Toronto Metropolitan University
Browse
- No file added yet -

Compaction density variation in powder metallurgy components

Download (6.13 MB)
thesis
posted on 2021-05-22, 17:11 authored by Elham Jafar-Salehi
The main objective of this research was to study the relationship between green density and compaction pressure in powdered metallurgy. Powder metallurgy has gained popularity and importance because of its near net shape, cost effectiveness and its ability to reduce the complexity of multileveled engineering components. However, powder metallurgy poses challenges that are yet to be fully understood. There are many works performed to address challenges such as the effect of friction, the tool kinematics, handling component prior to sintering and fracture under compaction. This work concentrates on the relationship between green density distribution and compaction pressure. In order to measure the relative density of compacted components, Electron Scanning Microscope was utilized. One can intuitively conceive that the relative density requires more than intuition. It was determined that highest relative density occurs at the center of the specimen and reduces toward the die-powder or punch-powder boundary. For completeness, the application of artificial neural network (ANN) and finite element (FE) model in estimation of green relative density was studied. The results of this research signify that ANN is an excellent technique to determine the relative density distribution of un-sintered compacted specimen. Moreover, finite element method can accurately estimate the average relative density of compacted specimen.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Mechanical and Industrial Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Thesis Advisor

A Ghasempoor

Year

2010

Usage metrics

    Mechanical and Industrial Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC