Toronto Metropolitan University
Browse
MacQuarrie_John_Adam.pdf (4.62 MB)

Aerodynamic optimization of building augmented wind turbines

Download (4.62 MB)
thesis
posted on 2021-06-08, 12:44 authored by John Adam MacQuarrie
The omnipresence of wind, low production cost and much advancement within the field, wind power provides a vast and promising renewable energy resource. With the current high prices of oil and pressure to reduce carbon emissions, wind energy has achieved great interest creating high demands for innovative wind technology. Additionally, producing energy at the door step of consumers, such as at consumer dwellings in urban areas, wind power provides a means of producing efficient and reliable energy. The use of architectural structures to provide an augmentation source for the wind has been pursued by some ambitious architects but the effects of building augmentation are still uncertain. This study used computational fluid dynamic models to analyze varying building geometries and their effects on power augmentation. A porous region was used to model a wind turbine back pressure across the gap between the buildings. Results show augmentation increases power production one to two times compared to equivalent size free-standing wind turbines. Results also show that certain wind incidence angles provide the best augmentation indicating that building geometry is optimal when design takes into consideration winds regularity azimuth.

History

Language

English

Degree

  • Master of Engineering

Program

  • Aerospace Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Thesis Advisor

Paul Walsh

Year

2011

Usage metrics

    Aerospace Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC