Toronto Metropolitan University
Browse
- No file added yet -

Inductive power transmission through printed sprial coils for seizure application

Download (2.85 MB)
thesis
posted on 2021-06-08, 07:58 authored by Amin Kalbasi
This thesis proposes a realistic model for transcutaneous inductive power link for seizure applications using PSCs (Printed Spiral Coils). The benefit of this model is smaller size implanted coil compared to its counterparts while maintaining high loaded system efficiency. The introduced Printed Spiral Coil (PSC) geometric parameters are achieved using MATLAB that searches for the highest efficiency of the inductive coil within the given constraints. The output from the MATLAB simulation is used to created optimum design in AMDSpro tool and is verified. The outer diameter of the implanted coil is introduced to be d₀₂ = 6mm while the simulated efficiency is calculated as η [subscript] sim = 46.67% operating at f [subscript] sim = 2.52MHz for the relative distance of D = 10mm filled with layers of modeled human skull (Outer Compact Layer, Spongiosum, and Inner Compact Layer). The coupling coefficient of the spiral was calculated to be k = 0.69. The implanted PSC is associated with load capacitance and resistance of R [subscript] L = 4.5Ω and C [subscript] L = 95nf.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Electrical and Computer Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Thesis Advisor

Kaamran Raahemifar

Year

2010

Usage metrics

    Electrical and Computer Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC