Flutter, a self-excited vibration of wings and control surfaces, can lead to catastrophic failure of aircraft structures. Classical methods have been applied successfully for flutter suppression and for increasing the flutter critical speed. With the demand of higher speed and more flexible aircraft, more advanced active flutter control techniques are required. In this study, a neuro-fuzzy methodology for flutter suppression of a two dimensional airfoil is explored. A MATLAB simulation environment is used for the modeling and analysis. The airfoil model is simulated according to a set of aeroelastic equations of motion. A neuro-fuzzy controller, called NEFCON, is then embedded in the airfoil model for increasing the flutter speed. NEFCON learns from the motion of the airfoil and automatically produces fuzzy rules. The simulation results show that these fuzzy rules can successfully increase the critical flutter speed. The performance of the fuzzy rules is tested with differential airfoil parameters.