Hybrid rocket engines (HREs) are a chemical propulsion system that nominally combine the advantages of liquid-propellant rocket engines (LREs) and solid-propellant rocket motors (SRMs). HREs in some cases can have a higher specific impulse and better controllability than SRMs, and lower cost and engineering complexity than LREs. For HREs and SRMs, both kinds of rocket engine employ a solid fuel grain, and the chosen grain configuration is a crucial point of their design. Different grain configurations have different internal ballistic behavior, which in turn can deliver different engine performance. A cylindrical grain design is a very common design for SRMs and HREs. A non-cylindrical-grain is a more complex grain configuration (than cylindrical) that has been used in many SRMs, and is also a choice for some HREs. However, while an HRE and an SRM can employ the same fuel grain configuration, the resulting internal ballistic behavior would not be expected to be the same. Pressure-dependent burning tends to dominate in SRMs, while axial flow-dependent burning tends to dominate in HREs. To help demonstrate in a more direct manner the influence of the differing combustion processes on the same fuel grain configuration used by an HRE and SRM, a number of internal ballistic simulations are undertaken for the present study. For the reference SRM cases looked at, an internal ballistic simulation program that has the capability of predicting head-end pressure and thrust as a function of time into a simulated firing is utilized for the present investigation; for the corresponding HRE cases, a simulation program is used to simulate the burning and flow process of these engines. For the present investigation, the two simulation programs are used to simulate the internal ballistic performance of various HREs and SRMs employing comparable cylindrical and non-cylindrical fuel grain configurations. The predicted performance results, in terms of pressure and thrust, are consistent with expectations that one would have for both propulsion system types.