Toronto Metropolitan University
Browse

Application Of A Thermodynamic-Based Model To Investigate Bone Remodeling After Total Hip Arthroplasty Using Different Hip Implants

Download (1.64 MB)
thesis
posted on 2021-05-22, 08:38 authored by Alireza Sayyidmousavi
A new thermodynamic-based model for bone remodeling is introduced. This model is based on chemical kinetics and irreversible thermodynamics in which bone is treated as a self-organizing system capable of exchanging matter, energy and entropy with its surroundings. Unlike the previous works in which mechanical loading is regarded as the only stimulus for bone remodeling, this model establishes a coupling between mechanical loading and the chemical reactions involved in the process of bone remodeling. This model is then incorporated to the finite element software ANSYS in the form of a macro to study bone remodeling after total hip arthroplasty with four different implants: Custom-made titanium, composite, Exceter and Omnifit hip stems. Numerical computations of bone density distribution after total hip arthroplasty indicate that the Omnifit implant with carbon fiber polyamide 12 composite results in minimum resorption in the proximal femur and consequently minimum bone loss due to stress shielding.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Mechanical and Industrial Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2010

Usage metrics

    Mechanical and Industrial Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC