posted on 2021-05-23, 13:01authored byBehrooz Alae
There is an increasing demand for higher performance in modern robotic applications. To meet the need for more accuracy and fast dynamic response, considering inertial effects is necessary. This thesis proposes a new global multi-objective optimization strategy to tune the geometric and dynamic capabilities of a manipulator. Then, as a case study, the kinematics and dynamic behavior of a five-bar-linkage haptic interface is analyzed and a new design procedure is obtained using a new global and constrained multi-objective technique. The minimax culling algorithm was used to design parameters for optimal kinematics and dynamic dexterity measure.