Toronto Metropolitan University
Browse
- No file added yet -

Joint admission control and power allocation in hospital networks based on cognitive radios.

Download (3.32 MB)
thesis
posted on 2021-06-08, 12:03 authored by Yicong Liu
In this thesis, we present an approach to solve the joint call admission control and power allo- cation problem in a hospital environment based on cognitive radio. Specifically, a multi-objective non-convex mixed integer non-linear programming (MINLP) problem with weighted-sum method for wireless access in an indoor hospital environment has been formulated in order to maximize the number of admitted secondary users and minimize transmit power while guaranteeing the through- put of all secondary users and satisfying the interference constraints for the protected and primary users. To solve this MINLP problem with different weights given to different objectives, we pro- pose to use the standard branch and bound algorithm as appropriately modified to find the optimal solution. We also coded a specific program using OPTI Toolbox to find the minimum objective function value, number of admitted secondary users and all related values such as total system power and throughput. To analyze the numerical results, we considered three cases with equal and non-equal weights. We also changed the values of interference and maximum source power to obtain and analyze different results comparing with the normal one. Our results indicate that more power is allocated and better throughput is guaranteed while the number of admitted users is increasing. However, as they increase, the objective function value increases steadily as well, which means that it is more difficult to reach our minimizing objective.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Electrical and Computer Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2013

Usage metrics

    Electrical and Computer Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC