single score for each user request for each influence weight of the input attributes.

Suppose we calculate the summation and averaging of the input attribute influence weight wi for

all user requests for input attribute Ii. In that case, we can compute a score that can be used to

indicate the influence weight of the input attribute. For our cache placement input attributes, the

influence weight input attribute score is

Sa =
1

V

V∑
j=1

wa,j, (5.4)

where a = {1, 2, 3, 4} and S1, S2, S3, and S4 represent the influence weight input attribute scores

for (Λz), (T ∗UT,SBS), D∗UT,SBS, and PUT,SBS
m , respectively. wa,j is the influence weight for the ath

input attributes and jth user request.

According to (5.4), the influence score can be used as evidence that the corresponding example

results in one class and not the other class. The samples that represent previous cache placement

decisions for V user requests are considered as a training data set. From the training data sets, we

can search for cases that result in incorrect classification and misclassification. The classification is

the task of predicting the class to which the set of input attributes belongs. The classifier k(I, w)

aims to define a decision surface k(I, w) = 0 such that for a given set of input attributes I, the

classifier can predict to which class the input attributes belong. Then, given the value of I, its class

label y is predicted according to the following:

y′ = k(I, w), (5.5)

where k(I, w) is used to decide on which side of the decision surface k(I, w) = 0 lies the input

attributes I [214]. For a given training set with V samples that result in either y = −1 in a miss or

Figure 5.1: Example of input attribute influence weights of two classes cache placement.
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y = 1 in a hit, the goal is to design a hyperplane that separates these two classes.

k(I, w) = f(I, w)

= f(I, w0, w1, w2, w3, w4) = 0,
(5.6)

where w0 is the bias and f is the classifier function, which can be either linear or nonlinear. We need

to build a classifier that can place points with negative score values on one side of the hyperplane

and place points with positive score values on the other side of the hyperplane. Figure 5.2 shows

an example scenario where the hyperplane is separating the 4-dimensional space into two regions.

For each row in the training set, we have input attributes and the value of the label y. Label y is

the class that this row belongs to, so it is either y = −1 or y = +1. The influence weights wi for

i = 1, · · · , 4 of input attributes and the value of the bias w0 can be computed by minimizing the

mean square error (MSE) cost function J(wj) as follows [215]

minimize J(w) =
1

V

V∑
j=1

(yj − y′j)2, (5.7)

where y′ is the predicted class for the given values of influence weights and input attributes, and y

is the actual class value for the jth sample. The MSE should be minimized such that the predicted

responses would be as close as possible to the actual values of the class. The weights and bias are

estimated to formulate the optimal model for the classifier. A learning technique is presented in the

following section that can estimate the values of influence weights and build the cache placement

model.

5.2 Hyperplane Parameters Estimation based on Learning

Techniques

The hyperplane parameter estimation can be implemented using supervised machine learning clas-

sifiers. A supervised classifier requires a dataset consisting of input/output pairs. Each row in the

data set represents the observations (input), or what is referred to as the vector of features and

the corresponding class y. The classification function aims to build a model by training the given

dataset, and then the model will be able to estimate the output y′ for new input features. The
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classifier learns from the previous datasets to predict the output when given new input features.

The classifier’s output is either placing the content (cache) or not placing the contents (not cache).

The objective function of the learning algorithm is to minimize the cost function given in (5.7).

The algorithm used for optimizing the objective function is the stochastic gradient descent (SGD)

algorithm, which learns statistics iteratively from the training dataset.

As presented in the following subsections, three supervised machine learning (ML) techniques

are used as binary classifiers for the cache content placement algorithm. We have adopted the

SGD algorithm in the three learning techniques because, in the literature, it has been shown that

SGD can minimize the loss function evaluated over a given training set and find the right set for

the estimated hyperparameters. Furthermore, it can avoid the overfitting problem by stopping the

iterations of the optimization routine early before it converges [216].

Consider the training data set, also called the observations, that consists of n input features

(I1, I2, · · · , In) and the corresponding class y for V number of observations. The classifier output y

can be 1 that means the observation belongs to the class cache or 0, which means the observation

belongs to the class, not cache.

5.2.1 Artificial Neural Network (ANN) Cache Placement

Artificial Neural Network (ANN) is first adapted for binary classification of cache placement prob-

lems. The adaptive momentum (Adam) gradient descent-based optimizer is used for estimating the

cache content. The Adam algorithm is a combination of RMSprop and SGD with momentum. It

uses the square gradient to scale the learning and uses the moving average of the gradient instead of

the gradient with momentum [217]. The Adam algorithm is utilized in machine learning problems

with high-dimensional input parameter space and massive datasets. The algorithm calculates the

adaptive learning rate individually for various parameters involved in the training of gradients [217].

We consider an ANN with three layers: one input layer, one hidden layer, and one output layer.

The input layer is the first layer of the ANN, and it does not have any weights associated with it.

The input layer consists of a set of n neurons representing the number of input features. Each neuron

in the hidden layer transforms the values from the previous layer with a weighted linear summation

followed by a sigmoid nonlinear activation function. The output layer receives the output from the
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hidden layer and computes the output value y. Thus, the ANN estimates a nonlinear classifier that

separates the two classes. This classifier can be written as k(I, w) = fΩ(I, w), where fΩ(I, w) is a

nonlinear function consisting of the weights of the neurons in the hidden and output layer, as well

as the activation function.

∆Ωt = −α m′t√
v′t + ε

(5.8)

Ωt+1 = Ωt + ∆Ωt (5.9)

• m the exponential average of gradient along Ω.

• v the exponential average of squares of gradient along w.

• m′t the bias-corrected first moment estimate.

• v′t the bias-corrected second raw moment estimate.

• Ωt the model weights at time t.

• Ωt+1 the updated model weights at time t+ 1.

• α the initial learning rate.

• ε very small number to prevent any division by zero in the implementation, assume ε = 10−8.

The algorithm of artificial neural network for cache placement is shown in Algorithm 2.

5.2.2 Support Vector Machine (SVM) for Cache Placement

Support vector machine (SVM) is a learning technique that defines a hyperplane to split the at-

tributes space (input features) into two classes. Given a training dataset ({(Ii, yi)}Vi=1 with vectors

Ii ∈ IR and labels yi ∈ {+1,−1}, the aim is to design a linear classier k(I, w) that satisfies the

following [218]:
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Algorithm 2 : Artificial Neural Network Classifier for Cache Placement

Input: Dataset with input features Ij and one output label y.

Output: Classifier model k(I, w) given in (5.5).

1: Initialize bias and weights Ω=random value ∈ [0, 1], β1 = 0.9, β2 = 0.999, moving averages

mt−1 = vt−1 = 0, ε = 10−8 and learning rate α = 0.001.

2: Split dataset into 70% for training and 30% for testing.

3: Construct artificial neural network.

Training the model:

4: For i = 1 : Number of epochs

5: ðt = ∇ΩJ(Ωt−1)

6: mt = β1 ×mt−1 + 1 + (1− β1)× ðt

7: vt = β2 × vt−1 + 1 + (1− β2)× ð2
t

8: m′t = mt
(1−β1)

9: v′t = vt
(1−β2)

10: Ωt+1 = Ωt − α m′t√
v′t+ε

11: Endfor

12: Return model structure with updated bias and weights Ωj.

Testing the model:

13: For each instance in the testing dataset

14: Read input attributes Ij

15: Compute y′ using the resulting model from step 12.

16: Endfor

Output: Cache strategy matrix A
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wT Ii + w0 ≥ +1, if yi = +1,

and

wT Ii + w0 ≤ −1 if yi = −1.

(5.10)

This is equivalent to

yi[w
Tφ(Ii) + w0] ≥ 1, for i = 1, · · · ,V . (5.11)

The nonlinear function φ(.) maps the input space to a high dimensional feature space. This means

the SVM classifier objective function can be defined as [218]

min
w
J(wj) =

1

2
wTw + C

Vmax(0,1−yiwT I)∑
i=1

, (5.12)

where min 1
2
wTw is the regularization term that maximize the margin and imposes a preference over

the hypothesis space to achieve better generalization. The term
∑Vmax(0,1−yiwT I)

i=1 is called the hinge

loss (empirical risk loss) and is used to penalize weight vectors that make mistakes. The penalty

parameter C(C > 0) is used to control the trade-off between a large margin and a small hinge-loss.

As shown in (5.12), if the sign of the product between the true label y and the predicted value

y′ = wT I is positive and larger than 1, the loss is zero. If not, the loss will increase linearly. The

stochastic gradient descent algorithm for SVM performs gradient descent for the objective function

given in (5.12). The updating rule for the weights is then [219]

wt+1 = wt − α∇wt

[
1

2
wTw + C

Vmax(0,1−yiwT I)∑
i=1

]
, (5.13)

where α is the learning rate and ∇wt stands for a subgradient with respect to wt. The algorithm of

SVM for cache placement is shown in Algorithm 3.

5.2.3 Logistic Regression (LR) for Cache Placement

The binary logistic regression (LR) algorithm trains a classifier to make a binary decision about a

class of new input observations. The LR model estimates the probability Pr(y = 1 | I) that this

observations belongs to the class cache or the probability Pr(y = 0 | I) that it belongs to the class
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Algorithm 3 : Support Vector Machine Classifier for Cache Placement

Input: Dataset with input features Ij and one output label y.

Output: Classifier model k(I, w) given in (5.5).

1: Initialize bias w0=0, weights wj = 0, and learning rate α = 0.001.

2: Split dataset into 70% for training and 30% for testing.

Training the model:

3: For i = 1: Number of epochs

4: Pick a random sample (Ii, yi) from the training dataset.

5: Compute ∇wt of J(w) (5.12)

wt+1 = wt − α∇wtJ(wt)

6: Endfor

7: Return model structure with updated bias w0 and weights wj.

Testing the model:

8: For each instance in the testing dataset

9: Read input attributes Ij

10: Compute y′ using the resulting model from step 10.

11: Endfor

Output: Cache strategy matrix A
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not cache. The LR learns from the training set by updating the weights w1, w2, · · · , w4 and the

bias w0. As discussed in section 5.1.1, the weights indicate the importance of each input feature to

the classification problem. The LR learns by updating the values of the weights and bias from a

training set. Each weight wi is associated with one input attribute Ii. The weight represents the

importance of the input attribute to the classification decision. The bias terms are added to the

weighted inputs.

According to Bayesian statistics, the posterior probability of a random event or uncertain propo-

sition is the conditional probability assigned after the relevant evidence or the background is taken

into account. Let us consider logistic regression model for a two-class (y1, y2) classification task,

the posterior probabilities are modelled as [220]

Pr(y1 | I) =
1

1 + exp(−Iw)
(5.14)

and

Pr(y2 | I) = 1− P (y1 | I) (5.15)

After complete training of the weights and bias, the classifier multiplies each input Ij by its

updated weight wj, sums up the weighted features, and adds the updated bias term w0 as shown

in Algorithm 5.

The classifier models described by Algorithms 2, 3, and 5 define the contents of SBS caches. This

means these classifiers define the contents of the solution matrix A presented in the multi-objective

function given in (4.1).

5.3 Experimental Results

In this section, we evaluate the performance of the classifier-based supervised machine learning

algorithms for cache placement and access via simulations. In addition, we compared the perfor-

mance of the proposed cache placement approaches with popularity, random, weighted sum cache

placement algorithms.
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5.3.1 Simulation Setup

Our simulation is implemented on a certain sub-area with area dimension and number of SBSs

as described in [197]. We assume that the macrocell includes one MBS, 15 SBSs, and there are

three different paths that users pass through with 11 locations in each path. The results are

computed for 10, 000 randomly generated user locations and 10, 000 different user requests within

one wireless network cell. Each request consists of the requested file ID. The requests of files follow

Zipf’s popularity distribution. A number of experiments are implemented to compare the impact

of system parameters on the performance of different cache placement algorithms. During each

experiment, one of the parameters is varied, and the remaining are fixed. The parameters are

illustrated in Table 4.1. For the weighted-sum approach, we assumed all the parameters have equal

weights, and the threshold is 0.5 to take the 50% of the effect of the input attributes.

We assume that the user mobility parameters follow the work in [109]. It is defined as an

independent Poisson process, the pairwise contact duration between mobile UT and SBS follows

the exponential distribution with parameter λSBSi,j , such that Γ(10, 1/100) represents the contact

rate between mobile UT and SBS. Figure 5.3 shows the first few lines of the training dataset,

which will be used to build the cache placement model. Each row represents one sample data and

the corresponding cache placement decisions. The first five columns represent the input attributes

”features” of the cache placement model. The last 15 columns represent the corresponding cache

placement decisions. Feature descriptions are as follows:

1. File popularity: File popularity probability as given in 3.1

2. Contact probability: Contact probability between mobile UT and SBS as discussed in section

3.2.3.

3. Location: User location can be in one of 11 possible locations.

4. Path number: User can use one of three possible paths.

5. Contact duration: The contact duration between mobile UT and SBS as given in 3.2.

The Last columns (SBS0-SBS14) represent the cache placement decisions for the SBSs 1-15, respec-

tively. The algorithms are implemented using Python 3 in the Anaconda environment.
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The dataset is divided into 70% data used for training, and 30% data is used for testing. The

simulation was implemented using Python on a Jupyter notebook installed on Anaconda environ-

ment [221].

5.3.2 Cache Placement Algorithms

To evaluate the performance of the proposed classifier-based cache placement algorithm and inves-

tigate the relationship among various input attributes, we compare the impact of different variables

on six caching techniques. The cache placement techniques are:

5.3.2.1 Popularity Caching

It assumes that the most popular contents are placed in each SBS cache [109].

5.3.2.2 Random Caching

It assumes that contents are placed randomly in each SBS cache.

5.3.2.3 Weighted-Sum Approach Caching

In our earlier work, we assumed that the contents are placed in SBS caches depending on input

attributes such as file popularity, contact duration between UT and SBSs, communication ranges

between UT and SBSs, and contact probability between UTs and SBSs [211].

5.3.2.4 Artificial Neural Network with SGD Learning

An ANN is trained on datasets of previous user input attributes, user requests, and the resulted in

hit or miss, to extract information from input attributes and predict cache contents.

5.3.2.5 Logistic Regression (LR) with SGD Learning

It uses an optimization algorithm to train the cache placement model by minimizing the loss function

in (5.7). The trained model can be used to predict cache contents.
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5.3.2.6 Support Vector Machine (SVM) with SGD Learning

It uses SVM to find the hyperplane separating the decision space into two classes place or not place

the contents that result in a cache hit or cache miss. The iterative learning process is implemented

using the SGD algorithm that aims to minimize the cost function in (5.7).

5.3.3 Learning Technique Classification Models

In this section, the results are evaluated for various learning techniques used in this chapter: ANN,

SVM, and LR. The performance of the classification models is explored for the same dataset using

a confusion matrix that describes the classification model performance. It examines the testing

dataset to find if the classification outcome is correct or not. Finally, the model accuracy scores are

calculated to identify model errors [222].

Figures 5.4-5.6 show the confusion matrices for ANN, SVM, and LR classification models, re-

spectively. These figures summarize the percentage of correct and incorrect predictions for each

class and the types of errors made by the classifiers. The correct estimation is organized along the

diagonal direction from top-left to bottom-right of the matrices. There are 23.13%, 21.27%, and

23.09% of the sample cases that belong to the not cached category, and they are predicted not

cached by the ANN, SVM, and LR models, respectively. These samples are true negatives (TN),

which means they are predicted not to cache, and the correct decision is not to cache. The other

correct estimation is the true positive (TP) case, there are 75.35%, 74.64%, and 74.42% of the sam-

ples, that are cases in which the actual decision was to cache and they are predicted to be cached

by the ANN, SVM, and LR models, respectively. This refers to the cases where users requested the

files and the files were stored in the caches.

By looking at the classification errors, false positive (FP), gives 0.0%, 0.04%, and 1.86% for the

ANN, SVM, and LR models, respectively. This means some percentage of samples in SVM and LR

models are identified as cache and should not be cached. From the cache placement perspective,

this can cause energy loss and more latency to store contents in some SBS caches that will not be

requested from these SBSs and/or will not result in successful transmission to the requested UTs.

From this point, ANN can be considered the best model for estimating cache contents compared to

other cache placements algorithms used in this work.
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Table 5.1 describes in more depth the performance of our estimators by applying the proposed

ANN, SVM, and LR algorithms on the datasets and comparing the accuracy, precision, Recall,

and F1 score of the results. The accuracy gives the ratio of correctly predicted observations to

the total observations. Accuracy is defined as (TP+TN)/(TP+FP+FN+TN). Accuracy alone will

not indicate the performance of the estimator. Analyzing other performance metrics will provide

us with more understanding of our model before using it in the actual environment with different

cases. The precision indicates how precise our model is out of those predicted positive (cache),

how many of these samples are positive. Hence, Precision= TP/(TP+FP) and the sensitivity or

recall performance index measures the ratio of correctly predicted positive observation (cache) to

all observations in the actual values. That is, Recall = TP/(TP+FN)

Then, we compute the weighted average of precision and recall to compute the F1 score perfor-

mance index. F1 score helps to understand the model accuracy better than the accuracy perfor-

mance index when we have uneven class distribution, where F1 score is defined as

F1 Score =
2× (Recall× Precision)

(Recall + Precision)
(5.16)

Based on the results provided by Table 5.1, among the three classification models, ANN has

performed best and has achieved the highest score as compared to the other algorithms. All the

remaining algorithms appear to demonstrate a good performance compared to our previous work

weighted-sum approach.

Table 5.1: Performance evaluation for classification models.

Classification Classification Models

Performance ANN SVM LR Best Score

Accuracy 0.98 0.79 0.81 ANN

Precision 0.99 0.98 0.96 ANN

Recall 0.98 0.98 0.96 ANN, SVM

F1 Score 0.99 0.98 0.96 ANN
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5.3.4 Performance Evaluation

In this chapter, we show only the results of caching in SBS caches. The six strategies are evaluated

and compared by computing the cache hit rate for different experiments. User mobility is considered

by considering that users may request files while moving from one location to another location within

the wireless network. Users can download files from nearby SBSs without the need to use a backhaul

link. This will cause a cache hit. The cache hit rate indicates the number of cache hits divided by

the total number of user requests.

5.3.4.1 Impact of Cache Size

To study the impact of SBS cache size on the cache hit rate, we consider SBS cache size ranges from

10% to 100% of the total library size. Figure 5.7 shows the results of changing SBS cache sizes on

the SBS hit rate. In all the cache placement algorithms, increasing the cache size increases the cache

hit rate. This is because increasing cache size means more files can be cached in SBS caches, which

increases the possibility of finding the requested contents. In popularity and random caching, the

cache hit rate increases almost linearly with the increase of SBS cache size. On the other hand, the

WS performs better than popularity and random caching with a near-linear increase in the cache

hit rate with the increase of SBS cache size.

The performance of the learning techniques ANN, SVM, and LR are very similar and better

than the other techniques. Their results show that although increasing cache size increases the

cache hit rate, the hit rate is 0.92 in ANN, 0.921 in SVM, and 0.91 in LR even for 10% SBS cache

size. This means that the trained models in the three learning techniques could extract information

from the dataset and correct the cache content placement regardless of the cache size.

5.3.4.2 Impact of User Speed

Figure 5.8 shows the impact of SBS cache size on hit rate for different user speeds. The figure shows

the results for 10 m/sec and 25 m/sec for four cache placement techniques: WS, ANN, SVM, and

LR. We observed that at low user speed (10 m/sec), the SVM caching technique outperforms ANN,

LR, and WS. However, when increasing user speed up to 25 m/sec, the ANN gives a higher hit rate

than the SVM, LR, and WS.
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5.3.4.3 Impact of SBSs Communication Range

We explore the impact of changing the SBS communication range from 75m to 200m on cache

placement performances shown in Fig. 5.9 as the results show, when the SBSs communication

range increase, the SBSs cache hit rates increase in all the cache placement algorithms. As the

SBS communication range increases, the number of SBSs within the communication range of the

moving UT increases. Thus, the possibility of finding the requested contents within the SBSs caches

is higher. At a lower SBS communication range (75m), the LR approach gives a higher hit rate

than ANN, SVM, and WS caching techniques. After increasing the SBS communication range up

to 200m, the ANN outperforms SVM, LR, and WS.

5.3.4.4 Impact of SBS Data Rate

Figure 5.10 presents the influence of changing SBS data rate on the cache hit rate. As the results

show, increasing the SBS data rate increases the hit rate for all cache placement techniques since

SBSs can transfer more data during contact with the UT. Thus, increasing the SBS data rate

allows the user to complete downloading the contents within available time while moving from one

location to another location. When the SBS data rate is 4Mbps, the hit rate in the SVM technique

outperforms the ANN, LR, and WS caching algorithms. While for higher data rates (16 Mbps),

the results of LR show a higher hit rate than the ANN, SVM, and WS.

5.3.4.5 Impact of File Size

Figure 5.11 shows the impact of changing the file size from 1MB to 8MB on the SBS cache hit

rate. As expected, the hit rate decreases when the file size increases. This is because the users

are downloading the files while moving from one location to the next along the path. When the

file size increases, the users will not complete downloading the whole file during the required time,

which results in a miss. When the file size is small (1MB), the ANN gives a higher hit rate than

the SVM, LR, and WS caching techniques. After increasing the file size up to 8MB, the ANN again

outperforms SVM, LR, and WS.
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Table 5.2: Comparison of cache hit rate for different cache placement techniques.

System Cache Hit Rate

Parameters ANN SVM LR WS Best Score

SBS Cache Size Low 0.92 0.921 0.91 0.70 SVM

High 0.994 0.988 0.983 0.91 ANN

User Speed Low 0.964 0.962 0.963 0.837 ANN

High 0.79 0.887 0.93 0.565 LR

Communication Range Low 0.786 0.923 0.965 0.695 LR

High 0.964 0.963 0.962 0.872 ANN

SBS Data Rate Low 0.795 0.923 0.88 0.41 SVM

High 0.964 0.962 0.966 0.84 LR

File Size Low 0.964 0.962 0.963 0.836 ANN

High 0.795 0.696 0.704 0.465 ANN

Table 5.2 compares cache hit rate for four cache placement algorithms while changing some

system parameters between low and high values. The results show that changing the SBS cache

size from low to a high slightly increases the cache hit rates for ANN, SVM, and LR models, and

the ANN results in the highest score. The WS cache placement algorithm is improved when we

increase the cache size. We trained the model to place the contents based on the input features by

defining the two classes’ hyperplane parameters. On the other hand, in WS, all the input attributes

are assigned equal weights in the cache placement model.

Changing user speed from low to high impacts all algorithms. Knowing that in our simulation,

the speed is only increased to the point that the UT can still download the contents from SBS

while the user is on the move. The LR is the least sensitive to the change of user speed and results

in a higher hit rate. For the SBS data rate, changing the rate from low to high values affects the

cache hit rates for all algorithms since the amount of contents transmitted to the UT increases

with a higher data rate. The SVM shows the least sensitivity to the changes in data rate, and the

difference between low and high data rates is marginal. In the last experiment, we changed the

stored file size and computed the effect of this parameter on the cache placement algorithms. In
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this case, the ANN has the highest hit rate compared to the remaining techniques, as shown in Fig.

5.11.

5.3.4.6 Impact on SBS and MBS Energy Consumption

Figure 5.12 shows the impact of changing cache size and cache placement technique on the nor-

malized total energy consumption in SBSs and MBS required to download the files. As the figure

shows, the normalized total energy consumption decreases with the increase in the cache size. As

the SBSs cache size increases, the cache hit rate increases, which means the contents are mostly

downloaded from the SBSs. The increase in energy consumption for transmitting the contents from

SBSs to UTs means decreasing the energy consumption for downloading the exact contents from the

MBS. When comparing the normalized total energy consumption required to transfer the contents

from SBSs and MBS to UTs between different cache placement algorithms, we can see that the

SVM and LR result in lower energy consumption. On the other hand, the WS technique results in

higher total energy consumption than the learning techniques.

5.4 Discussion

In this study, we proposed a new cache placement using supervised learning techniques in MENs.

To the best of our knowledge, this is the first work where cache placement is formulated as a binary

classification based on a multi-objective optimization problem to improve the cache hit rates, which

minimizes the total latency of downloading the contents to the end-users. Also, the proposed cache

placement-based learning techniques minimize the total energy consumption required to download

the contents. We analyzed three proposed learning techniques for predicting cache contents, ANN,

SVM, and LR. The first part of the experiments measures the accuracy and prediction precision

among these three algorithms. The three algorithms show competitive performance in their com-

puted precision, Recall, and F1 score for the same datasets. The accuracy of prediction is higher

in ANN compared to SVM and LR. There is no unique classifier that performs best for all situ-

ations of cache placement systems in MENs. To select one of the three algorithms to model the

cache placement automatically for a given dataset, a number of input features, and computation

resources, we should consider the following:
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• If the collected dataset is not large, SVM or LR should be selected. Otherwise, ANN is

selected.

• If the input features increase, consequently increasing the hyperplane dimension, ANN or

SVM should be selected. Otherwise, LR can be selected.

• If the computation resources are limited, LR is selected, which can be implemented faster and

easier. Otherwise, ANN or SVM is selected.

Further selection criteria can be considered after analyzing the results from the second part of

the experiments that measure the cache hit rate in MENs while changing the system parameters.

Table 5.2 can assist in the selection of an appropriate learning algorithm based on the changes in

SBS cache size, user speed, SBS communication ranges, and file size, as follows:

• If the SBS cache size is small, SVM should be selected. Otherwise, ANN should be selected.

• If it is known that most users are moving at a low speed, ANN should be used. Otherwise,

LR should be used at a higher user speed.

• If the SBS communication ranges are low, LR should be used. Otherwise, ANN should be

used for high SBS communication ranges.

• If the SBS data rates are low, SVM should be used. Otherwise, LR should be used.

• If the file size is large, ANN should be used.

Continuous dataset accumulation is suggested to more understand the effect of classification

decisions and the change in system parameters on the latency and the total consumption of the

energy required to download the contents in mobile edge networks. Increasing the orders of mag-

nitude of training datasets requires adopting new technology such as big data and developing the

proposed algorithms to deep learning-based prediction algorithms. However, there is an implication

from using supervised learning techniques in some practical applications, collecting datasets from

moving users, and creating such a large dataset. At the same time, continuous changes in system

parameters require a considerable amount of resources, time, and effort. These resources may not

be available in many practical cases, limiting the use of deep learning methods. Also, increasing
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the training samples may cause the supervised learning technique to fit itself to the statistical noise

in the training sample and result in an overfitting problem. To overcome these problems, using

semi-supervised learning leverages both labeled and unlabelled data for learning.

This work focused on formulating the cache placement as a classification problem that can

be solved using machine learning techniques. Different learning techniques were investigated to

understand the problem and the input attributes correlated to the classification decisions. We

analyzed the characteristics of the input features (attributes) related to the decision of cache content

placement objectives and their properties. These input attributes were important to form the

hyperplane that separated the multi-dimensional space into two decision regions (cache contents

and not cache contents). The performance comparison of different machine learning models was

carried out with the same datasets. Finally, the cache placement models using artificial neural

networks, support vector machine, logistic regression, and weighted-sum algorithms were tested

with actual data sets of user requests taken from published literature. The test was made by

changing one of the system parameters, fixing the other parameters, and computing the hit rate to

investigate the sensitivity of the classification by the changes in the environmental parameters.

It has been noticed that with the changes in system parameters, there were a few limitations

and weaknesses in each classifier model used in this research. Therefore, generating an automatic

algorithm selection that decides which algorithm is executed in each wireless network cell depending

on the size of the dataset, the number of input features, the available resources, and values of system

parameters is suggested for future work. Furthermore, the automatic selection of the algorithm can

be a rule-based technique aiming to combine different learning algorithms.

This work yielded promising results for the formulation of cache placement as a classification

problem. Still, continuous dataset accumulation and then adoption of semi-supervised deep learning

techniques are also suggested to understand the effect of classification and system parameter changes

on the latency and energy consumption caused by downloading the contents by requested users.

5.5 Summary

We proposed a latency-efficient multi-objective cache content strategy that maximizes the cache hit

rate of SBSs in mobile edge networks (MENs). The multi-objective cache placement optimization
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was formulated as a classification problem. Unlike previous work, we used mobility input attributes

such as user locations, contact duration, communication ranges, contact probability between UTs

and SBSs, etc., and content popularity and the correlation between these input attributes separating

the decision space into two regions cache and not cache. We used a stochastic gradient descent

algorithm for the training of three supervised machine learning techniques: artificial neural network

(ANN), support vector machine (SVM), and logistic regression (LR) to define the hyperplane that

separates the cache content decision space. We tested our proposed cache placement models with

actual data sets of user requests taken from published literature. The test was made by changing one

of the system parameters, fixing the other parameters, and computing the hit rate to investigate

the sensitivity of the classification by the changes in the environmental parameters. Finally, we

compared our proposed algorithms with respect to existing cache placement techniques. In the

following chapter, based on the results obtained from our proposed cache placement algorithm

using the supervised learning technique, we will present a new approach using a semi-supervised

self-training algorithm to solve the cache placement problem.

120



w1

−100−75−50 −25 0 25 50 75 100

w 2

−100
−75

−50
−25

0
25
50
75
100

w
3

−100

−75

−50

−25

0

25

50

75

100

−75

−50

−25

0

25

50

75

w
4

Figure 5.2: Hyperplane separating space into two classes.

Figure 5.3: The input features and corresponding cache placement derisions.
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Figure 5.4: Confusion matrix of artificial neural network model.
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Algorithm 4 : Logistic Regression Classifier for Cache Placement

Input: Dataset with input features Ij and one output label y.

Output: Classifier model k(I, w) given in (5.5).

1: Initialize bias w0=0, weights wj = 0, and learning rate α = 0.3.

2: Split dataset into 70% for training and 30% for testing.

Training the model:

3: For i = 1: Number of epochs

4: For each training instance in training dataset

5: Compute y′ = Pr(y | I) = 1
1+exp(−Ijwj)

6: Update bias and weights

wt+1
0 = wt0 + α(y − y′)y′(1− y′)

wt+1
j = wtj + α(y − y′)y′(1− y′)Ij

7: Endfor

8: Endfor

9: Return model structure with updated bias and weights.

Testing the model:

10: For each instance in the testing dataset

11: Read input attributes Ij

12: Compute y′ = 1
1+exp(−Ijwj)

13: If y′ ≥ 0.5

14: The decision is cache

15: Elseif y′ < 0.5

16: The decision is not cache

17: Endfor

Output: Cache strategy matrix A
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Figure 5.5: Confusion matrix of support vector machine model.
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Figure 5.6: Confusion matrix of logistic regression model.
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Figure 5.7: Impact of cache size (% of the total library size) on the cache hit rate.
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Figure 5.8: Impact of cache size (% of the total library size) on the hit rate with different values of

user speed.
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Chapter 6

Cache Placement Using Semi-Supervised

Learning

In the previous chapter, supervised classification models and labeled data (input attributes and the

corresponding target output) are used to train the cache placement model. However, in practical

applications, collecting labeled samples is difficult, expensive, and time-consuming. When a user is

sending requests for contents while moving in the cell, the unlabeled data are abundant and easy

to obtain with every user request. Furthermore, supervised learning may face the overfitting of

the training dataset. This occurs when the supervised classifier tends to fit itself to the statistical

noise in the training sample. With the different and many changing input attributes in the wireless

networks, errors are usually unavoidable and unpredictable. The resulting classifier will not model

the true relationship between the input attributes and the corresponding output. In this chapter,

we propose a multi-objective cache content strategy that aims to maximize the cache hit rate

of small base stations (SBSs) in mobile edge networks (MENs) based on a semi-supervised self-

trained learning technique (SSST). The strategy is formulated as a classification problem. A logistic

regression learning technique is used to obtain a classifier based on a small amount of labeled

data. Subsequently, unlabeled samples are classified by the classifier using a self-training algorithm.

Finally, the cases with the highest prediction probability are added to the training set to increase

the number of samples in the dataset. The proposed strategy is implemented and tested on samples

with different input features, such as file popularity, user location, user to SBS contact probability,

communication range, and contact duration.
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6.1 Introduction

In supervised classification problems, labeled data (input attributes and the corresponding target

output) are used for training the model. However, in practical applications, collecting labeled

samples is difficult, expensive, and time-consuming. When a user is sending requests for contents

while moving in the cell, the unlabeled data are abundant and easy to obtain with every user request.

Furthermore, supervised learning may face the overfitting of the training dataset. This occurs when

the supervised classifier tends to fit itself to the statistical noise in the training sample. With the

different and many changing input attributes in the wireless networks, errors are usually unavoidable

and unpredictable. Therefore, the resulting classifier will not model the true relationship between

the input attributes and the corresponding output. In [223], the authors showed the ability to use

semi-supervised learning to improve the classifier performance and avoid the overfitting problem.

The authors in [224] suggested the use of a small amount of labeled data sets with a large amount of

unlabeled datasets to build a semi-supervised self-training classifier model for disease classification.

Their experimental results showed the effectiveness of using the classifier in solving the disease

classification problem.

In [225], we proposed a semi-supervised self-trained learning technique (SSST) for the design

of latency efficient cache placement binary classifier in mobile edge networks (MENs). This chapter

first trains a supervised classifier based on the logistic regression (LR) learning technique using

a small amount of labeled samples. Then, we use the label propagation algorithm presented in

[226] to self-train the classifier and generate pseudo labels by using the trained classifier to predict

class labels for all the unlabeled data. Then, the pseudo labels with the highest probability of

being correct are added as a pseudo labels to the labeled training set. Finally, we retrain the

classifier to predict cache contents for the labeled test dataset and use the results to evaluate the

prediction accuracy. Our results show that the semi-supervised self-trained learning method for

cache placement can outperform other cache placement techniques. Furthermore, the proposed

technique can self-train and improve the classification accuracy when sufficient data for training

the model are not available. Fault tolerance is analyzed to explore the relationship between system

performance (cache hit rate and total energy consumption) and the robustness of the proposed

cache placement algorithm when random failures occur in SBSs.
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6.2 Semi-Supervised Self-Training (SSST) Binary Classi-

fier

Semi-supervised self-training consists of two main steps. In the first step, a traditional supervised

classifier is trained on a small set of labeled data to build the binary classifier. This chapter

trains an LR classifier using a small set of labeled training data and predicts on the test data set.

Then, the second step is to use a self-training technique, an iterative method for semi-supervised

learning. Self-training uses the prediction probabilities to label unlabeled data. The labels with

high probability prediction values are added to the dataset as new labels and will be used in the

next iteration.

Consider the training data set, also called the observations, that consists of n input features

(I1, I2, · · · , In) and the corresponding class y for V number of observations. The classifier output y

can be 1 that means the observation belongs to the class cache or 0 which means the observation

belongs to the class not cache. Suppose the dataset has m samples, which includes m1 labeled

samples and m2 unlabeled samples, m = m1 +m2.

6.2.1 Logistic Regression for Supervised Classification

A supervised classifier requires a dataset consisting of input/output pairs. Each row in the data set

represents the observations (input attributes), the vector of features and the corresponding class y.

The classification function aims to build a model by training the given dataset, and then the model

will be able to estimate the output y′ for new values of input features. The classifier learns from

the previous datasets to predict the output when given new input features. The classifier’s output

is the decision of either placing the content (cache) or not placing the contents (not cache). The

detailed discussion of logistic regression for supervised classification is presented in section 5.2.3.

6.2.2 Self-Training Technique

The trained classifier is used to predict the class label for all the unlabeled data samples. To find the

data points I close to similar labels, a fully connected graph is created with the nodes representing

all the data points for labeled and unlabeled data points. Any two nodes in the graph are connected
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Algorithm 5 : Semi-Supervised Self-Training Classifier for Cache Placement

Input: Labeled dataset m1 with input features Ij and one output label y and m2 unlabeled

dataset with input features Ij.

1: Initialize bias w0=0, weights wj = 0, and learning rate α = 0.3.

2: Set training dataset Ω = m1.

3: While not converge OR iterations ≤ Maximum limit

4: Train the LR classifier using labeled dataset Ω.

5: Generate pseudo labels with classifier predictions.

6: Add the pseudo labels with 99% probability of prediction to the Ω dataset.

7: End While

Output: Classifier model k(I, w) given in (5.5).

with weight dij so that the closer the nodes are in the Euclidean distance, the larger the weight is.

The weights tij are controlled by the parameter σ, such that:

tij = exp

(
−
d2
ij

σ2

)
= exp

(
−
∑D

d=1(Idi − Idj )

σ2

)
. (6.1)

The problem is to estimate the output y′ from labeled and unlabeled data points. The model

predicts labels for all unlabeled data and probabilities for those predictions, then adopts the high

probability labels (in our work, we consider 99% as a high probability). The adopted labels are

called ’pseudo labels and are added to the dataset for the next iterations. Finally, the classifier

model is retrained again with the updated dataset. The iterations continue until there are no more

predictions with probabilities higher than 99%, or no unlabeled data remains [226]. Algorithm 5

illustrates the steps for a semi-supervised self-training classifier for the cache placement technique.

The workflow of our proposed semi-supervised self-training classifier for cache placement is shown

in Fig. 6.1.

6.3 Simulation Results

In this section, we evaluate the performance of the classifier-based SSST algorithm for cache place-

ment via simulations. We compare the performance of the proposed cache placement approach
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Figure 6.1: The work flow of our proposed semi-supervised self-training classifier for cache place-

ment.
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Table 6.1: Simulation parameters

Parameter Value

Number of files in MBS 100

SBSs cache size (10-100)% of MBS library

File size (1-8) MB

SBS data rate (2-16) Mbps

SBS communication range (50-200) m

User speed (10-30) m/sec

Number of user requests 10,000

with three supervised learning techniques: Artificial neural network (ANN), support vector ma-

chine (SVM), and logistic regression (LR) cache placement algorithms.

6.3.1 Simulation Setup

Our simulation is implemented on an area with a number of SBSs as described in [197]. We assume

that the macrocell includes one MBS, 15 SBSs, and there are three different paths that users pass

through with 11 locations in each path. The results are computed for 10, 000 randomly generated

user locations and 10, 000 different user requests within one wireless network cell. Each request

consists of the requested file ID. The requests follow the Zipf popularity distribution. A number

of experiments are implemented to compare the impact of system parameters on the performance

of different cache placement algorithms. The parameters are illustrated in Table 6.1. We assume

that the user mobility parameters follow the work in [109]. It is defined as an independent Poisson

process, the pairwise contact duration between mobile UT and SBS follows the exponential distri-

bution with parameter λSBSi,j , such that Γ(10, 1/100) represents the contact rate between mobile UT

and SBS. Figure 5.3 shows the first few lines of the training dataset, which will be used to build

the cache placement model. The dataset is divided into 70% data used for training, and 30% data

is used for testing. The simulation was implemented using Python on a Jupyter notebook installed

in the Anaconda environment [221].
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6.3.2 Learning Technique Classification Models

To evaluate the performance of the proposed SSST classifier-based cache placement algorithm and

investigate the relationship among various input attributes, we compare the impact of different vari-

ables on four cache placement techniques. The cache placement techniques are: Semi-supervised

self-training technique (SSST). Support vector machine (SVM) with SGD learning. Logistic regres-

sion (LR) with SGD learning. Artificial neural network with SGD learning (ANN).

The performance of the classification models is explored for the same dataset using a confusion

matrix, which describes the classification model performance. It examines the testing dataset to

find if the classification outcome is correct or not. The model accuracy scores are calculated to

identify model errors [222].

Figure 6.2 shows the confusion matrix for SSST classification model. This figure summarizes the

percentage of correct and incorrect predictions for each class and the types of errors made by the

classifier. The correct estimation is organized along the diagonal direction from top-left to bottom-

right of the matrix. There are 96% of the sample cases that belong to the not-cached category, and

they are predicted not-cached by the SSST model. These samples are true negatives (TN), which

means they are predicted not to cache, and the correct decision is not to cache. The other correct

estimation is the true positive (TP) case, there are 98% of the samples, which are cases in which the

actual decision was to cache, and they are predicted to be cached by the SSST model. This refers

to the cases where users requested the files, and the files were stored in the caches. By looking at

the classification errors, false positive (FP) gives 4.5%. This means a small percentage of samples

in the SSST model are identified as cache, and they should not actually be cached. From the cache

placement perspective, this can cause energy loss and more latency to store contents in some SBS

caches that will not be requested from these SBSs and/or will not result in successful transmission

to the requested UTs.

Table 6.2 describes in more depth the performance of the SSST estimator with three other

learning techniques ANN, SVM, and LR., by applying ANN, SVM, and LR algorithms on the

datasets and comparing the accuracy, precision, recall, and F1 score of the results. The accuracy

gives the ratio of correctly predicted observations to the total observations. Accuracy is defined as

(TP+TN)/(TP+FP+FN+TN). Accuracy alone will not indicate the performance of the estimator.
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Figure 6.2: Confusion matrix of semi-supervised self-training classifier.

Analyzing other performance metrics will give us more understanding of our model before using

it in the actual environment with different cases. The precision indicates how precise our model

is, i.e., how many of these samples are actually positive out of those predicted positive (cache).

Hence, Precision= TP/(TP+FP). The sensitivity or recall performance index measures the ratio of

correctly predicted positive observation (cache) to all observations in the actual values, i.e., Recall

= TP/(TP+FN)

Subsequently, we compute the weighted average of precision and recall to compute the F1 score

performance index. F1 score helps to understand the model accuracy better than the accuracy

performance index when we have uneven class distribution, where the F1 score is defined as

F1 Score =
2× (Recall× Precision)

(Recall + Precision)
(6.2)

Based on the results provided by Table 6.2, among the four classification models, SSST has the

best performance and achieves the highest score compared to the other algorithms.

6.3.3 Performance Evaluation

We show only the results of caching in SBS caches. The four strategies are evaluated and compared

by computing the cache hit rate for different experiments in this work. User mobility is considered

by considering that users may request files while moving from one location to another location

within the wireless network. Users can download files from nearby SBSs without the need to use a

backhaul link. This will cause a cache hit. The cache hit rate indicates the number of cache hits
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Table 6.2: Performance evaluation of classification models

Classification Classification Models

Performance SSST ANN SVM LR Best Score

Accuracy 1.0 0.98 0.79 0.81 SSST

Precision 1.0 0.99 0.98 0.96 SSST

Recall 1.0 0.98 0.98 0.96 SSST

F1 Score 1.0 0.99 0.98 0.96 SSST

divided by the total number of user requests as given in (5.3).

6.3.3.1 Impact of Cache Size

To study the impact of SBS cache size on the cache hit rate, we consider SBS cache size ranges

from 10% to 100% of the total library size. Figure 6.3 shows the effect of changing SBS cache sizes

on the SBS hit rate. In all the cache placement algorithms, increasing the cache size increases the

cache hit rate. This is because increasing cache size means more files can be cached in SBS caches,

which increases the possibility of finding the requested contents.

We consider certain values for the variables user speed, SBS communication range, SBS data

rate and file size to be equal to 10m/sec, 100m, 8Mbps, 1MB, respectively. The trained models in

the four learning techniques can extract information from the dataset and give correct predictions

for the cache content placement regardless of the cache size.

The performance of the learning techniques SSST, ANN, SVM, and LR are very similar at

different cache sizes ranging from 10% − 80%. At larger cache sizes of 90% and above, ANN and

SSST give similar performance and outperform SVM and LR algorithms.

6.3.3.2 Impact of User Speed

Changing user speed from low to high impacts all algorithms. In our simulation, the speed is only

increased to the point that the UT can still download the contents from SBS while the user is on

the move. Figure 6.4 shows the impact of SBS cache size on hit rate for different user speeds. The

figure shows the results for 10 m/sec and 25 m/sec for four cache placement techniques: SSST,
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Figure 6.3: Impact of cache size (% of the total library size) on the hit rate.

ANN, SVM, and LR. We observed that the four techniques give similar results at low user speed

(10 m/sec). However, when increasing user speed up to 25 m/sec, the SSST gives a higher hit rate

than the LR, SVM, and ANN.
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Figure 6.4: Impact of cache size (% of the total library size) on the hit rate with different values of

user speed.

6.3.3.3 Impact of SBSs Communication Range

We explore the impact of changing the SBS communication range from 75m to 200m on cache

placement performances shown in Fig. 6.5 as the results show, when the SBSs communication
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range increase, the SBSs cache hit rates increase in all the cache placement algorithms. This is

because as the SBS communication range increases, the number of SBSs within the communication

range of the moving UT increases. Thus, the possibility of finding the requested contents within

the SBSs caches is higher. The SSST and LR approaches give a higher hit rate than ANN and SVM

caching techniques at a lower SBS communication range. After increasing the SBS communication

range up to 200m, the hit rates from the four learning techniques are very close to each other. In

SSST and LR learning techniques, the resulting hit rates while changing the communication ranges

from 75m up to 200m were relatively high for different values of cache sizes.
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Figure 6.5: Impact of cache size (% of the total library size) on the hit rate with different values of

SBSs communication range.

6.3.3.4 Impact of SBS Data Rate

Figure 6.6 presents the influence of changing SBS data rate on the cache hit rate. As the results show,

increasing the SBS data rate increases the hit rate for all cache placement techniques since SBSs

can transfer more data during contact with the UT. Increasing the SBS data rate allows the user to

complete downloading the contents within available time while moving from one location to another

location. When the SBS data rate is 4Mbps, the hit rate in the SSST technique outperforms the

SVM, LR, and ANN caching algorithms. While for higher data rates (16 Mbps), the performances

of the learning techniques SSST, ANN, SVM, and LR are very similar. As the figure illustrates, the

SSST technique does not change the resulting hit rate values while changing the SBSs data rates.
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Figure 6.6: Impact of cache size (% of the total library size) on the hit rate with different values of

SBSs data rate.

6.3.3.5 Impact of File Size

Figure 6.7 shows the impact of changing the file size from 1MB to 8MB on the SBS cache hit

rate. As expected, the hit rate decreases when the file size increases. This is because the users

are downloading the files while moving from one location to the next along the path. When the

file size increases, the users will not complete downloading the whole file during the required time,

which results in a miss. The SSST and ANN give a higher hit rate than the SVM and LR caching

techniques when the file size is small. After increasing the file size up to 8MB, the SSST outperforms

ANN, SVM, and LR.

6.3.3.6 Impact on SBS and MBS Energy Consumption

Figure 6.8 shows the impact of changing cache size and cache placement technique on the total

energy consumption in SBSs and MBS required to download the files. As the figure shows, the

normalized total energy consumption decreases with the increase in the cache size. As the SBSs

cache size increases, the cache hit rate increases, which means the contents are mostly downloaded

from the SBSs. Therefore, the increase in energy consumption for transmitting the contents from

SBSs to UTs means decreasing the energy consumption for downloading the same contents from

the MBS. When comparing the total energy consumption required to transfer the contents from

SBSs and MBS to UTs between different cache placement algorithms, we see that the SSST-LR,
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Figure 6.7: Impact of cache size (% of the total library size) on the hit rate with different values of

file size.

SSST-SVM, and LR result in lower energy consumption at smaller cache sizes. On the other hand,

the SSST-LR and SVM techniques result in lower total energy consumption than other techniques

at larger cache sizes.
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Figure 6.8: Impact of cache size (% of the total library size) on the normalized total energy con-

sumption with different cache placement algorithms.
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6.3.4 Fault-Tolerance

In MENs, SBS hardware or software failures, power failure, and network failure can occur, resulting

in data being unavailable [227]. The SBS failure causes data access failure that results in SBS cache

miss. In our proposed SSST cache placement algorithm and the three supervised learning techniques,

data replicate placed on different SBSs to ensure the availability of the requested contents. To

evaluate the impact of fault tolerance on the performance of the caching system in the MEN, we

compare the SBS cache hit and the total energy consumption for delivering the requested contents

to users for the proposed SSST and the three supervised learning techniques while changing two

system parameters, user speed, and SBS communication range. Figures 6.9 and 6.10 illustrate

the impact of SBS failure on the cache hit rate for cache size of 40% from the main library in

one wireless network cell for user speeds equal to 10 m/sec and 25 m/sec, respectively. As the

figures show, increasing user speed while having random failures in SBSs reduces the cache hit rate.

The SSST algorithm does not behave as sensitive to changes in user speed. Figure 6.11 shows

the impact of minimizing the SBS communication range to 75m while having randomly generated

failures in SBSs on the cache hit rate. As the results show, SSST results in a higher hit rate

compared to other cache placement techniques. Figure 6.12 illustrates the impact of minimizing

the SBS communication range to 75m while having randomly generated failures in SBSs on the

total energy consumption required to deliver the contents to the user terminals. In all learning

algorithms, increasing the failure in SBSs while reducing the communication range to 75m reduce

the number of working SBSs within the range of the UT. This leads to a decrease in the SBS cache

hit rates, i.e., an increase in the SBS cache miss rates. At each cache miss, the user downloads

the requested content from MBS instead of SBSs, which increases the total energy consumption

required to deliver the contents to UTs. Since the SSST algorithm outperformed other techniques

and resulted in higher cache hit rates, so it is expected that the total energy consumption will be

less than other learning techniques as shown in Fig.6.11 and 6.12, respectively.
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Figure 6.9: Impact of failure in SBSs on the cache hit rate with 10 m/sec user speed for different

cache placement algorithms.
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Figure 6.10: Impact of failure in SBSs on the cache hit rate with 25 m/sec user speed for different

cache placement algorithms.
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Figure 6.11: Impact of failure in SBSs on the cache hit rate with 75 m communication range for

different cache placement algorithms.
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Figure 6.12: Impact of failure in SBSs on the cache hit rate with 75 m communication range for

different cache placement algorithms.
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6.4 Discussion

In this chapter, we developed a semi-supervised self-training classification model for the cache place-

ment problem. We assessed the proposed SSST algorithm through experiments with datasets on

different learning techniques. The performance comparison of different machine learning models

was carried out with the same datasets. The test was made by changing one of the system pa-

rameters, fixing the other parameters, and computing the hit rate to investigate the sensitivity of

the classification by the changes in the environmental parameters. We observed that using the

SSST cache placement algorithm while changing system parameters, the hit rate of the SBS cache

increases with the increase in SBS cache size decreases with the increase of user speed and remains

unchanged when the SBS data rate and SBS communication ranges change. This work yielded

promising results for the formulation of cache placement as a classification problem. Further ex-

periments were implemented to understand the relationship between system performance and the

robustness in our framework. As the results showed, the SSST algorithm was more robust and

improved the performance of the cache placement problem. Continuous dataset accumulation is

suggested to understand the effect of classification and the change in system parameters on the

adaptivity and robustness of SSST for cache placement in mobile edge networks.

6.5 Summary

In the previous chapter, we proposed a latency-efficient multi-objective cache content strategy as a

classification problem. This chapter proposed a new strategy to model the classification problem

using the semi-supervised-self training technique. We used a small amount of labeled data and a

logistic regression learning technique to obtain a classifier. Then, we classified unlabeled samples

by the classifier using a self-training algorithm. The cases with the highest prediction probability

were added to the training set to increase the number of samples in the dataset. We implemented

and tested our proposed strategy on samples with different input features, such as file popularity,

user location, user to SBS contact probability, communication range, and contact duration. Using

experimental results on actual user request sequences data, we showed that the proposed algorithm

significantly improves the prediction accuracy. It also saves time for labeling the data, making it
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an efficient solution to the cache placement problem. Finally, we evaluated the robustness of our

proposed algorithm by studying its fault tolerance and testing different system parameters in a

wireless network. We showed that our proposed algorithm is sensitive to some system parameters

and has better fault tolerance for other system parameters.
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Chapter 7

Conclusions and Future Work

Mobile edge network (MEN) has been considered as a network model that enables the use of caching

capabilities at the edge of the network in the macro base station (MBS), small base stations (SBSs),

and user terminals (UTs). We studied the effect of file popularity, SBS communication range,

contact duration, and SBS to UT contact probability on cache placement in a mobile edge network.

In this dissertation research, a mobility-aware latency efficient cache placement was formulated that

aims to maximize the cache hit rate, which minimizes the latency of downloading the contents.

7.1 Conclusion

Upon reviewing recent developments in the design of caching in MEN, we noted several challenges

in modeling and implementing caching placement, access, and delivery at the edge of the network

due to continuous changes in content popularity and user mobility, and a number of users within

the network. More challenges appear in caching at MENs due to high computation requirements

of future applications that need to satisfy power and delivery time constraints with the quality of

service requirements, improved network throughput, and reduced end-to-end and backhaul delay

costs. Therefore, research was required to investigate the development of algorithms for cache

placement, cache access, and cache delivery by utilizing mobile edge networks’ data storage and

computing capabilities. The main focus is on using machine learning and intelligent decision-making

techniques to implement the algorithms.

In chapter 2, energy and latency efficient caching in mobile edge networks (MENs) were reviewed.
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MEN enables caching capabilities at the edge of the network in the macro base station, small base

stations, and user terminals. First, different caching techniques were presented and compared. Then

the challenges that face the design of the caching system in MEN were discussed. We focused on

the use of decision and learning theoretical approaches to solve these problems. MENs also enable

complex computation, which allows deep learning techniques to be adapted in these networks to

solve problems related to energy and latency constraints.

In chapter 3, we presented our cache system model for the mobile edge networks (MENs) to

provide cache content placement, cache content access, and cache content delivery, taking into

account different storage capacities, users mobility, content popularity distribution, latency, and

power consumption. The system model includes the following models: network model, cache content

model, transmission model, mobility model, and power consumption model. Then, we presented

and discussed the problem formulations related to finding the optimal solution for cache content

placement with minimum latency and cache content delivery with minimum power consumption.

In chapter 4, a weighted-sum approach is proposed to solve this problem. Simulation results

show the impact of changing some system variables on cache hit rate. Furthermore, the results

showed that the weighted-sum strategy offers better performance under the formulation of multi-

objective function. Also, as the hit rate is maximized, the total energy consumption for delivering

the contents to UTs is minimized because contents are delivered from SBS and other UT caches

instead of delivering contents from MBS.

In chapter 5, the work focused on formulating the cache placement as a binary classification

problem that can be solved using machine learning techniques. Different learning techniques were

investigated to understand the problem and the input attributes correlated to the classification

decisions. We analyzed the characteristics of the input features (attributes) related to the decision

of cache content placement objectives and their properties. These input attributes were important

to form the hyperplane that separated the multi-dimensional space into two decision regions (cache

contents and not cache contents). The performance comparison of different machine learning models

was carried out with the same datasets. Finally, the cache placement models using artificial neural

networks, support vector machine, logistic regression, and weighted-sum algorithms were tested

with actual data sets of user requests taken from published literature [197]. The test was conducted

by changing one of the system parameters, fixing the other parameters, and computing the hit rate
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to investigate the sensitivity of the classification to the changes in the environmental parameters.

In chapter 6, we developed a semi-supervised self-training (SSST) classification model for the

cache placement problem. We assessed the proposed SSST algorithm through experiments with

datasets on different learning techniques. The performance comparison of different machine learning

models was carried out with the same datasets. We observed that using the SSST cache placement

algorithm while changing system parameters, the hit rate of the SBS cache increases with the

increase in SBS cache size decreases with the increase of user speed and remains unchanged when

the SBS data rate and SBS communication ranges change. This work yielded promising results for

the formulation of cache placement as a classification problem. Further experiments were conducted

to understand the relationship between system performance and the robustness in our framework.

As the results showed, the SSST algorithm was more robust and improved the performance of the

cache placement problem.

7.2 Future Work

This research work yielded promising results for the formulation of cache placement. Therefore, con-

tinuous investigation and more dataset accumulation are suggested to model the trade-off between

cache placement and the change in system parameters and the latency and energy consumption

caused by downloading the contents by requested users. It has been noticed that with the changes

in system parameters such as SBS cache size, user speed, SBS data rate, SBS communication range,

and content popularity, there were a few limitations and weaknesses in each classifier model used

in this research. Therefore, generating an automatic algorithm selection that decides which algo-

rithm is executed in each wireless network cell depending on the size of the dataset, the number

of input features, the available resources, and values of system parameters is suggested for future

work. Furthermore, the automatic selection of the algorithm can be a rule-based technique aiming

to combine different learning algorithms.

For mobile edge caching, it is clear that machine learning will play a significant role, particularly

in terms of content request prediction and cache replacement tasks prediction. Wireless networks

generate huge amounts of data every second. The data contains information about the content, its

popularity, the user’s preferences, the location of the user, and the mobility of the user. To achieve
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the best prediction of cache contents and to minimize energy consumption and latency, big data

analytics should be used for cache placement.
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