Toronto Metropolitan University
Browse
- No file added yet -

Innovative approach for automatic land cover information extraction from LiDAR data

Download (5.82 MB)
thesis
posted on 2021-06-08, 09:44 authored by Nagwa Taha Hamdy El-Ashmawy
An airborne laser scanning (ALS) system with LiDAR (Light Detection and Ranging) technology is a highly precise and accurate 3D point data acquisition technique. LiDAR technology has been extensively used in digital surface/terrain modelling (DSM/DTM), and related applications such as 3D city modelling and building extraction. The capability of LiDAR systems to record the intensity of the return laser pulse backscattered energy in addition to the range data has motivated researchers to investigate the use of LiDAR intensity data for extracting land cover information. The main goal of this research is to maximize the benefits of the use of LiDAR data independently of any external source of data for automatically extracting accurate land cover information. Several new approaches are introduced in this research: a) classifying and filling the LiDAR intensity point cloud to produce a land cover image, b) combing multiple classified data of multiple LiDAR data-strips, c) statistical analysis segmentation technique that uses the concept of the kurtosis change curve algorithm for automatic classification of LiDAR data, and d) accelerating the classification process of large datasets by partitioning the large datasets into small, manageable datasets. Applying the traditional image classification techniques on LiDAR elevation and intensity data exclusively is included. Pixel-based, object-based, and point-based classification logics are conducted, and their results are compared to reference data. The results indicated that LiDAR data (range and intensity) can independently be used in land cover classification. By applying traditional pixel-based, supervised image classification techniques, the classification results show that auxiliary layers, which are extracted from range and intensity data, can be used for land cover classification. However, applying the supervised classification techniques on the LiDAR point cloud data without converting the data into images (Point-based logic) produced more accurate land cover classification results. The experiments on the proposed classification approach using the statistical analysis segmentation technique (based on the concept of the kurtosis change curve algorithm) show that it can be used to classify LiDAR data for land cover mapping.

History

Language

English

Degree

  • Doctor of Philosophy

Program

  • Civil Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Dissertation

Thesis Advisor

Ahmed Shaker

Year

2015

Usage metrics

    Civil Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC