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Abstract 

Biomarkers detected in neurophysiological signals can be analyzed to determine 

indicators of disorders. Electroencephalography (EEG) detects neural activity in the 

brain and the signals can be analyzed to diagnose stress and mood disorders.  The 

objective is to analyze EEG signals to identify and delineate the severity of 

depression and/or anxiety validated by the results of psychological test scores.  

Signals were analyzed from a public database of 119 participants  aged 18 to 24 with 

45 individuals having moderate to severe anxiety and/or depression and the remaining 

74 people having minimal or none. Using extracted signal features, individual 

variations were compared during a testing protocol for both groups, affected and 

unaffected.  Similarities, and asymmetry, were numerically and visually examined 

between the left and right brain hemispheres as well as the specific channels.  In 

addition, machine learning classification was performed to predict the class based on 

the input data. The results demonstrate indications of physiological differences 

between participants, indicating a likely presence or absence of a mood disorder. 

Understanding the complexities of how mood and anxiety disorders, including its 

comorbidities, are physiologically manifested is critical for accurate and objective 

diagnosis.  
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1. Introduction  

Several indications of stress, depression and anxiety are reflected in 

Electroencephalography (EEG) signals.  Being able to quantifiably identify mental 

illness will aid in understanding its complexities as well as enhance diagnosis and 

treatment. This research provides evidence for neurophysiological differences that 

exist in the presence of a mood or anxiety disorder. In this study, a new analysis 

method was proposed for differentiating people with depression and anxiety from 

healthy controls.  Signal processing techniques will be more effective in identifying 

and classifying mood disorders compared to psychological evaluations which are 

subjective measures offering limited specificity.   The EEG modality is more cost 

effective than other brain data acquisitions systems such as functional magnetic 

resonance imaging (fMRI). Based on previosuly published studies, features were 

chosen for the EEG analysis, however there are many features that can be extracted 

from signals.  

The objective is to analyze EEG signals to detect and delineate the presence of 

depression and/or anxiety validated by the results of psychological tests.  Using EEG, 

features were extracted and changes in individuals were compared during a testing 

protocol for both groups with and without mental illness.  The data collected will give 

insight into how people affected with a mood disorder internalize external stressors 

and the associated neurophysiological manifestations.  Hemispheric, anterior and 

posterior asymmetry patterns can be used as biomarkers for underlying 

psychopathology of depression, anxiety, or a comorbid condition. 

The contribution of this thesis is three-fold. It presents three methods for 

analysing EEG signals for discriminatory identifiers to differentiate people with 

depression and/or anxiety from healthy controls. The methods are:  

1) Feature Asymmetry  

2) Visualization of Topographic Heat Maps  

3) Severity Classification 

The emphasis and main contribution of this thesis is on the asymmetry and 

contrast between affected and unaffected persons.   
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These findings will contribute to further research in classifying features as 

biomarkers for disease with the end goal of developing clinical grade hardware with 

signal processing capabilities for mental health diagnoses. Future applications upon 

accurately diagnosing an illness would include signal processing algorithms to help 

identify features to be used to determine effectiveness of antidepressant or antianxiety 

medications and/or therapies. Analytical biomarkers are yet to be used clinically as a 

method of diagnosis for mood disorders, however they can be used in research 

settings to provide information on the person.   More research is required to confirm 

these findings as the tests may be sensitive to acquisition methods, signal durations 

and techniques, as well as sample population characteristics such as age and gender.  

Standardized methodologies are required to consistently measure and analyze the 

signals. 

1.1 Problem Definition 

Recognition of mood disorders such as depression is critical to being able to 

provide treatment because in Canada, it is estimated that 1 in 4 individuals will be 

depressed at one point in their life (Government of Ontario Ministry of Health, n.d.). 

By the age of 40, 50% of Canadians will have experienced a mental illness (CAMH, 

n.d.). 70% of mental health problems occur during childhood or adolescence. 15% of 

people who are depressed commit suicide (Government of Ontario Ministry of 

Health, n.d.) and this has become a leading cause of premature death (Hasin et al., 

2017).  

Understanding the complexities of depression including its comorbidities and 

impact on lifestyle and functional ability, is critical for the development of reliable, 

successful personalized treatment options. Depression has been associated with an 

increased risk for coronary artery disease, stroke, cancer, diabetes and reduced 

physical activity. A meta-analysis by Jia and colleagues (2015) concluded depression 

increases the risk of mortality and adds to the burden on the healthcare system. 

Overall, identifying and treating mood and anxiety disorders is critical to an 

individuals’ overall wellbeing and can contribute to alleviating the load on the 

healthcare system when approached in a preventative manner. 
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Currently, psychiatrists and physicians diagnose mood disorders through a 

patient’s subjective lifestyle account, their social and medical history along with 

standard psychological tests. Developing and introducing additional diagnostic tools 

into the equation will help to better equip clinical professionals to meet patient needs. 

1.2 Mood Disorders 

1.2.1 Depression 

Major depressive disorder (MDD) is characterized by persistent sadness, 

emptiness, irritability, and anhedonia while also influencing cognitive changes and 

the ability to function. MDD is a serious mental disorder characterized by at least one 

depressive episode lasting for two or more weeks as defined in the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5, 2013). Depression symptoms can 

manifest themselves differently and vary.  They can include trouble concentrating, 

fatigue, feelings of worthlessness and hopelessness, pessimism, insomnia or 

oversleeping, irritability, restlessness, loss of interest in things once pleasurable, 

changes in eating patterns, persistent sadness or emptiness and suicidal thoughts.  

The main brain structures thought to be associated with depression are the 

dorsolateral prefrontal cortex (DLPFC), hippocampus, subgenual anterior cingulate 

cortex (ACC) and other limbic structures.  Depressed individuals secrete higher levels 

of the hormone cortisol. The hypothalamic-pituitary-adrenal axis plays a major role in 

the regulation of cortisol. Corticotropin-releasing factor (CRF) is released from the 

hypothalamus and stimulates the release of adrenocorticotropic hormone (ACTH) 

from the pituitary into the blood.  ACTH elicits glucocorticoid release (cortisol 

secretion) from the adrenal cortex.  Due to hypersecretion, the pituitary and adrenal 

glands are enlarged, however the problem is initiated in the brain with the release of 

neurotransmitters. Regulatory neurotransmitters for CRF release are norepinephrine 

(NE), acetylcholine (ACH) and gamma-aminobutyric acid (GABA).  Higher levels of 

CRF are found in the cerebrospinal fluid of depressed patients and as well as 

increased numbers of CRF producing cells in the hypothalamus in brain tissue. 

Increased cortisol can promote cell death in the hippocampus leading to cognitive 

dysfunction (Southwick et al., 2005). Glucocorticoids can lead to cell atrophy and 
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neurotoxic events; therefore, chronic stress and depression can lead to physiological 

deterioration (Sapolsky 2000). Dexamethasone, a corticosteroid, suppresses blood 

plasma cortisol and has been shown to be ineffective in individuals with depression 

(Thase et al., 2014).  Individuals with depression have fewer numbers of metabolites 

of NE in their urine and fewer metabolites of 5-HT in their CSF (Thase et al., 2014). 

Changes in neurological structures as shown through imaging modalities such as 

EEG and Functional Magnetic Resonance Imaging (fMRI). They provide insight into 

how the brain is performing and can highlight areas of increased or decreased 

activation.  EEG measures brain activity through electrical outputs often decomposed 

into frequency bands which are specific to the regions surrounding electrodes on the 

scalp. fMRI measures brain activity by measuring changes in blood flow and 

structural changes.  Imaging has shown increased connectivity for mood disorders. 

The increased connectivity suggests an abnormality, specifically,depression, as it 

leads to dysregulation of other functions (Sheline et al., 2010; Wang et al., 2012; 

Anand et al., 2005). Decreases in hippocampal volume are seen in people with 

prolonged depression but can also be seen as a causal factor for the mood disorder 

(Koolschijn, 2009; Chen et al., 2010). Anxiety and depressive disorders have been 

associated with hyperactivation of the amygdala, a brain structure associated with 

emotions. McClure and colleagues (2005) demonstrated with the use of fMRI, that 

patients who had high amygdala activity prior to taking a treatment of selective 

serotonin reuptake inhibitor (SSRI) responded well to the medication. Imaging has 

shown increased connectivity for mood disorders. This suggests there are biomarkers 

that can predict the effectiveness of antidepressant medication. These findings are 

indicative of neurobiological correlates of depression thereby validating the potential 

of detecting biomarkers in EEG signals. 

1.2.2 Anxiety 

Anxiety disorders, as described in DSM-5, are characterized by unrealistic, 

irrational fears or anxieties that cause significant distress or impairments in 

functioning. It is often coupled with bodily responses such as a worried facial 

expression, increased muscle tension, restlessness, impaired concentration, sleep 

disturbances and irritability. There are several different classifications of anxiety 



  
             

5 
 

disorders (AD) with the most common being generalized anxiety disorder (GAD).  

GAD is qualified by excessive anxiety and worry occurring more days than not for 

at least 6 months with respect to a variety of causes (school, work, family). The 

overlap of symptomology of GAD disorder and other mood disorders is common and 

many people with one type of anxiety disorder will often experience at least one more 

disorder, such as depression, concurrently or at a different period in their life. 

However, the phenotypical overlap of disorders may be due to diagnostic 

unreliability. 

Anxiety evolved from an adaptive reaction to a threat. Stress elicits the 

autonomous nervous system (ANS) which activates the fight or flight response. This 

involves increased heart rate, blood pressure and elevated blood glucose. When this 

occurs, other body systems are deprioritized including the digestive system. Chronic 

stimulation of the ANS in this respect can lead to poor digestion, sleep disturbances, 

muscle fatigue and psychosomatic illnesses. Acute anxiety in response to significant 

life stresses can occur, particularly in response to the death of a loved one or a major 

life event.  

Hippocampal atrophy can increase vulnerability to the development of a mental 

health disorder. In a study by Hettema and colleagues (2012), twins were studied with 

one having GAD. People with GAD were found to have decreased hippocampal 

volume. Van Praag and colleagues (2004) postulated that stress and anxiety can be a 

precursor to certain kinds of induced depression characterized by more aggressive 

behavior by causing a decrease in the 5-HT or serotonin, metabolism. Preventative 

measures can be established to take care of mental health by identifying a stress 

threshold as well as accurately identifying signs of depression and anxiety in various 

population groups.  

Fear is an emotional response to a defined source of danger and should not be 

confused with anxiety or stress but may have similar manifestations. Structures 

involved in the fear response are the amygdala, hippocampus, hypothalamus, medial 

prefrontal cortex (mPFC) and brain-stem nuclei. The amygdala plays a central role in 

in emotion processing, which is part of the limbic system. When there is an imbalance 
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between the amygdala and associated control structures and the prefrontal cortex, 

anxiety disorders can occur.  

Anxious individuals secrete higher levels of the hormone cortisol. This is due to 

dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis.  With constant high 

quantities of cortisol, rats have shown sensitivity to CRF (corticotropin-releasing 

factor).  Therefore, this could explain why previous exposure to stress can result in a 

hypersensitivity of this system and small events can elicit the actions of the HPA axis. 

In accordance with sensitization of a person’s response to increase CRF, several 

studies have noted differences of response linked to the basal cortisol levels. 

Individuals with high basal levels of cortisol were most resilient to stress as their 

circuitry was prepared to respond to the event. In contrast, those with lower basal 

cortisol levels demonstrate an overactive amygdala during a stressful time to cope 

with the event making these individuals more stress sensitive.  This indicates that 

abnormal regulation of cortisol and lack of secretion results in abnormal behaviour 

(Het et al., 2012).  

Early life stressors and traumatic events can cause vulnerability to a mood or 

anxiety disorder later in life. The prefrontal cortex is not fully developed until late 

adolescence to early twenties, and therefore subject to plastic changes. 

Neurotransmitters have a key role in regulating anxiety. GABA is an inhibitory amino 

acid. Noradrenergic cells in the locus coeruleus (LC) are inhibited by GABA and 

serotonin (5-HT). Benzodiazepines enhance GABA (inhibition) as it tones down the 

effects of the adrenergic system (Meyer, 2019). GABA regulates the activity of the 

central nucleus of the amygdala. There are many benzodiazepine receptor sites that 

are primarily located on the structures that form the limbic system (including the 

amygdala) which regulates emotional control, among other functions. Serotonin, 

another neurotransmitter, also has an impact on anxiety, but it is not well understood.  

Anxiety is a sensation induced by the stress response itself and therefore poses a 

challenge to research and analysis. Stress can be chronic but also has distinct, acute 

impacts. The temporal sensitivity of stress and anxiety could make its quantification 

misleading. The dissipation of cortisol in the blood and saliva may be sensitive to 

time and intensity.  A person may be anxious, however the mental state at the time of 
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data acquisition for research has significant implications for the results. Participating 

in a study itself is novel and elicits stress for many reasons including preoccupation 

with directions, the task to perform and meeting new people.  The time of day in 

which testing is performed can impact results as levels of alertness vary with cortisol 

levels.  Stress and anxiety are dynamic and there are many factors that influence its 

response and a researcher’s ability to quantify the reaction. Despite its transient 

characteristics, the physiological indicators are suggestive of the capability to detect 

distinctive EEG activity for use in diagnosis. 

1.2.3 Comorbidity 

Comorbidity of mood disorders is the presence of two or more illnesses in the 

same person.  Approximately half of the people diagnosed with a mood disorder also 

have more than one concurrent mental illness (Newman et al., 1998). The results of 

the National Comorbidity Survey indicated that 58% of patients with MDD also 

showed signs of an anxiety disorder (Ninan, 1999). For the purposes of this analysis, 

comorbidities among the following mental illnesses were included: anxiety disorders, 

mood disorders, schizophrenia, childhood and adolescent disorders, dementia, and 

substance use disorders. People with comorbid mental illnesses not only show more 

severe symptoms and longer lasting illness, but they also have higher rates of 

healthcare service use. The most prevalent comorbidity is anxiety present with a 

mood disorder, found more commonly in women. In an epidemiology study in the 

United States examining adults with depression, it was found that in their lifetime, 

there is a comorbidity prevalence of anxiety disorder of 37.3% and personality 

disorder of 31.9% with MDD (Wang et al., 2012).  Many studies have shown that a 

substantial proportion of individuals who report symptoms consistent with a given 

DSM-IV mental disorder also have symptoms consistent with one or more other 

disorders. For example, according to the National Comorbidity Survey Replication 

conducted in the United States, approximately 45% of people aged 18 years or older 

that are diagnosed with a DSM-IV mental disorder have more than one mental 

disorder (Kessler et al., 2005; Smetanin et al.,2011).  

Since subtypes of anxiety may exhibit different brain wave activity (Heller, W., & 

Nitschke, J. B.,1998), the co-occurrence of disorders will impact the diagnosis and 
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therefore, the treatment protocol (Regier et al., 1998).  Comorbidity is not well 

studied, and the breadth of comorbidity studies should be explored.  Anxiety disorder 

comorbidity with depression is the most common. A major risk factor for many 

comorbid mental illnesses is childhood trauma. Another risk factor for these two 

mood disorders is the trait of neuroticism defined as chronic distress and emotional 

sensitivity. They can be distinguished by their level of positive and negative affect. 

People with anxiety can be characterized by high levels of anxious hyperarousal and 

symptoms such as increased heart rate, trembling, dizziness, and shortness of breath 

(Hooley, Butcher, 2019). For instance, the prevalence of a mood disorder with an 

eating disorder ranges between 50% to 90% (Godart, 2007). The question arises 

whether comorbid presentation of depression may have a different treatment protocol 

compared to a single diagnosis. People with comorbidities could require 

psychotherapy to determine the underlying cause to be able to select the appropriate 

treatment.  Identifying the most appropriate disorder as a diagnosis is critical to the 

treatment protocol. Early adulthood is when illness emerges, however onset can 

present differently.  As an example, bipolar and depression may initially present 

similarly.  Treating bipolar with antidepressants can induce mania vs. treating with 

mood stabilizers.  The differences in activation between two mood disorders suggest 

that comorbid disorders will have unique presentations. 

1.2.4 Significance 

Today, death due to suicide is a devastating outcome for someone suffering with a 

mood disorder.  In 2019, 4012 people died from suicide which is more than the 

number of assaults in Canada. 90% of people who committed suicide had a mental or 

addictive disorder, with 60% having depression (Statistics Canada, 2019). This 

statistic highlights the growing need to develop tools in healthcare to be able to better 

manage this increasingly prevalent and detrimental illness.  Growing research in 

mental health in terms of recognition and diagnosis is needed and the public, not only 

clinicians, must be educated on all presentation types.  In tandem, technology, once 

research is fully developed, will be a crucial element in aiding in diagnosing and 

classifying the illness to be able to predict courses of treatment.  This is significant as 

suicide has become a leading cause of premature death (Ministry of Health, n.d.).  
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The World Health Organization (WHO) also considers MDD a major contributor to 

the global burden of disease and has significant financial burdens when untreated.  

As seen in the increase in literature being published relating to psychological 

computation, the brain is complex and various features can be selected to identify 

responses typically associated with a particular mood disorder. These findings will 

contribute to further research in classifying features as biomarkers for disease with 

the end goal of developing clinical grade hardware with signal processing capabilities 

for mood disorder diagnoses. Future applications upon accurately diagnosing an 

illness would include signal processing algorithms to help identify features to be used 

to determine effectiveness of antidepressant or antianxiety medications and/or 

therapies. Current clinical practice is to use psychological tests and subjective 

behavioural manifestations as described by the patient to diagnose an individual as 

having depression or other mood disorders. 

1.2.5 Financial implications  

Depression and anxiety contribute to the overall burden of disease.  Specifically, 

in Canada, when a person is under psychological distress or experiencing depression, 

it is treated as any other illness in terms of emergency department visits with 

physician consults and diagnoses.  Chiu and colleagues (2017) published a paper to 

evaluate the direct healthcare costs associated with psychological distress and major 

depression in Ontario, Canada, based on a 2002 Canadian Community Health Survey 

on Mental Health and Wellbeing.  The age adjusted per capita costs were higher for 

both MDD ($3,210) and psychological distress ($3,364) compared to the control 

group ($2,629).  In addition, the population wide costs for psychological distress 

($441 million) were more than double the cost for MDD ($210 million). Therefore, 

the healthcare system should increase its expenditures in researching effective 

treatments or preventions to avoid burdens on the healthcare system in the future and 

to promote a healthy population. 

1.2.6 Etiology of Depression & Anxiety 

The prevalence of mental illness is increasing, and the etiology is inconclusive, 

yet broad.  There are numerous hypothesized causes of depression and vulnerabilities 
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to development of a mood disorder. Genetics, gender, lifestyle, and life experiences 

can cause predispositions. The amplified HPA axis action resulting in higher blood 

levels of cortisol may initiate with stress or trauma early in life causing an overly 

responsive reaction and, therefore, permanent new body set point.  Loneliness is also 

a risk factor which can lead to a vulnerability to depression (Heinrich & Gullone, 

2006). Patients complain of loneliness likely stemming from a lack of connection 

from not being fully engaged in their life. Differentiating normal sadness and 

loneliness from depression is often difficult to discern. Dysthymia is mild persistent 

depression where patients feel like they cannot achieve happiness or a euphoric state. 

They feel a barrier in achieving this. It is critical that a clinician evaluate the patient’s 

lifestyle to the best of their abilities to ensure they do indeed are depressed or 

otherwise afflicted.  Modern day lifestyles potentially attribute to excessive dopamine 

levels due to social media and evolving diets (Canada Public Health, n.d.). The 

constant need for validation involving a surge of neurotransmitters exhausts the 

system and results in stark highs and lows throughout the day.  Modern populations 

are increasingly overfed, malnourished, sedentary, sunlight-deficient, sleep-deprived, 

and socially isolated (Hidaka, 2012).  If a person is staying up late watching TV, not 

very active, making poor diet choices, and not feeling well, then perhaps they should 

consider making lifestyle changes.  Determining when symptoms began, severity and 

duration is important. Furthermore, cultural prevalence and presentations of 

depressive symptoms differ leading to misdiagnosis.  

A genetic vulnerability may predispose an individual to developing a mood 

disorder.  Epidemiological studies report family aggregation likelihood between 30-

50% (Shimada-Sugimoto, et al., 2015). Specifically, if a person is characterized as 

having a trait termed neuroticism, which is tendency of having negative thoughts and 

having low emotional stability, it can predispose them to experience affected mood 

states.  Looking at clusters of the types of anxiety disorders can help to identify 

susceptibility to an AD as there are many commonalities between the various 

subtypes making them challenging to distinguish. Lonsdorf and colleagues (2009) 

found that individuals who are carriers of one of the two variants of the serotonin-

transporter gene, which is associated with highly neurotic characteristics, tend to 
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respond more effectively to conditioning. Cavanagh and colleagues (2019) 

investigated comorbid depression and anxiety with respect to responsiveness to 

reward and punishment. People who had anxiety demonstrated better avoidance 

learning. It was found that comorbidity with anxiety displayed the impacts of rewards 

and punishment whereas depression on its own did not have a significant impact or 

predict learning accuracies. Moral injury is when there is cognitive dissonance 

inaction transgressing our moral/ethical beliefs, expectations, and standards.  

Rumination stemming from moral injury has a profound impact on mental health and 

is a symptom of depression and mood disorders. 

Varying presentations of symptomatology can lead to overdiagnosis or 

underdiagnosis. By not offering a patient a treatment for their symptoms, it could be 

construed as negligence, therefore, overdiagnosis is common more recently.  In 

addition, there is a significant amount of stigma associated with the diagnosis of 

mental illness despite more widespread awareness and discussion of the topic 

worldwide.  The illness itself can make a person feel shame, undesirability and lack 

of motivation which can inhibit an individual from seeking treatment. 70% of mental 

health problems have their onset during childhood or adolescence (Government of 

Canada, 2006).  This period is already a vulnerable time and lack of a support 

network and understanding parents can make seeking treatment challenging. 

Gender can affect the type of treatment and care sought (Canada Public Health, 

n.d.). Women are more likely than men to experience depression and those aged 15 to 

24 in Canada had the highest prevalence of depression (Steensma et al., 2015).  Stress 

and anxiety are sexually dimorphic. Childhood trauma can predispose someone to 

depression later in life and women are more often prone to gendered experiences that 

evoke injury. For example, there is increased risk of sexual assault (Vicary et al., 

1995), sexual harassment (Skoog and Ozdemir, 2016), peer victimization (Hamlat et 

al., 2915), sexual rumor (Reynold and Juvonen, 2011) racial and general 

discrimination (Seaton and Carter, 2019) and a decrease in body esteem (Hamlat et al, 

2015).   Notably, high estradiol and cortisol predict depression symptoms only in 

early maturing girls (Chafkin et al., 2020) and stress exposure during pubertal 

development reversed anti-depressive effects of estradiol in adults (Ismail et al., 
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2013). The ratio of men to women who experience an anxiety disorder is 1:1.7. It is 

not equal.  In a study by Goldstein and colleagues (2010), the response difference 

between males and females was studied in response to presented images.  In the 

group of women (in different phases of their menstrual cycle), there were greater 

changed observed in the brain circuitry studied.  This suggests that female response to 

stress is regulated by natural hormone fluctuations. Recognizing and understanding 

the existence of gender differences will help healthcare providers to better support 

individuals presenting with symptoms. 

1.3 EEG Modality  

Brain-computer interfaces (BCI) quantify physiological parameters and convert 

them to interpretable signals. Electroencephalography (EEG) is a modality that 

detects neural activity which is non-invasive or surgical. It offers high temporal 

resolution allowing for the evaluation of the signal in response to the presented 

stimuli.  Two imaging modalities can be used to identify biomarkers in the brain for 

mood disorders: EEG and fMRI.  EEG demonstrates high temporal specificity and 

fMRI demonstrates high spatial resolution. Independent studies have been performed 

using each of the modalities to detect biomarkers for incidence of illness and for 

therapeutic drug impact. EEG is a more cost-effective imaging technique (ranging 

around several thousand dollars CAD, depending on the quality) compared to an MRI 

machine (in the range of a few million dollars CAD). EEG has many applications in 

neuroscience for detection of signal abnormalities. As well, with increasing 

availability of public datasets and algorithm development for signal processing, many 

advancements have been made in machine learning and deep learning to help 

understand the brain. Historically and most notably, the common use of EEG output 

allows for seizure detection and sleep analysis.  In the last two decades, EEG signals 

have begun to be used to classify depression for diagnostic purposes, pharmacologic 

treatment prediction as well as for the evaluation of antidepressant treatment efficacy. 

Commercial EEG devices are currently available and implemented as neurofeedback 

devices for training and assessment of meditative state (MuseTM, EmotivTM, 

NeuroskyTM).  
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1.4 EEG Signal Preprocessing  

Typical EEG processing includes preprocessing and filtering to remove artefacts, 

feature extraction and classification (Craik & Contreras-Vidal, 2019). For 

preprocessing, various filters may be applied such as Butterworth filter (intended to 

‘flatten’ or smooth signal) and a bandpass frequency range is selected (often between 

0.5 Hz and 50 Hz). EEG signals can be analyzed and delineated by common 

frequency bands as described in  

Table 1 (Nayak & Anilkumar, 2021). 

 

Table 1: Frequency Bands 

Band 
Frequency 

(Hz) 

Notable Characteristics and Associations 

Alpha 8 - 12 

• Resting state and dominant during period before sleep 

• Related to thalamocortical activity 

• Usually higher in amplitude on the dominant side  

Beta 12 - 30 

• Present during complex thinking, action, cognitive 

processing (fast activity) 

• Represents a state of alertness 

• Typically symmetrical distribution  

• Present when eyes are open 

Theta 4 - 8 

• Prominent during early sleep 

• Highly emotional states can elicit activity 

Delta 0.5 - 4 • Prominent during deep sleep 

Gamma 30 + 

• Cognitive function 

• Epilepsy 

 

The activity and mental state of the person during the EEG recording affects the 

signal greatly. Signals can be recorded during the resting state condition while the 
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person is sitting calmly and quietly with either eyes open or eyes closed. The outputs 

of the individual in this state are frequently researched as consistency can be 

achieved.  Alternatively, tasks can be performed by the person to elicit various 

features for comparison such as event related potentials (ERPs) which are temporally 

denoted thereby easily relating a particular stimulus to a specified time response. 

Tasks can include emotion recognition, motor imagery, mental/cognitive task, seizure 

detection, sleep analysis or ERP detection post stimulus (P300) (Craik & Contreras-

Vidal,2019). 

Typically, we are most familiar with viewing real time data and signals on a time 

scale, however frequency scales may provide power spectrum data and a different 

angle of analysis. EEG signals can be decomposed using various methods into 

components for further analysis. Examples include fast Fourier transform (FFT), 

wavelet transform (WT), discrete cosine transform (DCT), empirical mode 

decomposition (EMD) and power spectral density (PSD), to name a few. These 

methods decompose the raw EEG signal into an array of signals that, together, 

illustrate the entire complexity, but separately, may provide elucidated insight and 

feature clarity. For the analysis, the focus is on temporal scale EEG analysis. 

Generally, EEG signals are acquired for processing in ideal conditions with 

medical grade equipment. Typical medical grade EEG setup includes an array of 

between 64 to 128 electrodes adhered to the scalp with conductive gel. Electrodes are 

attached to leads bringing the signal to the processor. These electrodes detect 

electrical activity on a microvolt scale. Impedances should be low which indicates 

good contact with the skin. This value may vary depending on the system and set up. 

The charges picked up by electrodes are amplified and displayed on a computer on a 

temporal (live) scale. The EEG output is entirely dependent on the quality of setup 

achieved.  

Electrodes are arranged on the head according to the 10-20 system. 10 and 20 

refer to the spacing of electrodes indicating a percentage of the distance positioned of 

the total front to back or right to left distance of the skull. Often, a cap is placed over 

the individual’s head with the spacing already marked for each electrode position. 

Different cap sizes are available for use.  The electrodes follow a standard naming 
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convention which refer to their topographical location: prefrontal cortex (Fp), frontal 

(F), temporal (T), parietal (P), occipital (O) and finally ‘C’ referring to the centerline 

position from each side.  The ‘Z’ label refers to the midline sagittal plane. Electrodes 

on the mastoid or ear (tragus or auricle) can be used as reference. Figure 1 shows the 

electrode location and names while Figure 2 is an example of an electrode cap (Rojas 

et al., 2018; Waveguard™ EEG Cap Product Lines, website). 

 

 

 

Figure 1: EEG Set up and Channels 
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Figure 2: Electrode Cap 

Signal acquisition errors may be high if setup is done improperly. This could 

include poor signal due to hair, poor conduction, or noise from outside sources. The 

electrode detects signal mainly from the cerebral cortex due to depth limitations of 

only a few centimeters. However, the signals could be correlated to deep brain 

structures by comparing performed tasks to resting state and the underlying structures 

involved. 

1.5 Neurofeedback  

Neurofeedback is a therapeutic technique which allows a person to monitor, 

visualize, and become mindful of their own biometrics (i.e., EEG signals).  It is 

effectively used to train the brain to alter physiological responses and represents the 

possibility for the technology to provide both diagnosis and potential treatment. This 

can be performed with the supervision of a medical professional or at home with 

commercial devices. The increasing availability of devices, data and human-computer 

interaction has a significant impact on mental health. Training the mind to focus and 

work as intended is a skill that can be effectively mastered through neurofeedback.  

The development of built-in software programs to hardware devices can allow 

consumers the ability to interpret their own EEG signals at home. 

1.6 EEG Biomarkers 

In literature, several techniques have been proposed for MDD recognition from 

EEG signals (Yang & Tsai, 2013; Baskaran et al., 2012; Thibodeau et al., 2006; Allen 

& Reznik, 2015). Several studies have investigated biomarkers in the brain, which are 

characteristics extracted/observed from the EEG signals that indicate an illness, 

particularly with MDD.  These indicators include but are not limited to, elevated 

alpha wave activity, alpha wave asymmetry, EEG coherence and event related 

potential (ERP) latency (Baskaran et al., 2012).  In addition, the person is generally 

sitting down quietly with either their eyes closed or open.  Signals can also be 

acquired when the person is performing a task and then the signals can be temporally 

marked to analyze the individual’s response. 
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Apart from the signal acquisition conditions, other factors may influence the 

output including hand dominance, any underlying neurological condition as well as 

various substances such as caffeine, alcohol, nicotine, psychotropics and prescribed 

medication such as antidepressants or antipsychotics. One study reported a decrease 

in the delta and theta bands in alcoholics which was then associated with poor 

inhibitory control (Kamarajan, 2003). In a review summarizing EEG indicators of 

mental illness as well as possible baseline and post treatment signals to predict 

responders and non-responders, several patterns were identified. Differences in 

prefrontal theta cordance values after 1 week of treatment of depressive symptoms 

might be a tool in early detection of response to antidepressant medication (Bares et 

al., 2012).  In a study by Bruder and colleagues (2008), the pre-treatment EEG signals 

prior to taking prescribed selective serotonin reuptake inhibitors (SSRI’s), a common 

antidepressant, were examined.  It was found that there was a difference in alpha 

power seen in the occipital lobe between responders and non-responders to the drug.  

This information can help to predict the treatment response in individuals prior to 

following a medication protocol. 

With increasing incidences of individuals struggling with mental health, there is a 

need to understand the brain better in response to therapeutic drugs to ensure their 

effectiveness. The results of this research could lead to personalized mental 

healthcare. It can prevent months of adverse side effects endured with no benefits. It 

will ensure effective treatment, earlier.  The trial-and-error approach can result in a 

delay in therapy, be demotivating for people and cause them to stop taking any 

medication at all which has the potential to improve their quality of life 

1.6.1 Alpha Asymmetry 

Alpha asymmetry is calculated as the difference in the alpha spectral power or 

frequency between the left and right frontal channels (primarily F3 and F4). Mumtaz 

and colleagues (2015) summarize that alpha wave asymmetry in the prefrontal cortex 

has been indicative of depression, however some studies failed to reproduce the 

results in post-menopausal women.  Alpha waves appear on both sides of the brain 

but are slightly higher in amplitude on the non-dominant side, generally observed in 

people who are right-handed. Elevated alpha wave activity has also shown potential 
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to be an indicator of depression (Mumtaz et al., 2010). Kemp and colleagues (2010) 

examined the specificity of brain laterality and found reduced left frontal activity in 

patients with MDD and overall increased alpha power through EEG acquisition under 

resting state, eyes closed conditions. In addition, there was greater activity seen in 

patients with PTSD in the right-parietotemporal region compared to MDD patients 

(Kemp et al., 2010).  In a study conducted on 49 undergraduate students during the 

examination period using EEG, it was found that during low stress periods, there was 

greater left frontal activity and during high stress periods, there was relatively greater 

right frontal activity asymmetry (Lewis, Weekes, & Wang, 2007).  The EEG 

recording protocol consisted of a memory task and a baseline EEG asymmetry task 

consisting of recording with periods of eyes open and eyes closed.  A review by Coan 

and Allen (2004) shows that positive moods are associated with relatively greater left 

prefrontal activity and negative moods are associated with relatively greater right 

prefrontal activity. A meta-analysis reviewed numerous studies that examined alpha 

wave asymmetry in the frontal cortex and concluded that it is an indicator of anxiety 

and depression.  Inconsistencies on this subject in the past was attributed to research 

practices such as short recording periods (Allen & Reznik, 2015).   More work is 

required to determine biomarkers of comorbidity of anxiety and depression 

(Thibodeau, Jorgensen, & Kim, 2006).  

1.6.2 General Asymmetry 

Several studies have examined whether greater left or right anterior EEG activity 

can predict psychopathology of depression or anxiety. Greater relative left frontal 

EEG activity is associated with positive emotion whereas greater relative right frontal 

EEG activity is associated with negative emotions. Previously depressed individuals 

exhibited greater relative right anterior EEG activity. Consequently, there was greater 

right anterior EEG activity (depression indicator) and relatively less right posterior 

activity (Blackhart, Minnix & Kline, 2006). In a study designed to assess whether 

EEG signal asymmetry was predictive of mental health, EEG activity was recorded 

twice for participants spaced three weeks apart. One year later, participants completed 

the Beck’s Depression Inventory (BDI) psychological test as well as a trait anxiety 

test. The EEG data alpha wave asymmetry was used to determine whether it was 
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predictive of future mental health status. It was found that parietotemporal alpha 

wave asymmetry was predictive of the depression psychological score outcome one 

year post acquisition (Blackhart, Minnix & Kline, 2006).  

Similar to depressed persons, greater right relative anterior as well as posterior 

EEG activity has been associated to anxiety. Similarly, people with comorbid anxiety 

and depression exhibit higher right anterior and posterior activity. These 

neurophysiological patterns are not conclusive and consistent across all studies on 

this matter, however asymmetry indicates underlying psychopathology and requires 

further investigation.  It has been suggested that asymmetry fits into the diathesis-

stress model serving as a risk factor for developing a mood or anxiety disorder (Coan 

& Allen, 2004). 

1.6.3 Coherence 

EEG coherence is a statistical similarity between two brain signals indicating 

normal or abnormal activity (Bowyer, 2016).  It indicates whether two brain regions 

have similar oscillating patterns with each other. Increased neurophysiological 

connectivity was found to be associated with MDD patients (Mumtaz et al., 2010). 

Coherence as a measure of abnormality, is subject to electrode reference and volume 

conduction for consistent representation (Mumtaz et al., 2015). Increased connectivity 

between prefrontal cortex and limbic areas is associated with successful treatment of 

depression (Dichter et al., 2015).  

In a study by V. Knott et al. (2001), EEG signals were acquired during resting 

state eyes closed condition of 70 males with unipolar depression compared to 23 male 

healthy controls. It was found that in the delta, theta, alpha and beta frequency band 

coherence was reduced compared to the controls.  Fingelkurts et al. (2007) examined 

12 people with major depression during resting state (all scoring over 18 on the 

Hamilton Depression Rating Scale (HAM) and 10 controls. It was concluded that 

structural synchronous EEG pairs were localized on the right anterior and left 

posterior brain areas. In healthy controls, the synchronous pairs were symmetric in 

the anterior region. This indicated stronger functional connectivity within these brain 

regions for persons with depression and therefore higher coherence. Sun et al. (2008) 

evaluated partial directed coherence (DC) which measures the degree of linear 
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interdependence of EEG channel activity based on the frequency bands. In this study, 

12 people with depression performed a mental arithmetic task during EEG signal 

acquisition which was then compared to resting state and the control group. The 

depressed group demonstrated lower frontal cortical interdependence in both the 

resting and mental arithmetic task states. In the resting state, there was reduced left 

hemispheric interdependencies seen as well as decreased interhemispheric 

connectivity.  

In contrast, there are some studies that reported the opposite in that increased 

coherence demonstrates depression. Leuchter and colleagues (2012) compared a 

depressed group, who had been medicated with or were currently taking 

antidepressants, with the HAM scores greater than 16 compared to healthy controls. 

Coherence was calculated between all pairs of channels. In the alpha frequency band, 

connections were between the frontal or DLPFC regions and the temporal or parieto-

occipital regions, whereas in the beta band, the connections were mostly within the 

prefrontal, temporal, and parietooccipital regions. 

Inconsistences can be attributed to methodological differences (reference channel 

chosen such as mastoid, Cz or the average of channels) and diagnostic issues 

(singular mood disorder and/or comorbidities) (Knott et al., 2001). Choosing the 

reference channel for comparison or self similarity impacts the results and alters the 

outcome.  This affects the interpretation of results, particularly if the electrode has a 

noisy signal or is compromised due to measurement.  Other limitations include lack 

of consistency between studies, algorithms employed (no standard), different set up 

and activity performed).  In addition, in the studies mentioned where it was found that 

with depression, there is reduced coherence, all persons were unmedicated. Therefore, 

this feature on its own may be a valid tool for diagnosis, but only when consistent or 

clear methods are applied.   

1.6.4 Event Related Potential in Response to Presented Stimuli 

Event related potential (ERP) is a signal variability that occurs in response to a 

stimulus. The P300 wave is a classic ERP associated with decision making.  It is 

elicited typically 300 milliseconds after a random stimulus that is seen as a positive 

wave deflection. Longer latencies were observed with depressed patients.  Hetzel and 
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colleagues (2004) discovered that after depressed participants took antidepressants for 

4 weeks, the auditory ERP P300 response was normalized and the latency period 

decreased, however this has not been a consistent result after therapeutic drug 

treatment. The reward positivity (Rew-P) is an ERP elicited by rewards and is 

augmented by a better-than-expected outcome (Cavanaugh et al., 2019).  The Rew-P 

feature is predominantly seen in the delta band frequency (Cavanaugh et al., 2019).  

Variability observed between persons can be attributed to medication use and other 

mood disorder comorbidity. The feedback-related negativity (FRN) is a feature 

detected in the theta frequency band that is triggered through punishment and 

augmented through worse than expected outcomes (Cavanaugh et al., 2019).  

1.6.5 Reward-Related Response 

Neurophysiological systems underlying the reward and pleasure response have 

been studied through neuroimaging and are associated with the medial prefrontal 

cortex (Berridge & Kringelbach, 2008). The ventromedial prefrontal cortex (vmPFC) 

and rostral anterior cingulate cortex (rACC) regions have elevated dopamine 

neurotransmitters. This projects onto the striatum, especially the nucleus accumbens 

(NAcc).   This activity often leads to a bias and preference towards reward-based 

decisions, which can be detected by EEG electrodes. Wacker et al. found a positive 

correlation between anhedonia and the vmPFC (consequently, the rACC) in response 

to positive stimuli. In addition, anhedonia is associated with weaker responses to 

positive stimuli in the vmPFC and rACC, reduced NAcc volume and increased EEG 

delta activity (reduced overall resting brain activity) (Wacker, 2009). Figure 3 and 

Figure 4 show the pertinent brain structures associated with reward. 

Anhedonia is a primary symptom of depression which involves a reduced sense of 

pleasure, motivation, and experience of rewards. Studies have shown that anhedonia 

leads to an inhibition of learning regardless of associated reward (Huys, 2020). 

Primary reward sensitivity is not affected.  Etiology of the impact of reward learning 

could be derived from mood or the learning process. Mood can affect a person’s 

perception of a reward outcome.  Behaviour is motivated by an analysis of cost vs. 

benefit compared to cognitive or physical effort. Baseline striatal dopamine synthesis, 

measured by PET can predict an individual’s desire to engage in cognitive effort 
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(Westbrook et al., 2020).  Moreover, medications that alter the low baseline levels 

could impact a person’s motivation to take on a previously, perceived onerous 

engagement (Mayniel et al., 2016) This may be a reason as to why antidepressants 

work to alleviate anhedonia symptoms. Studies involving groups of people taking 

antidepressants for 4 - 8 weeks show more willingness to exert effort.  Effort based 

decision making has a major impact on desire to respond to stimuli.  Increasing 

reward and incentive could also encourage a person to be willing to increase effort. 

Someone who is depressed feels helpless and hopeless and may not believe their 

actions can influence a positive outcome.  

 

 

Figure 3: Neuroanatomy highlighting the reward circuit, specifically the location 

of the PFC and the striatum (Telzer, 2016) 
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\ 

Figure 4: VS: ventral striatum, rACC: rostral anterior cingulate cortex and 

vmPFC: ventromedial prefrontal cortex. These structures, coloured in red are the critical 

structures for the reward pathway for anhedonia (Neurobiology of Eating Disorders: 

Clinical Implications, website) 

As seen in Figure 3 and Figure 4, the rACC and vmPFC, indicative of the 

anhedonia reward pathway, are are considered deep brain structures.  EEG detects 

cortical activity and is not often associated with deep source localization techniques, 

so the relation to these structures would require future investigation to determine how 

the deep brain structures influence the signals detected in the cortical brain regions.  

Studying the reward pathway in people with mood disorders provides novel 

biomarkers for detection and understanding. Table 2 summarizes the function of 

notable brain regions important for the reward related response. 

Table 2: Summary of Key Brain Regions Involved in the Reward Related 

Response 

Brain Region Function 

Dorsal Striatum Mediates cognition, reward, and coordinated movements 



  
             

24 
 

Ventromedial 

Prefrontal Cortex 

Emotional processing, decision-making, memory, self-

perception, and social cognition in general 

Rostral Anterior 

Cingulate Cortex 

Integrates emotion and cognition and is thereby primed to 

influence amygdala-dependent learning 

Nucleus Accumbens 

Cognitive processing of motor function related to reward 

and reinforcement and the regulation of slow wave sleep, 

specifically, it facilitates the acquisition of reward 

Amygdala Fear and emotional processing 

 

1.7 Prior Dataset Publications 

The dataset used was originally published in a paper by Cavanagh and colleagues 

in 2019 called “Multiple Dissociations Between Comorbid Depression and Anxiety 

on Reward and Punishment Processing: Evidence from Computationally Informed 

EEG”. They were investigating the impact of reward and punishment on patients with 

variable severities and comorbidities of depression and anxiety, described in 0. It was 

concluded that the control group and the depressive group did not differ significantly 

in terms of performance, however anxiety predicted learning bias in favor of No Go 

learning (punishment). The symptoms of the people also could not be correlated with 

accuracy of response. This indicates that depression did not impair the ability to 

complete tasks. The results from this paper show an investigation of learning and how 

it relates to mood and anxiety disorders, however it did not involve psychological 

score validation or feature analysis to confirm a diagnosis. 

A second paper was later published at a conference on the same public dataset in 

2020 by Trambaiolli and Biazoli titled, “Resting-state global EEG connectivity 

predicts depression and anxiety severity”. The focus of this paper was to determine 

whether resting state EEG can predict depression and anxiety severity. The group 

analyzed the resting state EEG signal where people were not performing the 

probabilistic learning task.  The global connectivity (spectral coherence) was 

calculated for EEG frequency bands and classifiers were implemented (support vector 
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regressor) to train the dataset on the psychological test scores to predict symptoms. It 

was found that the most discriminating feature was the global connectivity of the 

alpha band. 

1.8 Psychological Test Indicators 

Beck’s Depression Inventory (BDI) is a psychological test evaluation used 

clinically for diagnosis.  BDI-II is a questionnaire consisting of 21 questions to which 

the respondent selects the statement that best describes the way they have felt in the 

previous two weeks (Beck et al., 1996). Test scores can be used to classify minimal 

depression (BDI less than 13), mild depression (BDI between 14 and 19), moderate 

depression (BDI between 20 and 28) and severe depression (BDI greater than 29) 

(Beck, 2019b). The Spielberger Trait Anxiety Inventory (TAI) is a psychological 

questionnaire developed to differentiate anxiety from depression (Spielberger, 2010). 

There are 20 questions each with a 4-point scale of response.  Higher scores indicate 

higher levels of anxiety. A TAI score less than 37 can be classified as minimal 

anxiety, 38 to 44 is considered moderate anxiety and greater than 44 is severe anxiety.  

Psychological tests are subjective scales of measurement of a mood disorder. It is 

not a structured interview conducted by a clinician.  Consistency of results of the BDI 

test range between 0.73 to 0.92 (mean of 0.86) (Beck, Steer, & Garbin, 1988). The 

reliability score (alpha coefficient) is 0.86. These tests are consistently used in clinical 

practice and research settings, however there are limitations. People may misinterpret 

the question or not respond accurately based on their own experiences. There is a lack 

of personalization with the tests and comorbid mood disorders may have different 

manifestations in diverse cultural groups at varying times. 

1.9 Objectives 

To better understand the complexities of depression and anxiety, the EEG signal 

can be further quantified and compared to control signal parameters. The goal of this 

research is to develop a novel analysis that may validate psychological test scores to 

diagnose depression, as well as validate prior findings performed in the field of EEG 

analytics related to the quantification of mood disorders.  The proposed analysis 

techniques can contribute to an additional diagnostic tool for clinical professionals for 
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their patients and/or in commercial products as their processing power increases.  The 

objectives of the research include: 

1) Perform a hemispheric asymmetry statistical analysis to examine feature 

topographic differences across the range of severities of depression and 

anxiety. 

It is hypothesized that persons with depression will have hemispheric 

asymmetry, particularly in features that characterize complexity. 

2) Produce topographic heat maps to determine the influence of specific channels 

on the presentation of depression and anxiety. 

It is hypothesized that channels in the prefrontal cortex will show variation 

with increasing depression and anxiety. 

3) Perform classification using machine learning on the dataset using extracted 

features as predictors. 

It is hypothesized that persons with high depression and high anxiety will 

exhibit a range of different feature values compared to a baseline 

individual with none to minimal depression or anxiety.  The different 

feature values can be categorized to delineate the severity of the mood 

disorder. 
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2. Methodology 

2.1 Data Sourcing 

Due to covid, data acquisition and experimental parameters for this thesis was not 

possible.  Therefore, existing EEG signals for the detection and identification of 

mood disorders were investigated. 

OpenNeuro (https://openneuro.org/) is an online free and open platform for 

sharing MRI, MEG, EEG, iEEG, ECoG, ASL, and PET data.  It contains over 550 

public datasets comprising of more than 19,000 subjects.  The dataset used for this 

thesis was selected due to the large sample size (122) relative to others available with 

people who had depression and anxiety (between 20 to 60). The demographic data 

was available as well as the psychological test scores. In addition, the original paper 

was recently published in 2019. 

PRED+CT (http://predict.cs.unm.edu/) is another patient repository of EEG data 

and computational tools with free open access.  It is a project led by Dr. James F. 

Cavanagh; the originator of the database used for this research. The EEG dataset used 

is also available on this website. 

Another database found is called Brain-CODE (https://www.braincode.ca/) which 

is an informatics platform on which open data sets of participants with a variety of 

brain disorders can be accessed with over 22,000 human records and over 1,500 

animal records. It is managed by the Ontario Brain Institute which is funded by the 

provincial government in order to allow researchers and clinicians to provide and 

deliver services to those living with brain disorders. 

Advancement in using EEG signals as a clinical tool can only be made with more 

robust and reliable identification of biomarkers which can only be done with available 

datasets for data mining. In general, EEG analysis and processing follows a general 

procedure. Figure 5 summarizes the high-level signal analysis steps for EEG signal 

analysis. 
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Figure 5: Signal Processing Methodology 

2.2 Data Acquisition 

The dataset used in this study was acquired from a public database from 

PRED+CT originally published by Cavanaugh et al. in 2019. Electroencephalography 

(EEG) signals were acquired from 119 people between the ages 18 to 24 who were 

asked to perform a probabilistic learning task requiring people to pair Japanese 

characters correctly. EEG signals were measured using a Synamps2 system 

(Neuroscan) using 64 electrodes in total referenced to FCz. The first 6 minutes of the 

recordings were also available publicly and during this time, people were sitting with 

their eyes opened and closed in a resting state condition. This dataset of resting state 

condition was uploaded to openneuro.org on January 18, 2021. 45 individuals had 

moderate to severe anxiety and/or depression and the remaining 74 individuals had 

minimal, or none as defined by the BDI and TAI psychological test scores. 

Demographic data on participants included gender, age, symptomology and 

administered psychological test scores. The database included a total of 122 subjects, 

however this work presented includes only 119 subjects.  Participant ID544 in the 

dataset had incomplete data and it was noted that they were an ‘invalid participant’.  

It was also noted that they had an unstable/unreliable BDI score when comparing the 

lab assessment to the mass assessment and therefore would be an unreliable metric.  

People with ID’s 599 and 600 were removed due to missing/incomplete data which 

did not allow for a complete analysis. It is important to note that the accuracy of the 

psychological test scores directly impact the research results. During data acquisition 

for quantifying mood and anxiety disorders, it would be critical to ensure the validity 

of the score per participant by assessing their medical history and/or administering an 

additional psychological test. 
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Table 3 shows the demographics and psychological test scores of the participant 

data.  

 

 

Table 3: Database Demographics and Test Scores 

  Age  Sex 
No. of 

Participants 

Average 

BDI Score 

>13 

Average 

TAI 

Score>=38 

Depressed 19 

Females 33 22.15 55.79 

Males 12 23.17 55.58 

All 45 22.42 55.73 

Anxiety 19 

Females 40 19.08 53.63 

Males 11 18.36 49.45 

All 51 18.92 52.73 

Control 19 

Females 34 1.21 29.09 

Males 30 1.87 30.27 

All 64 1.52 29.64 

* Note all people who met the depression criteria also met the anxiety criteria. These 

participants (meeting both criteria) were used as the affected group for analysis. 

 

EEG signals were measured using a Synamps system (Neuroscan) using 64 

electrodes in total referenced to Cz and CPz. Positioning followed the 10-20 

international system. Two electrodes were placed on the mastoid and two were 

Electrooculography (EOG), electrodes near the eyes to detect ocular muscle 

movements. The sampling frequency was 500 Hz and impedance was less than 10 

kΩ. For more information, please refer to the original paper (Cavanagh et al., 2019. 

The channels include: 
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Table 4: Channel Labels 

Brain Region 

Frontal Temporal Occipital Parietal Central 

AF3, AF4, F7, F5, F3, F1, 

Fz, F2, F4, F6, F8 

T7, T8, 

TP7 

O1, Oz, 

O2. 

P7, P5, 

P3, P1, 

Pz, P2, 

P4, P6, 

P8, 

C5, C3, C1, 

Cz, C2, C4, 

C6 

FT7, FT8  

CP5, CP3, CP1, CPz, 

CP2, CP4, CP6, 

FP1, FPz, FP2  

 
PO7, PO5, PO3, POz 

PO4, PO6, PO8 

 

TP8  

FC5, FC3, FC1, FCz, FC2, FC4, FC6 

 

2.3 Data Preprocessing 

The original codes for signal processing of the database from the original study 

were publicly available.  For the EEG data for the GO/NO GO Learning task, the 

initial code titled “STEP1_PREPROC” preprocessed the data such that the critical 

trials of 4 seconds of data were extracted. This code was used as it accurately denoted 

the events in the signal which can only be done by being present during the data 

acquisition and marking specific time points.  
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EEG can be decomposed in various ways for analysis.  For my analysis, I 

decomposed the EEG signal into four frequency bands on a time scale.  Using the 

passband function in Matlab, specifying the specific frequency bands, it allowed for 

filtering of undesired high and low frequency noises in the data. Generally, higher 

frequency bands have been most effective in demonstrating trends in data. Typically, 

the beta and alpha bands are more descriptive and dominant in a person during an 

active condition (Go or NO GO learning or resting state, respectively). The theta and 

delta bands could have been disregarded, however eliminating data without reason 

would reduce accuracies and potential findings.   

In general, signal processing includes data segmentation, preprocessing to remove 

noise and high/low frequencies, feature selection and extraction and then 

interpretation (Leis, 2011). The interpretation can include a statistical analysis and/or 

machine learning with classification.  Data segmentation includes selecting which 

window of time will be analyzed within the entire signal. Typically for EEG, it is 

only a few seconds. For this thesis, two state conditions were evaluated in similar 

ways: resting state and an active state when a person was performing a learning task.  

For selecting the resting state signal, a few segments were randomly selected of 4 

seconds in duration as there were no indications of any significant time period in the 

signal. For the GO/NO GO task, significant trials were extracted from the signal 

using a code written by the original author of a duration of 4 seconds. Next, the data 

was preprocessed and filtered by frequency to remove noise.  The frequency filter 

applied was based on the four desired passbands: alpha, beta, theta and delta. Figure 6 

shows 2 seconds of the EEG signal from participant 1 in the resting condition. Note, 

the y-axis range varies. 
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Figure 6: EEG Frequency Bands 

2.4 Non-Linear Features 

The EEG measures activity that is complex, dynamic and a non-linear signal.  Its 

complexity cannot be entirely captured by implementing linear analysis.  In the last 

several years, more non-linear analysis has been published in the literature.  The 

various frequency bands have been associated with varying states of alertness. 

Specifically, alpha, beta and theta bands have been rigorously studied for 

neurophysiological biomarkers of depression and anxiety with non-linear features. 

The frequency bands are alpha (8 - 12 Hz), beta (12 - 30 Hz), delta (0.5 - 4 Hz), theta 

(4 - 8 Hz) and gamma (30 - 50 Hz). 

2.4.1 Approximate Entropy (AppEn) 

Entropy is a measure of disorder or complexity of a signal.  It allows for dynamic 

analysis of a non-linear signal.  Most entropy algorithms diverge when the signal is 
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noisy, hence the development of the approximate entropy (AppEn) algorithm (Pincus, 

1991). It estimates signal complexity by statistical computation through the 

conditional probability that two signals are similar within a tolerance (Richman & 

Moorman, 2000). Approximate entropy is an algorithm applied to time series data to 

quantify its regularity or irregularity, which is generally difficult to predict on a 

temporal scale. For a shorter data length, the algorithm detects episodic behavior not 

obviously identifiable in amplitudes and events (Faust et al., 2014).   

The algorithm assigns a positive number to a data segment with higher values 

corresponding to more complexity. In other words, small values of AppEN indicates 

predictable data whereas higher values indicate unpredictable data.  Therefore, 

reduced complexity (lower AppEn) can be a symptom of or a result of depression. 

Healthy controls are found to have higher AppEN than those persons with depression 

(Faust, Puthankattil & Joseph, 2014).   

  Equation 1 

In a study by Chen & Shen (2020), EEG signals were analyzed, and the resting 

state condition signal results were compared with signals acquired during the Test of 

Variables of Attention which is when participants are instructed to press a button 

when non-target figures appear on the screen. It was found that patients with MDD 

had a higher AppEn than the control group when performing a cognitive task. The 

severity of depression was positively correlated with AppEn. 

2.4.2 Higuchi’s Fractal Dimension (HFD) 

Higuchi’s Fractal Dimension (HFD) quantifies the complexity and self-similarity 

of a signal. HFD calculates the fractal dimension of time series data, which is a ratio 

of complexity. The higher the similarity and complexity means higher HFD. It works 

in the time domain, with short segments and is computationally fast.  A disadvantage 

is the lack of specificity as HFD values can represent multiple signals and therefore 

they cannot be easily distinguished (Bachmann. et al., 2013).  
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Equation 2 

 

Where k is a constant and m=1,2,...k. Lm(k) denotes the length of the data. To find the 

HFD, the mean of equation 3 is computed as:  

 

                                               Equation 3 

 

Studies have found higher beta and gamma band complexity (higher HFD) in 

patients with MDD compared to controls. This was found in the parietal and frontal 

regions of the brain (Akar et al., 2015, Bachmann et al., 2013). Čukić et. al (2020) 

showed that sample entropy (SampEn) and Higuchi’s Fractal Dimension (HFD) can 

classify persons with depression from controls with 90.24% to 97.56% classification 

accuracy.  SampEn was found to be more accurate for lower frequency bands and 

HFD in higher frequency bands. Another study found that using HFD and other non-

linear features produced a high accuracy, particularly with correlation dimension 

(CD). 

2.4.3 Correlation Dimension (CD) 

Correlation dimension (CD) is a feature which estimates the correlation of a 

uniformly sampled time-domain signal in matrix. It is a method to determine the 

dimension of a nonlinear signal.  Two arbitrary points very close together are 

compared to quantity their degree of separation. 

                  Equation 4 
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Higher CD values have been associated with more complex thinking and reduced 

correlation dimension values have been associated with symptoms of depression 

(Nandrino et al., 1994). The degree of dimension increases with cognitive activity. 

2.4.4 Lyapunov Exponent (LE) 

Lyapunov exponent (LE) quantifies the exponential divergence or convergence of 

nearby trajectories in phase space (Hosseinifard et al., 2013). LE can characterize 

instability or predictability of a system, also termed as the chaoticity. It characterizes 

the separation of infinitesimally close trajectories of a signal. If the largest value of 

Lyapunov exponents is positive, it means that the system is chaotic/irregular. In 

general, during resting state (eyes open or eyes closed), dimensions of complexity are 

reduced compared to an active performance state. A negative exponent indicates 

commonality or the convergence of a signal to a fixed point.  A zero exponent 

indicates stability and a consistent signal. 

                                   Equation 5 

In a 1994 study examining EEG dynamics during sleep in depressive and 

schizophrenic participants, a significant increase of the principal LE during rapid eye 

movement (REM) sleep was detected (p <0.05) (Röschke & Mann,1994).  Similar to 

other complexity measures, lower LE values have been associated with depression as 

higher activity is required for emotional processing. 

2.4.5 Detrended fluctuation analysis (DFA)  

A higher detrended fluctuation analysis (DFA) value is demonstrated within 

depression groups (Lee et al., 2007). DFA is used in time series analysis to determine 

the statistical self-similarity of a signal. It is useful for non-stationary signals such as 

for EEG. The fluctuation is repeated over different windows of which the log-log 

graph indicates self-similarity (Hosseinifard et al., 2013). 

                                          Equation 6 
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Where XT of length N is: 

                                              Equation 7 

Higher DFA values have been associated with depression (higher signal 

correlations). Lee et al. (2007) discovered that depressed patients demonstrate higher 

values of the scaling exponents of DFA at all channels compared to healthy controls. 

Significant differences were notes at channels F3, C3, T3, T4 and O1.  

2.5 Feature Asymmetry Methodology 

This analysis was performed on the EEG signals acquired from the GO/NO GO 

conditions. Using selected feature algorithms, a numerical output unique to each 

participant for the specified channels was extracted.  The 6 selected features used for 

analysis included Higuchi Fractal Dimension, approximate entropy, correlation 

dimension, detrended fractal dimension and Lyapunov’s Exponent (2 different 

algorithms labelled as ‘LE’ and ‘Lorenz’). These were each extracted from the 4 

frequency bands (alpha, beta, theta, and delta). The final matrix output dimension was 

24 x 119 as there were 24 features (6 features x 4 frequency bands) and 119 subjects. 

People were separated into two groups for the comparisons: affected (having 

moderate to severe depression and anxiety) and unaffected (those with minimal 

anxiety and/or depression). Note that affected participant scores were BDI ≥ 13 and 

TAI ≥ 38.  Channel values in each group were averaged over the left and right 

hemispheres, as well as the left and right prefrontal cortices. The ANOVA II analysis 

was performed to compare the 24 features between the left and right sides (in the two 

iterations of different brain topographies) to determine whether there was asymmetry. 

If statistical analysis p value outputs indicate a significant difference, it would 

demonstrate hemispheric asymmetry.  The occurrence of this was compared between 

the two conditions of affected and unaffected. If neither or both conditions showed a 

significant difference, then the feature would not be discriminatory. However, if the 

two conditions were different, it would indicate a discriminatory feature to help 

differentiate a person who was affected vs. unaffected. Note, depression and anxiety 
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were not analyzed separately as there was a high incidence of comorbidity in the 

dataset and therefore there were not enough people classified as only having 

depression and/or only having anxiety to be sufficient for classification. Figure 7 is a 

visual representation of what topographic regions of the brain were compared for the 

asymmetry analysis for all conditions. 

 

Figure 7: Feature Asymmetry Analysis 
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Figure 8 shows the names of the specific channels selected for the asymmetry 

analysis. 

Figure 8: Selected channels averaged across two groups of people (affected and 

unaffected) for the left and right prefrontal cortices (left) and left and right hemispheres 

(right) 

2.6 Visualization of Topographic Heat Maps 

Visualization of topographic plots (heat maps) of the EEG signals can offer novel 

insight as opposed to solely evaluating numerical outputs. In addition to a statistical 

analysis performed on extracted features looking at hemispheric asymmetry, heat 

maps were plotted to evaluate discriminatory channels. The purpose is to be able to 

visually differentiate the heat map output from a person with anxiety and/or 

depression from a healthy control.  The heat maps plotted were based on features that 

showed significant asymmetry disparities based on the ANOVA II statistical analysis 

described in Feature Asymmetry. Otherwise, thousands of heat maps could be 

generated, and any meaningful contribution gleaned from them would likely be 

overlooked due to the quantity.  

The heat maps were generated using Matlab.  As input to the function, the channel 

locations delineated by the angle (theta), radius and x, y and z coordinates were 

needed for input. This information was available within the database of signals and is 

unique to the EEG setup. Figure 9 illustrates at a high level the methodology of 

producing the plots. 
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Figure 9: Plotting Heat Maps 

2.7 Severity Classification Methodology 

Classification is a type of machine learning in which an algorithm is used to 

categorize data based on already known and specified labels.  Labelled data is used to 

train the algorithm and then its accuracy is tested and validated on the remaining data. 

The classifier attempts to characterize each different class by particular features.  

Common classification methods include decision trees (DT), discriminant analysis 

(linear, quadratic, etc.), support vector machines (SVM), logistic regression (LR), K-

nearest neighbors (KNN), naive Bayes (NB), ensembles (EN), and neural networks 

(NN). These classifiers predict the possibility of occurrence of the distinct datasets. 

The objective is to have high classification accuracy to distinguish persons with 
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depression by their BDI score and persons with anxiety by their TAI score.  In 

classifying depression, the support vector machine (SVM) classifier has provided the 

high accuracy in comparison to other methods including DT, KNN and NB (Čukić et 

al., 2020, Trambaiolli, L.R. & Biazoli, C.E., 2020).  

The classification learner application was used in Matlab to train models on a 

specified matrix of extracted features per person based on labels. Labels were created 

in Matlab to categorize the individuals as having none to moderate depression (BDI < 

13) and moderate to severe depression (BDI > 13), giving two labels or categories for 

classification. Likewise, anxiety was also divided into two categories for 

classification (TAI < 38 & TAI > 38).   The dataset was originally trained on 70% of 

the data and then the result was tested on the remaining 30% to test the accuracy of 

prediction. This was selected using a permutation function so it would be randomized 

every iteration to ensure reliability of the classification method. Matlab updated this 

application and automatically classifies the input based on specified classifiers and 

provides the validated classification accuracy. More than two label categories 

decreased the classification accuracy as there were fewer participants for training in 

each specified class. Figure 10 shows the Matlab classification learner application 

interface.  The list of classifiers the application runs through are displayed with the 

classification accuracy on the left of the figure. The plot shows the matrix of features 

with different colours representing the labelled categories. High classification 

accuracy would be demonstrated by a more distinct separation between the data 

points in the classes.   
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Figure 10:  Matlab Classification Learner Application 

In an effort to perform EEG signal classification to predict severity of depression and 

anxiety based on the standardized test score, several different analyses were 

performed. For classification, initially the participants were indexed into 5 classes of 

severity of depression (BDI) and anxiety (TAI).  However, not many people fell into 

the categories (limiting the usefulness of machine learning), therefore, 2 classes of 

severity were used for training and categorizing the dataset. In order to extract 

different trials from the dataset of the GO/NO GO (probabilistic learning task), 

different segments were extracted, and the processing code was run. Hand accuracy 

results were recorded while performing the task and data was extracted based on the 

hand used. ERP’s provide information on the dataset immediately after introducing a 

stimulus. Unfortunately, in the dataset, there were no markers of when stimuli were 

introduced and the author’s code to extract ERPs was not clear as to which variables 

represent the ERP in response to a stimuli so this analysis could not be performed as 

the origins of the recordings were not available. Numerous iterations and data 

manipulations were attempted to achieve a high classification accuracy.  

Classification analysis was performed on both the EEG acquired while the 

participants completed a probabilistic learning task and on the resting state signal.  

Two feature selection methods were used: Riemannian geometry and selected non-

linear features described in the section Non-Linear Features.  Feature weights for 
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classification were determined using neighborhood component analysis (NCA) for 

classification using assigned labels.  In addition, common spatial pattern (CSP) was 

also implemented to enhance the difference between the two categories.  

 

2.7.1 Covariance Matrix 

A covariance matrix numerically defines the variance between each pair of 

elements.  The output is a symmetric, square matrix with the diagonal being the 

covariance with itself with avalue of 1. 

Cov = [
Var(x1) … Cov(xn, x1)

…
Cov(x1, xn)

…
…

. . .
Var(xn)

] 

Equation 8 

 

Where the covariance is calculated as: 

Cov(xi) =
∑ (X1 − x̅1)(Xn − xn̅̅ ̅)n

i=1

n − 1
 

Equation 9 

Where n is the number of values in the vector, Var(xn) is always equal to one, and 

x1…xn are the vector values (or the EEG time series data recorded at the electrodes).  

The covariance is calculated with other channel values.  This allows for channel 

selection and weighted analysis.  Covariance mapping can show a 2-dimensional 

representation of the relationship between the two vectors. This pictorial 

representation of independent regions aids in visually understanding the correlation 

between channels.  It is a useful analytical tool when comparing two datasets or 

categories such as evaluating persons with mood disorders vs. healthy controls. The 

magnitude of the spread of the covariance matrix is indicative of the degree of 

difference between the parameters. 

2.7.2 Neighborhood Component Analysis 

Neighborhood component analysis (NCA) is a learning algorithm that 

classifies multivariate data pursuant to a distance metric.  It is a feature selection and 

weighting technique to maximize the leave-one-out (LOO) classification accuracy for 

https://en.wikipedia.org/wiki/Multivariate_statistics
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the data.  A reference point, x, is selected based on a kernel function and compared to 

the rest of the sample points, yi. The distance metric is defined based on feature 

weight (Malan & Sharma, 2019). The algorithm makes no assumptions about the 

distribution of the data (non-parametric) lending itself useful for multivariate, non-

linear datasets (Yang, Wang & Zuo, 2012).  NCA is s a supervised learning metric 

and associates an input with an output based on an already known input-output which 

enhances the action of classifiers (Russell & Norvig, 2010).  

2.7.3 Common Spatial Pattern 

Common spatial pattern (CSP) is a method of classification that can be used for 

multi-channel EEG to maximize the difference between classes. It uses linear 

transform and eigenvectors to maximize the variance of the signals using the 

covariance matrices of each class. The projection matrix can be represented by: 

 

Z = WX  

Equation 10 

Where Z is the resulting matrix, W is the projection matrix created using the 

covariance matrix of the classes and X is the original EEG multichannel array. 

2.7.4 Riemannian Geometry 

Brain-computer interface is the convergence of mathematics and the brain. It 

requires a user and a computer. A unique aspect of EEG is the topography. The 

spherical placement of electrodes on the scalp creates a unique analytical problem. 

Riemannian geometry can be used in brain-computer interface (BCI).  It is 

differential geometry comprising of vectors, that takes into account Riemannian 

manifolds. Manifolds are n-dimensional topological spaces that account for each 

point. It would most closely account for the contours of a head/brain. The space at the 

base of a manifold is called the tangent space.   
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Figure 11: Riemannian Manifold 

Where G is the geometric mean of two points and the tangent space at G. C1 and 

C2 are the covariance matrices. Riemannian geometry has been used for radar data 

processing, image processing, computer vision, shape analysis, medical imaging 

(especially diffusion magnetic resonance imaging), sensor networks, elasticity, 

mechanics, optimization, and machine learning.  It has been implemented for 

detection of EEG artifacts, epileptic seizures and mental fatigue (Congedo, Barachant 

& Bhatia, 2017). Implementation of the Riemannian geometry is more precise than 

using Euclidian space geometry and has been effective for EEG artifact recognition 

(Blum et a., 2019).  It is computationally efficient relative to other feature extraction 

methods. The extracted features can be used for classification.  The tolerance is 

specified so that the significant features are selected for classification. 

 The Riemannian algorithms were obtained through GitHub 

(https://github.com/alexandrebarachant).  The geometric mean is determined 

iteratively by projecting the covariance matrices in the tangent space, including 

estimating the arithmetic mean in the tangent space and onto the Riemannian 

manifold (Barachant, Bonnet, Congedo & Jutten, 2013).  Algorithms are executed on 

a training set and a testing set where Ctrain is comprised of the training EEG data and 

Ctest is the testing EEG data. 
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Ctrain = covariance(x) 

Equation 11 

Ctest = covariance(x) 

Equation 12 

Where X is the preprocessed and filtered EEG signal.  Cref is the mean of the 

covariance matrices and represents the point where the tangent plane is determined. 

Csubj =
1

n − 1
X𝑠𝑢𝑏𝑗𝑖

Xsubj 

Equation 13 

Cref =  
1

subj
∑ 𝐶𝑠𝑢𝑏𝑗

𝑠𝑢𝑏𝑗

𝑖=1

 

Equation 14 

Ctangent = tangentspace(Ctrain,Cref) 

Equation 15 

Ctest = tangentspace(Ctest, Cref) 

Equation 16 

Riemannian distance between Cref and Csubj with the geometric mean can be 

calculated by: 

δ(Cref , Csubj) = [∑ log2  λi

E

i=1

]

1/2

 

Equation 17 

Where λi is the eigenvalues calculated by: 

 λi=Cref
−1Csubj 

Equation 18 

 

NCA was implemented on the Riemannian feature selection prior to classification 

to evaluate feature weights and optimize the results.  The complete Riemannian 

algorithm is detailed by Barachant, Bonnet, Congedo and Jutten (2013).   
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2.7.5 Classifier: Ensemble Subspace Discriminant 

Ensemble learning classifiers combine individual classifiers to improve accuracy. The 

discriminant analysis method trains the data using its fitting function to estimate the 

parameters based on a Gaussian distribution. Discriminant analysis is a method to 

classify multivariate data into two distinct groups simplifying it to a univariate 

problem (Huberty, 1975). 

2.7.6 Classifier: Support Vector Machine 

Support vector machine (SVM) is a classifier that distinguishes patterns, typically for 

binary linear problems. SVM calculates a hyperplane in the feature space.  If the data 

is separable, two parallel hyperplanes will divide the two classes such that the 

distance between them is maximized (Li et al, 2013). The region bound by the two 

hyperplanes is the margin. Figure 12 shows the delineation of the hyperplane with C1 

and C2 being distinct data classes. 

 

Figure 12: SVM Data Margin (Carrasaco, 2019) 

 

2.7.7 Classifier: K-Nearest Neighbor 

K-Nearest Neighbor (KNN) classifier is a learning algorithm that assigns weights to 

feature points surrounding a reference.  Data points nearer to or the neighbors of the 
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point of reference contribute more to the average than more distance points. The 

weighting is proportional to 1/d where d is the distance to the neighboring point 

(Altman, 1992).  
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3. Results 

The results of the research include three components.  Each of these contributions 

provides insight into different analytical tools that could be applied in the future for 

the diagnosis of mood and/or anxiety disorders. They can be used individually or 

collectively for a more comprehensive understanding of the patient. 

3.1 Feature Asymmetry 

Table 6 shows the results of a feature asymmetry analysis. An ANOVA II 

analysis was performed on the extracted features to determine significant asymmetry.  

A p value less than 0.05 in any column indicates asymmetry between the left and 

right hemispheres or prefrontal cortex. If both affected and unaffected show 

asymmetry, it can be concluded that the feature does not discriminate between a 

mood disorder and a healthy control.  Eight features showed asymmetry (bolded in 

the table) when comparing the affected to the unaffected group indicating a 

neurophysiological difference (highlighted in green when the p value is less than 

0.05).  
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Table 5: Feature Asymmetry Statistical Analysis Results 

 

  

 

Prefrontal 

Cortex (PFC) 

Asymmetry 
 

Left Hemisphere vs. 

Right Hemisphere 

  Unaffected Affected Unaffected Affected 

Features 
Frequency 

Band 
P Value 

HFD 

Delta 

0.000 0.000 0.000 0.000 

AppEN 0.085 0.078 0.923 0.205 

CorrDim 0.691 0.930 0.002 0.268 

LyuopavExp 0.073 0.684 0.174 0.456 

Lorenz 0.773 0.452 0.408 0.136 

DFA 0.070 0.869 0.950 0.616 

HFD 

Theta 

0.004 0.002 0.000 0.000 

AppEN 0.167 0.135 0.466 0.756 

CorrDim 0.174 0.029 0.000 0.000 

LyuopavExp 0.478 0.629 0.021 0.656 

Lorenz 0.966 0.356 0.404 0.054 

DFA 0.133 0.436 0.349 0.034 

HFD 

Alpha 

0.000 0.000 0.000 0.000 

AppEN 0.042 0.053 0.084 0.102 

CorrDim 0.884 0.159 0.749 0.750 

LyuopavExp 0.222 0.006 0.557 0.006 

Lorenz 0.506 0.261 0.976 0.495 

DFA 0.092 0.691 0.009 0.000 

HFD 

Beta 

0.000 0.000 0.000 0.000 

Approx_Entropy 0.001 0.006 0.006 0.024 

CorrDim 0.455 0.641 0.062 0.297 

LyuopavExp 0.005 0.000 0.011 0.924 

Lorenz 0.098 0.692 0.021 0.077 

DFA 0.041 0.863 0.559 0.236 

 

 

Normally, there is asymmetry in the hemispheres for affected and unaffected 

individuals. A power spectral analysis showing the dominant frequency band 

typically shows left hypoactivity of the alpha band in depression and hyperactivity of 

the alpha band in a healthy control. Interestingly, the HFD feature for each of the four 



  
             

50 
 

frequency bands showed a significant difference for all events, however due to this 

consistency, it is not a discriminatory feature. This is likely because the channel 

values were averaged for the topographic area and HFD values represent multiple 

signals, which taken together, lack specificity.  

 

 

 

Table 6: Summary of Statistically Significant Features 

  Prefrontal Cortex Hemisphere 

  Affected Unaffected Affected Unaffected 

CD Delta 0.930 0.691 0.268 0.002* 

CD Theta 0.029* 0.174 0.000 0.000 

LE Theta 0.629 0.478 0.656 0.021* 

DFA Theta 0.436 0.133 0.033* 0.349 

AppEN Alpha  0.053 0.042* 0.102 0.084 

LE Alpha  0.006* 0.222 0.006* 0.557 

LE Beta 0.000* 0.005* 0.924 0.011* 

DFA Beta 0.863 0.041* 0.236 0.559 

* Indicates significant statistical difference (p < 0.05) 

 

The results of the ANOVA II analysis given in Table 6 highlight the significant 

differences. Please note these results pertain to persons with comorbid depression 

and anxiety and do not demonstrate disorder-specific identifiers. 

The key conclusions drawn from this statistical analysis include: 

• AppEN in the alpha band differs between the right and left prefrontal cortex. 

• LE in the alpha band differs between the right and left prefrontal cortex. 

• CD in the delta band differs in the right and left hemisphere indicating a 

differential in the posterior brain region. 

• LE in the theta band differs in the right and left hemisphere indicating a 

differential in the posterior brain region. 

• CD in the theta band differs in the prefrontal cortex indicating that this region 

could be the origin of the asymmetry. 
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• DFA differs in the theta band in the right and left hemisphere between 

affected (depression/anxiety) and unaffected people.. 

• No differential noted for HFD between affected and unaffected people, 

however there was a hemispheric differential for all participants and all four 

frequency bands. 

The delta band is linked to cognitive function and increases in the frontal cortex 

during arithmetic and semantic tasks. Harmony (2013) evaluated the significance of 

delta oscillations on cognitive function. It was concluded that the elevated delta 

frequencies during mental and arithmetic tasks are associated with functional cortical 

deafferentation which is the inhibition of the sensory afferent neurons that interfere 

with internal concentration. 

The theta band is associated with activation of memory and retrieval. Frontal theta 

power is associated with key traits of anxiety. The underlying physiology causing this 

manifestation can be attributed to the midcingulate cortex, part of the limbic system, 

which is involved in regulating behaviour in response to stress (Cavanagh & 

Shackman, 2015). 

3.2 Visualization of Topographic Heat Maps  

Creating topographic heat plots of the extracted features shows channel specific 

values and provides more comprehensive, regional responses. In addition, visualizing 

the changes in feature values across different severity levels compared to the baseline 

condition of unaffected participants illustrates another level of detail. With the 

amount of data extracted, thousands of heat maps could have been produced since 

each map represents one feature in one frequency band.  Therefore, based on the 

feature asymmetry results, the heat maps were created. Heat maps were created for 

the two disorders separately: depression and anxiety. Therefore, people were indexed 

and categorized into five groups by their BDI score based on interpretation of this test 

with an additional category if the individual had a zero-score indicating no depression 

(unaffected control). For anxiety, the heat maps were represented in three groups 

based on the TAI score (minimal, moderate and severe anxiety).  In this case, none of 

the participants in the dataset had null or no anxiety whatsoever, therefore, a base 

category of no anxiety was not presented. The minimal anxiety condition can be 
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considered a control type situation for comparison.  The mean of all 62 channels were 

displayed for each severity class to develop a heat map representative of a depression 

or anxiety rating score. This allowed for conclusions to be drawn based on mood 

disorder severity as participants were visually combined to be able to differentiate 

between groups based on a feature extracted from a frequency band.   

 

 

 

 

 

Table 7: Class Labels Used for Visualizing Heat Maps 

Class Label 
Depression 

Score (BDI) 

Number of 

Participants 

Anxiety Score 

(TAI) 

Number of 

Participants 

Class 1 BDI = 0 19 TAI ≤ 37 64 

Class 2 1 < BDI < 13 55 38 < TA Iv< 44 12 

Class 3 14 < BDI < 19 15 TAI > 44 43 

Class 4 20 < BDI < 28 25 - - 

Class 5 BDI > 28 5 - - 

 

 

Figure 13 shows the distribution of participants across the psychological test score 

categories of severity.  
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Figure 13: Histograms Showing Class Distribution of participants with 

Depression and Anxiety  

Each heat map has its own legend.  All of these parameters are normalized by the 

maximum feature value extracted from the particular frequency band.  The 

normalized values allow for data redundancy and to be able to draw relational 

conclusions. The heat maps are generated by EEG signals for a period of 4 seconds.  

Within the 4 seconds of data analysed (2000 samples with a sampling frequency of 
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500 Hz), there were varying numbers of trials (marked time points at which an event 

occurred).  Several iterations were produced including displaying the mean of all 

trials and as well, displaying only a singular trial result for visual discrimination.  

Averaging data eliminates features but can allow for generalizability.  

Visually distinct variations between affected and unaffected individuals were 

observed and details were identified that the analytical analysis did not reveal. Table 

8 summarizes the conclusions drawn from the topographic plots while participants 

performed the probabilistic learning task.   

Table 8: Heat Maps of Extracted Features During the Learning Task 

Feature BDI Heat Map 

Characteristics 

TAI Heat Map Characteristics 

CD – delta • No conclusive visually 

discernible trends 

• Overall, less correlated with 

increasing TAI class 

CD – theta • No conclusive visually 

discernible trends 

• No conclusive visually 

discernible trends 

LE – theta • Inversed channel values 

between class 4 and class 

5 

• Overall decrease in LE with 

increasing TAI class 

DFA – theta • Obvious difference 

between classes 1 - 4 and 

class 5 (P2 value)  

• No conclusive visually 

discernible trends 

AppEn – 

alpha 

• Obvious difference 

between classes 1 - 4 and 

class 5 in the alpha band 

• Decrease in AppEn at P6 

with higher BDI class 

• At channel P8, a decrease in 

AppEn was observed in class 

3 compared to classes 1 & 2 

LE – alpha • Overall increase in LE 

with increasing BDI 

• Overall decrease in LE 

with increasing TAI class 

in alpha band 
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class, notably in alpha 

and theta bands 

 

LE – beta • No conclusive visually 

discernible trends 

• In the left temporal 

region, LE beta band 

decreases in magnitude of 

LE (consistent with theory 

of more active right hem 

vs left/imbalance) 

DFA - beta • Higher DFA value at F8 

with increasing BDI class 

• Overall, less correlated with 

increasing TAI class  

3.2.1 Key Depression Heat Maps 

In the theta band for DFA, the value of channel P2 is consistently high for all 

severity classes of depression (see Figure 14). This occurred in the heat maps 

averaged for all trials so it may not be indicative of any trend, due potential loss of 

discriminatory events.  It may represent consistent, high cognitive processing which 

occurs in the parietal region elicited by the learning task which is not impacted by the 

mood disorder. 

 

Figure 14:BDI Heat Map Approximate Entropy in the Alpha Band (All Trials) 
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In the beta band for DFA, the values at F8 increase with increasing BDI class (see 

Figure 15). This is consistent with prior studies described in 2.4.5. A higher DFA 

value is positively correlated with depression.  Decreased activity is demonstrated by 

a higher correlation between regions as there are fewer connections being utilized. 

 

Figure 15: BDI Heat Map Detrended Fluctuation Analysis in the Beta Band (All 

Trials) 

Overall, there was a higher AppEn in persons with severe depression in the alpha 

band with increasing severity (see Figure 16). However, at channel P6, the entropy 

values are consistently high.   
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Figure 16: BDI Heat Map Approximate Entropy in the Alpha Band (One Trial) 

For the averaged trials for approximate entropy in the alpha band for persons with 

depression, the averaged trials heat maps were not discriminatory (see Figure 17) 

 

Figure 17: BDI Heat Map Approximate Entropy in the Alpha Band (All Trials) 

Lyapunov’s exponent was discriminatory for persons with depression, particularly 

in the alpha and theta bands (see Figure 18 and Figure 19). LE increased overall in 

the alpha and theta bands with increasing depression severity (note the different scale 

bars for each heat map).  
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Figure 18: BDI Heat Map Lyapunov's Exponent in the Alpha Band (All Trials) 

 

Figure 19: BDI Heat Map Lyapunov's Exponent in the Theta Band (One Trial) 

3.2.2 Key Anxiety Heat Maps 

Figure 20 shows that at channel P8, a very minor decrease in AppEn alpha band 

for individuals which occurred in class 3 compared to classes 1 & 2 (0.95 for classes 

1& 2 vs. 0.9 for class 3).   
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Figure 20: TAI Heat Map Approximate Entropy in the Alpha Band (OneTrial) 

For persons with anxiety, LE decreases overall in magnitude in the alpha band 

(see Figure 21). Similarly, for the same feature but in the beta band, LE decreases but 

primarily in the left temporal and occipital regions (see Figure 22).   

 

Figure 21: TAI Heat Map Lyapunov's Exponent in the Alpha Band (One Trial) 

 

Figure 22: TAI Heat Map Lyapunov's Exponent in the Beta Band (One Trial) 
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Figure 23: TAI Heat Map Lyapunov's Exponent in the Theta Band (One Trial) 

 

3.3 Classification 

For multiple iterations of classifying the EEG signals varying by the selected features, 

classifiers, and different data segments, the classification accuracies ranged between 

60% to 70% for training and validation.   The highest classification accuracies were 

achieved on the resting EEG signal. Figure 24, Figure 25, Figure 26 and Figure 27 

display the notable classification outputs for the two feature extraction codes, each 

iterated on both the BDI and TAI labels.  Table 9 summarizes these results.  
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Figure 24: Resting State BDI Classification Based on Specified Features 

 

 

 

Figure 25: TAI Classification Based on Specified Features 
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Figure 26: BDI Classification Based on Riemannian Features 

 

 

Figure 27: TAI Classification Based on Riemannian Features 
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Table 9: Summary of Key Classification Accuracies Based on Resting EEG 

Signal 

Disorder 

Classification Accuracy & Classifier 

Non-Linear Features  Riemannian Features 

Depression (BDI Score) 

67.2 % 

(Ensemble Subspace 

Discriminant) 

65.5% 

(KNN) 

Anxiety (TAI Score) 
64.7 % 

(SVM) 

66.4% 

(KNN) 
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4. Discussion 

4.1 Significant Features 

Extracted features were used for differentiating persons with depression and anxiety 

from healthy controls. It was demonstrated that CD, AppEn, DFA and LE 

demonstrate hemispheric asymmetry differences between affected and unaffected 

participants. Hemispheric differences were noted, and this is due to underlying 

neurophysiology. Where there were differences noted in the right and left 

hemispheres and not in the right and left prefrontal cortex, it can be concluded that 

the asymmetry originates from the posterior portion of the brain (mainly the parietal 

region). Due to electrode detection limitations, activity is detected that is transmitted 

to the cortex as the depth is limited to several centimeters. The underlying structures 

can influence the signals detected from the cortex.  

Several studies have reviewed the influence on lateralization of the hemispheres 

on mood in a similar way in which language is associated with the left hemisphere 

due to the identified Broca’s and Wernicke’s areas (Catrin Blank et al., 2002). 

Generally, the right PFC is responsible for negative emotions and the left PFC 

manages positive ones.  However, it is a controversial topic in literature with no 

conclusive link either way due to conflicting evidence. Emotion does impact the 

elicited brain regions resulting in activation of specific areas.  Emotion facilitates 

learning and memory including memory consolidation in the amygdala, memory 

encoding and learning in the prefrontal cortex and long-term memory retention in the 

hippocampus (Chai et al, 2017). In addition to emotion, acute stress impairs the 

prefrontal cortex (McEwan, Bruce & Morrison,2013). In unaffected individuals, the 

left PFC inhibits negative emotions generated by the limbic system. The PFC has 

connections involved with the neurotransmission of dopamine, serotonin, and 

norepinephrine.  

Trends that displayed differences between the classes of BDI and TAI were more 

evident in the higher frequency bands (alpha and beta). This makes sense as the beta 

band is associated with complex thinking and the alpha band is associated with a 

more calm and meditative state of mind. Apart from these standard wave associations, 
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the alpha and beta bands can be viewed as synergistic, and lateralization can have 

activating and inhibiting effects on the brain. The observations call for a re-evaluation 

of the role of sensorimotor rhythms. In a study where healthy volunteers imagined a 

motor activity, alpha band oscillatory power increased in the sensorimotor cortex and 

beta-band power decreased in the contralateral sensorimotor cortex (Brinkman et al., 

2014).  It was suggested that neural oscillations in the alpha band mediate the 

analytical resources by disengaging certain cortical regions and the oscillations of the 

beta band directly relate to the activation of motor regions. A reduction in the power 

frequency band can have disinhibitory (activating) effects on the cortex.  Therefore, 

the coordination between the alpha and beta band oscillations, manifesting as 

asymmetry, had a mediating impact on how brain regions are elicited or may be the 

result of specific regions elicited, indicating across volunteers, that there exist 

common activations.   

Many participants had comorbid presentations of depression with anxiety and in 

cases focusing on depression, the individuals all had some level of anxiety.  Likewise, 

when examining the anxiety state, the participantss all had some level of depression.  

There were too few people that only had anxiety and no depression and vice versa to 

be able to run an analysis and draw representative and unbiased conclusions. 

Realistically, the prevalence of comorbidity is high and is representative of clinical 

presentations. The objective is to identify universal features that consistently 

demonstrate similar outcomes. 

Most research to date has an exclusion criterion of individuals who are not 

currently taking any antipsychotics, antidepressants, or antianxiety medication as well 

as other drugs or substances that alter the mind such as antiepileptics, caffeine, 

alcohol, etc.  This is due to the psychopharmacological effects these substances have 

on the brain. Psychotropic medications interact with neurotransmitters to directly 

impact the way someone thinks and feels. Caffeine’s mechanism of action includes 

blocking GABAA receptors and adenosine receptors. Alcohol affects multiple 

neurotransmitters including the NMDA receptor associated with glutamate, as well as 

GABAA inhibition and the dopamine pathway (Meyer, 2019). In addition, hand 

dominance can impact the asymmetry results and has been controlled for. Usually, 
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studies are performed on volunteers who have a singular and known diagnosis to not 

convolute the results with comorbidity, however with anxiety and depression that is 

nearly impossible to control. Many other factors that can influence the outcome of 

EEG signal analysis in a group would be the average age of the participant, education 

level, history of trauma and other social factors. Age can be determined though EEG 

signals by feature selection of the following spectral features: power, relative power, 

entropy, edge frequency and differences between consecutive short-time spectral 

estimations (Al Zoubi et al, 2018). Cognitive load can be differentiated by EEG 

signals using entropy and the deviation of wavelet coefficients (Zarjam & Lovell, 

2015).  Trauma can lead to a diagnosis of post traumatic stress disorder (PTSD) 

which manifests itself in the EEG signals. Trying to interpret brain outputs is 

extremely complex and not fully understood.  Attempting to rationalize and attribute 

signal response to a particular condition can never be certain, even under rigorous and 

strict study conditions. The effect of interventions on EEG signals is crucial to 

interpreting the results. Since signals are transient and temporally sensitive, the 

segment of data analyzed must be intentionally selected and common participant 

characteristics should be sought. 

4.2 Visualization of Topographic Heat Maps 

Generally, the higher frequency bands are more discriminatory. The alpha band, 

associated with a low level of alertness, and beta bands, associated high order 

thinking, can be affected by depression and anxiety.  Consequently, theta and delta 

band dominance can help to discern and delineate imbalances in the alpha and beta 

bands.  

Most studies have performed analysis on the resting state EEG signals or have 

evaluated ERP responses (Newson & Thiagarajan, 2019; Damborská et al., 2019; 

Koo et al, 2015). This allows for predictability, reproducibility, and reliability of the 

data as the testing condition can be easily recreated.  Analyzing and extracting 

features from trial-based EEG signals for biomarkers of depression and anxiety is a 

novel approach to analysis. When a person is performing a task, they are exhibiting 

cognitive processing which would differ from the resting state. It would provide 

clarity on how, during an active state, connectivity is impacted by a mood disorder 
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and if there are discernible biomarkers. The original study by Cavanagh and 

colleagues (2019) examined the effect of depression and anxiety on reward response 

learning but did not use the data for machine learning/validation of the mood disorder 

based on the psychological test scores.  

Several trials in the EEG signals were noted as significant event occurrences as 

documented by the original researchers while the participants performed the 

probabilistic learning task. In some individuals, over 120 trials were noted. Heat maps 

were generated for comparison of the trial means as well as for a singular trial.  

Averaging the trials can eliminate critical data that may not be an outlier but can 

present a representative picture of the brain over the entire period. Conversely, a 

single trial event is very temporally specific and may not be generalizable, however 

can provide insight on the individual.  

In the beta band for DFA, the values at channel F8 increase with increasing BDI 

class (see Figure 15). Decreased activity is demonstrated by a higher correlation 

between regions as there are fewer activations. This is because the beta frequency 

band is associated with higher order thinking and decreased chaos or complexity 

indicates reduced activity. The frontal lobe is associated with decision making and 

executive control.  It is the part of the brain that manages everyday situations.  If a 

person is apathetic and not actively engaged in the task at hand, then the frontal lobe 

activity would certainly be reduced. 

This reduced complexity is visible in these EEG signals regardless of the signal 

acquisition condition. This disproves and contradicts one finding presented in a paper 

by Sun et al. (2008) that stated only in resting state the frontal cortex is affected. The 

study also demonstrated that while performing a mental arithmetic task, persons with 

depression showed left frontal beta hyperactivity as well as interhemispheric and 

intra-hemispheric interdependence. Conversely, during the resting state, participants 

showed a left frontal beta hypoactivity. This indicates that the beta band activity is 

dependent on what the individual is doing. Unfortunately, this feature would not help 

to discriminate a diagnosis of depression from signals acquired when a person is 

performing a task as it implies that there will be typical EEG connectivity. This study 
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by Sun et al. (2008) examined dependency, which differs from the selected features 

for this thesis, however both describe the level of disorder or chaos of the signal.  

Figure 16 shows a higher AppEn in persons who are severely depressed in the 

alpha band with increasing severity. This finding is supported by the known 

characteristic of the alpha band which is notably dominant during wakeful relaxation.  

A less active mental state is associated with depression (anhedonia). The exception to 

the increased entropy or disorder in the alpha band with increasing severity of 

depression occurred at one channel, P6. The parietal lobe is responsible for decision 

making, prediction of rewards, emotional processing, and cognitive changes, which 

can all be affected by depression. This indicates reduced complexity in this region, 

aligning with a study that found homogeneity in the right inferior parietal lobe of the 

brain in depressed patients. This was determined measuring blood flow using fMRI 

(Liang et al., 2013).  Therefore, these heat plots produced using EEG signals are 

consistent and validate the observed reduced entropy. 

Lyapunov’s exponent was discriminatory for persons with depression, particularly 

in the alpha and theta bands (see Figure 18 and Figure 19). LE increased overall in 

the alpha and theta bands with increasing depression severity. This feature appears to 

be a reliable indicator of severity increase. This indicates that LE is non-specific to a 

topographic region and detects overall changes.  

Figure 20 shows that at channel P8, a very minor decrease in AppEn alpha band 

for persons with anxiety was observed in class 3 compared to classes 1 & 2.  This 

may be due in part to the frequency band and the function of the parietal brain region. 

Studies have shown hyperactivity in the parietal cortex in patients with high anxiety 

(Grieder et al., 2020; Nitschke et al., 1999). The inferior parietal cortex helps to 

control fine sensorimotor functions, decision making and the prediction of rewards. 

MRI scan results demonstrated inactivation of this area while people were being 

watched, highlighting the impacts of anxiety on the brain region (Yoshie et al., 2016). 

A decrease in entropy can signify reduced activity and likewise, chronic anxiety is 

associated with an increase in homogeneity which is indicative of a reduced learning 

ability (Zhang et al., 2018). 
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For persons with anxiety, LE decreases overall in magnitude in the alpha band 

(see Figure 21). Similarly, for the same feature but in the beta band, LE decreases but 

primarily in the left temporal and occipital regions (see Figure 22).  This is consistent 

with research suggesting left hypoactivation in individuals with depression, which 

holds true for persons with anxiety in this case (Henriques & Davidson, 1991). This is 

validated through the EEG signals during the GO/NO GO condition as when alpha 

band activity decreases, generally beta activity increases (alpha dominates the resting 

state condition). In the theta band, there is an obvious decrease in LE overall. Finally, 

for the same feature in the theta band, at channels Pz and P2, the LE value is higher 

relative to surrounding channels but decreases with increasing anxiety from 0.935 to 

0.915 (see Figure 23). Frontal theta power is associated with neuroticism and 

avoidance, key traits of anxiety. The midcingulate cortex, part of the limbic system, is 

involved in regulating behaviour in response to stress. As previously mentioned, 

frontal-midline theta band activity has demonstrated these adaptive behaviours 

(Cavanagh & Shackman, 2015). 

4.2.1 Value of Heat Maps 

Making results easier to interpret and gaining meaningful conclusions is a key 

point when designing human-computer interfaces. Numerical data or visual outputs 

should be produced to aid in analysis. Many interfaces are aesthetically pleasing and 

intuitive. Topographical brain heat maps are easily understood, and the colour 

distribution can be interpreted by the legend. Understanding this output is equally as 

valuable as a numerical output and more detailed channel information can be gleaned 

from this, leading to further understanding into topographic influence on mood 

disorders. EEG signals are transient and visually observing trends can aid in 

understanding the interaction of neurons in the brain relative to others as opposed to 

monitoring the fluctuation in values. Visual output is easily understood by a user, 

enhances understanding of the data and can contribute to neurofeedback practices. 

Topographic orientation is critical to understanding the brain and correlating results 

to a specific brain region. 



  
             

70 
 

4.3 Classification 

On this dataset, few papers have been published that train the data for classifying 

the severity of the mood and anxiety disorder.  Other research papers evaluating using 

machine learning techniques to classify depression and anxiety produced slightly 

higher accuracies.  This could be due in part to their method of analyzing the data, the 

signal quality, and the volunteers of their studies. Nonetheless, the classification 

accuracies achieved indicative of the presence of a disorder but would require 

optimization (see section 4.6 Future Work).  In addition, Riemannian analysis is not a 

common method used for feature extraction in EEG analysis and produced 

classification accuracies analogous to typical discriminant non-linear features. This 

demonstrates its potential and novel use for classifying mood disorders from EEG 

signals. The highest classification accuracies for this research consisted of SVM, 

KNN and ensemble subspace discriminant classifiers.    

Several published studies have presented their classification accuracies for 

identifying depression from EEG signals. Table 10 summaries these key papers, 

objectives, features used and classifiers. This study selected fewer participants than 

the total to run the analysis which increased the classification accuracy.  Most papers 

performed their analysis on EEG signals acquired with eyes open or eyes closed in 

the resting state. Mohammadi and colleagues (2015) increased their accuracy by 

executing their analysis on a smaller subset of people from their study.  This enhances 

machine learning results, however reduces its applicability to a diverse group.  
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Table 10: Notable Studies Classifying Depression Using Machine Learning 

Author Database Description Classification Accuracy 

Hosseinifard, Moradi 

& Rostami (2013) 

Classification of 45 unmedicated 

depressed patients and 45 controls 

• 83.3% obtained by correlation dimension (CD) and logistic 

regression (LR) classifier  

• 90% achieved by all nonlinear features and LR classifier 

Bachmann, Lass & 

Hinrikus (2017) 

Single channel EEG analysis for 

detection of depression 

• 76.5% accuracy for (spectral asymmetry index, SASI) 

• 70.6% for DFA  

• 91.2% due to linear combination of SASI (Spectral asymmetry 

index which is the relative asymmetry between the higher and 

lower frequency bands) and DFA  

Bachmann, Päeske, 

Kalev, Aarma, 

Lehtmets, Ööpik, & 

Hinrikus (2018) 

Resting state single channel short-

term EEG signals comparing 

linear (spectral asymmetry index, 

SASI) and non-linear (DFA) 

features for 13 unmedicated 

persons with depression vs. 13 

gender matched controls 

• 81 % for linear features 

• 77 % for non- linear features (HFD, DFA, Lempel-Ziv) 

• 88 % for a combination of 2 non-linear features 

• 85 % for two non-linear features  

• 92 % using mixed combination of three linear and three 

nonlinear features 

Acharya, Sudarshan,  

Adeli, Santhosh, 

Koh, Puthankatti, & 

Adeli (2015) 

Resting state EEG signals 

analyzed 15 depressed and 15 

unaffected people using nonlinear 

features for classification 

• 98% accuracy using SVM for non-linear including sample 

entropy, DFA, LE, Hurst’s exponent, higher order spectra and 

recurrence quantification 
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Cai, Qu, Li, Zhang, 

Hu, & Hu (2020) 

EEG signals for 86 persons with 

depressions and 96 normal 

controls acquired while receiving 

audio stimuli (3 electrode EEG) 

• 86.98% using KNN classifier and audio features 

Mohammadi, Al-

Azab, Raahemi, 

Richards, Jaworska, 

Smith, Knott (2015) 

Classifying EEGs of 54 

participants with MDD and 43 

healthy volunteers 

• 80 % achieved for 9 selected perons with MDD  

• 70 % accuracy for all participants 

 

Saeedi, Saeedi, & 

Maghsoudi (2020) 

Classifying 5 mins of resting 

EEG data for 34 MDD patients 

• 91.38% achieved from gamma band with KNN classifier 
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4.4 Research Reproducibility and Data Limitations 

The analysis was performed on a relatively large sample size on 119 participants.  

The age of the volunteers was between 18 to 24, potentially limiting its applicability 

to all age groups. However, generally mood disorders emerge in early adulthood, 

therefore this fact could indicate that neurological variations in early adulthood could 

represent applicability to all age groups. Performing this analysis on larger sample 

size where there are more clinically extreme cases of depression and/or anxiety could 

be beneficial for machine learning and classification. There were only 8 individuals 

classified as having severe depression, which is not enough to accurately be able to 

train a dataset. The EEG signals were acquired from people performing a 

probabilistic learning task. The activity performed during signal recording is known 

to elicit specific responses such as ERP’s. Therefore, the reproducibility of these 

results may vary depending on the condition of the person (i.e., resting state, eyes, 

closes/opened, cognitive task, etc.). It has been shown that there is an asymmetry 

difference between right- and left-handed individuals (Bryden, 1982). It is not known 

whether the participants were right or left-handed. Since part of the analysis 

examined asymmetry between the left and right sides, not knowing whether all 

individuals were dominant on one side or not could convolute the data.  

Run time for these codes using the latest version of Matlab (R2021a) took a 

significant amount of time. Some iterations were 8 to 16 hours in length. Due to the 

length of analysis, analytical software improvements are needed. There are many (in 

the order of hundreds) different features that can be used to evaluate the EEG signal. 

The selected features were chosen based on prior research and their use in identifying 

mood disorders. Running a code for hundreds of features would be computationally 

inefficient. A future challenge would be to implement a fast psychological diagnostic 

software into hardware devices for almost immediate results and conclusions. 

A healthy or normal brain must be established for various conditions to order to 

aid in diagnosis of abnormalities seen.  This task on its own is onerous to account for 
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varying factors. Self similarity over time to track changes and/progress might be more 

beneficial in the interim until these controls are established.  

EEG is a dynamic signal with high temporal fluctuations. By taking the mean of 

signals temporally, certain dynamic characteristics may be lost. In addition, from a 

human-computer interaction perspective and analysing real-time data, it would also 

be beneficial to represent the temporal changes over time to see the shifting time of 

specific channels for specific classes. Implementing different EEG signal 

decomposition methods may offer different insights for diagnosis. 

4.5 Sources of Error 

It is important to note, just as EEG signals are dynamic, stress is also dynamic. 

The TAI test was completed by participants based on how they felt in the prior two 

weeks, not necessarily at the time of data acquisition. Stress and anxiety are time 

sensitive and therefore, it can be stipulated that any variations in brain signals would 

also be sensitive to acute responses. Consequently, drawing conclusions and applying 

it to peak conditions of high cortisol inducing situations may not be representative. In 

addition, diagnostic clinical depression and a depressed mood may be difficult for a 

person to differentiate themselves. Database scores indicating high depression may be 

inflated due to subjective measures giving rise to why large datasets are useful here. 

There were interviews conducted with some individuals to perform a cross sectional 

validation of the psychological test scores. In conclusion, it is important to consider 

that analyzing and classifying the EEG signals is only as accurate as the 

psychological test scores.  

4.6 Future Work 

For this research with the objective of identifying biomarkers in EEG signals, 

specific analysis techniques were iterated and chosen. However, there exist numerous 

other signal analysis algorithms which can be applied to a database for processing. To 

optimize prediction and classification accuracy, future analysis could incorporate 

other methodologies. k fold validation evaluates machine learning models on a 

selected subset of data (Wong & Yeh, 2020). ‘k’ indicates the number of groups on 
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which the data is validated against. Larger k values will increase the computational 

time. In this study, a permutation function was used to randomly train the model on 

70 % of the data and test it on 30%, however a 5-fold validation can be implemented 

to verify whether the accuracy can be improved.  Independent and identically 

distributed (IID) analysis is an unsupervised learning technique where each variable 

has the same probability distribution but is independent of each other. This method is 

commonly implemented in EEG signal analysis when evaluating mental state as it is 

transient. The cognitive activities performed during signal acquisition are lengthy and 

if participants become distracted, it could result in mislabeling of the dataset.  The 

flaw of classic machine learning is that it relies on the accuracy of the labels and as 

well, throughout the study, the noise parameters may also change. (Görnitz and 

colleagues (2014) proposed a 4-step method for labeling data based on non-IID 

analysis.  IID could be implemented on this database consisting of participants with 

depression and anxiety to verify the label accuracy while ensuring higher certainty at 

later stages of analysis.  This additional analysis would help to validate the objective 

of this research of delineating the presence of depression compared to psychological 

evaluations. 

Increased research investigating numerical features to detect mood and anxiety 

disorders will allow for the selection of the most optimal algorithms for diagnosis to 

be used in conjunction with visualization and classification techniques. With 

increased data acquired from varying conditions, specific features can be identified as 

evidential markers of a mental illness diagnosis. 
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5. Conclusion  

The objective of neurophysiological signal analysis is to be able to diagnose mood 

disorders and anxiety through signal detection techniques more accurately than 

subjective psychological tests. To date, there is a decade of research on signal 

analysis heterogeneity between unaffected individuals and those with mood disorders. 

Implementing the findings for use in patient diagnosis will require more research that 

is consistent, reproducible, and reliable. The features should be extracted from signals 

where people perform the same task and from comparable components of the signal 

to produce consistent results.  It is not a simple objective as there are many 

decomposition methods, features and classifiers that can be evaluated. External 

factors must be controlled. External factors that may impact the signals could include 

age, gender, prescribed medication, recreational drug use, comorbidity, etc.  Signal 

analysis depends on computer processing capacities. Reducing the time of analysis 

coupled with the progress/development of hardware devices to be used in clinical 

settings is also a key advancement that must be established prior to effective clinical 

use.  In addition, the protocol for acquisition of signals should be standardized. 

Despite the persons’ state, signal feature extraction for diagnosis must be validated.  

My research demonstrates that during a probabilistic learning task, discriminatory 

features were identifiable in the signals.  Understanding the biomarkers of mood 

disorders in the brain and how and when different individuals present these symptoms 

can provide input for the development of treatment methods. 

My hope for the outcome of this thesis along with other research findings is that it 

will contribute to psychiatric diagnosis of mood and other disorders.  Ideally in the 

future, there will be accessible commercial devices available to the public with built 

in software programs including feature selection, classification and visual outputs of 

heat maps that provide the user with a diagnosis based on how their results compare 

to a large database.  In the next decade there will be increased data acquisition leading 

to the development of a database that can be used for prediction, training, testing and 

validation.  
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Greater support is needed for people with mood and anxiety disorders. Healthcare 

resources are limited, and it is dangerous for someone with a severe mood disorder to 

be waiting for months on end for medical care.  There is a need for enhanced, 

widespread technology for accurate diagnosis, monitoring, and eventually, 

neurofeedback that can provide treatment prediction and outcome.  This research is 

not only intended for those with severe mood disorders, but also those afflicted by 

mild depression and anxiety as even monitoring small fluctuations can be helpful. 

Having answers and a diagnosis can alleviate stress associated with a lack of 

understanding of oneself and emotions. In addition, by quantifying qualitative 

findings, I hope to contribute to eliminating stigma, doubt and judgement often 

associated with mood disorders. 

I am grateful for the opportunity to conduct this research and to have had access 

to over 100 individuals’ EEG data. I had the opportunity to perform biomedical signal 

analysis and came to appreciate its algorithmic complexities. 
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