Toronto Metropolitan University
Erdelyi_Nicholas.pdf (1.13 MB)

Dynamic Finite Element Modelling and Free Vibration Analysis of Delaminated Composite Beams

Download (1.13 MB)
posted on 2023-06-19, 15:36 authored by Nicholas Erdelyi
The requirement for accurate analysis tools to predict the behaviour of delaminated composites has grown and will continue to grow into the future, due to the high demand of these materials on major structural components. In the following, a detailed analysis of single- and double-delaminated beams is made, using traditional finite element techniques, as well as two dynamic element-based techniques. The Dynamic Stiffness Matrix (DSM) and Dynamic Finite Element (DFE) techniques introduce the concept of frequency-dependent stiffness matrices and shape functions, respectively, and have been documented to exhibit excellent convergence qualities when compared to traditional finite elements. Current trends in the literature are critically examined, and insight into different types of modeling techniques and constraint types are introduced. In particular, the continuity (both kinematic and force) conditions at delamination tips plays a large role in each model’s formulation. In addition, the data previously available from a commercial finite element suite are also utilized to validate the natural frequencies of the systems analyzed here. Beam element-based techniques are used and the results are compared to those obtained using the dynamic element techniques and data from the literature. In each case excellent agreement between different techniques was observed. Finally, general concluding remarks are made on the usefulness of the presented theories, and some comments are made on the future work of this research path.





  • Master of Applied Science


  • Aerospace Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis