posted on 2021-05-23, 10:08authored byMuhammad Mohsin Babar
While the design of signature analyzers for digital circuits has been well researched in the past, the common design technique of a signature analyzer for mixed-signal systems is based on the rules of an arithmetic finite field. The analyzer does not contain carry propagating circuitry, which improves its performance as well as fault tolerance. The signatures possess the interesting property that if the input analog signal is imprecise within certain bounds (an inherent property of analog signals), then the generated signature is also imprecise within certain bounds. We
offer a method to designing an algebraic signature analyzer that can be used for mixed-signal systems testing. The application of this technique to the systems with an arbitrary radix is a challenging task and the devices designed possess high hardware complexity. The proposed technique is simple and applicable to systems of any size and radix. The hardware complexity is low. The technique can also be used in algebraic coding and cryptography.