posted on 2021-05-22, 16:58authored byJianying Miao
This thesis describes an innovative task scheduling and resource allocation strategy by using thresholds with attributes and amount (TAA) in order to improve the quality of service of cloud computing. In the strategy, attribute-oriented thresholds are set to decide on the acceptance of cloudlets (tasks), and the provisioning of accepted cloudlets on suitable resources represented by virtual machines (VMs,). Experiments are performed in a simulation environment created by Cloudsim that is modified for the experiments. Experimental results indicate that TAA can significantly improve attribute matching between cloudlets and VMs, with average execution time reduced by 30 to 50% compared to a typical non-filtering policy. Moreover, the tradeoff between acceptance rate and task delay, as well as between prioritized and non-prioritized cloudlets, may be adjusted as desired. The filtering type and range and the positioning of thresholds may also be adjusted so as to adapt to the dynamically changing cloud environment.