Toronto Metropolitan University
Browse

A Cluster-Based Browsing Model For QoS-Aware Web Service Selection

Download (2.16 MB)
thesis
posted on 2021-05-23, 14:52 authored by Kian Farsandaj
In the last decade, selecting suitable web services based on users’ requirements has become one of the major subjects in the web service domain. Any research works have been done - either based on functional requirements, or focusing more on Quality of Service (QoS) - based selection. We believe that searching is not the only way to implement the selection. Selection could also be done by browsing, or by a combination of searching and browsing. In this thesis, we propose a browsing method based on the Scatter/Gather model, which helps users gain a better understanding of the QoS value distribution of the web services and locate their desired services. Because the Scatter/Gather model uses cluster analysis techniques and web service QoS data is best represented as a vector of intervals, or more generically a vector of symbolic data, we apply for symbolic clustering algorithm and implement different variations of the Scatter/Gather model. Through our experiments on both synthetic and real datasets, we identify the most efficient ( based on the processing time) and effective implementations.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Computer Science

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2010

Usage metrics

    Computer Science (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC