Toronto Metropolitan University
Browse

Diamagnetic Manipulation of Cell-Encapsulating Droplets

Download (7.55 MB)
thesis
posted on 2021-05-23, 13:37 authored by Stephanie Buryk-Iggers
In this thesis, a microfluidic method for label-free control of cell encapsulating droplets is developed using diamagnetic forces. To generate droplets in a microfluidic device, we use a symmetrical flow-focusing design, where two streams of a continuous phase shear a single stream of a droplet phase, resulting in droplet generation. First, it is shown that by adjusting only the droplet phase flow rate, precise control of empty droplets can be achieved. Human prostate cells are then introduced to the system and encapsulated by droplets. Control of the cell-encapsulated droplets and empty droplets is studied. It is shown that cell-encapsulated droplets and empty droplets deflect by different amounts when exposed to the magnetic field. By exploiting this difference, efficient sorting of empty droplets from cell-encapsulated droplets is achieved at a purity of 85% in a single pass. Following sorting, cells are analyzed and show 90% viability after a two-hour incubation period.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Biomedical Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2019

Usage metrics

    Biomedical Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC